Vertical Diversity-Oriented Synthesis with Dibenzylideneacetones

Multivariate Optimization and Diversity Exploration

Phenias Buhire

KJE-3900 Masters thesis in Organic Chemistry, May 2015

AKNOWLEDGEMENTS

First of all I thank God for creating and keeping us alive up this moment.
Secondly, I would like to thank my supervisor Assoc. Prof. Jørn H.Hansen for motivating me. He was always available for me and offered guidance and advice. His constructive advice helped me to complete the presented work. I am grateful to work under your supervision.

I would like to thank my co-supervisor Prof Tore Lejon for his guidance, help and encouragement during the lab work. The first part of the project was very challenging and it could not be completed without his guidance.

I would like also to thank Dr Taye Beyene Demissie for providing me DFT data and Dr Johan Isaksson for helping me with 2D-NMR spectra.

Many thanks goes to engineers Jostein Johansen, Truls Ingebrigtsen and Arnfinn Kvarsnes for giving me help with HRMS, GC-MS and IR.

I also wish to thank Dr. Muhammad Zeeshan for his advice and guidance both in chemistry and social life.

I am also grateful to Yngve Guttormsen for his friendship and help with diverse thing.
Another thank goes to my office co-worker, lab-fellow, Aya Ismael for her moral support.
Lastly, I thank my family Ernest, Marceline, and my younger sister Denise for their moral social support.

Abstract

DOS was planned from dibenzylideneacetone to generate compound library with structural diversity, which can undergo further transformations. In the presented work, dibenzylideneacetone was cyclized under Robinson Annulation reaction. The resulting cyclization product was optimized using Multivariate response surface method. Response surface analysis helped to determine both significant variables used during the optimization process and to generate a model describing the variation of response according to the experimental variables.

The Robinson Annulation product was studied in a range of transformations, for instance Hydrogenation, Krapcho decarboxylation, inverse electron demand Diels-Alder, Luche reduction and Alkylation reaction. All the attempted reactions were found successful, except reduction and cycloaddition reactions. Further work on unsuccessful reactions could not be carried out due to time constraints. Various new compounds were synthesized during this work.

Dibenzylideneacetone can play various functions in synthetic chemistry as precursor to other compounds. It is used to make ligands, for instance dibenzylideneacetonedipalladium (0) which is utilized as a homogeneous catalyst in organic synthesis. Dibenzylideneacetone can be used to synthesize heterocyclic organic compounds. There is no available research conducted to explore its benefits to synthesize compound libraries.

LIST OF ABBREVIATIONS

${ }^{1}$ H-NMR	Proton nuclear magnetic resonance
${ }^{13}$ C-NMR	Carbon nuclear magnetic resonance
GC	Gas chromatography
MS	Mass spectrometry
HRMS	High-Resolution Mass Spectrometry
IR	Infrared (spectroscopy)
TLC	Thin layer chromatograph
δ	Delta, used in NMR data report to signify chemical shift.
EI	Electron ionization
ppm	Part per million
cm ${ }^{-1}$	Reciprocal centimeters
DOS	Diversity-Oriented -Synthesis
TOS	Targeted - Oriented Synthesis
EWG	Electron-Withdrawing Group
EDG	Electron- Donating Group
HOMO	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
IEDDA	Inverse Electrons Demand Diels-Alder
TBE	Tricyclic Bis-Enones
EtOAc	Ethyl acetate
DBU	1,8 -Diazabicyclo[5.4.0] undec-7-ene
DMF	N,N dimethylformamide
DMSO	Dimethylsulfoxide

TABLE OF CONTENTS

AKNOWLEDGEMENTS 3
ABSTRACT 5
LIST OF ABBREVIATIONS 7

1. INTRODUCTION 11
1.1. Diversity-oriented library synthesis (DOS) 11
1.1.1. Synthetic strategies for skeletal diversity 12
1.2. Robinson Annulation. 13
1.3 Inverse electron demand Diels-Alder reaction (IEDDA) 15
1.4 Krapcho reaction 16
1.5 Luche Reduction 17
1.6 Uses of bis-enone compounds 17
1.7 Response surface method and its principles 18
1.7.1. Variables, experimental domain and experimental screening 18
1.7.2 Experimental design 18
1.7.3 Taylor polynomial model 20
1.8 Purpose of thesis 21
2. RESULTS AND DISCUSSION 22
2.1 Synthesis of dibenzylideneacetone 22
2.2 Synthesis of compound 8 23
2.3. Multivariate response surface model of compound 8 24
2.3.1. Variables and experimental domain 25
2.3.2. Experimental design 26
2.3.3 Results presentation and discussion 27
2.3.4 Screening and response surface analysis 31
2.4 Hydrogenation of compound 8 33
2.5Decarboxylation of compound 8 33
2.6 Inverse electrons demand Diel-Alder reaction 34
2.7 Luche reduction reaction 35
2.8 Alkylation of compound 8 36
2.8.1 Alkylation with allyl bromide 37
2.8.2 Alkylation with propargyl bromide 38
2.8.3 Alkylation with benzyl bromine 38
2.8.4 Alkylation with 1-bromo 4-phenyl butane 39
2.7.5 Alkylation with 2-bromoacetophenone 39
2.8.5 Alkylation with methyl acrylate 40
2.9 Relative Stereochemistry of compound 8,15 and 17. 43
3. FUTURE DIRECTIONS 47
4 .CONCLUSION 48
4. EXPERIMENTAL SECTION 49
REFERENCES 67
APPENDICES 73

1. INTRODUCTION

1.1. Diversity-oriented library synthesis (DOS)

There has been a significant revolution in library construction and synthetic methods development of new drugs in the last decades ${ }^{1}$. Target-oriented synthesis (TOS) focuses on transformation of one region to produce a specific molecule. The TOS method has been used since in many year to build compound libraries, but it was recently considered as a relatively weak strategy for library design. ${ }^{1-2}$ Diversity-oriented library synthesis (DOS), which aims to produce chemical libraries that are representative of compounds that have large structural diversity, was introduced to complement TOS. Stereochemical, skeletal, appendage and functional groups diversity describe the structural diversity of a molecule. ${ }^{2-5}$. Example of DOS is given in scheme 1 where different reagents were used to transform one aliphatic compound to six distinct compounds with skeletal and stereochemical diversity.

Scheme 1: A ring- distortion strategy to construct stereochemically complex and structurally diverse compounds from natural product. ${ }^{6}$

1.1.1. Synthetic strategies for skeletal diversity.

There are two kind of strategies, a reagent-based strategy (RBS) and a substrate-based strategy (SBT) that are used to generate skeletal molecular diversity.

In RBS, different reagents are used to transform one molecule into many compounds with skeletal diversity. ${ }^{2,4,7}$ Example of a RBS is given in scheme 2 where some functional groups (alkyne, nitro and ester) of compound $\mathbf{1 7}$ were paired with various reagents to generate compounds with different skeletons.

Scheme 2: Different pairing reactions of the densely functionalized compound 17 gave access to distinct molecular scaffolds 18-20. ${ }^{8}$

Whereas, SBT involves the use of the same reagents to transform different compounds containing pre-encoded information into distinct products. ${ }^{2}$ Example of a SBT to generate molecular diversity is shown in Fig 1 where three different compounds are transformed to various compounds with the same reagent.

Fig 1: Substrate- based strategy. ${ }^{2}$

1.2. Robinson Annulation

The Robinson Annulation reaction is useful in synthesis of cyclic organic compounds. This reaction is a combination of Michael addition and intramolecular Aldol condensation reaction. ${ }^{9}$

The reaction involving a base catalyzed addition of a nucleophile (Michael donor) to activated π-system (Michael acceptor), refers to the Michael addition reaction. The π-system is activated when it is attached to an electron withdrawing group or negative charge stabilizing group. Nucleophile can be generated with deprotonation of CH -activated compounds like β dicarbonyl, ketones, aldehyde and nitrile compounds. Michael reaction which involves direct attack of a nucleophile to β-carbon of α, β unsaturated carbonyl compounds is called conjugate addition or 1,4 -addtion. ${ }^{10,9}$ An example of Michael addition reaction and mechanism is shown in scheme 3 and 4.

Nucleophile \mathbf{b} attacks directly β-carbon of unsaturated compound a to produce compound \mathbf{c}. Base can deprotonate hydrogen of nucleophile before or after nucleophile attack. Mechanism of this reaction is shown in scheme 4.

Scheme 3: Michael reaction scheme.

Mechanism of 1,4 conjugate addition Michael reaction is shown in steps a and \mathbf{b} in scheme 4 After nucleophile attack to β-carbon of unsaturated ketone a, electrons are delocalized in conjugated system \mathbf{b} followed with protonation of α-carbon of unsaturated ketone.

Scheme 4: Conjugate addition mechanism.
Tremendous progress has been made in fields of stereoselective and catalytic Michael reactions. Asymmetric organocatalytic Michael reaction has been used in targeted and diversity oriented synthesis to generate optical active natural products. ${ }^{11-12}$ Oxa-Michael reaction that involves the addition of an oxygen of a nucleophile to activated π-system compounds has been used to produce stereoselective compounds. ${ }^{13-14}$ Aza-Michael reaction (conjugate addition of amines to α, β unsaturated compounds) has been used to synthesize stereoselecive cyclic or acyclic nitrogen chiral compounds ${ }^{15}$ and optical active chiral amines compounds. ${ }^{16-17}$ Sulfa-Michael reaction has been used to synthesize compouds with highly enantioselective organocatalylic sulfa compounds. ${ }^{18}$ Phospha-Michael reaction has been used to synthesize a recylable catalysis ${ }^{19}$ and a magnetic recylable heterogeneous organic base. ${ }^{20}$

Aldol reaction

The reaction allows molecular diversification by the reaction of enols or enolates with carbonyl compounds (ketones and aldehydes), refers as Aldol reaction. The resulting β hydroxy carbonyl product undergo acidic or basic hydrolysis to give α, β unsaturated enones. ${ }^{21-22}$ Example of Aldol condensation reaction is shown in scheme 5.

Base deprotonates the hydrogen of α-carbon of ketone compound a to generate enolate of compound a. The reaction between compound a and its enolate forms β-hydroxy ketone which undergo dehydration to give α, β unsaturated ketone (b).

Scheme 5. Aldol reaction

1.3 Inverse electron demand Diels-Alder reaction (IEDDA).

IEDDA [4+2] cycloaddition reaction is a useful reaction to synthesize six membered ring compounds.

The reaction involving an electron-poor diene (4π electrons) and an electron-rich dienophile group (2π electrons) refers to [4+2] cycloaddition IEDDA reaction. Dien is a conjugated double while a dienophile can be a double or a triple bond. Substituted diene with electronwithdrawing group and a dienophile with an electron-donating group have been seen to improve the reaction rate. The local symmetry of molecular orbitals involved in reaction can be used to explain the stereospecificity of the reaction. Molecular orbitals involving in reaction are HOMO of a dienophile and LUMO of a diene. ${ }^{23-28}$

Example of IEDDA reaction is shown in scheme 7 and orbital overlap (Fig 2).
Electrons flow from dienophile to dien in scheme 7. Electron withdrawing group (EWG) and electron donating group (EDG) activates compounds containing them.

Scheme 6. Inverse electrons demand Diels-Alder.
Molecular orbital overlap between HOMO of an electron rich dienophile and LUMO of an electron poor dien is shown in Fig 2

Fig 2: Molecular orbital overlap in IEDDA

1.4 Krapcho reaction.

The reaction is a useful to remove an ester group from organic compounds.
The alkali salt promoted loss of alkoxylcarbonyl group from esters by heating in a polar aprotic solvent refers to Krapcho decarboxylation reaction. ${ }^{29-31}$

Example of Krapcho reaction and mechanism is shown in scheme 7 and $\mathbf{8}$ Chlorine ion (Cl^{-}) takes away methyl of ester of compound a and promotes the cleavage of ester group to generate compound b, see scheme 7 The removal of ester methyl group and its cleavage occurs simultaneously, see mechanism in scheme 8.

Scheme 7: Reaction equation

Scheme 8: Proposed salt-assisted Krapcho decarboxylation mechanism

1.5 Luche Reduction

The reaction is usefully in reduction of ketones of α, β unsaturated ketones compounds.
The reaction that involves a combination of lanthanide and sodium borohydride to reduce α, β unsaturated compounds to the corresponding alcohols, refers to Luche reduction.

Lanthanide catalyzes the formation of alkoxyborohydride and its coordination to oxygen of a solvent makes proton of alcohol to be more acidic which makes it easy to be abstracted by oxygen atom of the carbonyl group. ${ }^{32-33}$. Example of Luche reduction reaction is shown in scheme 9.

Cerium (Ce^{3+}) coordinates to oxygen of methanol and facilitates the formation of methoxyborohydride. Coordination of Ce^{3+} to oxygen of carbonyl compound a, which makes carbon of carbonyl group electron deficient, which is then attacked by methoxyborohydride to generate compound \mathbf{b}, see scheme 9 .

Scheme 9: Reaction equation

1.6 Uses of bis-enone compounds

Enones play various important roles in synthetic organic chemistry, some used, as basis compounds to make other compounds and others are medicines used to treat diverse diseases.

Tricyclic bis-enones (TBE-31) derivatives are types of enones, which have been used in medicine to treat different diseases such as cancer, inflammation, neurological disorders, and pathologies involving oxidative stress and to stimulate bones and cartilage growth. ${ }^{34-37}$

2

TBE-31 and its derivatives

1.7 Response surface method and its principles

The yield obtained after running experiment is influenced with a number of experimental variables (eg. Concentration of reagent, temperature, pH). The problem is to know how experimental variables contribute to observed results and how to adjust them in order to improve the yield. By means of response surface modelling, it is possible to determine the response surface model describing the variation of yield according to experimental variables and their settings. With response surface analysis it is possible to see how the yield varies according to variation of experimental variables, which helps to find out the optimum conditions. ${ }^{38-42}$

1.7.1. Variables, experimental domain and experimental screening.

The term variable refers to experimental factors like, rate of adding reagents, reaction temperature, pH of the reaction, solvents, concentration of reactants and stirring rate. Variable, which can be changed to any value over its range of variation, refers to a quantitative variable. During a synthetic process, experimenter can decide the minimum and maximum value for all experimental variables that are used. Experimental domain refers to fixed experimental space between minimum and maximum value of the variation of the experimental variables. ${ }^{42}$

Experimental variables influence the obtained yield in a different way and some may not have a significant influence on response, the problem is to predict which variables are more important. Experimental screening aims to identify significant experimental variables. In screening it is possible to find out both individual and interaction effect of variables on the yield. The experimental screening results help to know which variables should be controlled. ${ }^{42-44}$

1.7.2 Experimental design

By means of two-level factorial design, each experimental variable can take two values, one at low level and another at high level. A full factorial design is a type of two-level factorial design, which shows all possible combinations of levels of experimental variables. A full factorial design representing a number of variable \mathbf{m} studied at two level a number of possible experiment to run is represented with $\mathbf{2}^{\mathbf{m}}{ }^{42,41}$

Example of experimental design: Bromination of an enamine.

