

Faculty of Natural Sciences and Technology

Vertical Diversity-Oriented Synthesis with Dibenzylideneacetones

Multivariate Optimization and Diversity Exploration

Phenias Buhire

KJE-3900 Masters thesis in Organic Chemistry, May 2015

AKNOWLEDGEMENTS

First of all I thank God for creating and keeping us alive up this moment.

Secondly, I would like to thank my supervisor Assoc. Prof. Jørn H.Hansen for motivating me. He was always available for me and offered guidance and advice. His constructive advice helped me to complete the presented work. I am grateful to work under your supervision.

I would like to thank my co-supervisor Prof Tore Lejon for his guidance, help and encouragement during the lab work. The first part of the project was very challenging and it could not be completed without his guidance.

I would like also to thank Dr Taye Beyene Demissie for providing me DFT data and Dr Johan Isaksson for helping me with 2D-NMR spectra.

Many thanks goes to engineers Jostein Johansen, Truls Ingebrigtsen and Arnfinn Kvarsnes for giving me help with HRMS, GC-MS and IR.

I also wish to thank Dr. Muhammad Zeeshan for his advice and guidance both in chemistry and social life.

I am also grateful to Yngve Guttormsen for his friendship and help with diverse thing.

Another thank goes to my office co-worker, lab-fellow, Aya Ismael for her moral support.

Lastly, I thank my family Ernest, Marceline, and my younger sister Denise for their moral social support.

ABSTRACT

DOS was planned from dibenzylideneacetone to generate compound library with structural diversity, which can undergo further transformations. In the presented work, dibenzylideneacetone was cyclized under Robinson Annulation reaction. The resulting cyclization product was optimized using Multivariate response surface method. Response surface analysis helped to determine both significant variables used during the optimization process and to generate a model describing the variation of response according to the experimental variables.

The Robinson Annulation product was studied in a range of transformations, for instance Hydrogenation, Krapcho decarboxylation, inverse electron demand Diels-Alder, Luche reduction and Alkylation reaction. All the attempted reactions were found successful, except reduction and cycloaddition reactions. Further work on unsuccessful reactions could not be carried out due to time constraints. Various new compounds were synthesized during this work.

Dibenzylideneacetone can play various functions in synthetic chemistry as precursor to other compounds. It is used to make ligands, for instance dibenzylideneacetonedipalladium (0) which is utilized as a homogeneous catalyst in organic synthesis. Dibenzylideneacetone can be used to synthesize heterocyclic organic compounds. There is no available research conducted to explore its benefits to synthesize compound libraries.

LIST OF ABBREVIATIONS

¹ H-NMR	Proton nuclear magnetic resonance
¹³ C-NMR	Carbon nuclear magnetic resonance
GC	Gas chromatography
MS	Mass spectrometry
HRMS	High-Resolution Mass Spectrometry
IR	Infrared (spectroscopy)
TLC	Thin layer chromatograph
δ	Delta, used in NMR data report to signify chemical shift.
EI	Electron ionization
ppm	Part per million
cm ⁻¹	Reciprocal centimeters
DOS	Diversity-Oriented –Synthesis
TOS	Targeted – Oriented Synthesis
EWG	Electron-Withdrawing Group
EDG	Electron- Donating Group
НОМО	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
IEDDA	Inverse Electrons Demand Diels-Alder
TBE	Tricyclic Bis-Enones
EtOAc	Ethyl acetate
DBU	1,8-Diazabicyclo[5.4.0] undec-7-ene
DMF	N,N dimethylformamide
DMSO	Dimethylsulfoxide

TABLE OF CONTENTS

AKNOWLEDGEMENTS	
ABSTRACT	5
LIST OF ABBREVIATIONS	7
1. INTRODUCTION	11
1.1. Diversity-oriented library synthesis (DOS)	11
1.1.1. Synthetic strategies for skeletal diversity	12
1.2. Robinson Annulation	13
1.3 Inverse electron demand Diels-Alder reaction (IEDDA)	15
1.4 Krapcho reaction.	16
1.5 Luche Reduction	17
1.6 Uses of bis-enone compounds	17
1.7 Response surface method and its principles	
1.7.1. Variables, experimental domain and experimental screening	
1.7.2 Experimental design	
1.7.3 Taylor polynomial model	
1.8 Purpose of thesis	21
2. RESULTS AND DISCUSSION	
2.1 Synthesis of dibenzylideneacetone	
2.2 Synthesis of compound 8	
2.3. Multivariate response surface model of compound 8	24
2.3.1. Variables and experimental domain	
2.3.2. Experimental design	

2.3.3 Results presentation and discussion	27
2.3.4 Screening and response surface analysis	
2.4 Hydrogenation of compound 8	
2.5Decarboxylation of compound 8	
2.6 Inverse electrons demand Diel-Alder reaction	
2.7 Luche reduction reaction	
2.8 Alkylation of compound 8	
2.8.1 Alkylation with allyl bromide	
2.8.2 Alkylation with propargyl bromide	
2.8.3 Alkylation with benzyl bromine	
2.8.4 Alkylation with 1-bromo 4-phenyl butane	
2.7.5 Alkylation with 2-bromoacetophenone	
2.8.5 Alkylation with methyl acrylate	
2.9 Relative Stereochemistry of compound 8, 15 and 17	
3. FUTURE DIRECTIONS	
4 .CONCLUSION	
5. EXPERIMENTAL SECTION	
REFERENCES	67
APPENDICES	73

1. INTRODUCTION

1.1. Diversity-oriented library synthesis (DOS)

There has been a significant revolution in library construction and synthetic methods development of new drugs in the last decades¹. Target-oriented synthesis (TOS) focuses on transformation of one region to produce a specific molecule. The TOS method has been used since in many year to build compound libraries, but it was recently considered as a relatively weak strategy for library design. ¹⁻² Diversity-oriented library synthesis (DOS), which aims to produce chemical libraries that are representative of compounds that have large structural diversity, was introduced to complement TOS. Stereochemical, skeletal, appendage and functional groups diversity describe the structural diversity of a molecule.²⁻⁵. Example of DOS is given in *scheme 1* where different reagents were used to transform one aliphatic compound to six distinct compounds with skeletal and stereochemical diversity.

Scheme 1: A ring- distortion strategy to construct stereochemically complex and structurally diverse compounds from natural product.⁶

1.1.1. Synthetic strategies for skeletal diversity.

There are two kind of strategies, a reagent-based strategy (RBS) and a substrate-based strategy (SBT) that are used to generate skeletal molecular diversity.

In RBS, different reagents are used to transform one molecule into many compounds with skeletal diversity.^{2,4,7} Example of a RBS is given in *scheme 2* where some functional groups (alkyne, nitro and ester) of compound **17** were paired with various reagents to generate compounds with different skeletons.

Scheme 2: Different pairing reactions of the densely functionalized compound 17 gave access to distinct molecular scaffolds 18-20.⁸

Whereas, SBT involves the use of the same reagents to transform different compounds containing pre-encoded information into distinct products.² Example of a SBT to generate molecular diversity is shown in *Fig 1* where three different compounds are transformed to various compounds with the same reagent.

Fig 1: Substrate- based strategy.²

1.2. Robinson Annulation

The Robinson Annulation reaction is useful in synthesis of cyclic organic compounds. This reaction is a combination of Michael addition and intramolecular Aldol condensation reaction.⁹

The reaction involving a base catalyzed addition of a nucleophile (Michael donor) to activated π -system (Michael acceptor), refers to the Michael addition reaction. The π -system is activated when it is attached to an electron withdrawing group or negative charge stabilizing group. Nucleophile can be generated with deprotonation of CH-activated compounds like β -dicarbonyl, ketones, aldehyde and nitrile compounds. Michael reaction which involves direct attack of a nucleophile to β -carbon of α , β unsaturated carbonyl compounds is called conjugate addition or 1, 4-addtion.^{10, 9} An example of Michael addition reaction and mechanism is shown in *scheme 3* and *4*.

Nucleophile **b** attacks directly β -carbon of unsaturated compound **a** to produce compound **c**. Base can deprotonate hydrogen of nucleophile before or after nucleophile attack. Mechanism of this reaction is shown in *scheme 4*.

Scheme 3: Michael reaction scheme.

Mechanism of 1,4 conjugate addition Michael reaction is shown in steps **a** and **b** in *scheme 4* After nucleophile attack to β -carbon of unsaturated ketone **a**, electrons are delocalized in conjugated system **b** followed with protonation of α —carbon of unsaturated ketone.

Scheme 4: Conjugate addition mechanism.

Tremendous progress has been made in fields of stereoselective and catalytic Michael reactions. Asymmetric organocatalytic Michael reaction has been used in targeted and diversity oriented synthesis to generate optical active natural products. ¹¹⁻¹² Oxa-Michael reaction that involves the addition of an oxygen of a nucleophile to activated π -system compounds has been used to produce stereoselective compounds. ¹³⁻¹⁴ Aza-Michael reaction (conjugate addition of amines to α , β unsaturated compounds) has been used to synthesize stereoselective cyclic or acyclic nitrogen chiral compounds ¹⁵ and optical active chiral amines compounds. ¹⁶⁻¹⁷ Sulfa-Michael reaction has been used to synthesize compounds. ¹⁸ Phospha-Michael reaction has been used to synthesize a recylable catalysis ¹⁹ and a magnetic recylable heterogeneous organic base. ²⁰

Aldol reaction

The reaction allows molecular diversification by the reaction of enols or enolates with carbonyl compounds (ketones and aldehydes), refers as Aldol reaction. The resulting β -hydroxy carbonyl product undergo acidic or basic hydrolysis to give α , β unsaturated enones.²¹⁻²² Example of Aldol condensation reaction is shown in *scheme 5*.

Base deprotonates the hydrogen of α -carbon of ketone compound **a** to generate enolate of compound **a**. The reaction between compound **a** and its enolate forms β -hydroxy ketone which undergo dehydration to give α , β unsaturated ketone (**b**).

Scheme 5. Aldol reaction

1.3 Inverse electron demand Diels-Alder reaction (IEDDA).

IEDDA [4+2] cycloaddition reaction is a useful reaction to synthesize six membered ring compounds.

The reaction involving an electron–poor diene (4π electrons) and an electron-rich dienophile group (2π electrons) refers to [4+2] cycloaddition IEDDA reaction. Dien is a conjugated double while a dienophile can be a double or a triple bond. Substituted diene with electronwithdrawing group and a dienophile with an electron–donating group have been seen to improve the reaction rate. The local symmetry of molecular orbitals involved in reaction can be used to explain the stereospecificity of the reaction. Molecular orbitals involving in reaction are HOMO of a dienophile and LUMO of a diene.²³⁻²⁸

Example of IEDDA reaction is shown in scheme 7 and orbital overlap (Fig 2).

Electrons flow from dienophile to dien in *scheme 7*. Electron withdrawing group (EWG) and electron donating group (EDG) activates compounds containing them.

Scheme 6. Inverse electrons demand Diels-Alder.

Molecular orbital overlap between HOMO of an electron rich dienophile and LUMO of an electron poor dien is shown in *Fig 2*

Fig 2: Molecular orbital overlap in IEDDA

1.4 Krapcho reaction.

The reaction is a useful to remove an ester group from organic compounds.

The alkali salt promoted loss of alkoxylcarbonyl group from esters by heating in a polar aprotic solvent refers to Krapcho decarboxylation reaction.²⁹⁻³¹

Example of Krapcho reaction and mechanism is shown in *scheme* 7 and 8 Chlorine ion (Cl⁻) takes away methyl of ester of compound **a** and promotes the cleavage of ester group to generate compound **b**, see *scheme* 7 The removal of ester methyl group and its cleavage occurs simultaneously, see mechanism in *scheme* 8.

Scheme 7: Reaction equation

Scheme 8: Proposed salt-assisted Krapcho decarboxylation mechanism

1.5 Luche Reduction

The reaction is usefully in reduction of ketones of α , β unsaturated ketones compounds.

The reaction that involves a combination of lanthanide and sodium borohydride to reduce α , β unsaturated compounds to the corresponding alcohols, refers to Luche reduction.

Lanthanide catalyzes the formation of alkoxyborohydride and its coordination to oxygen of a solvent makes proton of alcohol to be more acidic which makes it easy to be abstracted by oxygen atom of the carbonyl group.³²⁻³³. Example of Luche reduction reaction is shown in *scheme 9*.

Cerium (Ce³⁺) coordinates to oxygen of methanol and facilitates the formation of methoxyborohydride. Coordination of Ce³⁺to oxygen of carbonyl compound **a**, which makes carbon of carbonyl group electron deficient, which is then attacked by methoxyborohydride to generate compound **b**, see *scheme 9*.

Scheme 9: Reaction equation

1.6 Uses of bis-enone compounds

Enones play various important roles in synthetic organic chemistry, some used, as basis compounds to make other compounds and others are medicines used to treat diverse diseases.

Tricyclic bis-enones (TBE-31) derivatives are types of enones, which have been used in medicine to treat different diseases such as cancer, inflammation, neurological disorders, and pathologies involving oxidative stress and to stimulate bones and cartilage growth.³⁴⁻³⁷

TBE-31 and its derivatives

1.7 Response surface method and its principles

The yield obtained after running experiment is influenced with a number of experimental variables (eg. Concentration of reagent, temperature, pH). The problem is to know how experimental variables contribute to observed results and how to adjust them in order to improve the yield. By means of response surface modelling, it is possible to determine the response surface model describing the variation of yield according to experimental variables and their settings. With response surface analysis it is possible to see how the yield varies according to variation of experimental variables, which helps to find out the optimum conditions.³⁸⁻⁴²

1.7.1. Variables, experimental domain and experimental screening.

The term variable refers to experimental factors like, rate of adding reagents, reaction temperature, pH of the reaction, solvents, concentration of reactants and stirring rate. Variable, which can be changed to any value over its range of variation, refers to a quantitative variable. During a synthetic process, experimenter can decide the minimum and maximum value for all experimental variables that are used. Experimental domain refers to fixed experimental space between minimum and maximum value of the variation of the experimental variables.⁴²

Experimental variables influence the obtained yield in a different way and some may not have a significant influence on response, the problem is to predict which variables are more important. Experimental screening aims to identify significant experimental variables. In screening it is possible to find out both individual and interaction effect of variables on the yield. The experimental screening results help to know which variables should be controlled.⁴²⁻⁴⁴

1.7.2 Experimental design

By means of two-level factorial design, each experimental variable can take two values, one at low level and another at high level. A full factorial design is a type of two-level factorial design, which shows all possible combinations of levels of experimental variables. A full factorial design representing a number of variable **m** studied at two level a number of possible experiment to run is represented with 2^{m} .^{42,41}

Example of experimental design: Bromination of an enamine.

Scheme 10: Bromination reaction.⁴²

First step is to determine variables and experimental domain before designing an experiment.

Table1 shows variables $(x_1, x_2 \text{ and } x_3)$ and their experimental domain where each variable has low level (-) and high level (+).

Table 1: Variables and experimental domain.

Variables	experimental domain		
	(-) low level	(+) high level	
x_1 : bromine concentration (mol/dm ³)	0.25	0.50	
x_2 : bromination time (min)	2	5	
<i>x</i> ₃ : hydrolysis time (min)	5	10	

Experimental design full factorial design.

For a full factorial design, a number of possible runs is z^m where z represents levels of each variable and m is a number of all variables involved in reaction. In case of bromination of enamine possible runs is 2^3 . All possible combination of settings of experimental variables is shown in *table 2*.

Table 2: Full factorial design 2^3

1.7.3 Taylor polynomial model

The model can be used to evaluate the influence of each experimental variable on the response and assess the significance of each term in the model.

The model describes the variation of response (y) in experimental domain according to settings of experimental variables ($x_1, x_2, ...$ etc). Taylor polynomial model is written as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \beta_{12} x_1 x_2 + \dots + \beta_{ij} x_i x_j + \dots + \beta_{11} x_1^2 + \dots + \beta_{kk} x_k + e^{-\beta_{ij} x_1 x_2} + \dots + \beta_{ij} x_{ij} + \dots +$$

Polynomial model coefficients (β_0 , β_1 , β_2 , ..., β_{ij} ..., etc) are called model parameters which can be estimated with multiple linear regression method.

Estimation of the response when all variables are set zero is represented with $\beta_{0,}$ linear coefficients $\beta_{1,...}\beta_k$ are measures of the linear dependence of the corresponding variables and cross- coefficients (β_{ij}) measure interactive effect between between concerning variables.^{42 - 47}

1.8 Purpose of thesis

The present project had following purposes

- To explore compound **8** in a range of standard transformations to achieve vertical diversity for future library design.
- To use multivariate response surface method to determine optimal experimental conditions for compound 8 in the project *scheme 12*.

Scheme 11: shows different reactions, which could checked whether, are possible for compound **8.** Hydrogenation, krapcho, Inverse electron demand Diels-Alder (IEDDA), alkylation and Luche reduction reaction are expected reaction which compound **8** could be undergo.

