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Abstract
In the tokamak scrape-off layer, radial motion of blob-like structures is the
dominant mechanism for transport of particles and heat. Fixed point probe
measurements in the Tokamak à Configuration Variable scrape-off layer reveal
highly intermittent fluctuations in the ion saturation current. These measure-
ments are well described by a shot noise process with exponential pulse shapes,
exponentially distributed pulse amplitude and pulses arriving according to a
Poisson process.

The statistical properties of this shot noise process is explored in this thesis.
Characteristic functions and probability density functions of the shot noise pro-
cess have been derived, as well as the joint probability density function between
the resulting signal and its derivative. These probability density functions have
then been used to derive a general model for the excess statistics of a shot noise
process. This model has been explored using synthetically generated shot noise
time series.

Synthetically generated shot noise time series have also been used to compare
results of conditional averaging using various pulse amplitude and waiting time
distributions, as well as different pulse shapes. While the pulse shape is well
preserved after conditional averaging, the pulse waiting time and amplitude
distributions are not.

Excess time statistics have been analyzed for the ion saturation current mea-
sured by a Langmuir probe at a fixed point in the Tokamak à Configuration
Variable scrape-off layer. The general model gives a qualitatively better fit to the
data from the measurements than the normal limit does. Probability density
functions of the time above threshold per upcrossing have been computed, and
reveal exponential tails. It is found that both the average time above threshold
per upcrossing and the root mean square value of the time above threshold per
upcrossing have very slow decay for large threshold values, underlining the im-
portance of intermittent fluctuations for plasma-wall interactions for tokamak
plasmas.
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1
Introduction andmotivation
Since the discovery some 80 years ago that nuclear fusion of small elements
releases large amounts of energy, controlling and harnessing this power has
been a goal for the scientific community. While the challenges were great (great
enough to see collaboration between Nato and Soviet during the Cold War),
today nuclear fusion is one of our most promising paths towards a clean and
sustainable energy source. One particularly promising design for a fusion reac-
tor is the tokamak, invented by Igor Tamm and Andrei Sakharov in the Soviet
Union [Fowler, 1999].

The tokamak is a torus-shaped device which uses magnetic fields to confine
the hot plasma which sustains the fusion reactions. The magnetic fields are
created by magnetic coils as well as currents in the plasma, as presented in
Figure 1.1a. Toroidal magnetic coils are used to create a toroidal magnetic
field, while currents within the plasma together with the poloidal coils create a
poloidal magnetic field. Together, these fields result in a helical magnetic field
which confines the plasma particles to helical paths within the tokamak. How-
ever, due to the toroidal shape of the tokamak, forces are generated which push
the plasma outwards along the major radius of the device, towards its outer
walls [Freidberg, 2007, p. 271]. This is undesirable, as plasma-wall interactions
causes damage to the walls and release of impurities back into the plasma. To
avoid plasma-wall interactions, divertor targets are set up below the plasma

1
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(a) Magnetic coils and the resulting
current and helical magnetic field.

(b) Poloidal cross-section of the di-
verted tokamak plasma.

Figure 1.1: Schematics of the tokamak configuration.

core where plasma exhaust and removal of impurities can be controlled. A
schematic of the poloidal cross-section of the magnetic field lines in a tokamak
with divertor targets is presented in Figure 1.1b. In the plasma core, the mag-
netic field lines are closed. Closer to the wall, outside the separatrix (or last
closed flux surface), the magnetic field lines intersect the divertor targets. This
area of open magnetic field lines is called the scrape-off layer (SOL). Outside of
the SOL is the wall shadow, where the magnetic field lines hit the tokamak walls
instead of the divertor targets. Ideally, plasma moving across the separatrix will
follow the magnetic field lines ending at the divertor targets instead of hitting
the tokamak walls [Stangeby, 2000a,b].

1.1 Transport and turbulence in the SOL
Unfortunately, it turns out that the plasma moving into the SOL does not always
simply flow towards the divertor targets. An example is seen in Figure 1.2,where
a neutral deuterium gas has been injected into the edge region of a plasma
and the resulting emission is recorded by a fast camera [Maqueda et al., 2011].
The solid line is the location of the last closed flux surface (see Figure 1.1b),
while the dotted line marks the beginning of the wall shadow, where magnetic
field lines hit the main chamber wall of the tokamak. A blob of plasma escaping
across the separatrix reaches the wall shadow in about 70µs, and dissipates at
the wall instead of at the divertor targets. The radial motion of such blob-like
structures is the dominant mechanism for transport of particles and heat in the
SOL [D’Ippolito et al., 2011, Garcia, 2009].

Figure 1.3a shows the ion saturation current fluctuations measured by a Lang-
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Figure 1.2: Puff of neutral deuterium gas in the edge plasma region of the NSTX ex-
periment. The area is (23cm)2, and there are 10µs between each frame.
Image courtesy of Stuart Zweben.

muir probe at a fixed point in the SOL of the Tokamak á Configuration Variable
(TCV) tokamak. Here, fluctuations often reach values above 4 times the root
mean square (rms)-value, (which is very unlikely for a Gaussian process, a prob-
ability of less than 3×10−5). Figure 1.3a is a time series; the bursts seen are due
to the radial motion of blob-like structures such as the one seen in Figure 1.2.
That such large-scale fluctuations exist in the SOL is a well-known result. In
Figure 1.3b, the rms-values of electron density, electric potential, electron tem-
perature and magnetic field strength in the SOL are presented as functions of
radius. r/a = 1 corresponds to the last closed magnetic flux surface, so r/a > 1
corresponds to the SOL. It is evident that while there exists fluctuations in the
electron density and electric potential in the plasma core, the fluctuation levels
increase rapidly with distance in the SOL, and the same behaviour is seen in
the electron temperature.