Scheme 10: Bromination reaction. ${ }^{42}$
First step is to determine variables and experimental domain before designing an experiment.
Table1 shows variables ($\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3}) and their experimental domain where each variable has low level (-) and high level (+).

Table 1: Variables and experimental domain.

| Variables | experimental domain
 $(-)$ low level | $(+)$ high level |
| :--- | :--- | :--- |$|$| | 0.25 | 5 |
| :--- | :--- | :--- |
| $x_{1}:$ bromine concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ | 2 | 10 |
| $x_{2}:$ bromination time (min) | 5 | 0.50 |
| $x_{3}:$ hydrolysis time (min) | | |

Experimental design full factorial design.

For a full factorial design, a number of possible runs is z^{m} where \mathbf{z} represents levels of each variable and \mathbf{m} is a number of all variables involved in reaction. In case of bromination of enamine possible runs is $\mathbf{2}^{\mathbf{3}}$. All possible combination of settings of experimental variables is shown in table 2.

Table 2: Full factorial design 2^{3}

Exp no	x_{1}	x_{2}	х3	
1	-	-	-	
2	+	-	-	
3		-	+	-
4	+	+	-	
5	-	-	+	
6	-	-	+	
7	-	+	+	
8	+	+	+	

1.7.3 Taylor polynomial model

The model can be used to evaluate the influence of each experimental variable on the response and assess the significance of each term in the model.

The model describes the variation of response (y) in experimental domain according to settings of experimental variables (x_{1}, x_{2}, \ldots etc). Taylor polynomial model is written as:
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}+\beta_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\ldots \beta_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}+\ldots+\beta_{11} \mathrm{x}^{2}{ }_{1}+\ldots \beta_{\mathrm{kk}} \mathrm{x}_{\mathrm{k}}+\mathrm{e}$
Polynomial model coefficients ($\beta_{0}, \beta_{1,}, \beta_{2}, \ldots, \beta_{\mathrm{ij}} \ldots$, etc) are called model parameters which can be estimated with multiple linear regression method.

Estimation of the response when all variables are set zero is represented with β_{0}, linear coefficients $\beta_{1, \ldots} \ldots \beta_{\mathrm{k}}$ are measures of the linear dependence of the corresponding variables and cross- coefficients (β_{ij}) measure interactive effect between between concerning variables. ${ }^{42-47}$

1.8 Purpose of thesis

The present project had following purposes

- To explore compound $\mathbf{8}$ in a range of standard transformations to achieve vertical diversity for future library design.
- To use multivariate response surface method to determine optimal experimental conditions for compound $\mathbf{8}$ in the project scheme 12.
Scheme 11: shows different reactions, which could checked whether, are possible for compound 8. Hydrogenation, krapcho, Inverse electron demand Diels-Alder (IEDDA), alkylation and Luche reduction reaction are expected reaction which compound $\mathbf{8}$ could be undergo.

Scheme 11: Summary of the project reactions

2. RESULTS AND DISCUSSION

2.1 Synthesis of dibenzylideneacetone

This section describes synthetic results of dibenzylideneacetone, which was the basic material in next step (synthesis of compound $\mathbf{8}$).

Compound 6 was synthetized according to the general procedure described in literature. Compound was collected as yellow crystals in 74% yield. Spectroscopic data were recorded and found similar to one reported in literature. The reaction between benzaldehyde and acetone was catalyzed by sodium hydroxide to form dibenzylideneacetone, see scheme 12.

Scheme 12: Synthesis of dibenzylidene acetone.
Mechanism is shown in scheme 13 in step a-d. Hydroxide deprotonates acetone to generate enolate (a), enolate formed attacks benzaldehyde (b) to generate ion which is protonated in step \mathbf{c} to form β-hydroxy ketone. In step d, β-hydroxyketone undergoes Aldol condensation reaction to generate α, β unsaturated ketone.

Scheme 13: Suggested mechanism of compound 6. ${ }^{48,49}$

2.2 Synthesis of compound 8

This section describes synthetic results of compound $\mathbf{8}$, which was the main product of this work. Compound $\mathbf{8}$ was studied in a range of standard transformations.

The synthesis was done according to experimental procedures described in literature. ${ }^{50,} 51$ Precipitate was observed at the end of the reaction. The amount of the compound isolated depends on the amount of water added to induce crystallization and the time given for crystallization process. The final compound after crystallization was collected as yellow crystals. Spectroscopic data was recorded, which showed the presence of the compound $\mathbf{8}$ in 70\% yield.

The reaction between dibenzylideneacetone, compound $\mathbf{6}$ and ethyl acetoacetate under basic condition in ethanol formed compound 8 , see scheme 14.

Scheme 14: Synthesis of compound 8.
Mechanism of compound $\mathbf{8}$ is shown in scheme 15 in step a - g. Base deprotonates compound 7 to form enolate in step \mathbf{a}, formed enolate attacks directly β-carbon of unsaturated ketone $\mathbf{6}$ in step \mathbf{b} to generate an ion which is protonated in step \mathbf{c} to produce Robinson product. Robinson compound undergoes intramolecular Aldol cyclization reaction to form β hydroxyl ketone followed with its condensation in step $\mathbf{d}-\mathbf{g}$ to generate final Robinson cyclization product.

Scheme 15: Suggested mechanism of compound 8. ${ }^{52}$

2.3. Multivariate response surface model of compound 8

This section presents discussion and presentation of variable choice and experimental domain, experimental design, results, experimental screening and response surface analysis of compound 8 (scheme 14) under optimization process.

2.3.1. Variables and experimental domain

Determination of variable and experimental domain is usefully in experimental design.
Variables used in synthesis of compound $\mathbf{8}$ are concentration of dibenzylideneacetone (DA) and ethyl acetoacetate (EAA) (mmol), reaction temperature and amount of base (mmol). Variables are represented with x_{1}, x_{2} and x_{3} following their above written order. DA and EAA were combined in one variable x_{1} which is the ratio of their millmoles. The combination of EAA and DA in one variable was done in order to reduce number of variables and experiments. The choice of three variables (x_{1}, x_{2} and x_{3}) instead of four variables helped to run eight experiments instead of 16 experiments. After choosing variables, the followed step was to decide their experimental domain. Each variable was taken at its low level (-) and high level (+). Variables and experimental domain are shown in table 3.

Table 3: Experimental settings

Variables	Experimental domain	
	(-) level	(+) high level
X_{1} : amount of DA/EAA ($\mathrm{mmol} / \mathrm{mmol}$)	0.83	1
X_{2} : Reaction temperature (${ }^{\circ} \mathrm{C}$)	68	78
X_{3} : Amount of sodium hydroxide (mmol)	1.80	4.25
Amount of variable at low and high level, and $\mathrm{NaOH}(0.072 \mathrm{~g}, 0.17 \mathrm{~g})$.	$\mathrm{DA}(0.3 \mathrm{~g},$	$4 \mathrm{~g}), \text { EAA }(0.2 \mathrm{~g}$

2.3.2. Experimental design

During experiments, three variables were used and each variable has two values, one at low level and another at high level, a two-level full factorial design 2^{3} was a suitable experimental design. A full factorial design 2^{3} shows all 8 possible combination of settings of the experimental variables. Verification of each variable effect on the response was the basic factor to decide experimental design order. In two consecutive experiments, two variables were kept constant in order to check the contribution of the third variable. Experiments one and two, were chosen as first experiments to run in order to check whether experimental domain chosen could be explored or not. Experiments 3 and 4 were carried out to check the contribution of the variable $\boldsymbol{x}_{1}, 5$ and 6 were run in order to verify the effect of variable \boldsymbol{x}_{3} on response and the influence of the variable \boldsymbol{x}_{3} on the response was checked in experiments 7 and 8 . A number of possible experiment in 2^{3} is shown in table 4.

Table 4: Full factorial design 2^{3}

| Exp no | | variables | |
| :--- | :--- | :--- | :--- | :--- |
| | x_{1} | x_{2} | x_{3} |
| 1 | - | - | - |
| 2 | + | + | + |
| 3 | + | + | - |
| 4 | - | + | - |
| 5 | + | - | - |
| 6 | + | - | + |
| 7 | - | + | + |
| 8 | - | - | + |

2.3.3 Results presentation and discussion

This section presents data recorded with gas chromatography after injection of different amount of product dissolved in 1 mL of internal standard $(0.00295 \mathrm{M})$, calibration curve and results obtained after optimization.

Different amount of compound 8 (see experimental section page 54, table 10) was dissolved in 1 mL of internal standard (phenyl cyclohexane) in order to produce a calibration curve that was used to measure yield. Data recorded with G.C are represented in table 5. A_{p} represents peak area of the product and $\mathrm{A}_{\text {is }}$ peak area of internal standard.

Table 5: Results given by gas chromatography after injection of one microliter of internal standard and product.

Standard $\mathrm{mmol} / \mathrm{mL}$	Internal std $(\mathrm{mmol}$ $\mathrm{mL})$	$\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\text {is }}$	$\mathrm{A}_{\text {is }}$	A_{p}	$\mathrm{A}_{\mathrm{p}} / \mathrm{A}_{\mathrm{is}}$
0.0042	0.00295	1.424	567.294	171.204	0.3018
0.0314	0.00295	10.644	573.784	855.422	1.4908
0.052	0.00295	17.627	569.732	1394.098	2.4469
0.0729	0.00295	24.712	565.630	1798.053	3.1788
0.0958	0.00295	32.474	558.107	2223.020	3.9831

Chromatograms can be found in appendix 9-13 (t_{R} : around 4.2 min for internal standard and 9.8 min for analyte).

Calibration curve produced from data in table 5 is shown in Fig 4.

Calibration curve obtained by one microliter injection

Fig 4: Calibration curve.
Since running several experiments for optimization process, results are presented in table 6 and 7. Data recorded from gas chromatograph after injection of samples (table 6), (C_{is}) presents concentration of internal standard injected and its peak area $\left(\mathrm{A}_{\mathrm{is}}\right)$, peak area of analyte $\left(A_{x}\right)$. The ratio of peak analyte and internal standard peak area $\left(A_{x} / A_{i s}\right)$, ratio of analyte concentration and internal standard ($\mathrm{Cx} / \mathrm{Cis}$), this ratio was calculated from calibration curve (an example of $\mathrm{Cx} / \mathrm{Cis}$ calculation can be seen in experimental section (page 55-56 and concentration of analyte in sample (C_{x} reaction). Concentration of analyte was calculated according to dilution of each sample during the preparation of gas chromatograph sample. An example for ($\mathrm{C}_{\mathrm{x} \text { (reaction) }}$) calculation can be seen in experimental section (page 55-56).

Results presented in table 6 are discussed in part of the table 7, which has detailed information about experiment settings, and yield.

Table 6: Data recorded with gas chromatograph.

$\begin{aligned} & \text { Exp } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {is }} \\ & (\mathrm{mmol} / \mathrm{mL}) \end{aligned}$	A_{x}	$\mathrm{A}_{\text {is }}$	$\mathrm{A}_{\mathrm{x}} / \mathrm{A}_{\text {is }}$	$\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\text {is }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{x}(\text { reaction })} \\ & (\mathrm{mmol} / \mathrm{mL}) \end{aligned}$	Appendix
1	0.00295	165.46	721.65	0.229	0.210	0.0078	14
2	0.00295	209.67	688.97	0.304	0.841	0.0896	15
3	0.00295	214.14	734. 18	0.292	0.737	0.0789	16
4	0.00295	190.08	705.73	0.269	0.545	0.0354	17
5	0.00295	210.16	746.22	0.282	0.654	0.0700	18
6	0.00295	182.79	705.76	0.259	0.461	0.0494	19
7	0.00295	165.74	684.6	0.242	0.319	0.0212	20
8	0.00295	118.38	617.6	0.192	0.1	<0.0015	21
9	0.00295	217.84	724.69	0.301	0.813	0.0871	22

Chromatograms can be found in appendix 14-22 (t_{R} : around 4.2 min for internal standard and 9.8 min for analyte).

The yield was first measured after crystallization of compound $\mathbf{8}$, but it was decided to measure the yield from reaction mixture with calibration curve in order to reduce errors that could be made during isolation of compound.

Methyl benzoate was the first internal standard tried, but it was a big difference between retention times between product and internal standard. Phenyl cyclohexane has boiling point, which is higher than methyl benzoate was used as internal standard. First results, the yield was over 100% for reactions run at high temperature.

The reaction mixture started to precipitate at the end of the reaction due to evaporation of solvent during the reaction, this was the main cause of the first results observed. This problem was solved by adding more solvent at the end of the reaction and a 50 mL volumetric flask was used to measure exact volume, this methodology worked for samples with DA at high concentration, sample at low concentration gave negative results and it was decided to change amount of the solvent for samples with DA at low concentration during the reaction and the preparation of gas chromatography samples.

DA at high concentration, reactions were run in ethanol $(30.00 \mathrm{~mL})$ the same amount used to make the calibration curve, 12.00 mL at low concentration and during the preparation of gas chromatograph samples, 50 mL volumetric flask was used for samples at high concentration and 25 mL at low concentration. The use of different amount of the solvent gave results presented in table 7

Results presented in table 7 show experiments (Exp) with variables at their low level (-) and high level (+). Results of experiment number one (EXP no 1) and number two show a big difference between variables at their low level (15%) and high level (86%). Variables at their high level (Exp no 2) gave the highest yield 86%, the combination gave the lowest yield (4\%) is in Exp number eight with variable x_{3} at high level and other variables at low level. Combination of x_{1} and x_{2} at high level and x_{3} at low level (Exp no 3) gave also good result. It is not possible to draw any direct conclusion about individual or interactive effects of variables on response results in table 7. The conclusion will be taken after experimental screening and response surface model analysis.

Table 7: Experimental settings and their yield

Exp no	X_{1}	X_{2}	X_{3}	$\mathrm{Y} \%$
1	-	-	-	15
2	+	+	+	86
3	-	+	-	76
4	+	-	-	69
5	+	-	+	67
6	-	+	+	48
7	-	-	+	40
8	1.5	1	1.5	84
9		+		

2.3.4 Screening and response surface analysis.

This section discusses data obtained after screening and response surface analysis of results presented in table 7.

After screening, response surface model describing the variation of response according to variables was determined. Evaluation the model coefficients helped to identify significant variables. Important variables are x_{1} and x_{2} with coefficients 19 and 17 and there is no big difference between their coefficients. Variable x_{3} with coefficient (-6) is less significant than other variables. Model coefficients are shown in table 8.
$\mathrm{y}=54+19 x_{1}+17 x_{2}-6 x_{3}$ (response surface model)
54.22 is estimated response when all variables are set to zero.