Scheme 11: Summary of the project reactions

2. RESULTS AND DISCUSSION

2.1 Synthesis of dibenzylideneacetone

This section describes synthetic results of dibenzylideneacetone, which was the basic material in next step (synthesis of compound **8**).

Compound **6** was synthetized according to the general procedure described in literature. Compound was collected as yellow crystals in 74% yield. Spectroscopic data were recorded and found similar to one reported in literature. The reaction between benzaldehyde and acetone was catalyzed by sodium hydroxide to form dibenzylideneacetone, see *scheme 12*.

Scheme 12: Synthesis of dibenzylidene acetone.

Mechanism is shown in *scheme 13* in step a-d. Hydroxide deprotonates acetone to generate enolate (a), enolate formed attacks benzaldehyde (b) to generate ion which is protonated in step c to form β -hydroxy ketone. In step d, β -hydroxyketone undergoes Aldol condensation reaction to generate α , β unsaturated ketone.

Scheme 13: Suggested mechanism of compound **6**.^{48,49}

2.2 Synthesis of compound 8

This section describes synthetic results of compound $\mathbf{8}$, which was the main product of this work. Compound $\mathbf{8}$ was studied in a range of standard transformations.

The synthesis was done according to experimental procedures described in literature.^{50, 51} Precipitate was observed at the end of the reaction. The amount of the compound isolated depends on the amount of water added to induce crystallization and the time given for crystallization process. The final compound after crystallization was collected as yellow crystals. Spectroscopic data was recorded, which showed the presence of the compound **8** in 70% yield.

The reaction between dibenzylideneacetone, compound **6** and ethyl acetoacetate under basic condition in ethanol formed compound **8**, see *scheme 14*.

Scheme 14: Synthesis of compound 8.

Mechanism of compound 8 is shown in *scheme* 15 in step $\mathbf{a} - \mathbf{g}$. Base deprotonates compound 7 to form enolate in step \mathbf{a} , formed enolate attacks directly β -carbon of unsaturated ketone 6 in step \mathbf{b} to generate an ion which is protonated in step \mathbf{c} to produce Robinson product. Robinson compound undergoes intramolecular Aldol cyclization reaction to form β -hydroxyl ketone followed with its condensation in step $\mathbf{d} - \mathbf{g}$ to generate final Robinson cyclization product.

Scheme 15: Suggested mechanism of compound 8. 52

2.3. Multivariate response surface model of compound 8

This section presents discussion and presentation of variable choice and experimental domain, experimental design, results, experimental screening and response surface analysis of compound **8** (scheme 14) under optimization process.

2.3.1. Variables and experimental domain

Determination of variable and experimental domain is usefully in experimental design.

Variables used in synthesis of compound **8** are concentration of dibenzylideneacetone (DA) and ethyl acetoacetate (EAA) (mmol), reaction temperature and amount of base (mmol). Variables are represented with x_1 , x_2 and x_3 following their above written order. DA and EAA were combined in one variable x_1 which is the ratio of their millmoles. The combination of EAA and DA in one variable was done in order to reduce number of variables and experiments. The choice of three variables (x_1 , x_2 and x_3) instead of four variables helped to run eight experiments instead of 16 experiments. After choosing variables, the followed step was to decide their experimental domain. Each variable was taken at its low level (-) and high level (+). Variables and experimental domain are shown in *table 3*.

Variables	Experiment	al domain (+) high level
		() ingli level
<i>X</i> _{<i>l</i>} : amount of DA/EAA (mmol/mmol)	0.83	1
X_2 : Reaction temperature (°C)	68	78
X_3 : Amount of sodium hydroxide (mmol)) 1.80	4.25
Amount of variable at low and high level and NaOH (0.072g, 0.17g).	l, DA (0.3 g, 0.	.74 g), EAA (0.2 g, 0.41g)

Table 3: Experimental settings

2.3.2. Experimental design

During experiments, three variables were used and each variable has two values, one at low level and another at high level, a two-level full factorial design 2^3 was a suitable experimental design. A full factorial design 2^3 shows all 8 possible combination of settings of the experimental variables. Verification of each variable effect on the response was the basic factor to decide experimental design order. In two consecutive experiments, two variables were kept constant in order to check the contribution of the third variable. Experiments one and two, were chosen as first experiments to run in order to check whether experimental domain chosen could be explored or not. Experiments 3 and 4 were carried out to check the contribution of the variable x_1 , 5 and 6 were run in order to verify the effect of variable x_3 on response and the influence of the variable x_3 on the response was checked in experiments 7 and 8. A number of possible experiment in 2^3 is shown in *table 4*.

Exp no	variables		
	X 1	X2	X3
1	-	-	-
2	+	+	+
3	+	+	-
4	-	+	-
5	+	-	-
6	+	-	+
7	-	+	+
8	-	-	+

Table	<i>4</i> :	Full	factorial	design	23
-------	------------	------	-----------	--------	----

2.3.3 Results presentation and discussion

This section presents data recorded with gas chromatography after injection of different amount of product dissolved in 1mL of internal standard (0.00295 M), calibration curve and results obtained after optimization.

Different amount of compound 8 (see experimental section page 54, *table 10*) was dissolved in 1mL of internal standard (phenyl cyclohexane) in order to produce a calibration curve that was used to measure yield. Data recorded with G.C are represented in *table 5*. A_p represents peak area of the product and A_{is} peak area of internal standard.

Table 5: Results given by gas chromatography after injection of one microliter of internal standard and product.

Standard mmol/mL	Internal std (mmol /mL)	c_p / c_{is}	A _{is}	A _p	A _p /A _{is}
0.0042	0.00295	1.424	567.294	171.204	0.3018
0.0314	0.00295	10.644	573.784	855.422	1.4908
0.052	0.00295	17.627	569.732	1394.098	2.4469
0.0729	0.00295	24.712	565.630	1798.053	3.1788
0.0958	0.00295	32.474	558.107	2223.020	3.9831

Chromatograms can be found in appendix 9-13 (t_R : around 4.2 min for internal standard and 9.8 min for analyte).

Calibration curve produced from data in *table 5* is shown in *Fig 4*.

Fig 4: Calibration curve.

Since running several experiments for optimization process, results are presented in *table 6* and 7. Data recorded from gas chromatograph after injection of samples *(table 6)*, (C_{is}) presents concentration of internal standard injected and its peak area (A_{is}), peak area of analyte (A_x). The ratio of peak analyte and internal standard peak area (A_x/A_{is}), ratio of analyte concentration and internal standard (Cx/Cis), this ratio was calculated from calibration curve (an example of Cx/Cis calculation can be seen in experimental section (page **55-56** and concentration of analyte in sample (C_x reaction). Concentration of analyte was calculated according to dilution of each sample during the preparation of gas chromatograph sample. An example for (C_{x (reaction}) calculation can be seen in experimental section (page **55-56**).

Results presented in *table 6* are discussed in part of the *table 7*, which has detailed information about experiment settings, and yield.

Exp no	C _{is} (mmol/mL)	A _x	A _{is}	A _x /A _{is}	C _x /C _{is}	C _{x(} reaction) (mmol/mL)	Appendix
1	0.00295	165.46	721.65	0.229	0.210	0.0078	14
2	0.00295	209.67	688.97	0.304	0.841	0.0896	15
3	0.00295	214.14	734. 18	0.292	0.737	0.0789	16
4	0.00295	190.08	705.73	0.269	0.545	0.0354	17
5	0.00295	210.16	746.22	0.282	0.654	0.0700	18
6	0.00295	182.79	705.76	0.259	0.461	0.0494	19
7	0.00295	165.74	684.6	0.242	0.319	0.0212	20
8	0.00295	118.38	617.6	0.192	0.1	<0.0015	21
9	0.00295	217.84	724.69	0.301	0.813	0.0871	22

Table 6: Data recorded with gas chromatograph.

Chromatograms can be found in appendix 14-22 (t_R : around 4.2 min for internal standard and 9.8 min for analyte).

The yield was first measured after crystallization of compound $\mathbf{8}$, but it was decided to measure the yield from reaction mixture with calibration curve in order to reduce errors that could be made during isolation of compound.

Methyl benzoate was the first internal standard tried, but it was a big difference between retention times between product and internal standard. Phenyl cyclohexane has boiling point, which is higher than methyl benzoate was used as internal standard. First results, the yield was over 100 % for reactions run at high temperature.

The reaction mixture started to precipitate at the end of the reaction due to evaporation of solvent during the reaction, this was the main cause of the first results observed. This problem was solved by adding more solvent at the end of the reaction and a 50 mL volumetric flask was used to measure exact volume, this methodology worked for samples with DA at high concentration, sample at low concentration gave negative results and it was decided to change amount of the solvent for samples with DA at low concentration during the reaction and the preparation of gas chromatography samples.

DA at high concentration, reactions were run in ethanol (30.00 mL) the same amount used to make the calibration curve, 12.00 mL at low concentration and during the preparation of gas chromatograph samples, 50 mL volumetric flask was used for samples at high concentration and 25 mL at low concentration. The use of different amount of the solvent gave results presented in *table 7*

Results presented in *table* 7 show experiments (Exp) with variables at their low level (-) and high level (+). Results of experiment number one (EXP no 1) and number two show a big difference between variables at their low level (15%) and high level (86%). Variables at their high level (Exp no 2) gave the highest yield 86%, the combination gave the lowest yield (4%) is in Exp number eight with variable x_3 at high level and other variables at low level. Combination of x_1 and x_2 at high level and x_3 at low level (Exp no 3) gave also good result. It is not possible to draw any direct conclusion about individual or interactive effects of variables on response results in *table* 7. The conclusion will be taken after experimental screening and response surface model analysis.

Exp no	X ₁	X ₂	X ₃	Y%
1	-	-	-	15
2	+	+	+	86
3	+	+	-	76
4	-	+	-	69
5	+	-	-	67
6	+	-	+	48
7	-	+	+	40
8	-	-	+	4
9	1.5	1	1.5	84

Table 7: Experimental settings and their yield

2.3.4 Screening and response surface analysis.

This section discusses data obtained after screening and response surface analysis of results presented in *table 7*.

After screening, response surface model describing the variation of response according to variables was determined. Evaluation the model coefficients helped to identify significant variables. Important variables are x_1 and x_2 with coefficients 19 and 17 and there is no big difference between their coefficients. Variable x_3 with coefficient (-6) is less significant than other variables. Model coefficients are shown in *table 8*.

 $y = 54 + 19 x_1 + 17 x_2 - 6 x_3$ (response surface model)

54.22 is estimated response when all variables are set to zero.

Variables coefficients	
X_l	19
X_2	17
X_3	-6

Table 8: model parameters.

Response surface analysis (**Fig 5**) showed clearly contribution of variables one response. Variables x_1 and x_2 have high influence on response, variable x_3 has not big influence *Fig 5* shows how response varies in surface according to variation of x_1 and x_2 when x_3 is constant. The variation of response is proportional to variation of variables (x_1 and x_2).

Response is around 20% in domain around (-) and it increases as domain varies up to around (+). Optimum conditions is located in domain (around +1) with yield around 80%).

Fig 5: Response contour plot shows variation of yield when x_3 is constant

2.4 Hydrogenation of compound 8

This part describes the synthetic result of compound **9** in *scheme 17*. The synthesis followed experimental procedure described in literature^{53,54}., minor modifications were done. TLC showed two diastereoisomers and the column was run several times to separate them but separation was not successful. Spectroscopic data were recorded and confirmed that hydrogenation of compound **8** gave an enol compound **9**. ¹HNMR of the compound **9** showed a peak with chemical shift above 12 ppm, ¹³C-NMR did not show a peak at ppm (185-220) for ketone.

Palladium on carbon used as a catalyst that provides the reaction surface, hydrogen bond (H-H) is cleaved and each hydrogen is attached to palladium surface by palladium hydrogen bond. Compound **8** is also absorbed onto palladium surface. Thus, syn addition of hydrogens to compound **8** occurs to generate compound **9**. Synthetic reaction of compound **9** is shown in *scheme 15*.

Scheme 15: Synthesis of compound 9

2.5Decarboxylation of compound 8

This section describes the obtained result of compound **10** in *scheme 18*. The synthesis was performed according to experimental procedures described in literature ⁵⁵⁻⁶⁰. Reaction was run in the same experimental conditions described in literature but it was not successful. Reaction was carried out by heating compound **8** in DMSO and water at 160 °C, and 200 °C for 2 days and stopped without completion. Experimental conditions were changed, sodium chloride was added and 10:1 ratio of NaCl : compound **8** was used as reported in literature and the reaction mixture was heated 160 °C but reaction was not found successful. Although reaction was successful when sodium chloride (1.2 eq), and compound **8** (1.0 eq) was used. Compound **10** was isolated and collected as colorless crystals (yield 10 %). Spectroscopic data were recorded and confirmed compound **10**. Synthesis of compound **9** is shown in *scheme 16*.

Scheme 16: Synthesis of compound 10

Mechanism of compound 10 is shown in three steps (**a**, **b** and **c**). The chlorine ion (Cl⁻), takes away ester methylene of compound 8 in step **a** and promotes cleavage of ester group to generate enolate formed in step **b**. In step **c** enolate is protonated to form final decarboxylation product, as shown in *scheme 17*.

Scheme 17: Suggested mechanism for compound 10

2.6 Inverse electrons demand Diel-Alder reaction

This part describes results obtained during the attempt of inverse electrons demand Diels-Alder reaction to produce compound **12**, *scheme 18*. The synthesis followed experimental procedures described in literature $^{27, 61-64}$. The reaction mixture was refluxed in toluene for 3 days and heated at 130 °C in dioxane. Information from crude ¹HNMR was not clear to confirm that the reaction was successful. HRMS showed a small peak 451.2268, which is the exact mass of compound 12, but it was not enough proof to confirm the presence of compound **12** and it was decided to stop the work on this experiment. Compound **8** and styrene was heated in toluene but reaction was not successful, *scheme 18*. Electrons were expected to flow from styrene HOMO to LUMO of compound **8**, followed by cyclization in a single transition state to form a six membered ring.

Scheme 18: Synthesis of compound 12

2.7 Luche reduction reaction

This section describes results obtained during the reduction of compound 8 in *scheme 19*. Reaction was run according to experimental procedure described in in literature ³². Information from crude ¹H NMR, *Fig 4* was not clear to confirm the presence of compound **13** and it was difficult to draw any conclusion on the success of the reaction .It was decided to stop work on this stage.

Cerium (Ce³⁺) coordinates to oxygen of carbonyl group and increases electophilicity of carbonyl carbon. Hydride (H⁻) attacks activated carbonyl carbon to generate alcohol. Synthesis of compound **13** is shown in *scheme 19*.

Scheme 19: Synthesis of compound 13

PROTON_cdcl3_T25_001 Gradient Shimming

2.8 Alkylation of compound 8

This part presents results obtained by alkylating compound 8 with different selected R-group to generate compounds (15, 17, 19, 21, 23, and 25). Alkylating was performed according to scheme 20. Base deprotonates compound 8 to form enolate which substitutes bromine.

Scheme 20: Alkylation scheme.
Alkylation of compound **8** follows an $S_N 2$ mechanism and it is done in step **a** and **b** (*scheme* **21**). Base (B⁻) deprotonates compound **8** in step **a** to form enolate. An $S_N 2$ reaction between enolate and alkyl bromide generates alkylated compound in step **b**.

Scheme 21: Alkylation mechanism

2.8.1 Alkylation with allyl bromide

Compound 8 was converted to compound 15 according to scheme 22.

Scheme 22: Synthesis of compound 15

The reaction was run according to general experimental procedure described in literature⁶⁵. Two bases were used to check their influence on reaction rate. With DBU, the reaction was ran at room temperature for 24 hours as it was reported in literature but was found unsuccessful. The reaction mixture was heated at 40 °C and TLC analysis showed the presence of product, the reaction temperature was raised to 62 °C, after 5 days the reaction did not finish. Potassium carbonate was also used to check if the reaction time could be improved, but no changes happened but the reaction was left to run until the full conversion of compound **8** was observed. The reaction finished after 10 days.

The reaction was also ran in $CHCl_3$ to check whether the solvent could enhance the rate of the reaction but no difference was observed. The rate of the reaction might be slow due to steric effect of compound **8** and the bases used.

2.8.2 Alkylation with propargyl bromide

This part describes alkylation results of compound 8 in scheme 23.

Scheme 23: Synthesis of compound 17

Since low reaction rate observed in the alkylation with ally bromide, it was decided to use a strong and less bulky base in order to improve the reaction rate. Sodium hydride was used and the full conversion of compound **8** was observed after four days with TLC analysis. Spectroscopic data were recorded and confirmed compound **17**.

2.8.3 Alkylation with benzyl bromine.

This section describes results obtained after alkylation of compound **8** with benzyl bromide. Alkylation was done according to *scheme 26*.