The large-amplitude fluctuations caused by the motion of blob-like structures
in the SOL present considerable engineering challenges. We need to be capable
of describing these fluctuations in a coherent manner. The focus of this thesis
will be to approach the problem by using statistical modelling to describe fluc-
tuations seen in time series from single-point measurements. The analytical
work will be motivated by and compared to the TCV tokamak discharge 27601
ion saturation current (Figure 1.3a). The model presented here and its predic-
tions are general. While we apply the model to the plasma scrape-off layer in
tokamaks, it can be applied to many other physical systems. Examples include
shot effect in vacuum tubes, thermal agitation of electrons in resistors [Rice,
1944] and atmospheric wind gusts [Kristensen et al., 1991].
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Fig. 7. The radial dependences of the normalized rms fluctuat- 
ing amplitudes of density Z/n, potential 4/(/c&), tempera- 

ture %/r, and magnetic field 6,/B+, in TEXT. 

dominates, so that upi, = v, - veBB/B+ = ve •t v,k,/ke, 
i.e. the phase velocity in the laboratory frame gives us 
information on the mass rotation velocity directly. 

3.  Amplitudes 

Fig. 7 [17] shows the rms values of C/n, G/k&), 
Fe/T, and &/Be for a particular discharge in TEXT as 
a function of r/a (kb is Boltzmann’s constant). The 
values shown are characteristic of all tokamak edges. 
Note that A/n # ;/(k,T,); this departure from the 

Table 1 
Edge turbulence parameters at r = a 

parameter TEXT ATF ZT-40 

cl(a) 3 1 0.1 
n (lo’* me3) 4 1 5 

T. (ev) 30 20 30 
L, (cm) 2 3 1.5 
+ (cm) 5 5 8 
ii/n 0.1-0.2 0.05-0.1 0.3-0.5 
G/(k,T,) 0.15-0.3 0.1-0.2 0.4-0.6 
C/T, 0.05-0.1 0.1 0.2-0.5 
s/B(o) 10-S 10-6 0.01-0.02 
k (cm-‘) a) 3 1 0.1 

r t rr.E r rf.E z rf.E 

Q I q’.E I q’. E  r Q & b 

Q, IQ,, Cl (1 >1 

Parameters which are significantly different are in bold type. 
‘) Width of h spectrum is tabulated. 

Boltzmann relationship is influenced by changing the 
impurity concentrations (discussed later). 

A simple mixing length model predicts that H/n 
should saturate when the local density profile is flattened 
(implying no further drive), i.e. when A/n = (k,L,)-‘. 
There is a strong trend in the direction expected [18], 
but with two discrepancies. First, the amplitude fi/n = 
2(kL,)-‘, larger than expected (locally the gradient can 
reverse). Second, within one machine (e.g. TEXT) the 
scaling is not adhered to. A factor - 5 variation can 
occur, suggesting there are important processes not con- 
sidered in the simple model. Table 1 shows that similar 
fluctuation amplitudes are found in stellarators [19] and 
reversed field pinches (RFP’s) [20] except for the much 
larger magnetic fluctuation level in RFP’s. 

4. Wave numbers 

Typical wave numbers observed near the edge [17] 
are k B - 1 to 3 cm-‘, k, 3 1 cm-’ (i.e. - ke) and 
k,, - l/(qR), with q the safety factor. If the turbulence 
is drift wave like we expect keps = 1 (211, with ps the ion 
gyroadius using T,, so k, a B&eo.5. Alternatively if the 
magnetic geometry is defining the structure then we 
might expect k, to be given by the lowest (most unsta- 
ble) value of m in a correlation volume around the 
rational surface where q = m/n. Some evidence for 
both properties exists. We know [18] k a Be. However, 
for TEXT k,p, = 0.05; i.e. the wavelengths are > 10 
times longer than expected from drift wave theories. 
Also there is a very large variation in k, at a given B,, 
larger than any variation in Te-‘.‘. On the other hand, 
comparing tokamaks, stellarators and RFPs (table 1) 
suggests that k is dependent on q, i.e. the magnetic 
geometry is important. We have not uncovered all the 
important physics yet. 

5. Particle confinement and electrostatic turbulence 

We categorize the fluctuations as either electrostatic 
(fluctuation density ii, potential 6 = -i/k, tempera- 
ture f) and magnetic (fluctuating magnetic field 6). In 
reality both will exist simultaneously. The electrostatic 
fluctuations produce a fluctuating radial velocity fir = 
&/Be. Ignoring poloidal and toroidal asymmetries, and 
assuming w K wCi, the ion cyclotron frequency, the elec- 
trostatic fluctuation driven radial particle flux (denoted 
by superscript f, E) is [22] 

Ff,E = (&i)/B,. (3) 

(b) The radial dependencies of the normalized rms fluctuating amplitudes of density
(ñ/n), potential (ϕ̃/kbTe), temperature (T̃e/Te) and magnetic field (b̃r/Bϕ) in a
trial in the TEXT-tokamak [Wootton, 1990].

Figure 1.3: Large-scale fluctuations in the SOL
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Fig. 1. a) Poloidal cross-section of the SNL, standard TCV diverted magnetic equilib-
rium. The Langmuir probe reciprocates on the outer machine midplane through the region
enlarged in (b). The Mach-probe variant of the Langmuir-probe head is shown schemat-
ically in (c), as viewed from inside the torus. Its 5 pins are made of graphite with both
diameter and length 1.5 mm, set in a boron-nitride matrix. An example of time traces
from a typical ohmic density ramp discharge with Ip = 340 kA are shown in (d). From
top to bottom: global line averaged density, n̄e, probe position, ρ during reciprocation,
smoothed ion saturation current and floating potential, from which the local density, ne

and turbulent flux, Γr are computed.

at the separatrix and ρ = 1 at the midplane wall, (18–33)mm away from the
separatrix, depending on the discharge. Any data for which ρ > 1 corresponds to
points outside the midplane wall radius and thus to the region between the outside
wall and the outer divertor target.