Table 8: model parameters.

Variables coefficients	
X_{1}	19
X_{2}	17
X_{3}	-6

Response surface analysis (Fig 5) showed clearly contribution of variables one response. Variables x_{1} and x_{2} have high influence on response, variable x_{3} has not big influence Fig 5 shows how response varies in surface according to variation of x_{1} and x_{2} when x_{3} is constant. The variation of response is proportional to variation of variables (x_{1} and x_{2}).

Response is around 20% in domain around (-) and it increases as domain varies up to around $(+)$. Optimum conditions is located in domain (around +1) with yield around 80%).

Fig 5: Response contour plot shows variation of yield when x_{3} is constant

2.4 Hydrogenation of compound 8

This part describes the synthetic result of compound 9 in scheme 17. The synthesis followed experimental procedure described in literature ${ }^{53,54}$., minor modifications were done. TLC showed two diastereoisomers and the column was run several times to separate them but separation was not successful. Spectroscopic data were recorded and confirmed that hydrogenation of compound $\mathbf{8}$ gave an enol compound 9 . ${ }^{1} \mathrm{HNMR}$ of the compound $\mathbf{9}$ showed a peak with chemical shift above $12 \mathrm{ppm},{ }^{13} \mathrm{C}$-NMR did not show a peak at ppm (185-220) for ketone.

Palladium on carbon used as a catalyst that provides the reaction surface, hydrogen bond (HH) is cleaved and each hydrogen is attached to palladium surface by palladium hydrogen bond. Compound $\mathbf{8}$ is also absorbed onto palladium surface. Thus, syn addition of hydrogens to compound $\mathbf{8}$ occurs to generate compound 9 . Synthetic reaction of compound $\mathbf{9}$ is shown in scheme 15.

Scheme 15: Synthesis of compound 9

2.5Decarboxylation of compound 8

This section describes the obtained result of compound 10 in scheme 18. The synthesis was performed according to experimental procedures described in literature ${ }^{55-60}$. Reaction was run in the same experimental conditions described in literature but it was not successful. Reaction was carried out by heating compound $\mathbf{8}$ in DMSO and water at $160^{\circ} \mathrm{C}$, and $200^{\circ} \mathrm{C}$ for 2 days and stopped without completion. Experimental conditions were changed, sodium chloride was added and $10: 1$ ratio of NaCl : compound $\mathbf{8}$ was used as reported in literature and the reaction mixture was heated $160^{\circ} \mathrm{C}$ but reaction was not found successful. Although reaction was successful when sodium chloride (1.2 eq), and compound $\mathbf{8}(1.0 \mathrm{eq})$ was used. Compound $\mathbf{1 0}$ was isolated and collected as colorless crystals (yield 10%). Spectroscopic data were recorded and confirmed compound 10. Synthesis of compound 9 is shown in scheme 16.

 at $160{ }^{\circ} \mathrm{C}$ yield 45%

Scheme 16: Synthesis of compound 10
Mechanism of compound $\mathbf{1 0}$ is shown in three steps (\mathbf{a}, \mathbf{b} and \mathbf{c}). The chlorine ion $\left(\mathrm{Cl}^{-}\right)$, takes away ester methylene of compound $\mathbf{8}$ in step a and promotes cleavage of ester group to generate enolate formed in step \mathbf{b}. In step \mathbf{c} enolate is protonated to form final decarboxylation product, as shown in scheme 17.

Scheme 17: Suggested mechanism for compound 10

2.6 Inverse electrons demand Diel-Alder reaction

This part describes results obtained during the attempt of inverse electrons demand DielsAlder reaction to produce compound 12, scheme 18. The synthesis followed experimental procedures described in literature ${ }^{27,61-64}$. The reaction mixture was refluxed in toluene for 3 days and heated at $130^{\circ} \mathrm{C}$ in dioxane. Information from crude ${ }^{1} \mathrm{HNMR}$ was not clear to confirm that the reaction was successful. HRMS showed a small peak 451.2268, which is the exact mass of compound 12 , but it was not enough proof to confirm the presence of compound $\mathbf{1 2}$ and it was decided to stop the work on this experiment.

Compound 8 and styrene was heated in toluene but reaction was not successful, scheme 18. Electrons were expected to flow from styrene HOMO to LUMO of compound $\mathbf{8}$, followed by cyclization in a single transition state to form a six membered ring.

Scheme 18: Synthesis of compound 12

2.7 Luche reduction reaction

This section describes results obtained during the reduction of compound $\mathbf{8}$ in scheme 19. Reaction was run according to experimental procedure described in in literature ${ }^{32}$. Information from crude ${ }^{1} \mathrm{H}$ NMR, Fig 4 was not clear to confirm the presence of compound 13 and it was difficult to draw any conclusion on the success of the reaction .It was decided to stop work on this stage.

Cerium (Ce^{3+}) coordinates to oxygen of carbonyl group and increases electophilicity of carbonyl carbon. Hydride (H^{-}) attacks activated carbonyl carbon to generate alcohol. Synthesis of compound 13 is shown in scheme 19.

Scheme 19: Synthesis of compound 13

Fig 4: Crude ${ }^{1} \mathrm{H}$-NMR spectra of compound 13

2.8 Alkylation of compound 8

This part presents results obtained by alkylating compound $\mathbf{8}$ with different selected R-group to generate compounds (15, 17, 19, 21, 23, and 25). Alkylating was performed according to scheme 20. Base deprotonates compound $\mathbf{8}$ to form enolate which substitutes bromine.

Scheme 20: Alkylation scheme.

Alkylation of compound $\mathbf{8}$ follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism and it is done in step a and \mathbf{b} (scheme 21). Base (B^{-}) deprotonates compound 8 in step a to form enolate. An $S_{N} 2$ reaction between enolate and alkyl bromide generates alkylated compound in step \mathbf{b}.

Scheme 21: Alkylation mechanism

2.8.1 Alkylation with allyl bromide

Compound $\mathbf{8}$ was converted to compound 15 according to scheme 22.

Scheme 22: Synthesis of compound 15
The reaction was run according to general experimental procedure described in literature ${ }^{65}$. Two bases were used to check their influence on reaction rate. With DBU, the reaction was ran at room temperature for 24 hours as it was reported in literature but was found unsuccessful. The reaction mixture was heated at $40{ }^{\circ} \mathrm{C}$ and TLC analysis showed the presence of product, the reaction temperature was raised to $62^{\circ} \mathrm{C}$, after 5 days the reaction did not finish. Potassium carbonate was also used to check if the reaction time could be improved, but no changes happened but the reaction was left to run until the full conversion of compound $\mathbf{8}$ was observed. The reaction finished after 10 days.

The reaction was also ran in CHCl_{3} to check whether the solvent could enhance the rate of the reaction but no difference was observed. The rate of the reaction might be slow due to steric effect of compound $\mathbf{8}$ and the bases used.

2.8.2 Alkylation with propargyl bromide

This part describes alkylation results of compound $\mathbf{8}$ in scheme 23.

Scheme 23: Synthesis of compound 17
Since low reaction rate observed in the alkylation with ally bromide, it was decided to use a strong and less bulky base in order to improve the reaction rate. Sodium hydride was used and the full conversion of compound $\mathbf{8}$ was observed after four days with TLC analysis. Spectroscopic data were recorded and confirmed compound 17.

2.8.3 Alkylation with benzyl bromine.

This section describes results obtained after alkylation of compound $\mathbf{8}$ with benzyl bromide. Alkylation was done according to scheme 26.

Scheme 24: Synthesis of compound 19
The synthesis followed experimental procedures reported in literature ${ }^{65}$, minor modifications were done. The reaction was first run with sodium hydride after 4 days TLC analysis, showed no reaction. ${ }^{1} \mathrm{H}$ NMR of benzyl bromide was run and showed that benzyl bromide has water which might disturb the reactivity of sodium hydride. The reaction was run with potassium carbonate, monitored with TLC and left to run for 10 days. Compound 19 was collected as yellow viscous liquid. Spectroscopic data were recorded and confirmed compound 19.

2.8.4 Alkylation with 1-bromo 4-phenyl butane

Compound 8 was converted to compound 21 according to scheme 25.

Scheme 25: Synthesis of compound 21
The amount of sodium hydride was doubled and the reaction was heated to check if the problem of the reaction rate encountered in previous alkylation reactions can be improved, but no difference was observed. Information from crude ${ }^{1} \mathrm{H}$ NMR and HRMS confirmed the presence of compound 21. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ shows extra peaks to compound $\mathbf{8}$ at ppm (7.347.11, $3.44-3.40,1.92-1.76$, and 1.3-1.27), these peaks may be evidence of compound 21. HRMS confirms clearly compound 21. The column was run to separate compound but separation was not successfully.

2.7.5 Alkylation with 2-bromoacetophenone

Compound 8 was alkylated according to scheme 26.

Scheme 26: Synthesis compound 23
The reaction was run with sodium hydride (1.1 eq) at room temperature and heated but no result found. The amount of base was doubled to check whether it could affect, but it did not help. Crude ${ }^{1} \mathrm{H}$ NMR, did not show compound 23. It only shows staring materials.

Fig 6: Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for compound 23

2.8.5 Alkylation with methyl acrylate

This section describes results after alkylation of compound $\mathbf{8}$ with methyl acrylate. Alkylation was done according to scheme 27.

Scheme 27: Synthesis of compound 25

The reaction was first run at room temperature, then heated at $55^{\circ} \mathrm{C}$, and stopped after 5 days without completion. Crude ${ }^{1} \mathrm{H}$ NMR and HRMS confirmed the presence of compound $\mathbf{2 5}$. Crude ${ }^{1} \mathrm{H}$-NMR is hard to interpret but it shows two single peaks at 3.65 and 3.60 ppm , for $\left(\mathrm{CH}_{3} \mathrm{O}^{-}\right)$, one peak may be for starting material (compound 24) another for compound 25. It also shows a peak at 2.57-2.44 ppm, which is most likely, result of alkylation. The column was run to separate compound 25 with starting materials but separation was not successfully.

Alkylation results obtained are summarized in table 9.
Alkylation catalyzed by DBU (compound 15) was purified at the first time because it was expected to run other reaction in order to observe full conversion of alkylated compound. Alkylation catalyzed by NaH (compound 19) was not purified due to result, which was not good and compound $\mathbf{2 3}$ and $\mathbf{2 5}$ separation was not successfully.

Table 9: Summary of alkylation results

Alkylation agents	Conditions base / solvent	Compound	Yield (\%)
$\square^{\text {Br }}$	DBU/ DMF	15	Not purified
	$\mathrm{K}_{2} \mathrm{CO}_{3} /$ aceton		44
	$\mathrm{NaH} / \mathrm{THF}$	17	54
	NaH/THF	19	Not purified
	$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{CHCl}_{3}$	19	42
	$\mathrm{NaH} / \mathrm{THF}$	21	Not successful
	$\mathrm{NaH} / \mathrm{THF}$	23	Not purified
	$\mathrm{NaH} / \mathrm{THF}$	25	Not purified

2.9 Relative Stereochemistry of compound $\mathbf{8 , 1 5}$ and 17

Many of the products obtained contain multiple stereocenters. Therefore, studies were conducted to determine the relative stereochemistry of these.

Stereochemistry of compound 8.

NMR data did not help us to determine the relative stereochemistry of compound $\mathbf{8}$ due to overlap between hydrogen 3 and 4. (see NMR in Appendix 55-60).

NMR data was supported with information from DFT calculations carried out by Dr Taye Demissie which confirms that the major diastereomer has anti at positions 3 and 4. After collecting and analyzing the above information the correct stereochemistry of compound $\mathbf{8}$ shown below was decided.

Rac
The more stable anti-diastereomer calculated by DFT is $4.21 \mathrm{kcal} / \mathrm{mol}$ is more stable than the syn- diastereomer. The most stable conformer of compound $\mathbf{8}$ predicted by DFT is shown in Fig 7.

Fig 7. Most stable conformer of anti- $\mathbf{8}$ predicted by DFT.

Stereochemistry of compound 15

Analysis of NMR spectra (gHMBC) and NOESY shows that hydrogen 3 and 10 are close to each other, (see NMR in Appendix 61-66).

DFT calculations done by Dr Taye showed that syn-diastereomer of compound $\mathbf{1 5}$ is $1.81 \mathrm{kcal} / \mathrm{mol}$ less stable than anti-diastereomer. The syn-diastereomer showed by NOESY is shown below.

The syn-conformer of compound $\mathbf{1 5}$ predicted by DFT is shown in Fig 8.

Fig 8: Syn-diasteomer predicted by DFT.

Stereochemistry of compound 17

Information from NMR spectra (gHMBC) confirmed that CH- 3 and 9 coupled, and NOESY showed hydrogen 3 and 9 are close to each other, (see NMR spectra in appendix 67-72). After collecting and analyzing the above information the relative stereochemistry of compound $\mathbf{1 7}$ shown below was decided, and is consistant with that of 15 .

Evidence for kinetic alkylation of compound 8

The phenyl group on position 3 directs the alkylation face of the intermediate enolate formed. Alkylation is more favored to the less hindered face, opposite to that of phenyl. Alkylation taking place on opposite side of phenyl on position 3 gives the kinetic product. DFT calculations done by Dr Taye showed that the thermodynamic product is the anti-diastereomer opposite to what the NOESY studies indicated. Experimental syn-anti-diastereomer showed by DFT are shown in Fig 9.

There are two possible transition states (TS1 and TS2) in the alkylation of compound 8 with allyl bromide. The transition state giving the kinetic product has lower energy than the other giving the thermodynamic product. The energy difference between the thermodynamic and kinetic products is $1.81 \mathrm{kcal} / \mathrm{mol}$ ($\mathbf{F i g} 9$ 9).

Fig 9: Thermodynamic and kinetic products

3. FUTURE DIRECTIONS

Compound $\mathbf{8}$ synthesized during this work has larger chemical space. Our chemical library can be extended by exploring its remaining structural diversity and its derivatives. Compound still has many functional groups (ester, ketone, conjugated system and aromatic system) that can be transformed to make heterocyclic compounds, other functional groups may be introduced that can undergo further functionalization. Alkene and alkyne compounds ($\mathbf{1 5}$ and 17) introduced in compound $\mathbf{8}$ can also be explored to generate other compounds particularly side chains.

An example of side chains compound $\mathbf{1 7}$ can undergo 1,3 dipolar cycloaddition between azides and alkyne to generate triazoles which are important compounds in medicinal chemistry ${ }^{66}$. (Scheme 28).

Scheme 28: Suggested triazoles formation ${ }^{66}$.