Scheme 24: Synthesis of compound 19

The synthesis followed experimental procedures reported in literature ⁶⁵, minor modifications were done. The reaction was first run with sodium hydride after 4 days TLC analysis, showed no reaction. ¹H NMR of benzyl bromide was run and showed that benzyl bromide has water which might disturb the reactivity of sodium hydride. The reaction was run with potassium carbonate, monitored with TLC and left to run for 10 days. Compound **19** was collected as yellow viscous liquid. Spectroscopic data were recorded and confirmed compound **19**.

2.8.4 Alkylation with 1-bromo 4-phenyl butane

Compound 8 was converted to compound 21 according to scheme 25.

Scheme 25: Synthesis of compound 21

The amount of sodium hydride was doubled and the reaction was heated to check if the problem of the reaction rate encountered in previous alkylation reactions can be improved, but no difference was observed. Information from crude ¹H NMR and HRMS confirmed the presence of compound **21.** Crude ¹H-NMR shows extra peaks to compound **8** at ppm (7.34 - 7.11, 3.44 - 3.40, 1.92-1.76, and 1.3-1.27), these peaks may be evidence of compound **21.** HRMS confirms clearly compound **21.** The column was run to separate compound but separation was not successfully.

2.7.5 Alkylation with 2-bromoacetophenone

Compound 8 was alkylated according to scheme 26.

Scheme 26: Synthesis compound 23

The reaction was run with sodium hydride (1.1 eq) at room temperature and heated but no result found. The amount of base was doubled to check whether it could affect, but it did not help. Crude ¹H NMR, did not show compound **23.** It only shows staring materials.

Fig 6: Crude ¹H-NMR for compound 23

2.8.5 Alkylation with methyl acrylate

This section describes results after alkylation of compound **8** with methyl acrylate. Alkylation was done according to *scheme 27*.

Scheme 27: Synthesis of compound 25

The reaction was first run at room temperature, then heated at 55 °C, and stopped after 5 days without completion. Crude ¹H NMR and HRMS confirmed the presence of compound **25**. Crude ¹H-NMR is hard to interpret but it shows two single peaks at 3.65 and 3.60 ppm, for (CH₃O⁻), one peak may be for starting material (compound **24**) another for compound **25**. It also shows a peak at 2.57-2.44 ppm, which is most likely, result of alkylation. The column was run to separate compound 25 with starting materials but separation was not successfully.

Alkylation results obtained are summarized in table 9.

Alkylation catalyzed by DBU (compound **15**) was purified at the first time because it was expected to run other reaction in order to observe full conversion of alkylated compound. Alkylation catalyzed by NaH (compound **19**) was not purified due to result, which was not good and compound **23** and **25** separation was not successfully.

Table 9: Summary of alkylation results

	Conditions	Compound	Yield (%)
Alkylation agents	base / solvent		
	DBU/ DMF	15	Not purified
Br	K ₂ CO ₃ / aceton		44
Br	NaH/THF	17	54
Ph Br	NaH/THF	19	Not purified
	K ₂ CO ₃ /CHCl ₃	19	42
Ph Br	NaH/ THF	21	Not successful
Ph	NaH/THF	23	Not purified
OMe	NaH/THF	25	Not purified

2.9 Relative Stereochemistry of compound 8, 15 and 17

Many of the products obtained contain multiple stereocenters. Therefore, studies were conducted to determine the relative stereochemistry of these.

Stereochemistry of compound 8.

NMR data did not help us to determine the relative stereochemistry of compound **8** due to overlap between hydrogen 3 and 4. (see NMR in Appendix 55-60).

NMR data was supported with information from DFT calculations carried out by Dr Taye Demissie which confirms that the major diastereomer has anti at positions 3 and 4. After collecting and analyzing the above information the correct stereochemistry of compound **8** shown below was decided.

The more stable anti-diastereomer calculated by DFT is 4.21kcal/mol is more stable than the syn- diastereomer. The most stable conformer of compound **8** predicted by DFT is shown in *Fig* 7.

Fig 7. Most stable conformer of anti-8 predicted by DFT.

Stereochemistry of compound 15

Analysis of NMR spectra (gHMBC) and NOESY shows that hydrogen 3 and 10 are close to each other, (see NMR in Appendix 61-66).

DFT calculations done by Dr Taye showed that syn-diastereomer of compound **15** is 1.81kcal/mol less stable than anti-diastereomer. The syn-diastereomer showed by NOESY is shown below.

The syn-conformer of compound 15 predicted by DFT is shown in *Fig 8*.

Fig 8: Syn-diasteomer predicted by DFT.

Stereochemistry of compound 17

Information from NMR spectra (gHMBC) confirmed that CH- 3 and 9 coupled, and NOESY showed hydrogen 3 and 9 are close to each other, (see NMR spectra in appendix 67-72). After collecting and analyzing the above information the relative stereochemistry of compound **17** shown below was decided, and is consistant with that of 15.

Evidence for kinetic alkylation of compound 8

The phenyl group on position 3 directs the alkylation face of the intermediate enolate formed. Alkylation is more favored to the less hindered face, opposite to that of phenyl. Alkylation taking place on opposite side of phenyl on position 3 gives the kinetic product. DFT calculations done by Dr Taye showed that the thermodynamic product is the anti-diastereomer opposite to what the NOESY studies indicated. Experimental syn-anti-diastereomer showed by DFT are shown in *Fig 9*.

There are two possible transition states (TS1 and TS2) in the alkylation of compound 8 with allyl bromide. The transition state giving the kinetic product has lower energy than the other giving the thermodynamic product. The energy difference between the thermodynamic and kinetic products is 1.81kcal/mol (*Fig 9*).

Fig 9: Thermodynamic and kinetic products

3. FUTURE DIRECTIONS

Compound **8** synthesized during this work has larger chemical space. Our chemical library can be extended by exploring its remaining structural diversity and its derivatives. Compound still has many functional groups (ester, ketone, conjugated system and aromatic system) that can be transformed to make heterocyclic compounds, other functional groups may be introduced that can undergo further functionalization. Alkene and alkyne compounds (**15** and **17**) introduced in compound **8** can also be explored to generate other compounds particularly side chains.

An example of side chains compound 17 can undergo 1,3 dipolar cycloaddition between azides and alkyne to generate triazoles which are important compounds in medicinal chemistry⁶⁶. (*Scheme 28*).

Scheme 28: Suggested triazoles formation ⁶⁶.

4.CONCLUSION

The first part of the presented work was to develop and optimize the synthesis of compound $\mathbf{8}$, which was successful. The second part was to explore the reactivity diversity of compound $\mathbf{8}$ in order to build future chemical libraries for biological profiling around this versatile scaffold. During the study of compound $\mathbf{8}$ in a range of transformations, many reactions were done. Successful alkylation appears to only occur with less crowded and activated alkyl halides. Compounds shown in *Fig* $\mathbf{8}$ were synthesized successfully. The relative stereochemistry of alkylating product $\mathbf{8}$, $\mathbf{15}$ and $\mathbf{17}$ was determined by NMR and DFT calculations; also the kinetics of the reaction was determined for compound $\mathbf{15}$ by DFT calculation.

Fig 8: Compounds synthesized successfully during the presented work

5. EXPERIMENTAL SECTION

Reagents used were purchased from Sigma-Aldrich and others were previously synthesized in our laboratories.

¹H NMR (400 MHz and ¹³C NMR (101 MHz), spectra were recorded on a Varian Mercury 400 plus spectrometer (400 MHz) using CDCl₃ as solvent. Spectra were processed with MestReNova software. Chemicals shifts (δ) are reported in parts per millions (ppm) and multiplicities are given as a singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublet (dd), and multiplet (m). Infrared spectra were recorded on a Varian 700e FT-IR spectrometer and bands are reported in wavenumber (cm⁻¹). High-resolution MS was recorded on a Thermo electron LTQ Orbitrap XL +Electrospray ion source (ION-MAX). GC-MS analyses were conducted using a Thermo Scientific ITQ 1100 +Trace GC Utra. GC-FID analyses were conducted with an Agilent technology 7820A gas chromatograph instrument. The melting point was measured with Bùchi 535 instrument.

All reactions were performed under inert conditions. Glassware and stir bars were dried oven at 110°C in 2 days and put under vacuum before their use. Reagents were transferred in reaction flasks under inert nitrogen or argon atmospheres. The progression of the reactions were monitored with TLC on 60 F254 silica gel plates and visualization of spots on TLC was carried out with UV, Potassium permanganate, molybdic acid and vanillin stains.

Synthesis of compound 6

In a 100 mL beaker with a stir bar, sodium hydroxide (5.20 g, 0.13 mol, 4.3 eq) was dissolved in water (50 mL) and ethanol (96%, 40mL) at room temperature. Benzaldehyde (5.31 g, 0.05mol, 1.7 eq) and acetone (1.46 g, 0.03 mol, 1.0 eq) were dissolved in ethanol (96%, 4.22 mL). Half of the benzaldehyde-acetone mixture previously prepared was added drop-wise to the sodium hydroxide solution with stirring. The rest was added after six minutes and the reaction was stopped after ten minutes. The crude material was isolated as yellow crystals with a Büchner funnel and washed with 3 x 100 mL of water.

The crude was purified by recrystallization. The crude material was transferred to a 250 mL beaker with a stir bar and 150 mL of 70% ethanol was added. Heating was done until boiling, then more solvent was added until all material was dissolved. The reaction mixture was cooled in an ice bath, and the resulting crystals were collected with a Büchner funnel to yield yellow , flaky crystals (8.70 g, 74%).

¹H- NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 16.0 Hz, 2H), 7.63 – 7.60 (m, 4H), 7.43-7.39 (m, 6H), 7.09 (d, *J* = 16.0 Hz, 2H).

The data is consistent with literature ⁶⁷

¹³C- NMR (101 MHz, CDCl₃) δ 188.9, 143.5, 134.6, 130.5, 129.0, 128.4, 125.5.

GC-MS: $t_R = 9.44 \text{ min}, \text{ M}^+ = 234$

IR (cm⁻¹): 3056, 3027, 1649, 1626, 1590, 1573, 1495, 1447, 1332, 1284, 1100, 1076, 1186.

Spectra can found in Appendix 1-4

Synthesis of compound 8

In a 100 mL round bottomed flask equipped with a reflux condenser and a stir bar, dibenzylidene acetone (740 mg, 3.15 mmol, 1.75 eq), ethyl acetoacetate (410 mg, 3.15 mmol, 1.75 eq) and sodium hydroxide (72 mg, 1.80 mmol, 1.0 eq) and 30 mL of 96% ethanol was refluxed for 4 hours at 78°C. After reflux, small amount of water was added to reaction mixture, and allowed to cool for 2 days in refridgerator. The crude material was collected with a Bühner funnel, washed with water. The crude was purified by recrystallization. Reflux in ethanol 70% was done until all material was fully dissolved, then cooled in an ice bath, and crystals were collected with a Bühner funnel, yield (0.77 g, 70%).

Melting point: 132-134 °C

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 2H), 7.35-7.33 (m, 8H), 6.97 (ABq, 2H), 6.20 (s, 1H), 4.05 (q, 2H), 3.76 – 3.73 (m, 2H), 3.05 (dd, *J* = 4Hz, 1H), 2.74-2.69 (m, 1H), 1.04 (t, *J* = 4 Hz, 3H).

¹³C-NMR (100MHz, CDCl₃) ppm 194.1, 169.2, 155.7, 140.9, 136.1, 135.5, 1239.5, 128.9, 128.8, 127.5, 127.4, 126.8, 60.9, 60.2, 43.9, 33.4, 13.9.

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 347.1642, Found: 347.1640

IR (cm⁻¹) 3061, 3030, 2982, 2903, 1737, 1657, 1618, 1585, 1495, 1453, 1383, 1304, 1255, 1173, 1143, 1585, 1174, 1143.

Spectra be found in appendix 5-8

Multivariate Optimization of Robinson Annulation

During the optimization process, the yield was measured using GC based on a calibration curve determined in advance.

Calibration curve

The Robinson Annulation product made previously was used as product and a phenyl cyclohexane stock solution was used as internal standard to make a calibration curve.

Preparation of internal standard

Phenyl cyclohexane (0.095 g, 5.9×10^{-4} mol) was diluted in ethyl acetate (9.00 mL) to make a solution (0.059 M). 1.00 mL from the first solution was also diluted in ethyl acetate (9.00 mL) to make a solution (5.90 $\times 10^{-3}$ M) and, finally, 1.00 mL from the second solution wasdiluted in ethyl acetate (1.00 mL) to make a solution (2.95 $\times 10^{-3}$ M).

Preparation of product

Concentration of the product was calculated theoretically from dibenzylideneacetone (DA).

The first step was to calculate the concentration of DA in reaction mixture at the beginning of the reaction in order to determine the concentration of the product.

In reaction, ethanol (90%, 30 mL), DA (0.74 g, 3.15 mmol), ethyl acetoacetate (0.41 g, 3.15 mmol, 0.40 mL), was mixed with sodium hydroxide and heated for 4h.

Total volume of reaction mixture (V_t) equals to solvent (30 mL) and ethyl acetoacetate (0.40 mL).

 V_t (30+0.4) mL = 30.4 mL = 3.04x10⁻²L. (V_t = total volume of reaction mixture)

Moles (n) of dibenzylideneacetone in reaction mixture.

 $n = (0.74 \text{ g} / 234.29 \text{ g/mol}) = 3.15 \times 10^{-3} \text{ moles}$

Concentration (C) of dibenzylideneacetone in reaction mixture

 $C = (3.15 \text{ mol x } 10^{-3}/3.04 \text{ x } 10^{-2} \text{ L}) = 1.04 \text{ X} 10^{-1} \text{ M}.$

If all amount of dibenzylideneacetone $(1.04X10^{-1} \text{ M})$ is converted to product, the expected yield is 100 %. The expected yield at 100 % was calculated theoretically from DA. Molecular weight of compound **6** is 234.29 g/mol and product **8** is 346.42 g/mol. Amount of compound **6** (1.04X10⁻¹ M) in reaction mixture is 0.74 g and expected yield of product **8** is

Yield (100 %) = 0.74 g x346.42g/mol / 234.29 g/mol = 1.09 g

After calculating expected yield at 100 %, the yield expected at 10 % was calculated.

The yield at 10%: 1.09 g / 10 = 0.109 g in 1L

After calculating the expected yield at 10 % in 1L of reaction mixture, the yield expected at 10 % in 1 mL of reaction mixture was calculated.

Yield expected in 1mL is 109 mg/30.4 mL = 3.58 mg

Dibenzylideneacetone (0.30 g, 1.28 mmol) and ethyl acetoacetate (0.20 g, 1.54mmol, 0.20 mL) was also used and expected yield (10 %) of product **8** in 1 mL is 1.46 mg (calculation refer to compound **6** with 0.74 g).

Various amount of the product was measured (*table 10*) and dissolved in 1.00 mL of internal standard (0.00295M) to run gas chromatograph. Data recorded with GC and determined calibration curve can be found in results section (page 27-28).

In *table 10*, (10 %) was calculated from compound 6 (0.30 g) and other from compound 6 (0.74 g).

Table 10: Amount of product 8 calculated

Yield %	amount (mg)	concentration (mmol/mL)
10 %	1.50	4.2 X10 ⁻³
30 %	10.80	3.14 X10 ⁻²
51%	18.40	5.34 X10 ⁻²
70 %	25.10	7.29 X10 ⁻²
92%	32.80	9.53X10 ⁻²

Experimental procedure, preparation of G.C samples and calculation of analyte concentration.

General procedure

A round-bottomed flask equipped with a stir bar, a reflux condenser, ethanol, dibenzylideneacetone, ethyl acetoacetate and sodium hydroxide was heated for 4h. Experimental variables with their levels are shown in *table 11*.

Variables	low level	high level
dibenzylideneacetone (mg)	300	740
ethyl acetoacetate (mg)	200	410
temperature (°C)	68	78
sodium hydroxide (mg)	72	170

Amount of the solvent used in reaction was decided according to the amount of dibenzylideneacetone, experiments with high concentration were performed in ethanol (30 mL) and 12 mL at low concentration.

General procedure for the preparation of gas chromatograph samples

When the reaction was stopped, the product started to precipitate, ethyl acetate was used to dissolve the precipitate, wash the reaction flask and to complete the transfer of reaction mixture into a volumetric flask. A 50 mL volumetric flask was used for experiments with dibenzylideneacetone at high concentration and 25 mL at low concentration.

In a separation funnel, around 8 mL of water was transferred in first, 1mL of the reaction mixture from round bottomed flask and 10 mL of EtOAc was added. Separation funnel was shaked, and then organic layer was separated from aqueous layer. In some experiments, organic layer was washed more than once with water. Organic layer was dried on sodium sulfate and the drying agent was filtered off.

The reaction mixture (0.5 mL) was mixed with 0.5 mL of internal standard solution (0.0059M) to run the gas chromatography.

Calculations of the sample concentration from the calibration curve

 C_x/C_{is} is calculated from regression linear of calibration curve, Y= 8.3679x-1.706.

 $(Y = C_x/C_{is})$

 $C_x = YC_{is}$

Two examples that show how the sample concentration was calculated with calibration curve are shown below.