The probe head is poloidally shaped so that at any time during the reciprocation,
all 5 pins lie on a given flux surface for the equilibrium in Figs. 1a and b. To
provide Mach-probe capability, a central bar separates pins 2 and 5, as shown in
Fig. 1c. Probe pins are used in the usual way to measure the ion saturation current
density, Jsat and floating potential, Vf at a sampling rate of 6MHz. The local
electron density, ne is obtained directly from Jsat and the electron temperature, Te

as ne ∝ Jsat T
−1/2
e . Since this temperature is currently measured on TCV at only

3 kHz, fluctuations in Te must be assumed negligible. This is a frequently employed
assumption in studies of this nature, even though measurements in some cases (e.g.
on the DIII-D tokamak [8]) have shown that the relative fluctuation level of Te can
be as high as that of Jsat.

Czech. J. Phys. 55 (2005) 273

Figure 1.4: TCV Discharge 27601: a) Poloidal cross-section of the TCV. b)Detail around
the probe. c) The Langmuir probe head [Horacek et al., 2005].

1.2 The TCV Tokamak
The TCV Tokamak is a medium sized tokamak with major plasma radius R0 =

0.89m and minor plasma radius a = 0.25m. In the experiment discussed here,
the toroidal magnetic field was Btor = 1.4T, and a standard 5-pin Langmuir
probe was used for measurement of plasma fluctuations. The probe head is
fixed 10mm below the midplane, and 3mm in front of the main chamber wall
[Garcia et al., Forthcoming 2015]. A graphical representation of the poloidal
cross-section of the TCV tokamak is presented in Figure 1.4, where the blue
lines show the magnetic field lines and the broken blue lines represent the SOL
magnetic field. The black arrow in the right mid-plane shows how the Langmuir
probe enters the plasma, although in this figure it is about 23cm below the
midplane. More detailed, technical discussions of the tokamak and probe setups
can be found in Horacek et al. [2005] and Garcia et al. [Forthcoming 2015].

1.2.1 The TCV Discharge 27601 data set
The Langmuir probe recorded (among other data) the ion saturation current
Jsat in the SOL plasma. The probe recorded at a frequency of 6Mhz for about
one second, an unprecedented length of time. During this time, all plasma
parameters were constant except for a slow drift of the plasma column, causing
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Figure 1.5: TCV Discharge 27601: The derivative of the signal in Figure 1.3a, normal-
ized by the correlation time τd = 15.9µs.

a linear trend in Jsat. In addition, due to errors in measurement of low frequency
variations, negative values of the saturation current appears in the time series.
In order to counteract these problems, the linear trend was first removed and
then the signal was normalized according to Ĵsat = (Jsat − 〈Jsat〉)/Jrms. The
trend was −6.23mAs−1t[s] + 6.43mA and the rms-value was Jrms = 4.89mA.
The moments of Ĵsat are presented below. Trivially, the first two moments are
very close to 0 and 1, respectively. Ĵsat has a positive skewness and a flatness
which is 3.65 higher than the flatness of a normal distribution. Thus, the ion
saturation current is far from being normally distributed,

S Ĵsat = 1.51, (1.1)

F Ĵsat = 6.65. (1.2)

An excerpt of the detrended, normalized signal is presented in Figure 1.3a.
Note the bursty nature of this signal with frequent appearances of amplitudes
much larger than the rms-value of the signal. In Figure 1.5, the normalized
derivative of Ĵsat is presented, τdd Ĵsat/dt , where τd is the correlation time of
the signal, which is later in this section shown to be 15.9µs. This derivative has
been calculated using a five-point polynomial method.

In Figure 1.6, the probability density function (from here on denoted PDF) of
the normalized, detrended ion saturation current is presented, along with a
fitted normalized gamma distribution [see appendix, Eq. (B.25)]. The gamma
distribution is a good fit for Ĵsat > 0, but fails for lower values of Ĵsat, most likely
due to the negative values in the original data set. Here and in the following,
all fits are made on a logaritmic scale to a truncated PDF or cumulative dis-
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Figure 1.6: TCV Discharge 27601: Probability density function of the normalized ion
saturation current, logarithmic scale.

tribution function (from here on denoted CDF). Truncated distributions are
covered in the appendix, Section B.8. Usually, the truncation parameter is fixed
at the lowest data set value and other parameters are fit parameters. Here, the
truncation parameter has been set higher (at -1.75) to avoid the discrepancies
between the signal and a gamma distribution for small signal values.

Conditional averaging of the TCV Discharge 27601 data set
Figures 1.7, 1.8 and 1.9 present results from conditional averaging of Ĵsat. Con-
ditional averaging is a method for elucidating the statistical properties of large
amplitude fluctuations in a signal, detailed in Section 4.1. In these figures, large-
amplitude fluctuations are defined as bursts with peak values of Ĵsat > 2.5.
2041 such bursts were recorded. In Figure 1.7, the complementary cumulative
distribution function of the waiting time between large-scale fluctuations is pre-
sented, along with an exponential fit to the data. The excellent fit suggests that
the number of large-amplitude bursts follows a Poisson distribution, and thus
that the individual bursts are uncorrelated. In Figure 1.8, the complementary
cumulative distribution function of the peak amplitudes of the large-amplitude
fluctuations, along with an exponential fit, is presented. Again, the fit describes
the data well.

As well as the time between peaks and the amplitudes of the peaks, the condi-
tional average gives the average shape of all recorded bursts. The result is pre-
sented in Figure 1.9a, along with exponential fits to both the rising and falling
parts of the waveform. The fit gives a characteristic rise time τr = 5.14µs and
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a characteristic fall time τf = 10.7µs, giving the estimated duration time, or
correlation time, as τd = τr + τf = 15.9µs. In Figure 1.9b, the waveforms from
conditional averaging with several different ranges of threshold is presented,
the black line is the average of peaks for 2 < Ĵsat < 4, the blue dashed line is
the average of waveforms with peaks in the range 4 < Ĵsat < 6 and the red
dotted line is for peaks with values 6 < Ĵsat < 8. This figure shows that all
three ranges give approximately the same resulting waveform, and that the
shape does not depend on the burst amplitudes.