4 .CONCLUSION

The first part of the presented work was to develop and optimize the synthesis of compound $\mathbf{8}$, which was successful. The second part was to explore the reactivity diversity of compound $\mathbf{8}$ in order to build future chemical libraries for biological profiling around this versatile scaffold. During the study of compound $\mathbf{8}$ in a range of transformations, many reactions were done. Successful alkylation appears to only occur with less crowded and activated alkyl halides. Compounds shown in Fig $\boldsymbol{8}$ were synthesized successfully. The relative stereochemistry of alkylating product $\mathbf{8}, \mathbf{1 5}$ and $\mathbf{1 7}$ was determined by NMR and DFT calculations; also the kinetics of the reaction was determined for compound $\mathbf{1 5}$ by DFT calculation.

8

15

9

17

10

Fig 8: Compounds synthesized successfully during the presented work

5. EXPERIMENTAL SECTION

Reagents used were purchased from Sigma-Aldrich and others were previously synthesized in our laboratories.
${ }^{1} \mathrm{H}$ NMR (400 MHz and ${ }^{13} \mathrm{C}$ NMR (101 MHz), spectra were recorded on a Varian Mercury 400 plus spectrometer (400 MHz) using CDCl_{3} as solvent. Spectra were processed with MestReNova software. Chemicals shifts (δ) are reported in parts per millions (ppm) and multiplicities are given as a singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublet (dd), and multiplet (m). Infrared spectra were recorded on a Varian 700e FT-IR spectrometer and bands are reported in wavenumber $\left(\mathrm{cm}^{-1}\right)$. High-resolution MS was recorded on a Thermo electron LTQ Orbitrap XL +Electrospray ion source (ION-MAX). GC-MS analyses were conducted using a Thermo Scientific ITQ 1100 +Trace GC Utra. GC-FID analyses were conducted with an Agilent technology 7820A gas chromatograph instrument. The melting point was measured with Bǜchi 535 instrument.

All reactions were performed under inert conditions. Glassware and stir bars were dried oven at $110^{\circ} \mathrm{C}$ in 2 days and put under vacuum before their use. Reagents were transferred in reaction flasks under inert nitrogen or argon atmospheres. The progression of the reactions were monitored with TLC on 60 F254 silica gel plates and visualization of spots on TLC was carried out with UV, Potassium permanganate, molybdic acid and vanillin stains.

Synthesis of compound 6

In a 100 mL beaker with a stir bar, sodium hydroxide ($5.20 \mathrm{~g}, 0.13 \mathrm{~mol}, 4.3 \mathrm{eq}$) was dissolved in water (50 mL) and ethanol $(96 \%, 40 \mathrm{~mL})$ at room temperature. Benzaldehyde $(5.31 \mathrm{~g}, 0.05 \mathrm{~mol}, 1.7 \mathrm{eq})$ and acetone ($1.46 \mathrm{~g}, 0.03 \mathrm{~mol}, 1.0 \mathrm{eq}$) were dissolved in ethanol $(96 \%, 4.22 \mathrm{~mL})$. Half of the benzaldehyde-acetone mixture previously prepared was added drop-wise to the sodium hydroxide solution with stirring. The rest was added after six minutes and the reaction was stopped after ten minutes. The crude material was isolated as yellow crystals with a Büchner funnel and washed with $3 \times 100 \mathrm{~mL}$ of water.

The crude was purified by recrystallization. The crude material was transferred to a 250 mL beaker with a stir bar and 150 mL of 70% ethanol was added. Heating was done until boiling, then more solvent was added until all material was dissolved. The reaction mixture was cooled in an ice bath, and the resulting crystals were collected with a Büchner funnel to yield yellow, flaky crystals ($8.70 \mathrm{~g}, 74 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, 6 H), 7.09 ($\mathrm{d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$).

The data is consistent with literature ${ }^{67}$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.9,143.5,134.6,130.5,129.0,128.4,125.5$.
GC-MS: $t_{R}=9.44 \mathrm{~min}, \mathrm{M}^{+}=234$
IR (cm^{-1}): 3056, 3027, 1649, 1626, 1590, 1573, 1495, 1447, 1332, 1284, 1100, 1076, 1186.
Spectra can found in Appendix 1-4

Synthesis of compound 8

In a 100 mL round bottomed flask equipped with a reflux condenser and a stir bar, dibenzylidene acetone ($740 \mathrm{mg}, 3.15 \mathrm{mmol}, 1.75 \mathrm{eq}$), ethyl acetoacetate ($410 \mathrm{mg}, 3.15 \mathrm{mmol}$, 1.75 eq) and sodium hydroxide ($72 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 30 mL of 96% ethanol was refluxed for 4 hours at $78^{\circ} \mathrm{C}$. After reflux, small amount of water was added to reaction mixture, and allowed to cool for 2 days in refridgerator. The crude material was collected with a Bühner funnel, washed with water. The crude was purified by recrystallization. Reflux in ethanol 70% was done until all material was fully dissolved, then cooled in an ice bath, and crystals were collected with a Bühner funnel, yield $(0.77 \mathrm{~g}, 70 \%)$.

Melting point: $132-134{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{ABq}, 2 \mathrm{H}), 6.20$ $(\mathrm{s}, 1 \mathrm{H}), 4.05(\mathrm{q}, 2 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}$, $J=4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}$ 194.1, 169.2, 155.7, 140.9, 136.1, 135.5, 1239.5, 128.9, $128.8,127.5,127.4,126.8,60.9,60.2,43.9,33.4,13.9$.

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 347.1642, Found: 347.1640
IR (cm^{-1}) 3061, 3030, 2982, 2903, 1737, 1657, 1618, 1585, 1495, 1453, 1383, 1304, 1255, 1173, 1143, 1585, 1174, 1143.

Spectra be found in appendix 5-8

Multivariate Optimization of Robinson Annulation

During the optimization process, the yield was measured using GC based on a calibration curve determined in advance.

Calibration curve

The Robinson Annulation product made previously was used as product and a phenyl cyclohexane stock solution was used as internal standard to make a calibration curve.

Preparation of internal standard

Phenyl cyclohexane $\left(0.095 \mathrm{~g}, 5.9 \times 10^{-4} \mathrm{~mol}\right)$ was diluted in ethyl acetate $(9.00 \mathrm{~mL})$ to make a solution (0.059 M). 1.00 mL from the first solution was also diluted in ethyl acetate (9.00 mL) to make a solution $\left(5.90 \times 10^{-3} \mathrm{M}\right)$ and, finally, 1.00 mL from the second solution wasdiluted in ethyl acetate $(1.00 \mathrm{~mL})$ to make a solution $\left(2.95 \times 10^{-3} \mathrm{M}\right)$.

Preparation of product

Concentration of the product was calculated theoretically from dibenzylideneacetone (DA).
The first step was to calculate the concentration of DA in reaction mixture at the beginning of the reaction in order to determine the concentration of the product.

In reaction, ethanol $(90 \%, 30 \mathrm{~mL})$, DA $(0.74 \mathrm{~g}, 3.15 \mathrm{mmol})$, ethyl acetoacetate $(0.41 \mathrm{~g}, 3.15$ $\mathrm{mmol}, 0.40 \mathrm{~mL}$), was mixed with sodium hydroxide and heated for 4 h .

Total volume of reaction mixture $\left(\mathrm{V}_{\mathrm{t}}\right)$ equals to solvent $(30 \mathrm{~mL})$ and ethyl acetoacetate $(0.40$ mL).

$$
\mathrm{V}_{\mathrm{t}}(30+0.4) \mathrm{mL}=30.4 \mathrm{~mL}=3.04 \times 10^{-2} \mathrm{~L} .\left(\mathrm{V}_{\mathrm{t}}=\text { total volume of reaction mixture }\right)
$$

Moles (n) of dibenzylideneacetone in reaction mixture.

$$
\mathrm{n}=(0.74 \mathrm{~g} / 234.29 \mathrm{~g} / \mathrm{mol})=3.15 \times 10^{-3} \mathrm{moles}
$$

Concentration (C) of dibenzylideneacetone in reaction mixture

$$
\mathrm{C}=\left(3.15 \mathrm{~mol} \mathrm{x} 10^{-3} / 3.04 \times 10^{-2} \mathrm{~L}\right)=1.04 \times 10^{-1} \mathrm{M} .
$$

If all amount of dibenzylideneacetone $\left(1.04 \times 10^{-1} \mathrm{M}\right)$ is converted to product, the expected yield is 100%. The expected yield at 100% was calculated theoretically from DA. Molecular weight of compound $\mathbf{6}$ is $234.29 \mathrm{~g} / \mathrm{mol}$ and product $\mathbf{8}$ is $346.42 \mathrm{~g} / \mathrm{mol}$. Amount of compound $6\left(1.04 \times 10^{-1} \mathrm{M}\right)$ in reaction mixture is 0.74 g and expected yield of product $\mathbf{8}$ is

$$
\text { Yield }(100 \%)=0.74 \mathrm{~g} \mathrm{x} 346.42 \mathrm{~g} / \mathrm{mol} / 234.29 \mathrm{~g} / \mathrm{mol}=1.09 \mathrm{~g}
$$

After calculating expected yield at 100%, the yield expected at 10% was calculated.
The yield at $10 \%: 1.09 \mathrm{~g} / 10=0.109 \mathrm{~g}$ in 1 L
After calculating the expected yield at 10% in 1 L of reaction mixture, the yield expected at 10% in 1 mL of reaction mixture was calculated.

Yield expected in 1 mL is $109 \mathrm{mg} / 30.4 \mathrm{~mL}=3.58 \mathrm{mg}$
Dibenzylideneacetone $(0.30 \mathrm{~g}, 1.28 \mathrm{mmol})$ and ethyl acetoacetate $(0.20 \mathrm{~g}, 1.54 \mathrm{mmol}, 0.20$ mL) was also used and expected yield (10%) of product $\mathbf{8}$ in 1 mL is 1.46 mg (calculation refer to compound $\mathbf{6}$ with 0.74 g).

Various amount of the product was measured (table 10) and dissolved in 1.00 mL of internal standard (0.00295 M) to run gas chromatograph. Data recorded with GC and determined calibration curve can be found in results section (page 27-28).

In table 10, (10 \%) was calculated from compound $\mathbf{6}(0.30 \mathrm{~g})$ and other from compound $\mathbf{6}$ $(0.74 \mathrm{~g})$.

Table 10: Amount of product $\mathbf{8}$ calculated

Yield \%	amount (mg)	concentration (mmol/mL)
10%	1.50	4.2×10^{-3}
30%	10.80	3.14×10^{-2}
51%	18.40	5.34×10^{-2}
70%	25.10	7.29×10^{-2}
92%	32.80	9.53×10^{-2}

Experimental procedure, preparation of G.C samples and calculation of analyte concentration.

General procedure

A round-bottomed flask equipped with a stir bar, a reflux condenser, ethanol, dibenzylideneacetone, ethyl acetoacetate and sodium hydroxide was heated for 4 h . Experimental variables with their levels are shown in table 11.

Table 11: Experimental variables

Variables	low level	high level
dibenzylideneacetone (mg)	300	740
ethyl acetoacetate (mg)	200	410
temperature $\left({ }^{\circ} \mathrm{C}\right)$	68	78
sodium hydroxide (mg)	72	170

Amount of the solvent used in reaction was decided according to the amount of dibenzylideneacetone, experiments with high concentration were performed in ethanol (30 mL) and 12 mL at low concentration.

General procedure for the preparation of gas chromatograph samples

When the reaction was stopped, the product started to precipitate, ethyl acetate was used to dissolve the precipitate, wash the reaction flask and to complete the transfer of reaction mixture into a volumetric flask. A 50 mL volumetric flask was used for experiments with dibenzylideneacetone at high concentration and 25 mL at low concentration.

In a separation funnel, around 8 mL of water was transferred in first, 1 mL of the reaction mixture from round bottomed flask and 10 mL of EtOAc was added. Separation funnel was shaked, and then organic layer was separated from aqueous layer. In some experiments, organic layer was washed more than once with water. Organic layer was dried on sodium sulfate and the drying agent was filtered off.

The reaction mixture (0.5 mL) was mixed with 0.5 mL of internal standard solution (0.0059 M) to run the gas chromatography.

Calculations of the sample concentration from the calibration curve

$\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\text {is }}$ is calculated from regression linear of calibration curve, $\mathrm{Y}=8.3679 \mathrm{x}-1.706$.
$\left(\mathbf{Y}=\mathbf{C}_{\mathbf{x}} / \mathrm{C}_{\mathrm{is}}\right)$
$\mathrm{C}_{\mathrm{x}}=\mathrm{YC}_{\mathrm{is}}$
Two examples that show how the sample concentration was calculated with calibration curve are shown below.

One for sample at high concentration (+): Exp no 2 (see table 6 on page 21)

1. Concentration of internal standard $\left(\mathrm{C}_{\mathrm{is}}\right)=0.00295 \mathrm{M}$
2. Peak area of internal standard $\left(\mathrm{A}_{\mathrm{is}}\right)=688.97$
3. Peak area of analyte $\left(A_{x}\right)=209.67$
4. $\mathrm{Ax} / \mathrm{A}_{\mathrm{is}}=0.304$
$\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\text {is }}=0.304 \times 8.3679-1.706=0.84$
$\mathrm{C}_{\mathrm{x}}=\left(\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\mathrm{is}}\right) \mathrm{Cis}=0.84 \times 0.00295=0.00247 \mathrm{M}$

During the preparation of G.C samples, all reaction mixture with dibenzylideneacetone at high concentration was dissolved in 50 mL of the solvent, 1 mL of the reaction mixture from 50 mL was washed with water and extracted with ethyl acetate (10 mL), and 0.5 mL of the sample was mixed with 0.5 mL of internal standard to run gas chromatograph.
$\mathrm{C}_{\mathrm{x} \text { (reaction) }}=\left(\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\mathrm{is}}\right) \mathrm{C}_{\text {is }} \mathrm{x} 2 \mathrm{x} 11 \mathrm{x} 1.65$ at high concentration
$\mathrm{C}_{\mathrm{x}}($ reaction $)=0.00247 \times 11 \times 2 \times 1.65=0.0896 \mathrm{mmol} / \mathrm{mL}$
Yield $\%=0.0896 \times 100 / 0.104=86 \%($ reported in table 7 page 30)
Example 2 a sample at low concentration (-): Exp no 7 (table 6 page 29)

1. Concentration of internal standard $\left(\mathrm{C}_{\mathrm{is}}\right)=0.00295 \mathrm{mmol} / \mathrm{mL}$
2. Peak area of internal standard $\left(\mathrm{A}_{\mathrm{is}}\right)=684.6$
3. Peak area of analyte $\left(A_{x}\right)=165.74$
4. $\mathrm{Ax} / \mathrm{A}_{\mathrm{is}}=0.242$
$\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\text {is }}=0.242 \times 8.3679-1.706=0.319$
$\mathrm{C}_{\mathrm{x}}=\left(\mathrm{C}_{\mathrm{x}} / \mathrm{C}_{\mathrm{is}}\right) \mathrm{Cis}=0.319 \times 0.00295=0.00094 \mathrm{mmol} / \mathrm{mL}$
During the preparation of G.C samples, all reaction mixture with dibenzylideneacetone at low concentration was dissolved in the solvent $(25 \mathrm{~mL}), 1 \mathrm{~mL}$ of the reaction mixture from 25 mL was washed with water and extracted with ethyl acetate (10 mL), and 0.5 mL of the sample was mixed with 0.5 mL of internal standard to run gas chromatography.
$\left.\mathrm{C}_{\mathrm{x}(\text { reaction })}=\left(\mathrm{C}_{\mathrm{x}}\right) \mathrm{C}_{\mathrm{is}}\right) \mathrm{c}_{\text {is }} \mathrm{x} 2 \mathrm{x} 11$ at low concentration
$\mathrm{C}_{\mathrm{x}}($ reaction $)=0.00094 \mathrm{mmol} / \mathrm{mL} \times 11 \times 2=0.0207 \mathrm{mmol} / \mathrm{mL}$.
Yield $\%=0.0207 \times 100 / 0.0512=40 \%$ (table 7, page30)

Hydrogenation of compound 8

In a 50 mL round bottomed flask, ($346 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) of starting material and $10 \% \mathrm{Pd}$ /C (35 mg) was dissolved in ethyl acetate $(7 \mathrm{~mL})$ and stirred under hydrogen atmosphere at room temperature for 12 hours .The catalyst was filtered off by simple filtration and the filter was washed by ethyl acetate (30 mL) and ethanol $(30 \mathrm{~mL})$, the filtrate was collected and concentrated on rotavapor.