One for sample at high concentration (+): Exp no 2 (see *table 6 on page 21*)

- 1. Concentration of internal standard (C_{is}) = 0.00295 M
- 2. Peak area of internal standard $(A_{is}) = 688.97$
- 3. Peak area of analyte $(A_x) = 209.67$
- 4. $Ax/A_{is} = 0.304$

 $C_x/C_{is} = 0.304 \text{ x } 8.3679 \text{ -} 1.706 = 0.84$

 $C_x = (C_x/C_{is}) Cis = 0.84 \times 0.00295 = 0.00247M$

During the preparation of G.C samples, all reaction mixture with dibenzylideneacetone at high concentration was dissolved in 50 mL of the solvent, 1mL of the reaction mixture from 50mL was washed with water and extracted with ethyl acetate (10 mL), and 0.5 mL of the sample was mixed with 0.5 mL of internal standard to run gas chromatograph.

 $C_{x \text{ (reaction)}} = (C_x/C_{is}) C_{is} x 2x 11x 1.65$ at high concentration

 C_x (reaction) = 0.00247 x 11 x 2 x1.65 = 0.0896 mmol/mL

Yield % = 0.0896 x 100/ 0.104 = 86 % (reported in *table 7 page 30*)

Example 2 a sample at low concentration (-): Exp no 7 (table 6 page 29)

- 1. Concentration of internal standard (C_{is}) = 0.00295 mmol/mL
- 2. Peak area of internal standard $(A_{is}) = 684.6$
- 3. Peak area of analyte $(A_x) = 165.74$
- 4. $Ax/A_{is} = 0.242$

 $C_x/C_{is} = 0.242 \text{ x } 8.3679 \text{ -} 1.706 = 0.319$

 $C_x = (C_x/C_{is})$ Cis = 0.319 x 0.00295 =0.00094 mmol/mL

During the preparation of G.C samples, all reaction mixture with dibenzylideneacetone at low concentration was dissolved in the solvent (25 mL), 1mL of the reaction mixture from 25 mL was washed with water and extracted with ethyl acetate (10 mL), and 0.5 mL of the sample was mixed with 0.5 mL of internal standard to run gas chromatography.

 $C_{x (reaction)} = (C_x \setminus C_{is}) c_{is} x^2 x^{11}$ at low concentration

 C_x (reaction) = 0.00094mmol/mL x 11 x 2 = 0.0207mmol/mL.

Yield % = 0.0207 x 100/0.0512 = 40 % (*table 7, page30*)

Hydrogenation of compound 8

In a 50 mL round bottomed flask, (346 mg, 1.0 mmol, 1.0 eq) of starting material and 10% Pd /C (35 mg) was dissolved in ethyl acetate (7 mL) and stirred under hydrogen atmosphere at room temperature for 12 hours. The catalyst was filtered off by simple filtration and the filter was washed by ethyl acetate (30 mL) and ethanol(30 mL), the filtrate was collected and concentrated on rotavapor.

The compound was purified with the column chromatography (3 % ethyl acetate in pentane) and collected as colorless crystals yield (34 mg, 10%),

Melting point: 84-86 °C

¹H-NMR (400 MHz, CDCl₃) δ 12.55 (s, 1H), 7.28 – 7.26 (m, 2H), 7.19 – 7.13 (m, 6H), 6.97 (d, J = 8Hz, 2H), 4.04-3.96 (m, 2H), 2.52 – 2.48 (m, 4H), 1.87-1.86 (m, 1H), 1.68 (d, J = 12Hz, 1H) 1.64-1.54(m, 2H), 1.54-1.52(m, 3H) 0.97 (t, J = 8 Hz, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ 173.2, 172.3, 146.1, 142.1, 128.3, 127.9, 125.6, 99.4, 60.1, 38.6, 38.1, 37.5 35.8, 32.9, 27.2, 14.0.

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 351.1955, found: 351.1955

IR (cm⁻¹): 3027, 2925, 1642, 1620, 1493, 1419, 1404, 13411275, 1212, 1155, 1118.

Spectra can be found in appendix 23-26

Decarboxylation of compound 8

In a 25mL two necked round bottomed flask equipped with a stir bar, a reflux condenser and a gas bubble, compound **2.5** (440 mg, 1.3 mmol, 1.0 eq), DMSO (13 mL), water (1.5mL) and NaCl (74mL, 83 mmol, 1.2 eq) was heated at 160 °C for 4hours, reaction was mixture was cooled to room temperature in 30 min, then transferred to separator funnel and mixed with ice cooled water (140mL), the product was extracted with ethyl acetate (3x30mL). The collected extracts were washed with distilled water (5 x 50 mL) and dried over sodium sulfate.

The drying agent was filtered off and the filtrate was concentrated on rotavapor. The compound was recrystallized in heptane, collected as yellow crystals and dried on vacuum after 3 days (yield, 0.2 g, 45%).

Melting point: 112-114 °C

¹H-NMR (400 MHz, CDCl₃) δ 7.49 – 7.47 (m, 2H), 7.41 – 7.28 (m, 8H), 6.98 (ABq, 2H), 6.18 (s, 1H), 3.42-3.37 (m, 1H), 3.02 (dd, J = 4, 12 Hz, 2H), 2.73 – 2.64 (m, 3H).

¹³C-NMR (100 MHz, CDCl₃): δ 199.4, 155.9, 143.4, 135.8, 135.6, 129.2, 128.8, 127.9, 44.4, 41.0, 33.1

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 275.1433, found: 275.1430

Spectra can be found in Appendix 27-29

Inverse electron demand Diels-Alder reaction

25 mL two necked round bottomed flask equipped with a stir bar and a reflux condenser, toluene 8 mL, compound **11** (346 mg, 1 mmol, 1.0 eq), and styrene (104.15 mg, 8.6 mmol, 8.6 eq) was refluxed in 3 days and heated at 130 °C in dioxane in 2 days. Solvents were removed under reduced pressure.

Crude ¹H-NMR was recorded but it does not show compound **12**, but HRMS shows it.

HRMS (ESI): *m/z*: [M+H]⁺, calculated 451.2268, found: 451.2268

Spectra can be found in appendix 30-31

Reduction of compound 8

In a 25mL round bottomed flask, starting material (300 mg, 0.86mmol, 1 eq), CeCl₃.7H₂O mL (780 mg, 2.09 mmol, 2.3 eq) was dissolved in ethyl acetate (5 mL), NaBH₄ (40 g, 1.03 mmol, 1.2 eq) was slowly added under stirring, the reaction ran for 1hour at room temperature. Isolation was done by hydrolysis followed by extraction with diethyl ether. Ether extracts were dried over sodium sulfate, then drying agent was filtered off and the reaction mixture was concentrated on rotavapor.

Crude ¹H-NMR can be found in Appendix 32

Alkylation of compound 8 with allyl bromide

Two experimental procedures were attempted during the alkylation of compound $\mathbf{8}$ with allyl bromide.

Procedure one

In a 25 mL two necked round bottomed flask equipped with a stir bar dried in 2 days in oven at 110 °C compound **8** (104 mg, 0.3 mmol, 1.0 eq) dissolved in dry DMF (4 mL), DBU (46 mg, 0.3 mmol, 1.0 eq) was added under stirring, the resulting mixture was cooled in an ice bath and allyl bromide (55 mg, 0.45 mmol, 1.5 eq) was drop-wisely added under stirring during 4 min.

The reaction mixture was stirred at room temperature for 24 hours, heated at 40°C overnight, next day, the temperature raised at 62°C, reaction was left to run more 4 days and stopped without completion

Isolation of the product: the reaction mixture was poured into water (10mL), and the product was extracted with $CHCl_3$ (2x10mL). The $CHCl_3$ extracts were washed with water (5x10mL), then dried over Na_2SO_4 and the drying agent was filtered off. The reaction mixture was concentrated on rotavapor.

Crude ¹H-NMR was recorded.

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 387.1955, found: 387.1959

Spectra can be found in appendix 33-34.

Procedure two

mL two necked round bottomed flask equipped with a stir bar, compound **2.5** (104 mg, 0.3 mmol, 1 eq), K_2CO_3 anhydrous (123 mg, 0.89 mmol, 3 eq), allyl bromide (220 mg, 1.81 mmol, 6 eq) was dissolved in acetone dry (5 mL), the mixture was stirred at room temperature overnight. The next day, the reaction was heated at 55°C and finished after 10 days.

Isolation of the product: K_2CO_3 was filtered off after cooling the reaction mixture at room temperature, washed with CHCl₃, the filtrate was poured into water (10 mL) and the solution was acidified with 2MHCl (5 mL). The product was extracted with CHCl₃ (3 x 10 mL). CHCl₃ extracts were dried over sodium sulfate and the reaction mixture was concentrated on rotavapor.

The crude material was recrystallized in ethanol (70%), collected as colorless crystals and dried on high vacuum overnight (yield: 44 mg, 42%).

Melting point: 134-136 °C

¹H-NMR (400 MHz, CDCl₃) δ 7.49- 7.47 (m, 2H), 7.37-7.32 (m, 6H), 7.27 – 7.25 (m, 2H), 6.99 (ABq, 2H), 6.24 (s, 1H), 5.67-5.62 (m, 1H), 5.17-5.16 (m, 2H), 4.18 - 4.10 (m, 2H), 3.58 (dd, J = 8, 24 Hz, 1H), 3.36-3.31 (m, 1H), 3.08 (dd, J = 4, 16 Hz, 1H), 2.89 (dd, J = 16, 24 Hz, 1H), 2.31(dd, J = 2, 24 Hz, 1H), 1.19 (t, J = 8 Hz, 3H).

¹³C-NMR (100 MHz, CDCl3): δ 190.0, 170.3, 156.9, 139.7, 135.8, 133.7, 129.3, 128.7, 128.6, 128.5, 127.6, 127.4, 119.5, 61.3, 60.8, 44.9, 35.7, 29.9, 13.8

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 387.1955, found: 387.1954

IR (cm⁻¹) 1734, 1713, 1646, 1612, 1588, 1495, 1451, 1428, 1387, 1337, 1275, 1255, 1219, 1190, 1115.

Spectra can be found in appendix 35-38

Alkylation with propargyl bromide, benzyl bromide, 1-bromoacetophenone, 1-bromo-4phenylbutane and methyl acrylate.

General procedure for alkylation

Reactions were performed in anhydrous conditions and under nitrogen gas atmosphere in glassware and stir bars, which were dried in oven at 110 °C in 2 days. Glassware were also dried under vacuum before transferring reactants in reaction flask. Under nitrogen atmosphere, NaH 60% in mineral oil was washed with hexane two times, then cooled in an ice bath. Dry THF was added and the mixture was stirred around 5 min. Compound **8** dissolved in dry TFH was added drop-wise, reaction stirred around 8 min, alkylating reagent was carefully added and the resulting mixture was stirred around 10 min. The ice bath was removed and reaction was stirred at room temperature and heated at various temperature in some cases. Isolation of the product: Sodium hydride was quenched with saturated ammonium chloride (ca 15 mL), then reaction mixture was transferred into a separatory

funnel, water (ca,10mL) was added and the product was extracted with diethyl ether (3 x10 mL).

Diethyl ether extracts were washed with brine $(3 \times 10 \text{ mL})$ and dried over sodium sulfate. The drying agent was filtered off and the reaction mixture was concentrated on rotavapor. The compound was purified by crystallization or column chromatography.

Alkylation with propargyl bromide

Sodium

hydride 60% in mineral oil (33mg, 0.83 mmol, 1.1 eq) washed with hexane (2x4mL), THF dry (4mL), compound **8** (260 mg, 0.75 mmol, 1 eq) dissolved in THF dry (3 mL) and propargyl bromide (500mg, 4.3 mmol, 4.2 eq) was added and the resulting mixture was stirred in 4 days.

The compound was crystallized in ethanol (70 %), collected as colorless crystals and dried on vacuum overnight after three days (yield: 140 mg, 54%).

Melting point: 133-135 °C

¹H- NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 2H), 7.40-7.32 (m, 8H), 7.03 (ABq, 2H), 6.29 (s, 1H), 4.15-4.10 (m, 2H), 4.03 (dd, *J* =4, 16 Hz, 1H), 3.40-3.36 (m, 1H), 3.21 (dd, *J* = 2, 20 Hz, 1H), 2.97 (dd, *J* = 12, 16 Hz, 1H), 2.34 (dd, *J* =16, 20 Hz, 1H), 2.13 (dd, *J* = 2, 4 Hz, 1H), 1.18 (t, *J* = 8 Hz, 3H).

¹³C-NMR (100 MHz, CDCl₃): δ 194.1, 169.0, 157.1, 139.0, 136.3, 135.8, 129.3, 128.9, 128.7, 128.6, 128.3, 127.9, 127.4, 127.1, 80.4, 71.5, 61.6, 60.3, 44.9, 29.2, 21.6, 13.9

HRMS (ESI): *m/z*: [M+H]⁺, calculated: 385.1798, found: 385.1802

IR (cm⁻¹) 3283, 3029, 1729, 1651, 1612, 1587, 1495, 1452, 1417, 1387, 1308, 1277, 1257, 1224, 1212, 1197, 1178, 1121.

Spectra can be found in appendix 39-42

Alkylation with benzyl bromide

Two experimental procedures were attempted during the alkylation of compound 8 with benzyl bromide.

General procedure for alkylation.

Sodium hydride 60% in mineral oil (33 mg, 0.83 mmol, 1.1 eq) washed with hexane (2 x 4 mL), dry THF (4 mL), compound **8** (260 mg, 0.75 mmol, 1.0 eq) dissolved in dry THF (3 mL) and benzyl bromide (716 mg, 4.18 mmol, 5.6 eq) was added. The reaction was run for 4 days and stopped without completion. Crude ¹H-NMR was recorded.

HRMS (ESI): *m/z*: calculate (C₃₀H₂₈O₃Na): 459.1931, found: 459.1929

Spectra can be found in Appendix 43-44.

Procedure two

In a 25 mL two necked round bottomed flask equipped with a stir bar and a reflux condenser were dried in oven in 2 days, then dried again with the vacuum around 20 min. Under nitrogen gas atmosphere, compound **8** (335 mg, 0.96 mmol, 1 eq), K_2CO_3 anhydrous (700 mg, 5.06 mmol, 5.1 eq), benzyl bromide (830 mg, 4.86 mmol, 5.0 eq) and CHCl₃ (12 mL) was transferred in reaction flask according to their written order. The reaction mixture was heated at 61°C in 24 hours. The reaction was left to run for 10 days where TLC showed big spot of the product compared to one of compound 8

Isolation of the product: K_2CO_3 was filtered off after cooling the reaction mixture at room temperature, washed with CHCl₃, the filtrate was poured into water (10 mL) and the solution was acidified with 2MHCl (10 mL). The organic layer was separated from aqueous phase, dried on Na₂SO₄, and the reaction mixture was concentrated on rotavapor.⁶⁵

The compound was purified with column chromatograph (3.5% EtOAc in pentane) and collected as yellow viscous liquid, yield (140 mg, 42%)

¹H-NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8 Hz, 2H), 7.37–7.34 (m, 4H), 7.27-7.24 (m, 3H), 7.20 – 7.15 (m, 4H), 7.10 (d, J = 8 Hz, 2H), 6.95 (ABq, 2H), 6.28 (s,1H), 4.25-4.23 (m, 2H), 3.89 (d, J = 12 Hz, 1H), 3.46 (dd, J = 8, 16 Hz, 1H), 3.30-3.22 (m, 1H), 2.87 (d, J = 16 Hz, 1H), 2.79 (dd, J = 20, 28 Hz, 1H), 1.26 (t, J = 8 Hz, 3H).

¹³C-NMR (100 MHz, CDCl3): δ 196.7, 170.7, 156.4, 140.8, 137.8, 136.8, 136.0, 135.8, 131.0, 129.4, 129.0, 128.9, 128.6, 128.5, 128.2, 127.6, 127.3, 126.5, 125.3, 61.9, 61.6, 44.5, 36.9, 31.0, 13.8

HRMS (ESI): *m/z*: [M+H]⁺, calculated:437.2111, found: 437.2113

IR (cm⁻¹) 3029, 1737, 1650, 1616, 1589, 1495, 1452, 1387, 1262, 1183, 1164, 1121.

Spectra can be found in Appendix 45-48

Alkylation with 1-bromo 4-phenylbutane

Sodium hydride 60% in mineral oil (28 mg, 0.71 mmol, 2.5 eq) was washed with dry THF (2x4mL), compound **8** (100 mg, 0.28 mmol, 1.0 eq) dissolved in dry THF (3 mL) and 1bromo 4- phenyl butane (180 mg, 0.85 mmol, 3.0 eq) was added. The reaction mixture ran at room temperature overnight, the next day, the reaction was heated at 40 °C and left to run for 3 days and stopped without completion. Crude ¹H-NMR was recorded.

HRMS (ESI): m/z: $[M+H]^+$, calculated = 479.2581, found = 479.2583.

Spectra can be found in Appendix 49-50.