Autocorrelation function and power spectral density of the TCVDischarge 27601 data set
An analytic expression for the autocorrelation function of a shot noise process
will be discussed in Section 2.1.5. In Figure 1.10, the autocorrelation function of
Ĵsat is presented, togetherwith the autocorrelation function of a normalized shot
noise process with τr and τf equal to the characteristic rise and fall time found
from the waveform of the conditionally averaged signal (black dotted line) and
the same analytic expression fitted to the experimental data with τr and τf
as fit parameters (red dashed line). Fitting the function gives τr = 0.615µs
and τf = 15.3µs. Even though these are quite different from the values from
conditional averaging, they still give τd = τr + τf = 15.9µs, making this a
robust result. That a sharp pulse rise time in general becomes less sharp after
conditional averaging is a result presented in Section 4.2, and this is consistent
with the difference in the fit parameters. Figure 1.11 shows the power spectral
density of Ĵsat, calculated by Welch’s method. The black dotted line and red
dashed line are the analytic results with τr and τf from conditional averaging
and fitted to the autocorrelation function, respectively. Again, the fit to the
autocorrelation function gives better correspondence to the experimental data
than the values from conditional averaging.

1.2.2 Motivation from the TCV results
A shot noise process is a stochastic process consisting of the superposition of
identical pulse shapes with randomly distributed amplitudes and arrival times.
Figure 1.6 shows that the ion saturation current fluctuations have the same
probability density function as a shot noise process with Poisson distribution
of pulse events, exponentially distributed pulse amplitudes and an exponential
waveform [Garcia, 2012]. Conditional averaging of the ion saturation current
agrees with these results, as the large-amplitude events in the density fluctu-
ations have exponentially distributed amplitudes and waiting times, and the
event shapes are well described by exponential functions. This motivates both
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an investigation into the statistical properties of the shot noise model, as well
as an investigation of how the amplitude- and waiting time distribution of
large-amplitude events depends on the underlying amplitude- and waiting
time distribution of the pulses in the shot noise process. The choice of ma-
terials for the divertor targets and the main chamber walls depends heavily
on the size and duration of the particle- and heat flux they are expected to
endure. Therefore, investigation of the statistical properties of the time a shot
noise process spends above a given amplitude, called excess time statistics, is of
particular interest.

1.3 Thesis Structure
In Chapter 2, the shot noise model is introduced. The one-sided exponential
pulse shape, common in the literature, is extended to a double-sided expo-
nential pulse shape. Campbell’s theorem is presented and discussed for some
choices of waiting time distributions. The autocorrelation function and power
spectral density of the shot noise process with a double-sided exponential pulse
shape are discussed. The moments of both the shot noise process and the deriva-
tive of the shot noise process are discussed, and the PDFs for these are found for
Poisson distribution of pulse events, exponentially distributed pulse amplitudes
and the double-sided exponential pulse shape.Lastly, the joint PDF of the shot
noise process and its derivative is found for the same pulse distributions and
pulse shape.

In Chapter 3, excess time statistics of the shot noise process is discussed. A
general model, based on the joint PDF between the shot noise process and its
derivative, is presented. The non-intermittent and strong intermittency limits
of this general model are discussed, as well as the limit of large threshold. In
the strong intermittency limit, a PDF of the time above threshold is found. The
results are compared to synthetically generated shot noise processes.

Chapter 4 considers the method of conditional averaging and investigates how
well the pulse waiting time distribution, pulse amplitude distribution and pulse
shape are preserved under conditional averaging. In this chapter, conditionally
averaged shot noise processes with four different pulse amplitudes and pulse
waiting times are compared.

In Chapter 5, excess time statistics of the TCV Discharge 27601, introduced
in Chapter 1, is discussed. Comparisons are made between the experimental
results, the analytic model obtained from the joint PDF between the shot noise
process and its derivative and the non-intermittent limit. The rms-value of time
above threshold and PDF of time above threshold are also discussed.
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Lastly,Chapter 6 concludes the thesis and outlines future work and prospects.

Additionally, there are three appendices. Appendix A presents the gamma func-
tion and the error function with connections between them and some limits
for both. In addition, the Fourier transform is defined and the limit of an oft
used function is derived. In appendix B, statistical concepts such as probability
density function, cumulative distribution function, characteristic function and
moments are defined. Some distributions with possible normalizations are pre-
sented, as well as some connections between these. Appendix C presents the
python code for generating and analyzing synthetic time series.

1.4 List of symbolsShot noise process
Φ(t) Shot noise process
ϕk (t) Pulse event k of the shot noise process
φ(t) Pulse waveform of the shot noise process
Θ(t) The normalized derivative of the shot noise process Φ(t)
θk (t) Pulse event k of Θ(t)
ϑ (t) Pulse waveform of Θ(t)
Ak Pulse amplitude of event k
tk Pulse time of event k
T Duration of Φ(t)
K Burst events in time [0,T ]
τd Waveform duration time
τr Waveform rise time
τf Waveform fall time

τk = tk − tk−1 Waiting time between bursts
τw Average waiting time

γ = τd/τw Intermittency parameter

Conditional average and excess time statistics
ΦC Conditionally averaged signal with condition C
AC Amplitudes of burst events fulfilling condition C
τk ,C Waiting time between burst events fulfilling condition C
C Threshold value (as variable)

T (C) Total time a signal spends above the threshold value C
N (C) Total number of times the signal crosses C upwards
〈𝒯 〉(C) Average time a signal spends above the threshold value C

Plasma Physics



14 CHAPTER 1 INTRODUCT ION AND MOT IVAT ION

R Major plasma radius
a Minor plasma radius

B, E Magnetic and electric fields
ϕ̂ Toroidal direction
θ̂ Poloidal direction
n Particle density
Te Electron temperature
Γ Particle flux
V Electric potential
U E × B-velocity
Jsat Ion saturation current
Cs Ion acoustic speed

Mathematical and statistical concepts
H (t) Heaviside step function

ℱ[x(t)](ω) Fourier transform of x(t)
ℱ−1[X (ω)](t) Fourier transform of X (ω)

•̂ Normalized value
〈•〉 Average value

•rms =
〈(• − 〈•〉)2〉1/2 rms-value

S Skewness
F Flatness

PX (x) Probability distribution function (PDF) of X
CDFX (x) Cumulative distribution function (CDF) of X
〈exp(iXu)〉 Characteristic function of X