The compound was purified with the column chromatography (3% ethyl acetate in pentane) and collected as colorless crystals yield ($34 \mathrm{mg}, 10 \%$),

Melting point: $84-86^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 6 \mathrm{H}), 6.97$ $(\mathrm{d}, \quad J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}) 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.52(\mathrm{~m}, 3 \mathrm{H}) 0.97(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,172.3,146.1,142.1,128.3,127.9,125.6,99.4,60.1$, 38.6, 38.1, $37.535 .8,32.9,27.2,14.0$.

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 351.1955 , found: 351.1955
IR (cm^{-1}): 3027, 2925, 1642, 1620, 1493, 1419, 1404, 13411275, 1212, 1155, 1118.
Spectra can be found in appendix 23-26

Decarboxylation of compound 8

In a 25 mL two necked round bottomed flask equipped with a stir bar, a reflux condenser and a gas bubble, compound $2.5(440 \mathrm{mg}, 1.3 \mathrm{mmol}, 1.0 \mathrm{eq})$, DMSO (13 mL), water (1.5 mL) and $\mathrm{NaCl}(74 \mathrm{~mL}, 83 \mathrm{mmol}, 1.2 \mathrm{eq})$ was heated at $160^{\circ} \mathrm{C}$ for 4hours, reaction was mixture was cooled to room temperature in 30 min , then transferred to separator funnel and mixed with ice cooled water $(140 \mathrm{~mL})$, the product was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The collected extracts were washed with distilled water ($5 \times 50 \mathrm{~mL}$) and dried over sodium sulfate.

The drying agent was filtered off and the filtrate was concentrated on rotavapor. The compound was recrystallized in heptane, collected as yellow crystals and dried on vacuum after 3 days (yield, $0.2 \mathrm{~g}, 45 \%$).

Melting point: $112-114{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.98(\mathrm{ABq}, 2 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd},, J=4,12 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 199.4,155.9,143.4,135.8,135.6,129.2,128.8,127.9,44.4$, 41.0, 33.1

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 275.1433, found: 275.1430
Spectra can be found in Appendix 27-29

Inverse electron demand Diels-Alder reaction

In a
25 mL two necked round bottomed flask equipped with a stir bar and a reflux condenser, toluene 8 mL , compound $\mathbf{1 1}(346 \mathrm{mg}, 1 \mathrm{mmol}, 1.0 \mathrm{eq})$, and styrene ($104.15 \mathrm{mg}, 8.6 \mathrm{mmol}$, 8.6 eq) was refluxed in 3 days and heated at $130^{\circ} \mathrm{C}$ in dioxane in 2 days. Solvents were removed under reduced pressure.

Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was recorded but it does not show compound 12, but HRMS shows it.
HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated 451.2268, found: 451.2268
Spectra can be found in appendix 30-31

Reduction of compound 8

In a 25 mL round bottomed flask, starting material ($300 \mathrm{mg}, 0.86 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O} \mathrm{mL}$ ($780 \mathrm{mg}, 2.09 \mathrm{mmol}, 2.3 \mathrm{eq}$) was dissolved in ethyl acetate (5 mL), $\mathrm{NaBH}_{4}(40 \mathrm{~g}, 1.03 \mathrm{mmol}$, 1.2 eq) was slowly added under stirring, the reaction ran for 1 hour at room temperature. Isolation was done by hydrolysis followed by extraction with diethyl ether. Ether extracts were dried over sodium sulfate, then drying agent was filtered off and the reaction mixture was concentrated on rotavapor.

Crude ${ }^{1} \mathrm{H}$-NMR can be found in Appendix 32

Alkylation of compound 8 with allyl bromide

Two experimental procedures were attempted during the alkylation of compound $\mathbf{8}$ with allyl bromide.

Procedure one

In a 25 mL two necked round bottomed flask equipped with a stir bar dried in 2 days in oven at $110{ }^{\circ} \mathrm{C}$ compound $\mathbf{8}(104 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ dissolved in dry DMF (4 mL), DBU (46 $\mathrm{mg}, 0.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added under stirring, the resulting mixture was cooled in an ice bath and allyl bromide ($55 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5 \mathrm{eq}$) was drop-wisely added under stirring during 4 min .

The reaction mixture was stirred at room temperature for 24 hours, heated at $40^{\circ} \mathrm{C}$ overnight, next day, the temperature raised at $62^{\circ} \mathrm{C}$, reaction was left to run more 4 days and stopped without completion

Isolation of the product: the reaction mixture was poured into water $(10 \mathrm{~mL})$, and the product was extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$. The CHCl_{3} extracts were washed with water $(5 \times 10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the drying agent was filtered off. The reaction mixture was concentrated on rotavapor.

Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was recorded.
HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 387.1955, found: 387.1959
Spectra can be found in appendix 33-34.

Procedure two

mL two necked round bottomed flask equipped with a stir bar, compound $2.5(104 \mathrm{mg}, 0.3$ $\mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ anhydrous ($123 \mathrm{mg}, 0.89 \mathrm{mmol}, 3 \mathrm{eq}$), allyl bromide ($220 \mathrm{mg}, 1.81$ $\mathrm{mmol}, 6 \mathrm{eq})$ was dissolved in acetone dry $(5 \mathrm{~mL})$, the mixture was stirred at room temperature overnight. The next day, the reaction was heated at $55^{\circ} \mathrm{C}$ and finished after 10 days.

Isolation of the product: $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off after cooling the reaction mixture at room temperature, washed with CHCl_{3}, the filtrate was poured into water $(10 \mathrm{~mL})$ and the solution was acidified with $2 \mathrm{MHCl}(5 \mathrm{~mL})$. The product was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. CHCl_{3} extracts were dried over sodium sulfate and the reaction mixture was concentrated on rotavapor.

The crude material was recrystallized in ethanol (70\%), collected as colorless crystals and dried on high vacuum overnight (yield: $44 \mathrm{mg}, 42 \%$).

Melting point: $134-136^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H})$, $6.99(\mathrm{ABq}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.58(\mathrm{dd}, J=8,24 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=4,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=16$, $24 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=2,24 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 190.0,170.3,156.9,139.7,135.8,133.7,129.3,128.7,128.6$, $128.5,127.6,127.4,119.5,61.3,60.8,44.9,35.7,29.9,13.8$

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated: 387.1955, found: 387.1954
IR $\left(\mathrm{cm}^{-1}\right) 1734,1713,1646,1612,1588,1495,1451,1428,1387,1337,1275,1255,1219$, 1190, 1115.

Spectra can be found in appendix 35-38
Alkylation with propargyl bromide, benzyl bromide, 1-bromoacetophenone, 1-bromo-4phenylbutane and methyl acrylate.

General procedure for alkylation

Reactions were performed in anhydrous conditions and under nitrogen gas atmosphere in glassware and stir bars, which were dried in oven at $110{ }^{\circ} \mathrm{C}$ in 2 days. Glassware were also dried under vacuum before transferring reactants in reaction flask. Under nitrogen atmosphere, $\mathrm{NaH} 60 \%$ in mineral oil was washed with hexane two times, then cooled in an ice bath. Dry THF was added and the mixture was stirred around 5 min . Compound $\mathbf{8}$ dissolved in dry TFH was added drop-wise, reaction stirred around 8 min, alkylating reagent was carefully added and the resulting mixture was stirred around 10 min . The ice bath was removed and reaction was stirred at room temperature and heated at various temperature in some cases. Isolation of the product: Sodium hydride was quenched with saturated ammonium chloride (ca 15 mL), then reaction mixture was transferred into a separatory
funnel, water ($\mathrm{ca}, 10 \mathrm{~mL}$) was added and the product was extracted with diethyl ether (3×10 mL).

Diethyl ether extracts were washed with brine ($3 \times 10 \mathrm{~mL}$) and dried over sodium sulfate. The drying agent was filtered off and the reaction mixture was concentrated on rotavapor. The compound was purified by crystallization or column chromatography.

Alkylation with propargyl bromide

Sodium
hydride 60% in mineral oil ($33 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.1 \mathrm{eq}$) washed with hexane (2 x 4 mL), THF dry (4 mL), compound $8(260 \mathrm{mg}, 0.75 \mathrm{mmol}, 1 \mathrm{eq})$ dissolved in THF dry (3 mL) and propargyl bromide ($500 \mathrm{mg}, 4.3 \mathrm{mmol}, 4.2 \mathrm{eq}$) was added and the resulting mixture was stirred in 4 days.

The compound was crystallized in ethanol (70 \%), collected as colorless crystals and dried on vacuum overnight after three days (yield: $140 \mathrm{mg}, 54 \%$).

Melting point: $133-135{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{ABq}, 2 \mathrm{H}), 6.29$ (s, 1H), 4.15-4.10 (m, 2H), $4.03(\mathrm{dd}, J=4,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=2,20$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=12,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=16,20 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=2,4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.18(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 194.1,169.0,157.1,139.0,136.3,135.8,129.3,128.9,128.7$, 128.6, 128.3, 127.9, 127.4, 127.1, 80.4, 71.5, 61.6, 60.3, 44.9, 29.2, 21.6, 13.9

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$,calculated: 385.1798 , found:385.1802
IR (cm^{-1}) 3283, 3029, 1729, 1651, 1612, 1587, 1495, 1452, 1417, 1387, 1308, 1277, 1257, 1224, 1212, 1197, 1178, 1121.

Spectra can be found in appendix 39-42

Alkylation with benzyl bromide

Two experimental procedures were attempted during the alkylation of compound $\mathbf{8}$ with benzyl bromide.

General procedure for alkylation.

Sodium hydride 60% in mineral oil ($33 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.1 \mathrm{eq}$) washed with hexane (2 x 4 mL), dry THF (4 mL), compound $\mathbf{8}(260 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0 \mathrm{eq})$ dissolved in dry THF (3 mL) and benzyl bromide ($716 \mathrm{mg}, 4.18 \mathrm{mmol}, 5.6 \mathrm{eq}$) was added. The reaction was run for 4 days and stopped without completion. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was recorded.

HRMS (ESI): m/z: calculate $\left(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}\right)$: 459.1931 , found: 459.1929
Spectra can be found in Appendix 43-44.

Procedure two

In a 25 mL two necked round bottomed flask equipped with a stir bar and a reflux condenser were dried in oven in 2 days, then dried again with the vacuum around 20 min . Under nitrogen gas atmosphere, compound $\mathbf{8}(335 \mathrm{mg}, 0.96 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}$ anhydrous (700 mg , $5.06 \mathrm{mmol}, 5.1 \mathrm{eq}$), benzyl bromide ($830 \mathrm{mg}, 4.86 \mathrm{mmol}, 5.0 \mathrm{eq}$) and $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$ was transferred in reaction flask according to their written order. The reaction mixture was heated at $61^{\circ} \mathrm{C}$ in 24 hours. The reaction was left to run for 10 days where TLC showed big spot of the product compared to one of compound 8

Isolation of the product: $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off after cooling the reaction mixture at room temperature, washed with CHCl_{3}, the filtrate was poured into water $(10 \mathrm{~mL})$ and the solution was acidified with $2 \mathrm{MHCl}(10 \mathrm{~mL})$. The organic layer was separated from aqueous phase, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the reaction mixture was concentrated on rotavapor. ${ }^{65}$

The compound was purified with column chromatograph (3.5\% EtOAc in pentane) and collected as yellow viscous liquid, yield ($140 \mathrm{mg}, 42 \%$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{ABq}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.23(\mathrm{~m}, 2 \mathrm{H})$, $3.89(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79$ (dd, $J=20,28 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 196.7,170.7,156.4,140.8,137.8,136.8,136.0,135.8,131.0$, $129.4,129.0,128.9,128.6,128.5,128.2,127.6,127.3,126.5,125.3,61.9,61.6,44.5,36.9$, 31.0, 13.8

HRMS (ESI): $m / z: ~[M+H]^{+}$, calculated:437.2111, found: 437.2113
IR $\left(\mathrm{cm}^{-1}\right) 3029,1737,1650,1616,1589,1495,1452,1387,1262,1183,1164,1121$.
Spectra can be found in Appendix 45-48

Alkylation with 1-bromo 4-phenylbutane

Sodium hydride 60% in mineral oil ($28 \mathrm{mg}, 0.71 \mathrm{mmol}, 2.5 \mathrm{eq}$) was washed with dry THF ($2 \times 4 \mathrm{~mL}$), compound $8(100 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0 \mathrm{eq}$) dissolved in dry THF (3 mL) and 1bromo 4 - phenyl butane ($180 \mathrm{mg}, 0.85 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added. The reaction mixture ran at room temperature overnight, the next day, the reaction was heated at $40^{\circ} \mathrm{C}$ and left to run for 3 days and stopped without completion. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was recorded.

HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated $=479.2581$, found $=479.2583$.
Spectra can be found in Appendix 49-50.

Alkylation with 1-bromoacetophenone

Sodium hydride 60% in mineral oil ($33 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.1 \mathrm{eq}$) was washed with dry THF (2 x 4 mL), compound 8 ($260 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1eq) dissolved in THF dry (3 mL), and 2bromoacetophenone ($747 \mathrm{mg}, 3.75 \mathrm{mmol}, 5.0 \mathrm{eq}$) was drop-wisely added and reaction ran overnight. The next day, the reaction was heated at $40^{\circ} \mathrm{C}$ and left to run for 2 days further. After 3 days, no reaction happened and the reaction was stopped.