Alkylation with 1-bromoacetophenone

Sodium hydride 60% in mineral oil (33 mg, 0.83 mmol, 1.1 eq) was washed with dry THF (2x4mL), compound **8** (260 mg, 0.75 mmol, 1eq) dissolved in THF dry (3 mL), and 2-bromoacetophenone (747 mg, 3.75 mmol, 5.0 eq) was drop-wisely added and reaction ran overnight. The next day, the reaction was heated at 40 °C and left to run for 2 days further. After 3 days, no reaction happened and the reaction was stopped.

The reaction was repeated by doubling amount of Sodium hydride (66 mg, 1.66 mmol, 2.2 eq), and was refluxed but it changed nothing. Crude ¹H NMR was recorded. HRMS does not show the product.

Spectra can be found in appendix 51-52.

Alkylation with methyl acrylate

Sodium hydride 60% in mineral oil (21 mg, 0.54 mmol, 1.93 eq) was washed with hexane (2x4 mL), Robinson annulation product (100 mg, 0.28 mmol, 1.0 eq) dissolved in dry THF (3 mL) and methyl acrylate (37 mg, 0.43 mmol, 1.5 eq) was added and reaction ran overnight at room temperature. The next day, the reaction was heated at 45°C and ran for 6 days.

Crude 1H-NMR was recorded.

Crude HRMS (ESI): m/z: $[M+H]^+$, calculated for $[C_{27}H_{28}O_5Na] = 455.1829$, found =455.1829 Spectra can be found in appendix 53-54.

REFERENCES

(1) Andrea Trabocchi S (2013): Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology p25-26

(2) O'Connell, K. M. G.; Galloway, W. R. J. D.; Spring, D. R., The Basics of Diversity-Oriented Synthesis. In *Diversity-Oriented Synthesis*, John Wiley & Sons, Inc.: 2013; pp 1-26.

(3) Galloway.W, Isidro-Llobet. A, Spring. D: Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. *Nat Commun* **2010**, *1*, 80.

(4) Burke, M. D.; Schreiber, S. L., A Planning Strategy for Diversity-Oriented Synthesis. *Angewandte Chemie International Edition* **2004**, *43* (1), 46-58.

(5) Warren R. J. D. Galloway A. B. Martin Welch and David R. Spring The discovery of antibacterial agents using diversity-oriented synthesis. **2009** 2446-2462.

(6) Huigens I, R. W.; Morrison, K. C.; Hicklin, R. W.; Flood Jr, T. A.; Richter, M. F.; Hergenrother, P. J., A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. *Nat Chem* **2013**, *5* (3), 195-202.

(7) Warren R.J.D. Galloway L (**2010**): Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules.

(8) Richard J. Spandl, M. D.-G., Kieron M. G. O'connell,; Gemma L. Thomas, D. R. S., Diversity-Oriented Synthesis. **2008**.

(10) Brian D. Mather, Kevin M. Miller, Timothy E. Long: Michael addition reactions in macromolecular design for emerging technologies. *Prog. Polym. Sci.* **2006**, *31*, 487–531.

(11) Zhang, Y.; Wang, W., Recent advances in organocatalytic asymmetric Michael reactions. *Catalysis Science & Technology* **2012**, *2* (1), 42-53.

(12) Li, D. R.; and, A. M.; Falck, J. R., Enantioselective, Organocatalytic Oxy-Michael Addition to γ/δ -Hydroxy- α,β -enones: Boronate-Amine Complexes as Chiral Hydroxide Synthons. *J Am Chem Soc*, **2008** *130(1)*, 46–48.

(13) Carl F. Nising and Stefan Bra: Recent developments in the field of oxa-Michael reactions. *Chem. Soc. Rev.*, **2012**, *41*, 988–999.

(14) Ravindra, B.; Das, B. G.; Ghorai, P., Organocatalytic, Enantioselective, Intramolecular Oxa-Michael Reaction of Alkoxyboronate: A New Strategy for Enantioenriched 1-Substituted 1,3-Dihydroisobenzofurans. *Organic Letters* **2014**, *16* (21), 5580-5583.

(15) Enders, D.; Wang, C.; Liebich, J. X., Organocatalytic Asymmetric Aza-Michael Additions. *Chemistry – A European Journal* **2009**, *15* (42), 11058-11076.

(16) Lu, X.; Deng, L., Asymmetric aza-Michael Reactions of α,β -Unsaturated Ketones with Bifunctional Organic Catalysts. *Angewandte Chemie*, **2008**, *47* (40), 7710-7713.

(17)An-Guo Ying, Li-Min Wang, Hong-Xia Deng, Jian-Hui Chen, Xin-Zhi Chen, and; Yeb, W.-D, Green and efficient aza-Michael additions of aromatic amines to α , β -unsaturated ketones catalyzed by DBU based task-specific ionic liquids without solvent. *arkivoc*, **2009**, *288-298*.

(18) Rana, N. K.; Selvakumar, S.; Singh, V. K., Highly Enantioselective Organocatalytic Sulfa-Michael Addition to α,β -Unsaturated Ketones. *The Journal of Organic Chemistry* **2010**, 75 (6), 2089-2091.

(19) Sobhani, S, Parizi, Z. P.; Rezazadeh, S., Phospha-Michael addition of phosphorus nucleophiles to α,β -unsaturated malonates using 3-aminopropylated silica gel as an efficient and recyclable catalyst. *Journal of Organometallic Chemistry* **2011**, *696* (3), 813-817.

(20) Sobhani, S, Bazrafshan, M, Delluei, A. A.; Parizi, Z. P, Phospha-Michael addition of diethyl phosphite to α,β -unsaturated malonates catalyzed by nano γ -Fe2O3-pyridine based catalyst as a new magnetically recyclable heterogeneous organic base. *Applied Catalysis A: General* **2013**, *454* (0), 145-151.

(21) Sorrell, T. N., Organic chemistry. second edition ed.; 2006; p 787-791.

(22) R.J.Sundgerd (2000): advanced Organic chemistry. fourth edition ed.;; p p57-82.

(23) Jonathan Clayden, N. G., and S. Warren *Organic chemistry*. Second edition ed.; Oxford University Press Inc, New York: United State, 2012; p p450-468,615-638,619.

(24) Taffin, C, Kreutler, G, Bourgeois, D. Clot, E, Perigaud. C, Diels-Alder reaction of vinylene carbonate and 2,5-dimethylfuran: kinetic vs. thermodynamic control. *New Journal of Chemistry* **2010**, *34* (3), 517-525.

(25) Boger, D. L.; Kochanny, M. J., Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes: [4 + 2] Cycloaddition Reaction of Amidines with 1,3,5-Triazines. *The Journal of Organic Chemistry* **1994**, *59* (17), 4950-4955.

(26) R.J.Sundgerd, F. A. C.(2000): Advanced Organic chemistry part B: Reaction and synthesis fourth edition ed.

(27) Gao, S.-Y.; Ko, S.; Lin, Y.-L.; Peddinti, R. K.; Liao, C.-C., Inverse-electron-demand Diels–Alder reactions of masked o-benzoquinones with enol ethers and styrene. *Tetrahedron* **2001**, *57* (2), 297-308.

(28) Ding, C.; Wang, L.; Chen, H.; Wild, C.; Ye, N.; Ding, Y.; Wang, T.; White, M. A.; Shen, Q.; Zhou, J., ent-Kaurane-based regio- and stereoselective inverse electron demand hetero-Diels-Alder reactions: synthesis of dihydropyran-fused diterpenoids. *Organic & Biomolecular Chemistry* **2014**, *12* (42), 8442-8452.

(29) Paul Krapcho, A.; Ciganek, E., The Krapcho Dealkoxycarbonylation Reaction of Esters with α -Electron-Withdrawing Substituents. In *Organic Reactions*, John Wiley & Sons, Inc.: 2004.

(30) Wang, Z., Krapcho Decarboxylation. In *Comprehensive Organic Name Reactions and Reagents*, John Wiley & Sons, Inc.: 2010.

(31) Krapcho, A. P.; Weimaster, J. F.; Eldridge, J. M.; Jahngen, E. G. E.; Lovey, A. J.; Stephens, W. P., Synthetic applications and mechanism studies of the decarbalkoxylations of geminal diesters and related systems effected in dimethyl sulfoxide by water and/or by water with added salts. *The Journal of Organic Chemistry* **1978**, *43* (1), 138-147.

(32) Luche, J. L., Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc 1978, 100 (7), 2226–2227.

(33) Gemal, A. L.; Luche, J. L., Lanthanoids in organic synthesis. 6. Reduction of .alpha.enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. *Journal of the American Chemical Society* **1981**, *103* (18), 5454-5459.

(34) Liby, K.; Yore, M. M.; Roebuck, B. D.; Baumgartner, K. J.; Honda, T.; Sundararajan, C.; Yoshizawa, H.; Gribble, G. W.; Williams, C. R.; Risingsong, R.; Royce, D. B.; Dinkova-Kostova, A. T.; Stephenson, K. K.; Egner, P. A.; Yates, M. S.; Groopman, J. D.; Kensler, T. W.; Sporn, M. B., A novel acetylenic tricyclic bis-(cyano enone) potently induces phase 2 cytoprotective pathways and blocks liver carcinogenesis induced by aflatoxin. *Cancer research* **2008**, *68* (16), 6727-6733.

(35) Honda, T.; Favaloro, Gribble, Suh, N.(2011): Tricyclic-bis-enone derivatives and methods of use thereof.

(36) Sukirti Kalra1, Ying Zhang1, Tadashi Honda2, Masayuki Yamamoto3, and Albena T. Dinkova-Kostova (**2012**):Highly Potent Activation of Nrf2 by Topical Tricyclic Bis(Cyano Enone): Implications for Protection against UV Radiation during Thiopurine Therapy

(37) Sporn, M. B.; Liby, K. T.; Honda, T.; Mundy, G.; Garrett, R.; Reddi, H.; Gribble, G. W.; Niikura, T (2012): Synthetic triterpenoids and tricyclic-bis-enones for use in stimulating bone and cartilage growth.

(38) Mirhosseini, H.; Tan, C. P., Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. *Food Chemistry* **2009**, *115* (1), 324-333.

(39) Kowalik, M.; Gothard, C. M.; Drews, A. M.; Gothard, N. A.; Weckiewicz, A.; Fuller, P. E.; Grzybowski, B. A.; Bishop, K. J. M., Parallel Optimization of Synthetic Pathways within the Network of Organic Chemistry. *Angewandte Chemie International Edition* **2012**, *51* (32), 7928-7932.

(40) Tranter, R. (2000): Design and analysis in chemical research

(41) Sanchez, L.(2006): Statistical Design of Experiments Applied to Organic Synthesis.

(42) E.Carslon, R.J (2005) *Design and Optimization in Organic Synthesis*. second revised and enlarged edition ed. Elsevier

(43) Wass, J. A., First Steps in Experimental Design-The Screening Experiment 2007.

(44) Cotter, S. C., A Screening Design for Factorial Experiments with Interactions. *Biometrika* **1979**, *66* (2), 317-320.

(45) Martin Berz, G. H., Georg Hoffst Atter, Computation and Application of Taylor Polynomials with Interval Remainder Bounds. **1998**

(46) J.V. Gimeno Adelantado, F. B. R., V. Peris Martinez, F. Bosch Mossi, A Taylor series model to evaluate the interelemental effects in X-ray fluorescence analysis, applied to the iron-zirconium-diluent system. *Fresenius J Anal Chem* (1995) 351:714-719 **1994**.

(47) Cochran, W. G.; Cox, G. M., *Experimental designs (2nd ed.)*. John Wiley & Sons: Oxford, England, 1957; p xiv, 611.

(48) J.Clayden, N. G., and Warren (2012): Organic chemistry. Second edition ed.

(49) B.Czakó, L. K. (2005): Strategic Application of Named Reaction in Organic Synthesis.

(50) E. M. Afsah , M. M. A.-E., M. T. Zimaity ,; b, a. G. R. P., Michael and Ring Expansion Reactions of 6- Carboethoxy- 3,5- diaryl-2-cyclohexen- 1-ones. Springer-Verlag 1984, 1065--1070.

(51) Lytle, J., Preparation of an alpha, betaUnsaturated Ketonevia Michael and Aldol Condensation Reactions. soccerjake18. 2010

(52) Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition reactions in macromolecular design for emerging technologies. *Progress in Polymer Science* **2006**, *31* (5), 487-531.

(53) T.Hattori, A. T., Y.Sawana, Y.Monguchi), Systematic evaluation of the palladium - catalysed hydrogenation under flow. Tetrahydron **2014**, *70* 4790-4798.

(54) Garcia-Verdugo, S. V. L. a. E., Chemical reactions and Processes under Flow Conditions. 2010; p 140-141.

(55) A.Paul Krapcho, E. G. E. J., Jr, and A.J.Lovey Decarbalkoxylation of germinal diesters, β -keto esters in wet dimethyl sulfoxide. Effect of added sodium chloride on the decarbalkoxylation rates of mono and disubstituted malonates esters. **1974** *13*, (Tetrahedron letters), 1091-1094.

(56) Julieyana , A. M. Synthesis and decarboxylation of 2,3 Dioxophenylpyrrolidine- 3-carboxylic acid etyhl ester / Julieyana Abdul Manap. 2009.

(57) Krapcho , A., Decarbalkoxylations of geminal diesters, β -keto esters and α -cyano esters effected by sodium chloride in dimethyl sulfoxide **1973**, 1091-1094.

(58) Yaakob, I. U. Synthesis and decarboxylation Of 2-(4-Methoxylphenyl)-1-Methyl-4,5-Dioxo-Pyrollidine-3-Carboxylic Acid Ethyl Ester / Islaili Ulfah Yaakob. Faculty of Applied Sciences, 2009.

(59) A. Paul Krapcho, J. F. W., J. M. Eldridge, 2 E. G. E. Jahngen, Jr.; A. J. Lovey, a. W. P. S., Synthetic Applications and Mechanism Studies of the Decarbalkoxylations of Geminal Diesters and Related Systems Effected in Me2SO by Water and/or by Water with Added Salts. J. Org. Chem, **1978**, *Vol. 43*, *No. 1*

(60) Krapcho, A. P.; Glynn, G. A.; Grenon, B. J., The decarbethoxylation of geminal dicarbethoxy compounds. *Tetrahedron Letters* **1967**, *8* (3), 215-217.

(61) Bodwell, G. J.; Pi, Z., Electron deficient dienes I. Normal and inverse electron demand Diels-Alder reaction of the same carbon skeleton. *Tetrahedron Letters* **1997**, *38* (3), 309-312.

(62) Panek, J. S.; Zhu, B., Synthesis of aromatic 1,2-diazines by inverse electron demand Diels-Alder reaction of polymer-supported 1,2,4,5-tetrazines. *Tetrahedron Letters* **1996**, *37* (45), 8151-8154.

(63) Sakya, S. M.; Groskopf, K. K.; Boger, D. L., Preparation and inverse electron demand Diels-Alder reactions of 3-methoxy-6-methylthio-1,2,4,5-tetrazine. *Tetrahedron Letters* **1997**, *38* (22), 3805-3808.

(64) Sparey, T. J.; Harrison, T., Inverse electron demand Diels-Alder reactions of 3,6-dichloro-[1,2,4,5]tetrazine. *Tetrahedron Letters* **1998**, *39* (32), 5873-5874.

(65) Sammes, P: The Synthesis and Chemistry of Azo1enines. Part 8.' The Paal-Knorr Reaction with Cyclic 2-(Acylmethyl)-2-alkyl-1,3-diketones: Isolation of 1 -Acyl-IHpyrroles via Rearrangement. *J. chem. soc. perkin trans. I* **1988**, 161-168.