RΦ(t) = 〈Φ(τ )Φ(τ + t)〉 Autocorrelation function of Φ
SΦ(ω) = ℱ[RΦ(t)](ω) Power spectral density of Φ



2
Stochastic modelling byshot noise processes
2.1 Shot noise processes
The shot noise process is a versatile model, and is constructed from superposi-
tions of basic pulse shapes φ(t), arriving at times tk with amplitudes Ak . The
pulse shape (also called a pulse waveform) can be any function which is appre-
ciabely different from 0 only on a finite domain and which is characterized by
a parameter τd, called the pulse duration time. τd is defined as

τd =

∞∫
−∞

dt |φ(t)|. (2.1)

tk and Ak are random variables with known distributions. The shot noise pro-
cess consists of K pulses ϕk (t) = Akφ(t − tk ) arriving in a time interval [0,T ],
and can be written as

ΦK (t) =
K (T )∑
k=1

ϕk (t − tk ) =
K (T )∑
k=1

Akφ(t − tk ). (2.2)

In the following, we will refer to the waiting time between consecutive pulses
as τk = tk+1 − tk . The waiting times are assumed to have the mean value
〈τk 〉 = τw and the amplitudes are assumed to have the mean value 〈A〉. The

15
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Figure 2.1: Several realizations of the shot noise process with γ = τd/τw as the inter-
mittency parameter. The waveform Eq. (2.5) with τr = 0.25, τf = 0.75 has
been used, and 〈A〉 = 1.

ratio between pulse duration time and average waiting time γ = τd/τw is called
the intermittency parameter, a name which will be justified later.

Some examples of the shot noise process for various values of γ are presented
in Figure 2.1. For small γ , the pulses are separated and the shot noise process
is strongly intermittent, with small mean value and large relative fluctuation
level (that is, large rms-value compared to the mean value. For large γ , there is
significant pulse overlap, givig a highmean value with small relative fluctuation
level. For γ � 1, the signal resembles random noise. Thus, γ describes relative
fluctuation level and can be used as an indication of on-off intermittency.

In Figure 2.2, the derivative of the processes in Figure 2.1 is presented, normal-
ized by the pulse duration time τd. The on-off intermittency is clearer for small
γ -values, while the derivative resembles random noise at smaller values of γ
than the shot noise process itself, due to the irregular nature of the derivative.

2.1.1 Signal formulation and assumptions
In the following, we introduce useful concepts related to the pulse waveform
φ(t). These are generalizations of concepts found in Garcia [2012], Pécseli
[2000] and Rice [1944].
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Figure 2.2: The normalized, analytic derivatives of the shot noise processes in Fig-
ure 2.1. The form of this derivative is covered in Section 2.2.

The pulse shape φ(t)
In the previous section, the duration time τd of the pulse shape was defined. In
addition to assuming a finite pulse duration time, it will also be advantageous
to assume that the waveform has finite integrals over its n’th power

In =
1
τd

∞∫
−∞

dt [φ(t)]n , n = 1,2,3, . . . , (2.3)

and a finite convolution

Rφ (τ ) = 1
τd

∞∫
−∞

dt φ(t)φ(t − τ ). (2.4)

Finite In is not strictly required for a well-defined signal, but is required for
calculating the moments or the PDF of Φ(t). Note that there is no absolute
value sign in the formulation of In , so although I1 = 1 for a positive φ(t), I1 is
not required to have any particular value. In both cases above, we are dividing
by τd to normalize the result, making sure we end up with a unitless number.
τd is chosen as the normaization factor as it is the fundamental waveform
parameter. We will also only consider waveforms with a finite convolution,
since the convolution is needed when calculating the rms-value of the signal,
Φrms.
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The exponential waveform We will be using an exponential waveform,
which has a good basis in conditional averaging of experimental data:

φ(t) = exp

(
t

τr

)
H1/2(−t) + exp

(
−
t

τf

)
H1/2(t), (2.5)

where τr is the rise time, τf is the fall time, τr + τf = τd is the pulse duration
time and Ha(t) is the step function

Ha(t) =



0 t < 0
a t = 0
1 t > 0

. (2.6)

Note that the Heaviside function only takes dimensionless input values, so we
should use t/τd instead of t inside the Heaviside functions. This is omitted for
the sake of simplicity and, since τd > 0, does not affect the function value.

We will also consider one-sided versions of this waveform, either with τr = τd,
τf = 0:

φr(t) = exp

(
t

τd

)
H1(−t), (2.7)

or with τr = 0, τf = τd:

φf(t) = exp

(
−
t

τd

)
H1(t). (2.8)

The waveform in Eq. (2.5) will be referred to as the “double-sided exponen-
tial waveform” while Eq. (2.7) and Eq. (2.8) will both be called a “one-sided
exponential waveform”. Note that we use different step functions for the double-
sided exponential waveform compared to the two one-sided exponential wave-
forms. This is to ensure that φ(0) = φr(0) = φf(0) = 1.

Integrals of the exponential waveforms For all the exponential wave-
forms above, the integral in Eq. (2.3) is simple to calculate and gives the result

In =
1
n
. (2.9)

In particular, I1 = 1, as should be the case for positive pulse shapes.

Convolution of the exponential waveforms The convolution is differ-
ent for the dobule-sided exponential waveform and the one-sided waveforms.
The double exponential waveform gives the convolution

Rφ (τ ) = τf
2(τf − τr) exp

(
−
|τ |

τf

)
−

τr
2(τf − τr) exp

(
−
|τ |

τr

)
, (2.10)
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from which it follows that Rφ (0) = 1/2. The one-sided exponential waveforms,
on the other hand, both give the convolution

Rφr(τ ) = Rφf(τ ) =
1
2
exp

(
−
|τ |

τd

)
. (2.11)

As above, Rφr(0) = 1/2. Also note that lim
τr→0

Rφ (τ ) = Rφf(τ ) and lim
τf→0

Rφ (τ ) =
Rφr(τ ).
To get the convolution for the symmetric waveform, τf = τr, we need to take
the limit τf → τr in Eq. (2.10) and use L’Hôpital’s rule:

lim
τf→τr

τf exp(−|τ |/τf) − τr exp(−|τ |/τr )
2(τf − τr)

= lim
τf→τr

1
2
exp

(
−
|τ |

τf

)
+
|τ |

2τf
exp

(
−
|τ |

τf

)
=

(
1
2
+
|τ |

2τf

)
exp

(
−
|τ |

τf

)
.