The reaction was repeated by doubling amount of Sodium hydride ($66 \mathrm{mg}, 1.66 \mathrm{mmol}, 2.2$ eq), and was refluxed but it changed nothing. Crude ${ }^{1} \mathrm{H}$ NMR was recorded. HRMS does not show the product.

Spectra can be found in appendix 51-52.

Alkylation with methyl acrylate

Sodium hydride 60% in mineral oil ($21 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.93 \mathrm{eq}$) was washed with hexane $(2 \times 4 \mathrm{~mL})$, Robinson annulation product ($100 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0 \mathrm{eq}$) dissolved in dry THF (3 mL) and methyl acrylate ($37 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and reaction ran overnight at room temperature. The next day, the reaction was heated at $45^{\circ} \mathrm{C}$ and ran for 6 days.

Crude 1H-NMR was recorded.

Crude HRMS (ESI): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$, calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}\right]=455.1829$, found $=455.1829$
Spectra can be found in appendix 53-54.

REFERENCES

(1) Andrea Trabocchi S (2013): Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology p25-26
(2) O'Connell, K. M. G.; Galloway, W. R. J. D.; Spring, D. R., The Basics of DiversityOriented Synthesis. In Diversity-Oriented Synthesis, John Wiley \& Sons, Inc.: 2013; pp 1-26.
(3) Galloway.W, Isidro-Llobet. A, Spring. D: Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 2010, $1,80$.
(4) Burke, M. D.; Schreiber, S. L., A Planning Strategy for Diversity-Oriented Synthesis. Angewandte Chemie International Edition 2004, 43 (1), 46-58.
(5) Warren R. J. D. Galloway A. B. Martin Welch and David R. Spring The discovery of antibacterial agents using diversity-oriented synthesis. 2009 2446-2462.
(6) Huigens I, R. W.; Morrison, K. C.; Hicklin, R. W.; Flood Jr, T. A.; Richter, M. F.; Hergenrother, P. J., A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat Chem 2013, 5 (3), 195-202.
(7) Warren R.J.D. Galloway L (2010): Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules.
(8) Richard J. Spandl, M. D.-G., Kieron M. G. O'connell,; Gemma L. Thomas, D. R. S., Diversity-Oriented Synthesis. 2008.
(10) Brian D. Mather, Kevin M. Miller, Timothy E. Long: Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487-531.
(11) Zhang, Y.; Wang, W., Recent advances in organocatalytic asymmetric Michael reactions. Catalysis Science \& Technology 2012, 2 (1), 42-53.
(12) Li, D. R.; and, A. M.; Falck, J. R., Enantioselective, Organocatalytic Oxy-Michael Addition to γ / δ-Hydroxy- α, β-enones: Boronate-Amine Complexes as Chiral Hydroxide Synthons. J Am Chem Soc, 2008 130(1), 46-48.
(13) Carl F. Nising and Stefan Bra: Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012, 41, 988-999.
(14) Ravindra, B.; Das, B. G.; Ghorai, P., Organocatalytic, Enantioselective, Intramolecular Oxa-Michael Reaction of Alkoxyboronate: A New Strategy for Enantioenriched 1-Substituted 1,3-Dihydroisobenzofurans. Organic Letters 2014, 16 (21), 5580-5583.
(15) Enders, D.; Wang, C.; Liebich, J. X., Organocatalytic Asymmetric Aza-Michael Additions. Chemistry - A European Journal 2009, 15 (42), 11058-11076.
(16) Lu, X.; Deng, L., Asymmetric aza-Michael Reactions of α, β-Unsaturated Ketones with Bifunctional Organic Catalysts. Angewandte Chemie, 2008, 47 (40), 7710-7713.
(17)An-Guo Ying, Li-Min Wang, Hong-Xia Deng, Jian-Hui Chen, Xin-Zhi Chen, and; Yeb, W.-D, Green and efficient aza-Michael additions of aromatic amines to α, β-unsaturated ketones catalyzed by DBU based task-specific ionic liquids without solvent. arkivoc, 2009, 288-298.
(18) Rana, N. K.; Selvakumar, S.; Singh, V. K., Highly Enantioselective Organocatalytic Sulfa-Michael Addition to α, β-Unsaturated Ketones. The Journal of Organic Chemistry 2010, 75 (6), 2089-2091.
(19) Sobhani, S, Parizi, Z. P.; Rezazadeh, S., Phospha-Michael addition of phosphorus nucleophiles to α, β-unsaturated malonates using 3 -aminopropylated silica gel as an efficient and recyclable catalyst. Journal of Organometallic Chemistry 2011, 696 (3), 813-817.
(20) Sobhani, S, Bazrafshan, M, Delluei, A. A.; Parizi, Z. P, Phospha-Michael addition of diethyl phosphite to α, β-unsaturated malonates catalyzed by nano γ - Fe 2 O 3 -pyridine based catalyst as a new magnetically recyclable heterogeneous organic base. Applied Catalysis A: General 2013, 454 (0), 145-151.
(21) Sorrell, T. N., Organic chemistry. second edition ed.; 2006; p 787-791.
(22) R.J.Sundgerd (2000): advanced Organic chemistry. fourth edition ed.;; p p57-82.
(23) Jonathan Clayden, N. G., and S. Warren Organic chemistry. Second edition ed.; Oxford University Press Inc, New York: United State, 2012; p p450-468,615-638,619.
(24) Taffin, C, Kreutler, G, Bourgeois, D. Clot, E, Perigaud. C, Diels-Alder reaction of vinylene carbonate and 2,5-dimethylfuran: kinetic vs. thermodynamic control. New Journal of Chemistry 2010, 34 (3), 517-525.
(25) Boger, D. L.; Kochanny, M. J., Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes: [4+2] Cycloaddition Reaction of Amidines with 1,3,5-Triazines. The Journal of Organic Chemistry 1994, 59 (17), 4950-4955.
(26) R.J.Sundgerd, F. A. C.(2000): Advanced Organic chemistry part B: Reaction and synthesis fourth edition ed.
(27) Gao, S.-Y.; Ko, S.; Lin, Y.-L.; Peddinti, R. K.; Liao, C.-C., Inverse-electron-demand Diels-Alder reactions of masked o-benzoquinones with enol ethers and styrene. Tetrahedron 2001, 57 (2), 297-308.
(28) Ding, C.; Wang, L.; Chen, H.; Wild, C.; Ye, N.; Ding, Y.; Wang, T.; White, M. A.; Shen, Q.; Zhou, J., ent-Kaurane-based regio- and stereoselective inverse electron demand hetero-Diels-Alder reactions: synthesis of dihydropyran-fused diterpenoids. Organic \& Biomolecular Chemistry 2014, 12 (42), 8442-8452.
(29) Paul Krapcho, A.; Ciganek, E., The Krapcho Dealkoxycarbonylation Reaction of Esters with α-Electron-Withdrawing Substituents. In Organic Reactions, John Wiley \& Sons, Inc.: 2004.
(30) Wang, Z., Krapcho Decarboxylation. In Comprehensive Organic Name Reactions and Reagents, John Wiley \& Sons, Inc.: 2010.
(31) Krapcho, A. P.; Weimaster, J. F.; Eldridge, J. M.; Jahngen, E. G. E.; Lovey, A. J.; Stephens, W. P., Synthetic applications and mechanism studies of the decarbalkoxylations of geminal diesters and related systems effected in dimethyl sulfoxide by water and/or by water with added salts. The Journal of Organic Chemistry 1978, 43 (1), 138-147.
(32) Luche, J. L., Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc 1978, 100 (7), 2226-2227.
(33) Gemal, A. L.; Luche, J. L., Lanthanoids in organic synthesis. 6. Reduction of .alpha.enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. Journal of the American Chemical Society 1981, 103 (18), 5454-5459.
(34) Liby, K.; Yore, M. M.; Roebuck, B. D.; Baumgartner, K. J.; Honda, T.; Sundararajan, C.; Yoshizawa, H.; Gribble, G. W.; Williams, C. R.; Risingsong, R.; Royce, D. B.; DinkovaKostova, A. T.; Stephenson, K. K.; Egner, P. A.; Yates, M. S.; Groopman, J. D.; Kensler, T. W.; Sporn, M. B., A novel acetylenic tricyclic bis-(cyano enone) potently induces phase 2 cytoprotective pathways and blocks liver carcinogenesis induced by aflatoxin. Cancer research 2008, 68 (16), 6727-6733.
(35) Honda, T.; Favaloro, Gribble, Suh, N.(2011): Tricyclic-bis-enone derivatives and methods of use thereof.
(36) Sukirti Kalra1, Ying Zhang1, Tadashi Honda2, Masayuki Yamamoto3, and Albena T. Dinkova-Kostova (2012):Highly Potent Activation of Nrf2 by Topical Tricyclic Bis(Cyano Enone): Implications for Protection against UV Radiation during Thiopurine Therapy
(37) Sporn, M. B.; Liby, K. T.; Honda, T.; Mundy, G.; Garrett, R.; Reddi, H.; Gribble, G. W.; Niikura, T (2012): Synthetic triterpenoids and tricyclic-bis-enones for use in stimulating bone and cartilage growth.
(38) Mirhosseini, H.; Tan, C. P., Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chemistry 2009, 115 (1), 324-333.
(39) Kowalik, M.; Gothard, C. M.; Drews, A. M.; Gothard, N. A.; Weckiewicz, A.; Fuller, P. E.; Grzybowski, B. A.; Bishop, K. J. M., Parallel Optimization of Synthetic Pathways within the Network of Organic Chemistry. Angewandte Chemie International Edition 2012, 51 (32), 7928-7932.
(40) Tranter, R. (2000):Design and analysis in chemical research
(41) Sanchez, L.(2006): Statistical Design of Experiments Applied to Organic Synthesis.
(42) E.Carslon, R.J (2005) Design and Optimization in Organic Synthesis. second revised and enlarged edition ed. Elsevier
(43) Wass, J. A., First Steps in Experimental Design-The Screening Experiment 2007.
(44) Cotter, S. C., A Screening Design for Factorial Experiments with Interactions. Biometrika 1979, 66 (2), 317-320.
(45) Martin Berz , G. H., Georg Hoffst Atter, Computation and Application of Taylor Polynomials with Interval Remainder Bounds. 1998
(46) J.V. Gimeno Adelantado, F. B. R., V. Peris Martinez, F. Bosch Mossi, A Taylor series model to evaluate the interelemental effects in X-ray fluorescence analysis, applied to the iron-zirconium-diluent system. Fresenius J Anal Chem (1995) 351:714-719 1994.
(47) Cochran, W. G.; Cox, G. M., Experimental designs (2nd ed.). John Wiley \& Sons: Oxford, England, 1957; p xiv, 611.
(48) J.Clayden, N. G., and Warren (2012): Organic chemistry. Second edition ed.
(49) B.Czakó, L. K. (2005): Strategic Application of Named Reaction in Organic Synthesis.
(50) E. M. Afsah , M. M. A.-E., M. T. Zimaity ,; b, a. G. R. P., Michael and Ring Expansion Reactions of 6- Carboethoxy- 3,5- diaryl-2-cyclohexen- 1-ones. Springer-Verlag 1984, 1065-1070.
(51) Lytle, J., Preparation of an alpha, betaUnsaturated Ketonevia Michael and Aldol Condensation Reactions. soccerjake 18. 2010
(52) Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science 2006, 31 (5), 487-531.
(53) T.Hattori, A. T., Y.Sawana,Y.Monguchi), Systematic evaluation of the palladium catalysed hydrogenation under flow. Tetrahydron 2014, 70 4790-4798.
(54) Garcia-Verdugo, S. V. L. a. E., Chemical reactions and Processes under Flow Conditions. 2010; p 140-141.
(55) A.Paul Krapcho, E. G. E. J., Jr, and A.J.Lovey Decarbalkoxylation of germinal diesters, β-keto esters in wet dimethyl sulfoxide. Effect of added sodium chloride on the decarbalkoxylation rates of mono and disubstituted malonates esters. 1974 13, (Tetrahedron letters), 1091-1094.
(56) Julieyana , A. M. Synthesis and decarboxylation of 2,3 Dioxophenylpyrrolidine- 3carboxylic acid etyhl ester / Julieyana Abdul Manap. 2009.
(57) Krapcho , A., Decarbalkoxylations of geminal diesters, β-keto esters and α-cyano esters effected by sodium chloride in dimethyl sulfoxide 1973, 1091-1094.
(58) Yaakob, I. U. Synthesis and decarboxylation Of 2-(4-Methoxylphenyl)-1-Methyl-4,5-Dioxo-Pyrollidine-3-Carboxylic Acid Ethyl Ester / Islaili Ulfah Yaakob. Faculty of Applied Sciences, 2009.
(59) A. Paul Krapcho, J. F. W., J. M. Eldridge, 2 E. G. E. Jahngen, Jr.; A. J. Lovey, a. W. P. S., Synthetic Applications and Mechanism Studies of the Decarbalkoxylations of Geminal Diesters and Related Systems Effected in Me2SO by Water and/or by Water with Added Salts. J. Org. Chem, 1978, Vol. 43, No. 1
(60) Krapcho, A. P.; Glynn, G. A.; Grenon, B. J., The decarbethoxylation of geminal dicarbethoxy compounds. Tetrahedron Letters 1967, 8 (3), 215-217.
(61) Bodwell, G. J.; Pi, Z., Electron deficient dienes I. Normal and inverse electron demand Diels-Alder reaction of the same carbon skeleton. Tetrahedron Letters 1997, 38 (3), 309-312.
(62) Panek, J. S.; Zhu, B., Synthesis of aromatic 1,2-diazines by inverse electron demand Diels-Alder reaction of polymer-supported 1,2,4,5-tetrazines. Tetrahedron Letters 1996, 37 (45), 8151-8154.
(63) Sakya, S. M.; Groskopf, K. K.; Boger, D. L., Preparation and inverse electron demand Diels-Alder reactions of 3-methoxy-6-methylthio-1,2,4,5-tetrazine. Tetrahedron Letters 1997, 38 (22), 3805-3808.
(64) Sparey, T. J.; Harrison, T., Inverse electron demand Diels-Alder reactions of 3,6-dichloro-[1,2,4,5]tetrazine. Tetrahedron Letters 1998, 39 (32), 5873-5874.
(65) Sammes, P: The Synthesis and Chemistry of Azolenines. Part 8.' The Paal-Knorr Reaction with Cyclic 2-(Acylmethyl)-2-alkyl-1,3-diketones: Isolation of 1 -Acyl-IHpyrroles via Rearrangement. J. chem. soc. perkin trans. I 1988, 161-168.
(66) Gian Cesare Tron, T. P., Richard A. Billington, Pier Luigi Canonico,; Giovanni Sorba, A. A. G(2007): Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3dipolar Cycloaddition Between Azides and Alkynes
(67) B.S.Furniss, A. J. H., P.W.G.Smith and A.R.Tatachell VOGEL'S, Textbook of Organic chemistry. fifth edition ed.; 1991.