(66) Gian Cesare Tron, T. P., Richard A. Billington, Pier Luigi Canonico,; Giovanni Sorba, A. A. G(**2007**): Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3-dipolar Cycloaddition Between Azides and Alkynes

(67) B.S.Furniss, A. J. H., P.W.G.Smith and A.R.Tatachell *VOGEL'S, Textbook of Organic chemistry.* fifth edition ed.; 1991.
APPENDICES

74

Appendix 8

Agilent 7820A 4/21/2015 10:29:21 AM Jostein

9.499 BB

0.0156 6.77618

Page 1 of 2

6.83063 0.83694

*** End of Report ***

```
Data File C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\202B0201.D
Sample Name: JHPH-1-IN10.8
   _____
   Acq. Operator : Jostein
                                              Seq. Line : 2
   Acq. Instrument : Agilent 7820A
                                              Location : Vial 202
   Injection Date : 1/30/2015 2:19:41 PM
                                                    Inj :
                                                           1
                                            Inj Volume : 1 µl
               : C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\PHENIAS.M
: 4/10/2014 9:57:40 AM by Jostein
   Acq. Method
   Last changed
   Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M
   Last changed : 2/26/2015 3:26:37 PM by Jostein
          FID1 B, Back Signal (PHENIAS 2015-01-30 14-00-00\202B0201.D)
                              206
       pA
      700 ·
                                                                             9.828
      600
      500
      400
      300
      200 ·
       100 -
                                                                              > 9.998
                                                                                   10.505
10.635
10 a11
                                                                          - 9.499
                                                              950
                                                          479
                            921
                            r
                                                              È
        0
                                                                              10
                             4
                                                                                     mi
   _____
                         Area Percent Report
   _____
                                            _____
   Sorted By
                       :
                             Signal
   Multiplier
                      :
                            1.0000
   Dilution
                      .
                            1.0000
   Use Multiplier & Dilution Factor with ISTDs
   Signal 1: FID1 B, Back Signal
   Peak RetTime Type Width
                                     Height
                           Area
                                               Area
                                     [pA]
    # [min]
                  [min] [pA*s]
                                                -8
   1 3.921 BB 0.0124
                           2.67578
                                     3.37758 0.15611
     2 4.206 BB
                   0.0126 573.78455 710.01965 33.47659
                  0.0153 1.84556
0.0186 2.95080
      3
         7.479 BB
                                      1.91186 0.10768
                                     2.35184 0.17216
        7.950 BB
      4
        9.499 BB
                  0.0173
                           8.06830
                                      6.66154 0.47073
      5
         9.828 BB
                   0.0214 855.42230 601.85376 49.90832
      6
                  0.0603 150.86433
        9.998 BB
                                     33.67999 8.80195
                  0.0676 58.11494 11.52935 3.39063
0.0532 32.54914 7.84701 1.89903
     8 10.505 BV
      9
        10.635 VB
Agilent 7820A 4/21/2015 12:15:17 PM Jostein
```

Data File C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\203B0301.D Sample Name: JHPH-1-IN18.4 _____ Acq. Operator : Jostein Seq. Line : 3 Acq. Instrument : Agilent 7820A Location : Vial 203 Injection Date : 1/30/2015 2:37:12 PM Inj: 1 Inj Volume : 1 µl Acq. Method : C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\PHENIAS.M Last changed : 4/10/2014 9:57:40 AM by Jostein Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M : 2/26/2015 3:26:37 PM by Jostein Last changed FID1 B, Back Signal (PHENIAS 2015-01-30 14-00-00\203B0301.D) pA 🗆 9.832 900 -800 -4.207 700 -600 500 -400 -300 -200 -10.012 10.518 10.646 100 --9.497 949 478 g 321 0 10 ģ Area Percent Report _____ Sorted By Signal : 1.0000 Multiplier . 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Width Area Height [min] [pA*s] [pA] Peak RetTime Type Width Area ÷ # [min] ----|-----|-----|-----|-----| 0.0126 2.68608 3.33104 0.11200 1 3.921 BB 2 4.207 BB 0.0135 569.73163 702.81805 23.75676 7.478 BB 0.0165 1.96760 1.83674 0.08205 3 7.949 BB 0.0208 8.64574 9.033 BB 0.0150 1.00040 6.01655 0.36051 1.06391 0.04171 4 5 7.04152 0.37561 9.00774 9.497 BB 0.0189 6 7 9.832 BV 0.0238 1394.09839 895.86224 58.13135 0.0701 247.14240 48.31278 10.30538 0.0684 72.20488 13.75519 3.01081 8 10.012 VB 9 10.518 BV

Agilent 7820A 4/21/2015 12:16:18 PM Jostein

Data File C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\204B0401.D Bample Name: JHPH-1-IN25.1 _____ Acq. Operator : Jostein Seq. Line : 4 Acq. Instrument : Agilent 7820A Location : Vial 204 Injection Date : 1/30/2015 2:54:43 PM Inj: 1 Inj Volume : 1 µl Acq. Method : C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\PHENIAS.M Last changed : 4/10/2014 9:57:40 AM by Jostein Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M : 2/26/2015 3:26:37 PM by Jostein Last changed FID1 B, Back Signal (PHENIAS 2015-01-30 14-00-00\204B0401.D) pA 838 1200 -1000 -800 206 600 400 200 10.021 10.530 10.650 10 a13 -9.034 -9.177 -9.498 7.949 478 8 0 9 10 mi Area Percent Report _____ Sorted By Signal : Multiplier : 1.0000 Dilution . 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Height Area [pA] % Peak RetTime Type Width Area # [min] [min] [pA*s] 1 3.921 ВВ 0.0131 2.57792 3.31417 0.08938 2 4.206 BB 0.0135 565.63000 695.21283 19.61065 0.0218 3.12047 2.04876 0.10819 0.0225 13.95266 8.79829 0.48375 7.478 BB 3 7.949 BB 4 9.034 BB 0.0142 1.10702 0.03618 1.04368 5 0.0216 1.47929 0.0194 9.65727 1.13818 0.05129 9.177 BB 6 0.0194 9.65727 7.33026 0.33482 0.0221 1798.05334 1209.52942 62.33932 9.498 BB 7 8 9.838 BV 9 10.021 VB 0.0758 308.37207 56.41247 10.69140

Agilent 7820A 4/21/2015 12:17:43 PM Jostein

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
10	9.532	VB	0.0431	14.91013	4.63402	0.43423
11	9.842	BV	0.0251	2223.02002	1332.93518	64.74166
12	10.035	VB	0.0763	395.00220	67.50288	11.50376
13	10.538	BV	0.0646	79.81427	14.97949	2.32445
14	10.657	VB	0.0676	79.39468	14.19604	2.31223
15	10.920	BV	0.0575	39.05586	9.66827	1.13744
16	11.016	VB	0.0292	4.61558	2.45076	0.13442

Totals : 3433.67774 2168.45442

```
Appendix14
```

```
_____
   Acq. Operator : Jostein
                                                                                                         Seq. Line : 1
   Acq. Instrument : Agilent 7820A
                                                                                                           Location : Vial 201
   Injection Date : 2/27/2015 12:56:41 PM
                                                                                                                       Inj :
                                                                                                                                        1
                                                                                                        Inj Volume : 1 µl
                                  : C:\CHEM32\1\DATA\PHENIAS 2015-02-27 12-52-55\PHENIAS.M
   Acq. Method
   Last changed : 2/26/2015 3:26:37 PM by Jostein
   Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M
   Last changed : 2/26/2015 3:26:37 PM by Jostein
                   FID1 B, Back Signal (PHENIAS 2015-02-27 12-52-55\201B0101.D)
             pA -
            800 -
           700
            600 -
            500
           400 -
           300 ·
                                                                                                                                                                                     9.814
            200
                                                                                                               「長の388
」「5.540
た.5540
た.5540
た.7.315
た.7.3745
た.7.3745
た.7.308
た.7.3745
た.7.308
た.7.715
た.7.308
た.7.715
た.7.715
た.7.308
た.7.715
た.7.715
た.7.308
た.7.715
た.7.308
た.7.715
た.7.715
た.7.715
た.7.308
た.7.715
た.7.
                                                                                                                                                                                           10.145
            100 -
                                                                                           5.491
                                                                                                                                                                                       993
                                                                -3.916
                        929
                                                                                    4.946
                         ÷٢
              0
                                                                                                                                                                                        10
   _____
                                                        Area Percent Report
   Signal
1.001
   Sorted Bv
                                                  .
   Multiplier
                                                 .
                                                                1.0000
   Dilution
                                                 .
   Use Multiplier & Dilution Factor with ISTDs
   Signal 1: FID1 B, Back Signal
                                        [min] [pA*s] [pA]
   Peak RetTime Type Width
                                                                                                           Area
                                                                                                              ÷
     # [min]
    1 1.929 BV 0.0496 5.01739 1.43321 0.41161
         2
              2.061 VB 0.0117
                                                           1.44247
                                                                                   1.97610 0.11833
                                      0.0133
                 3.916 BB
                                                              3.33363
                                                                                      4.18921 0.27348
         3
                                          0.0130 721.65240 862.70410 59.20154
                 4.203 BB
          4
                 4.946 BB 0.0135
                                                                                     1.96480 0.13152
         5
                                                              1.60321
              5.347 BV 0.0750 33.09170 5.37544 2.71471
          6
                                                                                    4.86684 2.52100
                 5.491 VB
                                        0.0817 30.73035
         7
          8
                 6.339 BV
                                           0.0410
                                                                6.49872
                                                                                        2.19153
                                                                                                           0.53313
               6.388 VB
                                       0.0337
                                                                                     3.39461 0.59413
          9
                                                                7.24228
ilent 7820A 4/21/2015 12:22:54 PM Jostein
                                                                                                                                                                         Page 1 of 2
```

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
10	6.540	BB	0.0376	11.84778	4.21491	0.97195
11	6.761	BB	0.0315	7.80510	3.52144	0.64030
12	6.951	BB	0.0156	1.00764	1.01305	0.08266
13	7.115	BB	0.0222	4.78992	3.20367	0.39295
14	7.374	BB	0.0303	2.99886	1.51181	0.24601
15	7.478	BB	0.0143	2.35795	2.48517	0.19344
16	7.715	BB	0.0175	3.05858	2.80113	0.25091
17	7.908	BB	0.0208	1.87197	1.36590	0.15357
18	8.239	BV	0.0274	5.20751	2.68695	0.42720
19	8.271	VB	0.0153	2.57668	2.65211	0.21138
20	8.540	BB	0.0213	2.51946	1.87672	0.20669
21	8.716	BB	0.0225	6.22609	4.09550	0.51076
22	8.782	BB	0.0154	1.73463	1.77080	0.14230
23	8.966	BB	0.0170	2.52525	2.40924	0.20716
24	9.019	BB	0.0143	1.72195	1.81079	0.14126
25	9.106	BB	0.0156	44.15569	44.22349	3.62236
26	9.165	BB	0.0193	10.12017	8.11772	0.83022
27	9.331	BB	0.0163	6.75257	6.39598	0.55395
28	9.435	BB	0.0164	18.29283	17.17098	1.50067
29	9.493	BB	0.0172	6.78845	6.01354	0.55690
30	9.584	BB	0.0258	7.14306	3.96416	0.58599
31	9.814	BB	0.0167	165.46027	162.07898	13.57371
32	9.934	BV	0.0184	3.16953	2.56054	0.26002
33	9.983	VВ	0.0251	6.12437	3.66236	0.50242
34	10.145	BB	0.0193	36.39503	30.88533	2.98571
35	10.316	BB	0.0188	3.33334	2.78385	0.27345
36	10.417	BB	0.0303	6.35268	2.99950	0.52115
37	10.545	BB	0.0196	1.22048	1.02067	0.10012
38	10.896	BB	0.0344	15.88582	6.43830	1.30321
39	10.992	BB	0.0234	2.07459	1.35756	0.17019
40	11.530	BV	0.0435	6.34805	2.35324	0.52077
41	11.613	VB	0.0298	2.67406	1.38325	0.21937
42	11.769	BB	0.0345	7.82311	3.54479	0.64178

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
		-				
10	5.856	BB	0.0158	4.77922	4.70756	0.01272
11	6.547	BB	0.0174	4.05768	3.74694	0.01080
12	7.164	BB	0.0178	3.39157	3.04828	0.00903
13	7.478	BB	0.0146	2.10531	2.32409	0.00560
14	7.730	BB	0.0184	3.20815	2.75657	0.00854
15	7.940	BB	0.0234	2.25200	1.47693	0.00599
16	8.245	BB	0.0188	3.47291	2.88743	0.00924
17	8.457	BB	0.0208	2.38495	1.73905	0.00635
18	8.573	BB	0.0187	2.61116	2.07924	0.00695
19	8.724	BB	0.0213	5.67562	4.22500	0.01511
20	8.785	BB	0.0161	2.11380	2.03531	0.00563
21	8.829	BB	0.0166	1.15081	1.00418	0.00306
22	8.887	BB	0.0173	1.73866	1.52038	0.00463
23	8.968	BB	0.0191	11.14441	8.62549	0.02966
24	9.022	BB	0.0177	4.51441	3.64015	0.01201
25	9.091	BB	0.0208	5.17923	3.43381	0.01378
26	9.168	BB	0.0211	5.26001	3.95670	0.01400
27	9.438	BB	0.0199	1.87781	1.45116	0.00500
28	9.508	BB	0.0207	10.67572	7.84550	0.02841
29	9.585	BB	0.0216	7.08716	5.15522	0.01886
30	9.819	BB	0.0161	209.67017	201.74879	0.55803
31	9.980	BB	0.0411	16.49112	5.95299	0.04389
32	10.097	BV	0.0186	4.10640	3.47133	0.01093
33	10.151	VB	0.0198	6.97085	5.43547	0.01855
34	10.423	BV	0.0254	5.56994	3.42674	0.01482
35	10.464	VB	0.0365	20.01490	7.76097	0.05327
36	10.901	BB	0.0336	35.85453	15.83327	0.09543
37	11.537	BB	0.0420	5.45697	2.01256	0.01452

Totals : 3.75731e4 7.40539e4

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	÷
		-				
10	7.475	BB	0.0137	2.13956	2.37319	0.19560
11	7.726	BB	0.0188	2.05677	1.81162	0.18803
12	8.240	BB	0.0174	2.19134	1.90201	0.20033
13	8.715	BB	0.0197	2.53363	2.09064	0.23162
14	8.780	BB	0.0152	2.32528	2.42502	0.21257
15	8.962	BB	0.0156	8.98788	9.05151	0.82166
16	9.016	BB	0.0156	2.88755	2.90302	0.26398
17	9.162	BB	0.0219	3.59760	2.56974	0.32889
18	9.358	BB	0.0164	1.17432	1.10472	0.10735
19	9.431	BB	0.0157	18.11456	18.09301	1.65601
20	9.492	BB	0.0238	7.48010	5.00781	0.68382
21	9.580	BB	0.0243	4.26648	2.66324	0.39004
22	9.812	BB	0.0160	214.13348	207.34979	19.57580
23	9.974	BB	0.0307	4.41593	2.12421	0.40370
24	10.245	BB	0.0178	3.33030	2.99379	0.30445
25	10.450	BB	0.0389	10.28720	3.69745	0.94044
26	10.887	BB	0.0355	16.65232	6.86814	1.52233
27	10.985	BB	0.0257	16.31905	9.85480	1.49187

Totals : 1093.86851 1226.22745

Acq. Operator	: Jostein			Seq. Line	: 5					
Acq. Instrument	: Agilent	7820A		Location	: Vial	205				
Injection Date	: 2/27/201	5 2:06:37 P	м	Inj	: 1					
				Inj Volume	: 1 µl					
.cq. Method	: C:\CHEM3	32\1\DATA\PH	ENIAS 2015	-02-27 12-52	2-55\рн	ENIAS.M				
last changed	: 2/26/201	5 3:26:37 P	M by Joste:	in						
Analysis Method	: C:\CHEM3	2\1\METHODS	\PHENIAS.M							
last changed	: 2/26/201	.5 3:26:37 P	M by Joste:	in						
FID1 B, Back	Signal (PHENIAS	2015-02-27 12-52-	55\205B0501.D)							
pA -		504								
-		4								
800 -										
1										
700 -										
1										
600 -										
3										
500 -										
400										
+••• =										
300 -									-	
-									9.81	
200 -									Ĩ	
1										
100 -		œ			4		ത്ത	253		444
1		- N								14 1401
		3.9			7.47		⊳.050 00	6 6	1	
0		3.9			7.47			-9 <u>9</u> 4	L	
0			5	6 7	-7.47	8	2.050 80 9			
0	3		5	6 7	-7.47	8		-984	 - 10	
0-1	3		5	1 · · · · 1 6 7	-7.47		1.000 80.000 1.000 9.000		10	
0-	3	4 4 Area Percent	5 	6 7		8	 		10	
0-1		4 4 Area Percent	5 	1 · · · · · 1 6 7		 8 ====	12.8 		10	
	· · · · · · · · · · · · · · · · · · ·	4 Area Percent	5 5 Report			 8 ====	12.89 		· · · ·	
0- 2 Borted By	· · · · · · · · · · · · · · · · · · ·	4 Area Percent Signal	5 5 Report		-7.47	 8 ====	12 386 		10	
0 2 Borted By fultiplier	· · · · · · · · · · · · · · · · · · ·	4 Area Percent Signal 1.0000	5 			 8 			- <u>-</u>	
0 2 Borted By fultiplier Dilution	· · · · · · · · · · · · · · · · · · ·	4 4 Area Percent Signal 1.0000 1.0000	5 . Report			 8 			. <u> </u>	
0 2 Sorted By fultiplier)ilution Jse Multiplier &	3 	4 Area Percent Signal 1.0000 1.0000 Factor with	Report			 8 	1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08		. <u>,</u> . 10	
0 2 Borted By Aultiplier Dilution Jse Multiplier &	3 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3	4 Area Percent Signal 1.0000 1.0000 Factor with	Report		19 ⁻ 2	 8 			. <u> </u>	
0 2 Borted By Multiplier Dilution Jse Multiplier &	3	Area Percent Signal 1.0000 1.0000 Factor with	Report	1 · · · · 1 6 7	19 ⁻ 2-	8 =====			, <u>, , , , , , , , , , , , , , , , , , </u>	
0 2 Borted By Multiplier Dilution Jse Multiplier & Bignal 1: FID1 B	3	Area Percent Signal 1.0000 1.0000 Factor with	Report	1 · · · · 1 6 7	19 ⁻ 2-	 8 			, <u>, , , , , , , , , , , , , , , , , , </u>	
0 2 Borted By Multiplier Dilution Jse Multiplier & Bignal 1: FID1 B	3	Area Percent Signal 1.0000 1.0000 Factor with	Report	1 · · · · 1 6 7	19 ⁻ 2-	8			. <u> </u>	
0 2 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: FID1 B Peak RetTime Typ	3	Area Area Area Area	E ISTDs	Area	19 ⁻ 2-	8			. <u> </u>	
0 2 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: FID1 B Peak RetTime Typ # [min]	3 : : Dilution 3, Back Sig be Width [min]	4 Area Percent Signal 1.0000 Factor with ynal Area [pA*s]	ISTDs Height [pA]	Area	19 ⁻ 2-	8			· <u> </u>	
0 2 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: FID1 B Peak RetTime Typ # [min]	3	4 Area Percent Signal 1.0000 1.0000 Factor with ynal Area [pA*s]	E ISTDs Height [pA]	Area	19 ⁻ 2-	8			· <u> </u>	
0 2 Sorted By Aultiplier Dilution Jse Multiplier & Signal 1: FID1 B Peak RetTime Typ # [min] 	3 : : : : : : : : : : : : : : : : : : :	4 Area Percent Signal 1.0000 1.0000 Factor with ynal Area [pA*s] 	5 Report ISTDs Height [pA]	Area %	19 ⁻ 2-	8			· <u> </u> · <u> </u>	
0 2 Borted By Multiplier Dilution Jse Multiplier & Bignal 1: FID1 B Peak RetTime Typ # [min] 	3 	4 Area Percent Signal 1.0000 1.0000 Factor with gnal Area [pA*s] 	E ISTDs Height [pA] 4.05003 850.73743	Area % 0.32379 70.02810	19-12- 	8			· <u> </u> · <u> </u>	
0 2 3 3 3 3 3 3 3 4 3 4 3 4 3 5 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	3 	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 	Height [pA] 4.05003 850.73743 2.23047	Area % 0.32379 70.02810 0.20774	19 ⁻ 2-	8			· · 10	
0 2 Sorted By Multiplier Dilution Jse Multiplier & Bignal 1: FID1 B Peak RetTime Typ # [min] 	3 	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 	Height [pA] 4.05003 850.73743 2.23047 1.61691	Area % 0.32379 70.02810 0.20774 0.16337 0.20275	19 ⁻ 2-	 			· •	
0 2 3 3 3 3 3 3 3 3 3 3 3 3 3	3 	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 	Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282	Area % 0.32379 70.02810 0.20774 0.16337 0.32755	19 ⁻ 2-	 			. <u> </u>	
0 2 3 3 3 3 3 3 3 3 3 3 3 3 3	3	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 	Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282 2.17022	Area % 	19-12- 	 			· ·	
0 3 3 3 3 3 3 3 3 3 3 3 3 3	3 : : : : : : : : : : : : :	4 Area Percent Signal 1.0000 1.0000 Factor with gnal Area [pA*s] 	5 Report ISTDs Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282 2.17022 13.73551	Area % 				*8	10	
0 2 3 3 3 3 3 3 3 3 3 3 3 3 3	3 : : : : Dilution 3, Back Sig be Width [min] - - 0.0134 0.0137 0.0150 0.0159 0.0161 0.0184 0.0184	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 	5 Report ISTDs Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282 2.17022 13.73551 5.17705	Area % 	19-12- 			*8	10	
0 2 Sorted By Multiplier Vilution Vignal 1: FID1 B Peak RetTime Typ # [min] 	3 : : : : : : : : : : : : :	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.26312 705.72748 2.09359 1.64636 3.30095 2.08592 14.19856 6.39446 190.08430	5 Report ISTDs Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282 2.17022 13.73551 5.17705 183.56302	Area % 		<u> </u>			10	
0 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 5 5 6 9 5 8 9 5 8 9 5 8 9 9 9 8 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	3 : : : : : : : : : : : : :	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.26312 705.72748 2.09359 1.64636 3.30095 2.08592 14.19856 6.39446 190.08430	5 Report ISTDs Height [pA] 4.05003 850.73743 2.23047 1.61691 3.17282 2.17022 13.73551 5.17705 183.56302	Area % 		 			10	

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
10	10.449	BB	0.0314	6.58970	3.07385	0.65388
11	10.541	BB	0.0251	2.62708	1.57230	0.26068
12	10.646	BB	0.0325	7.46712	3.44305	0.74095
13	10.759	BB	0.0308	7.59524	3.63028	0.75366
14	10.883	BB	0.0374	21.92809	8.93804	2.17589
15	10.985	BV	0.0258	8.29215	4.78173	0.82282
16	11.056	vv	0.0278	5.01501	2.63353	0.49763
17	11.101	VB	0.0333	8.83780	3.72179	0.87696
18	11.206	BB	0.0330	6.13745	2.69428	0.60901
19	11.761	BB	0.0383	4.49324	1.87924	0.44586

Totals :

1007.77763 1102.82154

						-			
ted. C	Operator :	Jostein			Seq. Line	: 7			
Acq. I	Instrument :	Agilent	7820A		Location	: Vial 207			
Inject	tion Date :	2/2//201	15 2:41:45 1	PM	Ing	: 1			
	Method .	C.\CHEM3	2011\0,000,01	FNTAS 2015	-02-27 12-5	: і µі 2-55\рнғмтая	м		
icy. A Gast c	changed :	2/26/201	5 3.26.37 F	M by Toste	02 27 12 3. in	2 JJ (FILMIRJ.	. 141		
Analys	sis Method :	. 27207201 . C:\CHEM3	2\1\METHODS	N BY COSCE.					
Last c	changed :	2/26/201	5 3:26:37 1	M by Joste	in				
	FID1 B, Back S	ignal (PHENIAS	2015-02-27 12-52-	55\207B0701.D)					
pA	A		04						
			4						
800	n _								
000	۲ <u> </u>								
]								
600									
000	']								
]								
]								
400									
400	°]								
]								
	1							Ξ	
200	_]							6.0	
200	0-								
	1							22	~
	020		9			74	79 99	88 1 88	243
									0
	Q Qi		3.9			7.4	6 80 G		- Ť
(0- <u></u>		6; ;;						Ţ,
(3		5	6 7				Ţ 0
(3	6; ; 4	5	6 7		20 80 90 9		τ 0
		3	4 4 Area Percent	5 5 Report	1 · · · · · 1 6 7		200 	1	- Ę
		3	4 Area Percent	5 5 : Report	1 · · · · · 7 6 7	<u></u>		 	
		3 	4 Area Percent	5 5 2 Report	<u> </u>		2886 	<u><u> </u></u>	0
(о - <u><u></u>²</u>		4 Area Percent Signal	5 5 : Report	1 · · · · · 7 6 7		2866 24 24 9	1979 	0
orted fultip	0 - Ri 2		Area Percent Signal 1.0000	5 5 : Report			2886 24 9 9		
(Sortec Multip	i By plier		4 Area Percent Signal 1.0000 1.0000	5 5 : Report					
(Sorted fultip Diluti Jse Mu	d By plier ion altiplier &	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Area Percent Signal 1.0000 1.0000 Factor with	S Report			284 		
(Sorted Multip Diluti Jse Mu	d By plier ion ultiplier &	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 Area Percent Signal 1.0000 1.0000 Factor with	5 Report			284 		
(serection Sorted Multip Diluti Jse Mu Bignal	d By plier altiplier &	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 Area Percent Signal 1.0000 1.0000 Factor with	5 Report	<u>6</u> 7				Ţ
(Sortec Multip Diluti Jse Mu Signal	d By plier ion altiplier &	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Area Percent Signal 1.0000 Factor with	5 Report	<u>6</u> 7				
(and the second	d By plier ion altiplier & l 1: FID1 B, RetTime Type	3	Area Percent Signal 1.0000 Factor with gnal Area	5 : Report	<u>6</u> 7				
(server Multip Diluti Jse Mu Bignal Peak F #	d By plier ion altiplier & L 1: FID1 B, RetTime Type [min]	3	Area Percent Signal 1.0000 Factor with gnal Area [pA*s]	5 Report ISTDs Height [pA]	Area				-
(server Multip Diluti Jse Mu Signal Peak F #	d By plier ion altiplier & L 1: FID1 B, RetTime Type [min]	3	Area Percent Signal 1.0000 Factor with gnal Area [pA*s]	5 Report ISTDs Height [pA]	Area %				-
(server Multip Diluti Jse Mu Bignal Seak F # - 1	d By plier ion altiplier & L 1: FID1 B, RetTime Type [min] 	3	Area Percent Signal 1.0000 Factor with gnal Area [pA*s] 	5 : Report n ISTDs Height [pA] 	Area % 0.31875				
(server Multip Diluti Jse Mu Bignal Peak F # - 1 2	d By plier ion altiplier & L 1: FID1 B, RetTime Type [min] 	3 	4 Area Percent Signal 1.0000 1.0000 Factor with gnal Area [pA*s] 	5 Report 1 ISTDs Height [pA] 4.14831 4.43173	Area % 0.31875 0.33524				
Gorted Aultip Diluti Jse Mu Bignal Peak F # 1 2 3	d By plier ion altiplier & [min] 2.070 BB 3.918 BB 4.204 BB	3 	4 Area Percent Signal 1.0000 1.0000 Factor with gnal Area [pA*s] 3.32957 3.50189 746.21600	5 Report 1 ISTDs Height [pA] 4.14831 4.43173 912.34235	Area % 0.31875 0.33524 71.43679				
(Ci 2 2 3 4 By 5 5 6 By 5 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 6 By 5 7 8 8 8 8 8 8 8 1 : FID1 B, 8 8 8 8 8 8 9 1 : FID1 B, 8 8 8 1 : FID1 B, 8 8 1 : FID1 B, 8 8 1 : FID1 B, 8 8 1 : FID1 B, 8 1 : FI	3 	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.32957 3.50189 746.21600 2.21803	5 Report ISTDs Height [pA] 4.14831 4.43173 912.34235 2.45175	Area % 0.31875 0.33524 71.43679 0.21234				
(====== Borted Multip Diluti Jse Mu Bignal Peak F # 	Ci 2 Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	3 F : : Dilution Back Sig Width [min] - 0.0126 0.0124 0.0135 0.0146 0.0153	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.32957 3.50189 746.21600 2.21803 2.49012	5 Report ISTDs Height [pA] 4.14831 4.43173 912.34235 2.45175 2.58100	Area % 0.31875 0.33524 71.43679 0.21234 0.23838	4 			
(====== Borted Multip Diluti Jse Mu Bignal Peak F # 	Ci 2 Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	3 	Area [pA*s] 3.32957 3.50189 746.21600 2.21803 2.49012 4.09210	Height [pA] 4.14831 4.43173 912.34235 2.45175 2.58100 4.46391	Area & 1				
(server Multip Diluti Jse Mu Signal Peak F # 1 2 3 4 5 6 7	Ci C	3 	Area [pA*s] 746.21600 2.21803 2.49012 4.09210 3.63376	Height [PA] 4.14831 4.43173 912.34235 2.45175 2.58100 4.46391 3.56648	Area % 				
(====== Bortec Multip Diluti Jse Mu Bignal Peak F # - 1 2 3 4 5 6 7 8	Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	3 	Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.32957 3.50189 746.21600 2.21803 2.49012 4.09210 3.63376 32.40655	Height [pA] 4.14831 4.43173 912.34235 2.45175 2.58100 4.46391 3.56648 31.16247	Area % 0.31875 0.33524 71.43679 0.21234 0.21234 0.23838 0.39175 0.34787 3.10235				
(Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	3 	4 Area Percent Signal 1.0000 1.0000 Factor with mal Area [pA*s] 3.32957 3.50189 746.21600 2.21803 2.49012 4.09210 3.63376 32.40655 5.96440	<pre>height [pA] 4.14831 4.43173 912.34235 2.45175 2.58100 4.46391 3.56648 31.16247 5.06685</pre>	Area % 				
(Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	3 	4 Area Percent Signal 1.0000 1.0000 Factor with gnal Area [pA*s] 3.32957 3.50189 746.21600 2.21803 2.49012 4.09210 3.63376 32.40655 5.96440	<pre>h ISTDs Height [pA] 4.14831 4.43173 912.34235 2.45175 2.58100 4.46391 3.56648 31.16247 5.06685</pre>	Area % 1				

Peak	RetTime	туре	Width	Area	Height	Area	
#	[min]		[min]	[pA*s]	[pA]	8	
10	9.688	BB	0.0173	1.12120	1.04951	0.10733	
11	9.811	BB	0.0182	210.16580	182.33894	20.11960	
12	10.243	BB	0.0176	1.23788	1.20048	0.11851	
13	10.448	BB	0.0313	7.93005	3.84415	0.75916	
14	10.887	BB	0.0304	17.05905	8.59351	1.63310	
15	10.982	BB	0.0279	3.21585	1.74872	0.30786	

Totals : 1044.58228 1168.99017

lent 7820A 4/21/2015 1:25:38 PM Jostein

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
10	7.161	BB	0.0177	3.23917	2.92381	0.30343
11	7.474	BB	0.0230	3.44893	2.21127	0.32308
12	7.727	BB	0.0171	3.09216	2.74872	0.28966
13	7.936	BB	0.0235	1.76212	1.15143	0.16507
14	8.241	BB	0.0182	3.21859	2.79896	0.30150
15	8.720	BB	0.0209	5.32557	4.04820	0.49887
16	8.781	BB	0.0160	1.62896	1.58417	0.15259
17	8.964	BB	0.0155	12.40091	12.58014	1.16166
18	9.017	BB	0.0166	3.07947	2.85964	0.28847
19	9.088	BB	0.0194	3.02805	2.29225	0.28365
20	9.163	BB	0.0211	4.77721	3.59788	0.44751
21	9.434	BB	0.0156	8.76069	8.81868	0.82066
22	9.496	BB	0.0206	11.66445	8.60108	1.09267
23	9.580	BB	0.0202	6.76750	5.13194	0.63395
24	9.813	BB	0.0169	182.79004	176.42859	17.12292
25	9.980	BB	0.0293	8.70604	4.29245	0.81554
26	10.091	BV	0.0182	1.70118	1.47662	0.15936
27	10.146	VB	0.0244	2.82261	1.75524	0.26441
28	10.248	BV	0.0214	3.20698	2.36224	0.30041
29	10.314	VB	0.0217	1.81826	1.25221	0.17033
30	10.415	BB	0.0429	8.61570	2.81280	0.80708
31	10.892	BV	0.0430	16.66260	5.30838	1.56087
32	10.988	VВ	0.0262	9.77739	5.76890	0.91590
33	11.527	BB	0.0376	4.09365	1.61244	0.38347

Totals : 1067.51704 1165.64451

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
10	10.141	VB	0.0195	7.92749	6.30199	0.86195
11	10.233	BB	0.0254	1.97092	1.26390	0.21430
12	10.887	BB	0.0294	4.60555	2.41681	0.50076
13	10.984	BB	0.0251	2.47444	1.47844	0.26904
14	11.762	BB	0.0329	3.31168	1.54862	0.36008

```
Totals :
```