Setting τf = τr = τd/2, we get

Rφ (τ ) =
(
1
2
+
|τ |

τd

)
exp

(
−
2|τ |
τd

)
, (2.12)

which also has Rφ (0) = 1/2. This is as it should be, since we see from Eq. (2.3)
and Eq. (2.4) that Rφ (0) = I2, and I2 = 1/2 from Eq. (2.9).

The distribution of pulse events
K(T ) is the number of pulse events arriving in a time interval [0,T ]. We state
that pulses don’t arrive at the same time, since two pulses with amplitudes Ak

and Ak+1 arriving at the same time are superposed and counted as a single
pulse with amplitude Ak +Ak+1. In addition, we assume that the PDF of K(T )
only depends on the length of the interval [0,T ] (and not, for instance, on
how many pulses have arrived before the start of the interval) and that the
number of pulses in any given interval is independent of the number of pulses
in other, disjoint, intervals. In other words, we assume that the process K(T )
has independent, stationary increments. Under these assumptions, we know
that K(T ) has a poisson distribution [Walpole et al., 2007]:

PK (K ;T ) = 1
K!

(
T

τw

)K
exp

(
−
T

τw

)
. (2.13)

Here, 1/τw is the mean rate of pulse arrivals ( so 〈K(T )〉 = T /τw ). We show in
Section B.6 that when the number of pulse arrivals is Poisson distributed, the
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waiting time between pulses is exponentially distributed:

Pτ (τ ) = 1
τw

exp

(
−
τ

τw

)
H1(τ ) (2.14)

where the mean waiting time between pulses is 〈τ 〉 = τw.

The assumptions on K(T ) (stationary and independent increments) may not be
satisfied; it is possible to imagine that the intensity of pulse arrivals oscillates in
time, for instance, or that after many large pulses there will be a quiet interval
since the energy reservoir for large pulses is depleted (such that the number
of pulses in a given interval depends on the number of pulses in a previous
interval). But the Poisson process represents the most basic assumption we can
make: that the pulses arrive completely independently of each other and that
the rate at which they arrive is constant. The choise of PK (K ;T ) as a poisson
distribution is advantageous and has precendence in the literature [Garcia,
2012, Pécseli, 2000] since it makes for ease of calculation and exponentially dis-
tributed waiting times has good agreement with experimental results. While
this distribution will be our primary focus, we will in Section 2.1.3 and Sec-
tion 4.2 compare some results using degenerate, Rayleigh and uniform waiting
time distributions.

2.1.2 General expression for the mean of Φ(t)
Campbell’s theorem [Pécseli, 2000, Rice, 1944] is a general result for the first
two moments of the shot noise process. The first part states that the mean of a
shot noise process is

〈Φ〉 =
〈A〉

τw

∞∫
−∞

dt φ(t), (2.15)

where 〈Φ〉 is the time average of the signal. 〈Φ〉 can be written as

〈Φ〉 = γ 〈A〉I1 = γ 〈A〉, (2.16)

where I1 = 1 is given by Eq. (2.3). This result is universal, as it does not depend
on any assumptions of the pulse amplitude or waiting time distributions and
it is independent of waveform [except the requirement Eq. (2.1)]. This result
is intuitive: γ = τd/τw, and as τd increases in relation to τw, the pulses appear
closer together or last longer. This obviously leads to a lager degree of pulse
overlap and an increase in the average value of the resulting signal. Moreover,
〈A〉 is independent of the intermittency parameter γ , so the mean value of the
signal is proportional to the mean value of the pulse amplitudes. It can also
be shown [Pécseli, 2000, Rice, 1944] that the shot noise process is an ergodic
process, and thus that the moments of the shot noise process are independent
of time.
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2.1.3 Expressions for the variance
The second part of Campbell’s theorem gives the variance of a shot noise pro-
cess. With Pτ (τ ) as the PDF of the pulse waiting time distribution, the general
expression for the variance is [Pécseli, 2000, Rice, 1944]:〈

Φ2(t)〉 = γ 〈A2
〉
Rφ (0)

+ 2γ 〈A〉2


∞∫
0

dτ Pτ (τ )Rφ (τ )

+

∞∫
0

dτ1

∞∫
0

dτ2 Pτ (τ1)Pτ (τ2)Rφ (τ1 + τ2) + . . .

. (2.17)

This result is valid for arbitrary amplitude distribution, and waiting time dis-
tributions, provided the first two moments of the amplitude distribution exists
and that the waiting time distribution has a well-defined PDF. It is also valid
for any pulse shape with finite convolution. We will in the following investigate
special cases for this expression, using different assumptions.

Influence of the pulse shape
Due to the convolutions in Eq. (2.17), the first assumption we will make is that
the pulse waveform is one of the exponential waveform found in Section 2.1.1.
Using one of these, the convolutions can be split and the infinite sum can be cal-
culated. We first present results for all cases, then discuss them together.