APPENDICES

Appendix 1
N
(inil
-i/l
-

Appendix 2

Appendix 3

C:IXcaliburldatalPhenias\JHPB-01-00
1/30/2014 9:42:07 AM

Appendix 4

Appendix 5

Appendix 6

Appendix 7

JHPH-1-33 \#1-3 RT: 0.01-0.06 AV: 3 NL: 1.66E7
T: FTMS + p ESI Full ms [200.00-500.00]

Appendix 8

Appendix 9

Data File C: \CHEM32\1\DATA \PHENIAS 2015-02-03 16-30-46\201B0101.D
sample Name: JHPH-1-INT1.5


```
Area Percent Report
```


Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \mathrm{Area} \\ {[\mathrm{pA*} \mathrm{~s}]} \end{array}$	$\begin{aligned} & \text { Height } \\ & \text { [pA] } \end{aligned}$	
1	3.919	BB	0.0128	2.67117	3.25254	0.32992
2	4.205	BB	0.0128	567.29431	691.28265	70.06750
3	6.029	BB	0.0161	4.81489	4.65252	0.59470
4	7.481	BB	0.0214	2.64301	1.77188	0.32644
5	7.947	BB	0.0178	4.12294	3.68972	0.50923
6	9.067	BB	0.0151	1.00245	1.05096	0.12381
7	9.175	BB	0.0154	1.19768	1.22884	0.14793
8	9.440	BB	0.0185	2.74417	2.20155	0.33894
9	9.499	BB	0.0156	6.77618	6.83063	0.83694

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
10	9.819 BB	0.0161	171.20459	164.98840	21.14577
11	9.969 BB	0.0368	7.50087	3.31799	0.92645
12	10.158 BB	0.0219	4.12302	2.95363	0.50924
13	10.467 BB	0.0354	9.56947	3.95645	1.18194
14	10.906 BB	0.0303	21.21800	10.36642	2.62067
15	11.000 BB	0.0259	2.75698	1.58635	0.34052
Totals :			809.63971	903.13053	


``` *** End of Report ***
```


Appendix 10

ata File C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\202B0201.D
Sample Name: JHPH-1-IN10.8

| Acq. Operator : Jostein | Seq. Line : 2 |
| :--- | :--- | ---: | :--- |
| Acq. Instrument : Agilent 7820A | Location : Vial 202 |
| Injection Date : $1 / 30 / 2015 ~ 2: 19: 41 \mathrm{PM}$ | Inj : |

Acc. Method : C: \CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\PHENIAS.M
Last changed : 4/10/2014 9:57:40 AM by Jostein
Analysis Method : C:\CHEM32\1\METHODS $\backslash P H E N I A S . M$
Last changed : 2/26/2015 3:26:37 PM by Jostein

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multipl		tor wit

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.921	BB	0.0124	2.67578	3.37758	0.15611
2	4.206	BB	0.0126	573.78455	710.01965	33.47659
3	7.479	BB	0.0153	1.84556	1.91186	0.10768
4	7.950	BB	0.0186	2.95080	2.35184	0.17216
5	9.499	BB	0.0173	8.06830	6.66154	0.47073
6	9.828	BB	0.0214	855.42230	601.85376	49.90832
7	9.998	BB	0.0603	150.86433	33.67999	8.80195
8	10.505	BV	0.0676	58.11494	11.52935	3.39063
9	10.635	VB	0.0532	32.54914	7.84701	1.89903

Appendix 11

Data File C:\CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\203B0301.D
Sample Name: JHPH-1-IN18.4

| Acq. Operator : Jostein | Seq. Iine : |
| :--- | :--- | ---: | :--- |
| Acq. Instrument : Agilent 7820A | Location : Vial 203 |
| Injection Date : $1 / 30 / 20152: 37: 12 \mathrm{PM}$ | Inj : 1 |

Acq. Method \quad C: \backslash CHEM32 $\backslash 1 \backslash$ DATA \backslash PHENIAS $2015-01-30 \quad 14-00-00 \backslash$ PHENIAS.M
Last changed : 4/10/2014 9:57:40 AM by Jostein
Analysis Method : C:\CHEM32\1 \METHODS $\backslash P H E N I A S . M$
Last changed : 2/26/2015 3:26:37 PM by Jostein
FID1 B, Back Signal (PHENIAS 2015-01-30 14-00-00L203B0301.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { width } \\ & \text { [min] } \end{aligned}$	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	
1	3.921	BB	0.0126	2.68608	3.33104	0.11200
2	4.207	BB	0.0135	569.73163	702.81805	23.75676
3	7.478	BB	0.0165	1.96760	1.83674	0.08205
4	7.949	BB	0.0208	8.64574	6.01655	0.36051
5	9.033	BB	0.0150	1.00040	1.06391	0.04171
6	9.497	BB	0.0189	9.00774	7.04152	0.37561
7	9.832	BV	0.0238	1394.09839	895.86224	58.13135
8	10.012		0.0701	247.14240	48.31278	10.30538
9	10.518	BV	0.0684	72.20488	13.75519	3.01081

Appendix 12

Jata File C: \CHEM32\1\DATA\PHENIAS 2015-01-30 14-00-00\204B0401.D sample Name: JHPH-1-IN25.1

Last changed : 2/26/2015 3:26:37 PM by Jostein
FID1 B, Back Signal (PHENIAS 2015-01-30 14-00-00L204B0401.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area 8
1	3.921	BB	0.0131	2.57792	3.31417	0.08938
2	4.206	BB	0.0135	565.63000	695.21283	19.61065
3	7.478	BB	0.0218	3.12047	2.04876	0.10819
4	7.949	BB	0.0225	13.95266	8.79829	0.48375
5	9.034	BB	0.0142	1.04368	1.10702	0.03618
6	9.177	BB	0.0216	1.47929	1.13818	0.05129
7	9.498	BB	0.0194	9.65727	7.33026	0.33482
8	9.838	BV	0.0221	1798.05334	1209.52942	62.33932
9	10.021	VB	0.0758	308.37207	56.41247	10.69140

Appendix 13

3ample Name: JHPH-1-IN32.8

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multipl		tor wi

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.921	BB	0.0124	2.63318	3.32231	0.07669
2	4.206	BB	0.0126	558.10748	692.54004	16.25393
3	6.126	BB	0.0148	1.26188	1.26836	0.03675
4	7.462	BB	0.0254	4.41757	2.40964	0.12865
5	7.950	BB	0.0249	17.73021	10.28973	0.51636
6	8.968	BB	0.0183	1.37446	1.12129	0.04003
7	9.034	BB	0.0157	1.49996	1.39744	0.04368
8	9.178	BB	0.0191	2.11113	1.72459	0.06148
9	9.500	BV	0.0159	8.72911	8.01440	0.25422

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[p A^{*} s\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
10	9.532	VB	0.0431	14.91013	4.63402	0.43423
11	9.842	BV	0.0251	2223.02002	1332.93518	64.74166
12	10.035	VB	0.0763	395.00220	67.50288	11.50376
13	10.538	BV	0.0646	79.81427	14.97949	2.32445
14	10.657	VB	0.0676	79.39468	14.19604	2.31223
15	10.920	BV	0.0575	39.05586	9.66827	1.13744
16	11.016		0.0292	4.61558	2.45076	0.13442
Total	s :			3433.67774	2168.45442	

Appendix 14

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	1.929	BV	0.0496	5.01739	1.43321	0.41161
2	2.061		0.0117	1.44247	1.97610	0.11833
3	3.916	BB	0.0133	3.33363	4.18921	0.27348
4	4.203	BB	0.0130	721.65240	862.70410	59.20154
5	4.946	BB	0.0135	1.60321	1.96480	0.13152
6	5.347		0.0750	33.09170	5.37544	2.71471
7	5.491		0.0817	30.73035	4.86684	2.52100
8	6.339		0.0410	6.49872	2.19153	0.53313
9	6.388		0.0337	7.24228	3.39461	0.59413

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	Area 8
10	6.540	BB	0.0376	11.84778	4.21491	0.97195
11	6.761	BB	0.0315	7.80510	3.52144	0.64030
12	6.951	BB	0.0156	1.00764	1.01305	0.08266
13	7.115	BB	0.0222	4.78992	3.20367	0.39295
14	7.374	BB	0.0303	2.99886	1.51181	0.24601
15	7.478	BB	0.0143	2.35795	2.48517	0.19344
16	7.715	BB	0.0175	3.05858	2.80113	0.25091
17	7.908	BB	0.0208	1.87197	1.36590	0.15357
18	8.239	BV	0.0274	5.20751	2.68695	0.42720
19	8.271	VB	0.0153	2.57668	2.65211	0.21138
20	8.540	BB	0.0213	2.51946	1.87672	0.20669
21	8.716	BB	0.0225	6.22609	4.09550	0.51076
22	8.782	BB	0.0154	1.73463	1.77080	0.14230
23	8.966	BB	0.0170	2.52525	2.40924	0.20716
24	9.019	BB	0.0143	1.72195	1.81079	0.14126
25	9.106	BB	0.0156	44.15569	44.22349	3.62236
26	9.165	BB	0.0193	10.12017	8.11772	0.83022
27	9.331	BB	0.0163	6.75257	6.39598	0.55395
28	9.435	BB	0.0164	18.29283	17.17098	1.50067
29	9.493	BB	0.0172	6.78845	6.01354	0.55690
30	9.584	BB	0.0258	7.14306	3.96416	0.58599
31	9.814	BB	0.0167	165.46027	162.07898	13.57371
32	9.934	BV	0.0184	3.16953	2.56054	0.26002
33	9.983	VB	0.0251	6.12437	3.66236	0.50242
34	10.145	BB	0.0193	36.39503	30.88533	2.98571
35	10.316	BB	0.0188	3.33334	2.78385	0.27345
36	10.417	BB	0.0303	6.35268	2.99950	0.52115
37	10.545	BB	0.0196	1.22048	1.02067	0.10012
38	10.896	BB	0.0344	15.88582	6.43830	1.30321
39	10.992	BB	0.0234	2.07459	1.35756	0.17019
40	11.530	BV	0.0435	6.34805	2.35324	0.52077
41	11.613		0.0298	2.67406	1.38325	0.21937
42	11.769	BB	0.0345	7.82311	3.54479	0.64178

Appendix 15

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	0.841	BV s	$6.75 e-3$	865.65747	2323.57666	2.30393
2	0.866	VBAS	$8.41 e-3$	3.55928 e4	7.05299 e4	94.72944
3	2.015	BB	0.0106	1.87374	2.65267	0.00499
4	2.142	BB	0.0138	1.24377	1.48480	0.00331
5	3.131	BB	0.0145	10.37320	11.55639	0.02761
6	3.907	BB	0.0126	3.18970	3.97419	0.00849
7	4.150	BV	0.0148	12.49193	13.50740	0.03325
8	4.196	VB	0.0127	688.97052	846.08569	1.83368
9	5.055	BB	0.0154	7.70003	7.87864	0.02049

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & \text { [pA] } \end{aligned}$	Area 8
10	5.856	BB	0.0158	4.77922	4.70756	0.01272
11	6.547	BB	0.0174	4.05768	3.74694	0.01080
12	7.164	BB	0.0178	3.39157	3.04828	0.00903
13	7.478	BB	0.0146	2.10531	2.32409	0.00560
14	7.730	BB	0.0184	3.20815	2.75657	0.00854
15	7.940	BB	0.0234	2.25200	1.47693	0.00599
16	8.245	BB	0.0188	3.47291	2.88743	0.00924
17	8.457	BB	0.0208	2.38495	1.73905	0.00635
18	8.573	BB	0.0187	2.61116	2.07924	0.00695
19	8.724	BB	0.0213	5.67562	4.22500	0.01511
20	8.785	BB	0.0161	2.11380	2.03531	0.00563
21	8.829	BB	0.0166	1.15081	1.00418	0.00306
22	8.887	BB	0.0173	1.73866	1.52038	0.00463
23	8.968	BB	0.0191	11.14441	8.62549	0.02966
24	9.022	BB	0.0177	4.51441	3.64015	0.01201
25	9.091	BB	0.0208	5.17923	3.43381	0.01378
26	9.168	BB	0.0211	5.26001	3.95670	0.01400
27	9.438	BB	0.0199	1.87781	1.45116	0.00500
28	9.508	BB	0.0207	10.67572	7.84550	0.02841
29	9.585	BB	0.0216	7.08716	5.15522	0.01886
30	9.819	BB	0.0161	209.67017	201.74879	0.55803
31	9.980	BB	0.0411	16.49112	5.95299	0.04389
32	10.097	BV	0.0186	4.10640	3.47133	0.01093
33	10.151		0.0198	6.97085	5.43547	0.01855
34	10.423	BV	0.0254	5.56994	3.42674	0.01482
35	10.464	VB	0.0365	20.01490	7.76097	0.05327
36	10.901		0.0336	35.85453	15.83327	0.09543
37	11.537	BB	0.0420	5.45697	2.01256	0.01452
Total	s :			3.75731 e 4	7.40539 e 4	

Appendix 16

Last changed : 2/26/2015 3:26:37 PM by Jostein

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multipl		tor wi

Signal 1: FID1 B, Back Signal

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	2.189		0.0130	1.52028	1.81891	0.13898
2	3.151		0.0145	9.05649	10.09521	0.82793
3	3.918	BB	0.0130	3.38641	4.40315	0.30958
4	4.156	BV	0.0149	9.18117	9.85419	0.83933
5	4.205		0.0127	734.18250	901.82819	67.11798
6	5.056	BB	0.0155	5.37569	5.43706	0.49144
7	5.854		0.0158	3.23973	3.20840	0.29617
8	6.544		0.0174	2.86238	2.64243	0.26167
9	7.161	BB	0.0171	2.17049	2.05621	0.19842

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} s\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[p A]} \end{aligned}$	Area 8
10	7.475		0.0137	2.13956	2.37319	0.19560
11	7.726		0.0188	2.05677	1.81162	0.18803
12	8.240		0.0174	2.19134	1.90201	0.20033
13	8.715		0.0197	2.53363	2.09064	0.23162
14	8.780	BB	0.0152	2.32528	2.42502	0.21257
15	8.962		0.0156	8.98788	9.05151	0.82166
16	9.016	BB	0.0156	2.88755	2.90302	0.26398
17	9.162		0.0219	3.59760	2.56974	0.32889
18	9.358		0.0164	1.17432	1.10472	0.10735
19	9.431		0.0157	18.11456	18.09301	1.65601
20	9.492		0.0238	7.48010	5.00781	0.68382
21	9.580	BB	0.0243	4.26648	2.66324	0.39004
22	9.812		0.0160	214.13348	207.34979	19.57580
23	9.974	BB	0.0307	4.41593	2.12421	0.40370
24	10.245		0.0178	3.33030	2.99379	0.30445
25	10.450		0.0389	10.28720	3.69745	0.94044
26	10.887		0.0355	16.65232	6.86814	1.52233
27	10.985		0.0257	16.31905	9.85480	1.49187