919.71531 1071.44655

Ang. Operation and the Media and Angle angle and Angle and Angle angle angle angle angle angle angle angle		0		Testsin			Sea Tine						
Area Percent Report Area Standard Science Sci	Acq.	operato:	r :	Jostein	70007		Seq. Line	• • • • • • •	0.00				
<pre>Injectum owe = string volume : i mi inj volume : i mi base changed : clocHEM3211/DATA/PRENIAS 2013-03-02 11-35-11/PHENIAS.M East changed : clocHEM321/METHODA/PHENIAS.M East changed : clocHEM321</pre>	Acq.	instrume	ent :	Agilent	1.59.06 D	N .	Location	1 : Via.	L 209				
<pre>http://www.international.com/international.</pre>	Injec	CION Da	Le :	3/2/2013	0 1:55:06 P	M	Inj Toj Voluma	1	1				
<pre>Not setup in the intervence of the setup in the setu</pre>	N	Mathad		C.) CHEM2	2\1\DAMA\D	UENTAS 2015.	inj volume	e: μ. 25_11\π	L JENTAG M				
<pre>dest clanged : D/20/DD 310/DF RENIALS M last changed : D/20/DD 310/DF RENIALS M last changed : D/20/DD 316/DF RENIALS M last changed : D/20/DD 316/DF RENIALS M renight : D/20/DD 30/DF RENIALS M renight : D/20/DF RENIALS</pre>	Acq. I	abanaad		2/26/201	5 2.26.27	nenias 2015. DM bu Tester	-03-02 11-3	55-11(Pi	IENIAS.M				
<pre>http://www.indicestical.org/contentions.com tast changed : 2/26/2015 3:26:37 PM by Opstein PDTE Back Synd (PHENAS 2015 30:23/2 11-35-11000800010) PDTE Back Synd (PHENAS 2015 30:23/2 11-35-110000 PDTE Back Synd (PHENAS 2015 60:23/2 11-35-11000800010) PDTE Back Synd (PHENAS 2015 60:23/2 11-35-1100000 PDTE Back Synd (PHENAS 2015 60:23/2 11-35-1100000 PDTE Back Synd (PHENAS 2015 60:23/2 11-35-1100000000000000000000000000000000</pre>	Last (changed	: had i	2/26/201	2\1\MERUOD	PM by Joste: a) Duputha M	in						
<pre>Last changed i 1/20/2010 01010 00000000000000000000000</pre>	Analy	sis Meti	noa :	C: (CHEM3	5 2.26.27	S\PHENIAS.M	·						
<pre>page 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =</pre>	Jast	FID1 B	Back Sid	anal (PHENIAS	2015-03-02 11-35	-11\209B0901 D)	In						
Top T	D	A H	Duck olg		2010 00 00 00 00 00	112000001.07							
700 0000 0000 000 000 <td< td=""><td>-</td><td>-</td><td></td><td></td><td>4-2(</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-	-			4-2(
00 00 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-											
600 600 600 600 600 600 600 600	70	<u> </u>											
000 0000 0000 000 000 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-											
<pre>50 60 60 60 70 70 70 70 70 70 70 70 70 7</pre>	60	00 -											
560 00 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-											
300 400 300 90 400 90 90 90 <	50	<u>_</u>											
<pre>400 400 400 400 400 400 400 400</pre>	50												
400 400 400 400 400 400 400 400		3											
and and and any of the second seco	40	00 -											
300 300 4 4 5 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 6 7 7 6 7 7 6 7 7 6 7 <td></td> <td>1</td> <td></td>		1											
200 0	20	- 00											
200 00 00 00 00 00 20 00 20 00 20 00 20 00 0		~											
200 100 100 100 100 100 100 100		1											
100 0	20	00 - 00										5	
<pre> 100 10 10 1 1 10 1</pre>		1										8 6	
Image: second	10	- 00											
0 0		-			18			74		查	493	237	
0 1		_			3.9			7.4		80	o A		
2 3 4 5 6 7 8 9 10 Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] %													
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area # [min] [min] [pA*s] 1 3.918 BB 0.0125 2.89916 3.64637 0.36895 2 4.204 BB 0.0135 617.60034 756.91400 78.62399 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814		۳- <u>لـــ</u> ـــ											
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area # [min] [min] [pA] 1 3.918 BB 0.0125 2.89816 3.64637 0.36895 2 4.204 BB 0.0135 617.60034 756.91400 78.62399 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0122 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40861 15.07042 8 10.091 EV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814		°		3	4	5	6 7		8	9		10	-
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area # [min] [min] [pA*s] 1 3.918 BB 0.0125 2.89816 3.64637 0.36895 2 4.204 BB 0.0125 2.89816 3.64637 0.36895 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0173 1.41788 12.44669 1.80110 7 9.612 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 EV 0.0167 7.14616 6.56510 0.90975 9		2		3	4	5	6 7	· · · ·	8	9		10	
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area * [min] [min] [pA*s] [pA] * 				3	4	=======================================	6 7			9		10	
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area * [min] [min] [pA*s] [pA] % 				3 	4 Area Percen	5 5 t Report	6 7			9		10	
Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 				A	4 Area Percen	5 	6 7 			9		10	
Dilution : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area * [min] [min] [pA*s] [pA] % 	======	- <u>2</u> ====================================		3 A 	4 Area Percen	5 ====================================	1 · · · · · 1 6 7			9		10	
Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 	====== sorte			3 	4 Area Percen Signal	5 ====================================			 	9		10	
Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 	Sorte Multij	d By plier		3 	4 area Percen Signal 1.0000 1.0000	5 ====================================	6 7 			9		10	
Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 	Sorte Multij Dilut.	d By plier ion		3 	4 Area Percen Signal 1.0000 Footor wit	5 t Report				9		10	
Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 	Sorte Multin Dilut	d By plier ion ultiplia		3 	4 signal 1.0000 Factor wit	t Report				9		10	
Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] % 	Sorte Multi Dilut: Use M	d By plier ion ultiplia		3 : : Dilution	4 signal 1.0000 factor wit	t Report	<u> </u>			- <u>9</u>		10	
Peak RetTime Type Width Area Height Area # [min] [min] [pA*s] [pA] %	Sorte Multip Dilut Jse Mi	d By plier ion ultiplic	er & :	3 A A C C Dilution	4 signal 1.0000 Factor wit	t Report	<u> </u>			- <u>9</u>		10	
<pre># [min] [min] [pA*s] [pA] %</pre>	Sorte Multij Dilut Use M Signa	d By plier ion ultiplid	er & 2	3 A A C C Dilution Back Sig	4 signal 1.0000 Factor wit	t Report	<u>6</u> 7			9		10	
1 3.918 BB 0.0125 2.89816 3.64637 0.36895 2 4.204 BB 0.0135 617.60034 756.91400 78.62399 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814	Sorte Multij Dilut Use M Signa	d By plier ion ultiplid	er & : D1 B,	3 A A B B B B C C B B C C C C C C C C C C	4 Area Percen Signal 1.0000 1.0000 Factor wit	t Report	6 7			9		10	1
1 3.918 BB 0.0125 2.89816 3.64637 0.36895 2 4.204 BB 0.0135 617.60034 756.91400 78.62399 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 78208 4/21/2015 1:26:55 PM Josteir	Sorte Multij Dilut: Jse M Signa Peak 1	d By plier ion ultiplid RetTime [min]	er & : D1 B,	3 A A B C Dilution B A C K Sig Width [min]	4 Area Percen Signal 1.0000 Factor wit gnal Area [pA*s]	h ISTDs	Area			9		10	
2 4.204 BB 0.0135 617.60034 756.91400 78.62399 3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820P 4/21/2015 1:26:55 PM Josteir Page 1 of 2	Sorte Multij Dilut: Use M Signa: Peak 1 #	d By plier ion ultiplid RetTime [min]	er & : D1 B, Type	3 A A B C Dilution B A C K S G Width [min]	4 signal 1.0000 Factor wit nal Area [pA*s]	5 t Report h ISTDs Height [PA]	Area			9		10	
3 7.474 BB 0.0141 1.87148 2.00751 0.23825 4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820B 4/21/2015 1:26:55 PM Josteir	Sorte Multij Dilut: Jse M Signa Peak 1 # -	d By plier ion ultiplid l 1: FI RetTime [min] 3.918	er & : D1 B, Type BB	3 	4 area Percen Signal 1.0000 1.0000 Factor wit gnal Area [pA*s] 2.89816	5 t Report h ISTDs Height [pA] 3.64637	Area %			9		10	
4 8.964 BB 0.0158 4.24097 4.20964 0.53990 5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820B 4/21/2015 1:26:55 PM Josteir	Sorte Multip Dilut: Use M Signa Peak 1 # . 1 2	<pre> 2 2 2 2 2 2 2 2 4 By plier ion ultiplie 1 1: FI RetTime [min] 3.918 4.204 </pre>	er & : D1 B, Type BB BB	3 	4 area Percen Signal 1.0000 1.0000 Factor wit mal Area [pA*s] 2.89816 617.60034	5 t Report Height [pA] 	Area & 0.36895 78.62399		 	9		10	
5 9.017 BB 0.0172 1.37217 1.21388 0.17468 6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820B 4/21/2015 1:26:55 PM Josteir	Sorte Multij Dilut Jse M Jse M Jse M Jse M Jse M Jse M	<pre>d By plier ion ultiplie l 1: FI RetTime [min] 3.918 4.204 7.474</pre>	er & D1 B, Type BB BB BB	3 	4 rea Percen Signal 1.0000 1.0000 Factor wit mal Area [pA*s] 2.89816 617.60034 1.87148	5 t Report Height [pA] 	Area % 0.36895 78.62399 0.23825			9		10	
6 9.493 BB 0.0173 14.14788 12.44869 1.80110 7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820B 4/21/2015 1:26:55 PM Josteir	Sorte Multij Dilut Jse M Signa Peak 1 # 1 1 2 3 4	<pre>d By plier ion ultiplie l 1: FI RetTime [min] 3.918 4.204 7.474 8.964</pre>	er & : D1 B, Type BB BB BB BB	3 A A A A A A A A A A A A A	4 rea Percen Signal 1.0000 1.0000 Factor wit mal Area [pA*s] 2.89816 617.60034 1.87148 4.24097	<pre></pre>	Area % 0.36895 0.23825 0.23890			9		10	
7 9.812 BB 0.0161 118.37987 114.40845 15.07042 8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814 ent 7820B 4/21/2015 1:26:55 PM Josteir	Sorte Multij Dilut Use M Signa Peak 1 # 1 2 3 4 5	<pre>d By plier ion ultiplie l 1: FI RetTime [min] 3.918 4.204 7.474 8.964 9.017</pre>	er & D1 B, Type BB BB BB BB BB	3 A A A A A A A A A A A A A	4 irea Percen Signal 1.0000 1.0000 Factor wit mal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217	h ISTDs Height [pA] 	Area % 0.36895 0.23825 0.53990 0.17468			9		10	
8 10.091 BV 0.0167 7.14616 6.56510 0.90975 9 10.144 VB 0.0197 6.66224 5.22090 0.84814	Sorte Multij Dilut Use M Jse M M Jse M Jse M Jse M Jse M Jse M Jse M Jse M Jse	<pre>d By plier ion ultiplie l 1: FI RetTime [min] 3.918 4.204 7.474 8.964 9.017 9.493</pre>	er & D1 B, Type BB BB BB BB BB BB BB BB	3 A A A A A A A A A A A A A	4 irea Percen Signal 1.0000 1.0000 Factor wit: mal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217 14.14788	Height [PA] 	Area % 0.36895 78.62399 0.23825 0.53990 0.17468 1.80110			9		10	
9 10.144 VB 0.0197 6.66224 5.22090 0.84814	====== Sorte, Multij Dilut: Jse M Jse M Signa. Peak I # 1 2 3 4 5 6 7	d By plier ion ultiplie [min] 3.918 4.204 7.474 8.964 9.017 9.493 9.812	er & D1 B, Type BB BB BB BB BB BB BB BB BB BB BB BB	3 A A A A A A A A A A A A A	4 rea Percen Signal 1.0000 1.0000 Factor wit gnal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217 14.14788 118.37987	Height [PA] 3.64637 756.91400 2.00751 4.20964 1.21388 12.44869 114.40845	Area % 1		<u>8</u>	- <u> </u>		10	
ent 78202 4/21/2015 1:26:55 PM Josteir Page 1 of 2	====== Sorte, Multip Dilut: Jse M Signal Signal Peak D # 	<pre>d By plier ion ultiplid l 1: FII RetTime [min] 3.918 4.204 7.474 8.964 9.017 9.493 9.812 10.091</pre>	er & D1 B, Type BB BB BB BB BB BB BB BB BB BB BB BB BB	3 A A A A A A A A A A A A A	4 srea Percen Signal 1.0000 1.0000 Factor wit gnal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217 14.14788 118.37987 7.14616	Height [PA] 3.64637 756.91400 2.00751 4.20964 1.21388 12.44869 114.40845 6.56510	Area % 0.36895 78.62399 0.23825 0.53990 0.17468 1.80110 15.07042 0.90975			- <u> </u>		10	
ent 78202 4/21/2015 1:26:55 PM Josteir Page 1 of 2	====== Sorte Dilut: Dilut: Jse M Signal Peak I # 1 2 3 4 5 6 7 8 9	d By plier ion ultiplid RetTime [min] 3.918 4.204 7.474 8.964 9.017 9.812 10.091 10.144	er & D1 B, Type BB BB BB BB BB BB BB BB BB BB BB BB BB	3 A A A A A A A A A A A A A	4 rea Percen Signal 1.0000 1.0000 Factor wit (nal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217 14.14788 118.37987 7.14616 6.66224	Height [PA] 3.64637 756.91400 2.00751 4.20964 1.21388 12.44869 114.40845 6.56510 5.22090	Area % 0.36895 78.62399 0.23825 0.53990 0.17468 1.80110 15.07042 0.90975 0.84814			<u> </u>		10	· ·
	====== Sorte Multi Dilut Use M Signal Signal Peak 1 2 3 4 5 6 7 8 9	d By plier ion ultiplie [min] 3.918 4.204 7.474 8.964 9.017 9.493 9.812 10.091 10.144	er & D1 B, Type BB BB BB BB BB BB BB BB BB BB BB BB BB	3 A A A A A A A A A A A A A	4 rea Percen Signal 1.0000 1.0000 Factor wit mal Area [pA*s] 2.89816 617.60034 1.87148 4.24097 1.37217 14.14788 118.37987 7.14616 6.66224	Height [PA] 3.64637 756.91400 2.00751 4.20964 1.21388 12.44869 114.40845 6.56510 5.22090	Area % 0.36895 78.62399 0.23825 0.53990 0.17468 1.80110 15.07042 0.90975 0.84814			<u> </u>		10	· ·

```
Appendix 22
```

```
Acq. Operator : Jostein
                                              Seq. Line : 1
 Acq. Instrument : Agilent 7820A
                                               Location : Vial 201
 Injection Date : 2/25/2015 10:04:46 PM
                                                   Inj : 1
                                             Inj Volume : Manually
               : C:\CHEM32\1\DATA\PHENIAS 2015-02-25 22-03-59\PHENIAS-MANUAL.M
 Acq. Method
 Last changed : 2/17/2015 1:24:30 PM by Jostein
 Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M
              : 2/26/2015 3:26:37 PM by Jostein
 Last changed
        FID1 B, Back Signal (PHENIAS 2015-02-25 22-03-59\201B0101.D)
     pA -
    800 -
     600
    400
                                                                               -9.813
     200
                                           5.937
                                                                          9.331
                                                  6.515
6.715
6.883
                           88
                                                          476
                                                                     8:733
           -2.021
      0
                                                                                 10
 _____
                        Area Percent Report
 _____
                         Signal
1.0000
 Sorted By
                    :
 Multiplier
                    :
 Dilution
                     .
                            1.0000
 Use Multiplier & Dilution Factor with ISTDs
 Signal 1: FID1 B, Back Signal
  Peak RetTime Type Width Area Height
# [min] [min] [pA*s] [pA]
 Peak RetTime Type Width
                                               Area
                                                - 8
 ----|-----|----|-----|-----|-----|
   1
      0.852 BBAS 7.28e-3 1815.38196 4336.31934 63.12681
    2 2.021 BB 0.0121 1.15358 1.51217 0.04011
    3
      3.908 BB 0.0133
                          3.33325
                                     4.20108 0.11591

        4.197 BB
        0.0126
        724.69727
        896.66766
        25.20011

        5.750 BB
        0.0274
        2.77699
        1.60061
        0.09657

    4
    5
                 0.0414 16.69599
                                    6.62520 0.58057
       5.937 BB
    6
      6.515 BB 0.0323 3.63522 1.45684 0.12641
    7
      6.715 BB 0.0160 3.07195 2.98474 0.10682
    8
       6.883 BB
    9
                  0.0162
                           2.13552
                                      2.03512 0.07426
.lent 7820A 4/21/2015 12:26:18 PM Jostein
                                                                          Page 1 of 2
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
10	7.476	BB	0.0148	2.03349	2.20676	0.07071
11	8.723	BB	0.0195	2.06343	1.55338	0.07175
12	8.781	BB	0.0144	2.08642	2.16597	0.07255
13	9.018	BB	0.0154	2.90697	2.98700	0.10108
14	9.108	BB	0.0154	19.05077	19.47408	0.66246
15	9.166	BB	0.0190	2.05297	1.69211	0.07139
16	9.331	BB	0.0177	2.24365	1.80336	0.07802
17	9.433	BB	0.0157	5.73573	5.70206	0.19945
18	9.498	BB	0.0239	10.43080	6.97172	0.36271
19	9.813	BB	0.0152	217.84288	211.26018	7.57511
20	10.144	BB	0.0217	9.99339	6.59562	0.34750
21	10.313	BB	0.0188	1.55826	1.29829	0.05419
22	10.451	BB	0.0320	5.87665	2.76904	0.20435
23	10.894	BB	0.0323	13.10189	6.09707	0.45560
24	10.989	BB	0.0248	1.70383	1.12901	0.05925
25	11.766	BB	0.0341	4.20736	1.93731	0.14630

Totals :

2875.77022 5529.04569

Appendix 27

Appendix 27

JHዋታተለትኇች # Έፄ፣ ዋሪቭ፣ ሐፄዓብ ውዐታው 500:00 NL: 2.11E9 T:

Appendix 30

Appendix 45

JHPH-1-83 #1-5 RT: 0.02-0.13 AV: 5 NL: 1.52E8 T: FTMS + p ESI Full ms [200.00-800.00]

Appendix 51

137

Appendix 55

Appendix 62

Appendix 68