The double-sided waveform With the double sided waveform, we have
Rφ (τ ) from Eq. (2.10) and Rφ (0) = 1/2. We can then write:

∞∫
0

dτ Pτ (τ )Rφ (τ ) = τf
2(τf − τr)qf −

τr
2(τf − τr)qr, (2.18)

where

qf ≡

∞∫
0

dτ Pτ (τ ) exp
(
−
τ

τf

)
, (2.19)

qr ≡

∞∫
0

dτ Pτ (τ ) exp
(
−
τ

τr

)
. (2.20)
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We can then split the second integral in Eq. (2.17) into two parts:

∞∫
0

dτ1

∞∫
0

dτ2 Pτ (τ1)Pτ (τ2)Rφ (τ1 + τ2)

=
τf

2(τf − τr)
∞∫

0

dτ1

∞∫
0

dτ2 Pτ (τ1)Pτ (τ2) exp
(
−
τ1
τf

)
exp

(
−
τ2
τf

)

−
τr

2(τf − τr)
∞∫

0

dτ1

∞∫
0

dτ2 Pτ (τ1)Pτ (τ2) exp
(
−
τ1
τr

)
exp

(
−
τ2
τr

)
=

τf
2(τf − τr)qfqf −

τr
2(τf − τr)qrqr

We can split the rest of the infinite series likewise, andwe get from Eq. (2.17):

Φ2
rms =

〈
Φ2

〉
− 〈Φ〉2 =

〈
Φ2

〉
− γ 2〈A〉2

= γ
〈
A2

〉
Rφ (τ ) − γ 2〈A〉2 +

γ 〈A〉2

τf − τr

�
τf

�
qf + q

2
f + · · ·

�
− τr

�
qr + q

2
r + · · ·

��

=
γ
〈
A2

〉
2
− γ 2〈A〉2 +

γ 〈A〉2

τf − τr

[
τf

(
1

1 − qf
− 1

)
− τr

(
1

1 − qr
− 1

)]

=
γ
〈
A2

〉
2
+ γ 2〈A〉2

[
1

(τf − τr)γ
(
τf

qf
1 − qf

− τr
qr

1 − qr

)
− 1

]
(2.21)

The double-sided waveform with τr = τf Starting from Eq. (2.21) and
taking τr → τf, we get (where we use L’Hôpital’s rule in the second line)

lim
τr→τf

1
(τf − τr)γ

(
τf

qf
1 − qf

− τr
qr

1 − qr

)
= lim
τr→τf

1
γ

(
qr

1 − qr
+

qr

(1 − qr)2
)

=
1
γ

qf(2 − qf)
(1 − qf)2

, (2.22)

and with τf = τd/2, we arrive at

Φ2
rms =

γ
〈
A2

〉
2
+ γ 2〈A〉2

[
qs(2 − qs)
γ (1 − qs)2

− 1

]
, (2.23)

where qs is the integral for the symmetric waveform

qs ≡

∞∫
0

dτ Pτ (τ ) exp
(
−
2τ
τd

)
. (2.24)
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The one-sidedwaveform Note that since lim
τr→0

τr qr/(1 − qr) = 0 and lim
τf→0

τf qf/(1 − qf) =
0, we find that in both limits τf → τd and τr → τd, equation (2.21) reduces to

Φ2
rms =

γ
〈
A2

〉
2
+ γ 2〈A〉2

[
q

γ (1 − q) − 1

]
, (2.25)

where

q =

∞∫
0

dτ Pτ (τ ) exp(−τ/τd). (2.26)

This equation can be found by using the one-sided waveform with finite fall
time directly, as seen in Pécseli [2000]. In this case the convolution is given by
Eq. (2.11). We find from Eq. (2.17) that Φ2

rms becomes

Φ2
rms =

〈
Φ2

〉
− 〈Φ〉2 = γ

〈
A2

〉
Rφ (τ ) − γ 2〈A〉2 + γ 〈A〉2

�
q + q2 + · · ·

�

=
γ
〈
A2

〉
2
− γ 2〈A〉2 + γ 〈A〉2

[
1

1 − q
− 1

]

=
γ
〈
A2

〉
2
+ γ 2〈A〉2

[
q

γ (1 − q) − 1

]
, (2.27)

and using the one-sided waveform with finite rise time yields the same re-
sult.

Discussion We see from Eq. (2.21) and Eq. (2.27) that the rms-value of Φ
consists of one part independent of th details of the signal (amplitude and
waiting time distribution), γ 〈A2〉/2, and one part that depends on the pulse
waveform and pulse waiting time distribution Pτ (τ ). If we now divide Φ2

rms
by 〈Φ〉2, we will get a measure for the relative fluctuation level of the signal:
A signal with large rms-value compared to the mean value is an intermittent
signal, while a signal with low rms-value compared to the mean value is a
non-intermittent signal. Using Φrms as given by Eq. (2.27) and 〈Φ〉 given by
Eq. (2.16), we have

Φ2
rms

〈Φ〉2
=

γ
〈
A2

〉
2
+ γ 2〈A〉2

(
q

γ (1 − q) − 1

)
γ 2〈A〉2

=
1
γ

*.
,

〈
A2

〉
2〈A〉2

− γ +
q

1 − q
+/
-
, (2.28)

where the pre-factor shows that the relative fluctuation will be large for small
γ . This agrees with the intuition: If γ is large, τd � τw and we have a signal
with long pulses arriving frequently. This means that the pulses superimpose
significantly and increase the mean value while decreasing the variation around
the mean. If, on the other hand, γ is small, τw � τd and we have a signal with
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short pulses arriving far apart, leaving very little superposition of the pulses
and a strongly fluctuating signal.

To discover the influence of the waiting time and amplitude distributions on
the intermittency of the signal, we will consider some special cases.For the sake
of simplicity, we will consider the one-sided exponential waveform, that is we
will use Eq. (2.28) with the rms-value from Eq. (2.27) and not Eq. (2.21). (We
will see later, in Section 2.1.4, that for exponentially distributed amplitudes
and Poisson distribution of events the rms-value is independent of the ratio
τr/τf).

Influence of the pulse amplitude distribution
The amplitude distribution only enters Eq. (2.28) through the factor 〈A2〉/2〈A〉2.
Using the example distributions in the Appendix, Section B.5,we see that:

Exponential :

〈
A2

〉
2〈A〉2

= 1, (2.29)

Rayleigh :

〈
A2

〉
2〈A〉2

=
2
π
≈ 0.63, (2.30)

Degenerate :

〈
A2

〉
2〈A〉2

=
1
2
, (2.31)

Uniform :

〈
A2

〉
2〈A〉2

=
3
2
. (2.32)

Since all these one-parameter distributions can be defined based on the mean
value, 〈A2〉 is proportional to 〈A〉2, and we are only left with a numerical factor
that (for these distributions) is of the order of unity. Thus the underlying am-
plitude distribution has comparatively little effect on the relative fluctuation
level of the signal.