Appendix 17

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.918	BB	0.0134	3.26312	4.05003	0.32379
2	4.204	BB	0.0137	705.72748	850.73743	70.02810
3	7.474	BB	0.0150	2.09359	2.23047	0.20774
4	8.779	BB	0.0159	1.64636	1.61691	0.16337
5	8.963	BB	0.0161	3.30095	3.17282	0.32755
6	9.016		0.0152	2.08592	2.17022	0.20698
7	9.432	BB	0.0161	14.19856	13.73551	1.40890
8	9.492	BB	0.0184	6.39446	5.17705	0.63451
9	9.811	BB	0.0161	190.08430	183.56302	18.86173

[^0]| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$ | $\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$ | $\begin{aligned} & \text { Height } \\ & \text { [pA] } \end{aligned}$ | Area 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10.449 | | 0.0314 | 6.58970 | 3.07385 | 0.65388 |
| 11 | 10.541 | | 0.0251 | 2.62708 | 1.57230 | 0.26068 |
| 12 | 10.646 | | 0.0325 | 7.46712 | 3.44305 | 0.74095 |
| 13 | 10.759 | | 0.0308 | 7.59524 | 3.63028 | 0.75366 |
| 14 | 10.883 | | 0.0374 | 21.92809 | 8.93804 | 2.17589 |
| 15 | 10.985 | | 0.0258 | 8.29215 | 4.78173 | 0.82282 |
| 16 | 11.056 | | 0.0278 | 5.01501 | 2.63353 | 0.49763 |
| 17 | 11.101 | | 0.0333 | 8.83780 | 3.72179 | 0.87696 |
| 18 | 11.206 | | 0.0330 | 6.13745 | 2.69428 | 0.60901 |
| 19 | 11.761 | | 0.0383 | 4.49324 | 1.87924 | 0.44586 |

Appendix 18


```
Acq. Operator : Jostein
    Seq. Line : 7
Acq. Instrument : Agilent 7820A
Injection Date : 2/27/2015 2:41:45 PM
    Location : Vial 207
                                    Inj : 1
                                    Inj Volume : 1 \mul
Acq. Method : C:\CHEM32\1\DATA\PHENIAS 2015-02-27 12-52-55\PHENIAS.M
Last changed : 2/26/2015 3:26:37 PM by Jostein
Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M
Last changed : 2/26/2015 3:26:37 PM by Jostein
```

 FID1 B, Back Signal (PHENIAS 2015-02-27 12-52-55I207B0701.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	2.070	BB	0.0126	3.32957	4.14831	0.31875
2	3.918	BB	0.0124	3.50189	4.43173	0.33524
3	4.204	BB	0.0135	746.21600	912.34235	71.43679
4	7.474	BB	0.0146	2.21803	2.45175	0.21234
5	8.779	BB	0.0153	2.49012	2.58100	0.23838
6	8.961	BB	0.0147	4.09210	4.46391	0.39175
7	9.015		0.0159	3.63376	3.56648	0.34787
8	9.431	BB	0.0161	32.40655	31.16247	3.10235
9	9.490	BB	0.0177	5.96440	5.06685	0.57098

filent 7820A 4/21/2015 1:17:54 PM Josteir. Page 1 of 2

Appendix 19

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multi		tor wit

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	2.070		0.0128	2.83640	3.43584	0.26570
2	2.189	BB	0.0133	1.67221	1.93872	0.15664
3	3.151		0.0143	11.93146	13.50189	1.11768
4	3.918	BB	0.0125	3.30989	4.13513	0.31006
5	4.156	BV	0.0147	13.03720	14.22022	1.22126
6	4.204		0.0137	705.76172	847.56567	66.11245
7	5.055		0.0154	7.74872	7.90463	0.72586
8	5.853		0.0156	4.75477	4.78070	0.44540
9	6.544	BB	0.0175	4.07641	3.74364	0.38186

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} s\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	Area 8
10	7.161	BB	0.0177	3.23917	2.92381	0.30343
11	7.474	BB	0.0230	3.44893	2.21127	0.32308
12	7.727	BB	0.0171	3.09216	2.74872	0.28966
13	7.936	BB	0.0235	1.76212	1.15143	0.16507
14	8.241	BB	0.0182	3.21859	2.79896	0.30150
15	8.720	BB	0.0209	5.32557	4.04820	0.49887
16	8.781	BB	0.0160	1.62896	1.58417	0.15259
17	8.964	BB	0.0155	12.40091	12.58014	1.16166
18	9.017	BB	0.0166	3.07947	2.85964	0.28847
19	9.088	BB	0.0194	3.02805	2.29225	0.28365
20	9.163	BB	0.0211	4.77721	3.59788	0.44751
21	9.434	BB	0.0156	8.76069	8.81868	0.82066
22	9.496	BB	0.0206	11.66445	8.60108	1.09267
23	9.580	BB	0.0202	6.76750	5.13194	0.63395
24	9.813	BB	0.0169	182.79004	176.42859	17.12292
25	9.980	BB	0.0293	8.70604	4.29245	0.81554
26	10.091	BV	0.0182	1.70118	1.47662	0.15936
27	10.146	VB	0.0244	2.82261	1.75524	0.26441
28	10.248	BV	0.0214	3.20698	2.36224	0.30041
29	10.314	VB	0.0217	1.81826	1.25221	0.17033
30	10.415	BB	0.0429	8.61570	2.81280	0.80708
31	10.892	BV	0.0430	16.66260	5.30838	1.56087
32	10.988	VB	0.0262	9.77739	5.76890	0.91590
33	11.527	BB	0.0376	4.09365	1.61244	0.38347
Totals				1067.517041165 .64451		

Appendix 20

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multipl		tor with

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width $[\mathrm{min}]$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.918	BB	0.0125	3.20407	4.02834	0.34838
2	4.204	BB	0.0135	684.30444	842.60162	74.40394
3	6.864	BB	0.0144	1.01609	1.13484	0.11048
4	7.474	BB	0.0155	2.13432	2.16976	0.23206
5	8.962	BB	0.0155	3.23918	3.29862	0.35219
6	9.328	BB	0.0163	8.25296	8.34767	0.89734
7	9.491	BB	0.0182	13.06686	11.37514	1.42075
8	9.810	BB	0.0155	165.74506	168.36539	18.02134
9	10.090	BV	0.0166	18.46226	17.11541	2.00739

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	$\begin{aligned} & \text { Height } \\ & \text { [pA] } \end{aligned}$	Area 8
10	10.141		0.0195	7.92749	6.30199	0.86195
11	10.233	BB	0.0254	1.97092	1.26390	0.21430
12	10.887	BB	0.0294	4.60555	2.41681	0.50076
13	10.984		0.0251	2.47444	1.47844	0.26904
14	11.762		0.0329	3.31168	1.54862	0.36008

Appendix 21

Last changed : 2/26/2015 3:26:37 PM by Jostein

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ {[\text { min] }} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.918	BB	0.0125	2.89816	3.64637	0.36895
2	4.204	BB	0.0135	617.60034	756.91400	78.62399
3	7.474	BB	0.0141	1.87148	2.00751	0.23825
4	8.964	BB	0.0158	4.24097	4.20964	0.53990
5	9.017	BB	0.0172	1.37217	1.21388	0.17468
6	9.493	BB	0.0173	14.14788	12.44869	1.80110
7	9.812	BB	0.0161	118.37987	114.40845	15.07042
8	10.091		0.0167	7.14616	6.56510	0.90975
9	10.144	VB	0.0197	6.66224	5.22090	0.84814

[^1]
Appendix 22


```
Acq. Operator : Jostein Seq. Line : 1
Acq. Instrument : Agilent 7820A Location : Vial 201
Injection Date : 2/25/2015 10:04:46 PM
                                    Inj : 1
                                    Inj Volume : Manually
Acq. Method : C:\CHEM32\1\DATA\PHENIAS 2015-02-25 22-03-59\PHENIAS-MANUAI.M
Last changed : 2/17/2015 1:24:30 PM by Jostein
Analysis Method : C:\CHEM32\1\METHODS\PHENIAS.M
Last changed : 2/26/2015 3:26:37 PM by Jostein
```

 FID1 B, Back Signal (PHENIAS 2015-02-25 22-03-591201B0101.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with IsTDs		

Signal 1: FID1 B, Back Signal

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { width } \\ {[m i n]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} s\right]} \end{array}$	```Height [pA]```	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	0.852	BBAS	$7.28 e-3$	1815.38196	4336.31934	63.12681
2	2.021		0.0121	1.15358	1.51217	0.04011
3	3.908	BB	0.0133	3.33325	4.20108	0.11591
4	4.197	BB	0.0126	724.69727	896.66766	25.20011
5	5.750	BB	0.0274	2.77699	1.60061	0.09657
6	5.937	BB	0.0414	16.69599	6.62520	0.58057
7	6.515	BB	0.0323	3.63522	1.45684	0.12641
8	6.715		0.0160	3.07195	2.98474	0.10682
9	6.883	BB	0.0162	2.13552	2.03512	0.07426

lent 7820A 4/21/2015 12:26:18 PM Jostein Page 1 of 2

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { width } \\ {[m i n]} \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & \text { [pA] } \end{aligned}$	Area 8
10	7.476 BB	0.0148	2.03349	2.20676	0.07071
11	8.723 BB	0.0195	2.06343	1.55338	0.07175
12	8.781 BB	0.0144	2.08642	2.16597	0.07255
13	9.018 BB	0.0154	2.90697	2.98700	0.10108
14	9.108 BB	0.0154	19.05077	19.47408	0.66246
15	9.166 BB	0.0190	2.05297	1.69211	0.07139
16	9.331 BB	0.0177	2.24365	1.80336	0.07802
17	9.433 BB	0.0157	5.73573	5.70206	0.19945
18	9.498 BB	0.0239	10.43080	6.97172	0.36271
19	9.813 BB	0.0152	217.84288	211.26018	7.57511
20	10.144 BB	0.0217	9.99339	6.59562	0.34750
21	10.313 BB	0.0188	1.55826	1.29829	0.05419
22	10.451 BB	0.0320	5.87665	2.76904	0.20435
23	10.894 BB	0.0323	13.10189	6.09707	0.45560
24	10.989 BB	0.0248	1.70383	1.12901	0.05925
25	11.766 BB	0.0341	4.20736	1.93731	0.14630

Appendix 23

Appendix 24

CARBON_cdC13_T25_001 JHPH-1-31CARBFINAL

$\stackrel{N}{甘}$
W

Appendix 25

JHPH-1-31_150316105416 \#1-4 RT: 0.02-0.11 AV: 4 NL: 1.15E7
T: $\mathrm{FTMS}+\mathrm{p}$ ESI Full $\mathrm{ms}[150.00-1000.00$]

Appendix 27

PH.1.31
Wednesday, March 25, 2015 11:01:38

Appendix 27

/f

Appendix 28

CARBON_odcl3_T25_001 $\%$
JHPH-1-31B
$\%$

咞苃

[^2]Appendix 29

Appendix 30

Appendix 31

JHPH-1-33 \#1-3 RT: 0.01-0.06 AV: 3 NL: 2.74E6
JHPH-1-33 \#1-3 RT: 0.01-0.06 AV: 3 NL
T: FTMS + p ESI Full ms [200.00-500.00]

Appendix 32

 (

Appendix 33

Appendix 34

JHPH-1-56_b\#1-5 RT: 0.01-0.13 AV: 5 NL: 5.85E7 T: FTMS $+\overline{\mathrm{p}}$ ESI Full ms [200.00-600.00]
$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{3}=387.1955$

Appendix 35

隻

												ה'T			$\begin{aligned} & \text { ケ' } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { T-1 } \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\stackrel{\text { Ț }}{\substack{~}}$	$\begin{aligned} & \text { Hed } \\ & 0 \end{aligned}$							
13.	1	12.0	I	11.	10	1													15	,						
13.0	12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	$\begin{gathered} 6.5 \\ (\mathrm{ppm}) \end{gathered}$	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.

Appendix 36

CARBON_cdcl3_T25_001 JHPH-1-56CARBFINAL

Mo

Appendix 37

JHPH-1-56_b \#1-5 RT: 0.01-0.13 AV: 5 NL: 5.85E7
T: FTMS $+\bar{p}$ ESI Full ms [200.00-600.00]
387.1959
$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{3}=387.1955$
1.1986 ppm

Appendix 38

Appendix 39

Appendix 40

CARBON_cdcl3_T25_001 JHPH-1-71CARBFINAL

[^3]Appendix 41

JHPH-1-71 \#1-5 RT: 0.02-0.14 AV: 5 NL: 1.03E8 T: FTMS + p ESI Full ms [150.00-600.00]

> 385.1802
> $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{3}=385.1798$
> 0.8547 ppm

Appendix 42

Appendix

Appendix 44

JHPH-1-80-a \#1-5 RT: 0.00-0.12 AV: 5 NL: 1.02E8 T: FTMS +p ESI Full ms [150.00-800.00]
459.1929
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}=459.1931$

Appendix 45

Appendix 46

CARBON_CdCl3_T25_001 JHPH-1-80

Appendix 47

Appendix 48

Appendix 49

Appendix 50

JHPH-1-83 \#1-5 RT: 0.02-0.13 AV: 5 NL: 1.52E8
T: FTMS + p ESI Full ms [200.00-800.00]
501.2403
$\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}=501.2400$
0.6006 ppm

Appendix 51

Appendix 52

Appendix 53

PROTON_cdcl3_T25_001 Gradient Shimming

Appendix 54

JHPH-1-82C \#1-5 RT: 0.00-0.12 AV: 5 NL: 2.59E7
T: FTMS + p ESI Full ms [200.00-600.00]
455.1830
$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}=455.1829$
0.1681 ppm

Appendix 55

Appendix 56

Appendix 57 (gHSQC)

Appendix 58 (gDQCOSY)

Appendix 59 (gHMBC)

Appendix 60 (NOESY)

Appendix 61

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0

Appendix 62

Appendix 63 (gDQCOSY)

Appendix 64 (gHSQC)

Appendix 65 (gHMBC)

Appendix 66 (NOESY)

Appendix 67

Appendix 68

Appendix 69 (gDQCOSY)

Appendix 70 (gHSQC)

Appendix 71 (gHMBC)

[^0]: ilent 7820A 4/21/2015 1:16:42 PM Josteir

[^1]: ،gilent 7820A 4/21/2015 1:26:55 PM Josteir

[^2]: $\begin{array}{lllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]:

