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Abstract
A method is presented which uses logarithmic statistics to detect and characterise class mixtures and targets in back-
ground clutter in synthetic aperture radar (SAR) images. Mixtures of ground cover types show up as extreme radar
texture in statistical analysis of SAR images. Instead of modelling this as a spatially nonstationary radar cross section,
this paper demonstrates how a mixture model analysis can be used to characterise the separate components and estimate
their mixing proportions.

1 Theory

1.1 Mixture Model

Let X be a real and positive random variate which repre-
sents a measurement obtained within a certain region of
a SAR image. It is assumed that the region of interest is
heterogeneous, and that X can be modelled with a two-
component mixture model. This means that the observa-
tion X will be drawn from a distribution with probabil-
ity density function (pdf) pX1

(x) with probability π1, or
from a distribution with pdf pX2

(x) with probability π2.
The pdfs are distinct, meaning that pX1(x) 6= pX2(x),
and the mixing proportions obey

π1 + π2 = 1 . (1)

The overall pdf of X thus becomes

pX(x) = π1 · pX1(x) + π2 · pX2(x) . (2)

1.2 General Mixture Moments

We shall now express the moments of X in terms of the
moments of the mixture components {Xi}ni=1, for a gen-
eral n. Denote the mean, the variance, and the mixing
proportion of Xi as µi, σ2

i and πi, respectively. The gen-
eral jth-order moment of an n-component mixture can be
written in terms of a binomial expansion as [1, Ch. 1.2.4]
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where E{·} is the expectation value operator,
(
j
k

)
is the

binomial coefficient, and δi = µi − µ, with

µ = E{X} =

n∑
i=1

πiµi . (4)

Observe that the final expression in (3) consists of two
parts: a sum and a double-sum. The former is a propor-
tional mixture of the jth-order moment for the individual
components. The latter contains cross-terms between the
components, since all terms in the double-sum depend on
the common mean, µ, through δi. Hence, the general jth-
order moment is rewritten as

E{(X − µ)j} = Wj +Bj (5)

with the within-class contribution defined as

Wj{X} =
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(6)

and the between-class contribution as
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both indexed by the moment order, j.
Another interpretation of Bj is that it quantifies the ex-
cess portion of the central moments elicited by the mix-
ing of the distributions {pXi

(x)}ni=1. Wj is merely a
weighted mean of the moments produced by random vari-
ables {Xi}ni=1 that are not mixed. The idea is to use the
Bj to detect the presence of a mixture and to characterise
the kind of mixture by resolving the mixing proportions
and the parameters of the mixing distributions. It is seen
from (7) that B1 , 0, so the mixture causes no excess in
the mean, but all higher-order Bj are generally nonzero.

1.3 Two-class Mixture Moments
The scope is from here on limited to the two-component
model as we enter a study of the second, third and fourth-
order central moment of a two-class mixture. These are



referred to as variance, skewness and kurtosis, while not-
ing that the final two may alternatively be defined as stan-
dardised central moments of their respective order.
The central moments up to fourth-order have already
been given by Kim and White [2] in a form which is
easily obtained from (3). We elaborate on their result
by deriving simplified expressions for the between-class
contribution, Bj , for j = {2, 3, 4}. The following pre-
sentation uses the notation: δ = µ1 − µ2.
For the variance of a two-class mixture, the between-class
contribution becomes
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(8)

The derivation is straight-forward algebra using (1) and
(4). The factor δ2 in B2 is the square of the differ-
ence in component means and has an obvious interpre-
tation as between-class dispersion. We also note that
π1π2 = π1 − π2

1 is maximum when π1 = π2 = 0.5.
The between-class contribution to the skewness of a two-
class mixture is
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The sign of B3 is determined by the difference in means,
δ = µ1 − µ2, in combination with the relative size of the
difference in squared mixing proportions, π2

2 − π2
1 , and

the difference in variances, σ2
1 − σ2

2 .
The kurtosis of a two-class mixture has the following
between-class contribution:

B4{X} =

2∑
i=1

3∑
k=0

πi

(
4

k

)
δ4−k
i E

{
(Xi − µi)

k
}

=

2∑
i=1

πi
(
δ4i + 6δ2i σ

2
i + 4δiγi

)
=π1π2δ

2
[
(π3

1 + π3
2)δ2 + 6(π1σ

2
2 + π2σ

2
1)

+ 4(γ1 − γ2)/δ
]

(10)

where γi = E{(Xi−µi)
3} is the skewness of component

i. The sign of B4 depends on the relative size of the mix-
ing proportions, the variances, the difference in means, δ,
and the difference in skewnesses, γ1 − γ2.

1.4 Gamma Mixture Moments
We now insert two gamma distributions with equal shape
parameter, L > 0, but unequal means, µ1 6= µ2, into
the two-class mixture model assumed in Section 1.1. The
common shape parameter is reasonable for SAR data, be-
cause it corresponds to the equivalent number of looks
[3], which is an image constant determined by the level
of multilook averaging [4].

The pdf of X is thus given by (2), defined as a mixture of
the gamma distributions

pXi(x;µi, L) =

(
L

µi

)L
xL−1

Γ(L)
exp

(
− L
µi
x

)
(11)

for i = {1, 2}, where Γ(·) is the gamma function, µi > 0
and L > 0. This is denoted Xi ∼ γ(µi, L).
The variance and skewness of a gamma distributed vari-
able are σ2

i = µ2
i /L and γi = 2µ3

i /L
2. Hence, the

between-class contributions to the central mixture mo-
ments become

B2{X} = π1π2δ
2 , (12)
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Since δ2 ≥ 0 and πi, µi, L > 0, it is easy to verify that
B2 ≥ 0 andB4 ≥ 0, with equality if and only if µ1 = µ2,
in which case pX1

(x) = pX2
(x).

1.5 Logarithmic Gamma Mixture Moments

We still assume Xi ∼ γ(µi, L), but now consider the
moments of Yi = lnXi, or equivalently, the logarith-
mic moments of Xi. The mean of Yi becomes µ̃i =
ψ(0)(L) + ln(µi/L), the variance is σ̃2

i = ψ(1)(L), and
the skewness is γ̃i = ψ(2)(L) [5,6]. Here ψ(r)(·) denotes
the polygamma function of order r.
Note that only the first-order moment of Yi depends on
the mean. Due to the logarithmic transformation, the
higher-order moments only depend on the common shape
parameter L. We thus have

µ̃1 − µ̃2 = ln

(
µ1

µ2

)
, (15)

σ̃2
1 − σ̃2

2 = ψ(1)(L)− ψ(1)(L) = 0 , (16)

γ̃1 − γ̃2 = ψ(2)(L)− ψ(2)(L) = 0 . (17)

When these are inserted into Eqs. (8)-(10), we obtain
the between-class contribution to the logarithmic mixture
moments, whose expressions are seen to be simpler than
for the linear case. They become

B2{Y } = π1π2δ̃
2 , (18)

B3{Y } = π1π2(π2
2 − π2

1)δ̃3 , (19)

B4{Y } = π1π2δ̃
2

[
(π3

1 + π3
2)δ̃2 + 6ψ(1)(L)

]
, (20)

where we define

δ̃ = µ̃1 − µ̃2 = ln

(
µ1

µ2

)
. (21)



1.6 Logarithmic Wishart Mixture Moments
The theory can be extended to multilook polarimetric
SAR data, where a pixel is represented by the polari-
metric covariance or coherency matrix, denoted C. Let
C ∈ Cd×d be a random matrix defined on the cone of
complex, Hermitian and positive semidefinite matrices
with dimension d, denoted Ω+. Then assume a two-class
mixture model, such the pdf of C is

pC(C) = π1 · pC1
(C) + π2 · pC2

(C) , (22)

with mixing proportions π1 and π2, and pdfs pC1(C) and
pC2

(C) for the two class components. Further assume
that the components follow the scaled complex Wishart
distribution, such that

pCi
(C; Σi, L) =

LLd

Γd(L)

|C|L−d

|Σi|L
etr(−LΣ−1

i C) (23)

for i ∈ {1, 2}, where | · | is the determinant, etr(·) =
exp(tr(·)) is the exponential trace operator, and

Γd(L) = π
d(d−1)

2

d−1∏
i=0

Γ(L− i) (24)

is the multivariate gamma function of the complex kind
[6,7]. The distribution parameters are the component spe-
cific scale matrix Σi = E{C} and the common shape
parameter L.
A matrix-variate pdf defined on Ω+ can be characterised
by statistics known as matrix log-cumulants (MLCs). For
the scaled complex Wishart distribution the low-order
MLCs are given as [6, 7]

κ1 = E{ln |C|} = ψ
(0)
d (L) + ln |Σ| − d lnL , (25)

κ2 = E{(ln |C| − κ1)2} = ψ
(1)
d (L) , (26)

κ3 = E{(ln |C| − κ1)3} = ψ
(2)
d (L) , (27)

with the rth-order multivariate polygamma function of
the complex kind defined as

ψ
(r)
d (L) =

dr+1

dLr+1
ln Γd(L) . (28)

The first three matrix log-cumulants are identical to the
first three central moments of ln |C| (which is not true for
higher-order MLCs). We may therefore apply the theory
of mixture moments and their decomposition into within-
class and between-class contributions, as presented in
Section 1.2 and 1.3. The between-class contributions to
the second, third, and fourth-order MLC of a two-class
mixture of scaled complex Wishart distributions become

B2{C} = π1π2∆2 , (29)

B3{C} = π1π2(π2
2 − π2

1)∆3 , (30)

B4{C} = π1π2∆2

[
(π3

1 + π3
2)∆2 + 6ψ

(1)
d (L)

]
, (31)

where we define

∆ = ln

(
|Σ1|
|Σ2|

)
. (32)

Remark that all expressions in this section reduces to
those in Section 1.5 when d = 1, in which the scaled
complex Wishart matrix becomes a gamma variable.

2 Inference

This section outlines a way of extracting the mixing pro-
portions and the scale parameters of the mixture model
from the moments reviewed in previous sections. We as-
sume that the image constant L is known for the given
SAR focusing scheme, and are left with estimating π1,
Σ1 and Σ2 in the general polarimetric case. This is done
by relating the desired mixture model parameters to sam-
ple moments that can be computed from the data subset.

Denote the sample MLCs as 〈κi〉, i ∈ {1, 2, 3}. These
are finite sample estimates of the population MLCs de-
fined by (25)-(27). The sample MLCs can be computed
as sample means or by unbiased k-estimators [8]. They
are related to the estimates of the mixing proportions, π̂1
and π̂2, and of the scale matrices, Σ̂1 and Σ̂2, by the fol-
lowing estimation equations:

〈κ1〉 − ψ(0)
d (L) = ln |π̂1Σ̂1 + π̂2Σ̂2| , (33)

〈κ2〉 − ψ(1)
d (L) = π̂1π̂2∆̂2 , (34)

〈κ3〉 − ψ(2)
d (L) = π̂1π̂2(π̂2

2 − π̂2
1)∆̂3 , (35)

where ∆̂ = ln(|Σ̂1|/|Σ̂2|). In addition, we may use

〈C〉 = π̂1Σ̂1 + π̂2Σ̂2 , (36)

where 〈C〉 is a sample mean estimate of the scale matrix
Σ of the mixture.

There are alternative ways of combining the estimation
equations using various optimization techniques. A sim-
ple method is shown here. To isolate π̂1, we may combine
(34) and (35) into

ρ =

(
〈κ3〉 − ψ(2)

d (L)
)2

(
〈κ2〉 − ψ(1)

d (L)
)3 =

1− 2π̂1
π̂1(1− π̂1)

. (37)

To infer the mixing proportions, we compute the statis-
tic ρ and solve (37) numerically for π̂1. Figure 1 shows
the nonmonotonic relationship between π1 and ρ. Due
to the ambiguity between the mixing proportions, we can
introduce the convention π1 ≥ π2 and limit the search for
π1 to the interval [0.5, 1] to ensure that the problem has a
unique solution.



Figure 1: Relation between mixing proportion π1 and ρ.

3 Future Work
The theory will be verified and illustrated by experiments
on simulated data, that show the capabilities of statisti-
cal unmixing under both ideal conditions. It will then be
applied to relevant applications using real data, such as
estimation of melt pond fractions over sea ice and forest
density in sparse forest areas with low to medium above-
ground biomass levels.
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