Influence of the pulse waiting time distribution
We have seen in the introduction that exponentially distributed waiting times
is a particularly intersting case. We will now compare exponentially distributed
waiting times to Rayleigh, uniformly and degenerately distributed waiting
times, and especially look at the asymptotic behaviour of Φrms/〈Φ〉 in the limits
γ → 0 and γ → ∞.
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Exponentially distributed waiting times
The exponential distribution is given by Eq. (B.16):

Pτ (τ ) = 1
τw

exp

(
−
τ

τw

)
H1(τ ). (2.33)

We insert this into Eq. (2.26) and find that:

q =

∞∫
0

dτ Pτ (τ ) exp
(
−
τ

τd

)
=

∞∫
0

1
τw

exp

(
−
τ

τw

)
exp

(
−
τ

τd

)
=

1
τw/τd + 1

=
1

1/γ + 1
, (2.34)

and the fraction in Eq. (2.28) becomes

q

1 − q
=

1
1/γ + 1

1 −
1

1/γ + 1

=
1

1/γ + 1 − 1
= γ .

Note that the only difference between the q from Eq. (2.26) and qf and qr from
respectively Eq. (2.19) and Eq. (2.24) is that τd changes to τf and τr. Therefore,
we also have

qf =
1

τw/τf + 1
, (2.35)

qr =
1

τw/τr + 1
, (2.36)

and

qf
1 − qf

=
τf
τw
,

qr
1 − qr

=
τr
τw
.

This means that both Eq. (2.28) and Φ2
rms/〈Φ〉

2 with Φ2
rms from Eq. (2.21) be-

comes
Φ2
rms

〈Φ〉2
=

1
γ

〈
A2

〉
2〈A〉2

. (2.37)

In this case, we clearly have γ as an intermittency parameter, as discussed
above. This discussion holds completely up to the numerical factor provided
by 〈A2〉/2〈A〉2. This relation will be used as the basis for comparison with the
other waiting time distributions.



26 CHAPTER 2 STOCHAST IC MODELL ING BY SHOT NO ISE PROCESSES

Rayleigh distributed waiting times
Eq. (B.17) gives us the Rayleigh distribution:

Pτ (τ ) = πτ

2τw2 exp

(
−

πτ 2

(4τw2)
)
H1(τ ). (2.38)

This, we insert into Eq. (2.19):

q =

∫ ∞

0
dτ P(τ ) exp

(
−
τ

τd

)
=

∫ ∞

0
dτ

πτ

2τw2 exp

(
−
πτ 2

4τw2

)
exp

(
−
τ

τd

)
,

which we solve by Mathematica to get

q = 1 −
τw
τd

exp*
,

τ 2w
πτ 2d

+
-
erfc

(
τw
√
πτd

)
= 1 −

1
γ
exp

(
1
πγ 2

)
erfc

(
1
√
πγ

)
,

where erfc(·) is the complementary error function (see Section A.3) . Defin-
ing

f (γ ) = exp
�
1/πγ 2�

erfc
�
1/
√
πγ

�
,

we see that the fraction in Eq. (2.28) is:

q

1 − q
=

1 − f (γ )/γ
1 − (1 − f (γ )/γ ) =

γ − f (γ )
f (γ ) .

From Eq. (2.28), we then have:

Φ2
rms

〈Φ〉2
=

1
γ



〈
A2

〉
2〈A〉2

− γ +
γ

exp(1/πγ 2) erfc�
1/
√
πγ

� − 1


. (2.39)

We next show that the asymptotic behaviour of this equation is determined by
the 1/γ pre-factor, with the terms inside the square brackets only contributing
a numerical factor.

The limitγ → 0 The error function can bewritten as erfc(x) = ΓU
�
1/2,x2

�
/
√
π ,

where ΓU (·, ·) is the upper incomplete gamma function (see Sections A.2 and
A.3). Then, we have

lim
γ→0

1
γ
exp

(
1
πγ 2

)
erfc

(
1
√
πγ

)
= lim
γ→0

1

γ
√
π
exp

(
1
πγ 2

)
ΓU

(
1
2
,

1
πγ 2

)
= lim
γ→0

1

γ
√
π
exp

(
1
πγ 2

)�√
πγ

�
exp

(
−

1
πγ 2

)
= 1.
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This means that in the limit γ → 0, Eq. (2.39) becomes

lim
γ→0

γ
Φ2
rms

〈Φ〉2
= lim
γ→0

〈
A2

〉
2〈A〉2

− γ + 1 − 1 =

〈
A2

〉
2〈A〉2

, (2.40)

and we have the same dependency onγ as for exponentially distributed waiting
times, Eq. (2.37).

The limit γ → ∞ In the limit of γ → ∞,we have exp
�
1/

�
πγ 2

��
∼ 1

and

lim
γ→∞

erfc

[
1
√
πγ

]

= lim
γ→∞

1
√
π
ΓU

(
1
2
,

1
πγ 2

)
=

1
√
π

(
√
π −

2
√
πγ

)
= 1 −

2
πγ
.

If we insert these into Eq. (2.39), we have:

lim
γ→∞

γ
Φ2
rms

〈Φ〉2
=

〈
A2

〉
2〈A〉2

− γ +
γ

1 − 2/(πγ ) − 1 =

〈
A2

〉
2〈A〉2

−
π − 2
π
. (2.41)

While the γ -dependency is the same in this limit as for the exponentially dis-
tributed waiting times, the numerical value is slightly different ((π − 2)/π ≈
0.36, for exponentially distributed amplitudes we have Φ2

rms/〈Φ〉
2 ≈ 0.64/γ ).

We have a Rayleigh distribution with a parameter proportional to τw, so when
γ → ∞, the waiting time distribution parameter becomes very small, leading
to a sharply peaked, narrow distribution. Thus, the pulses arrive more clumped
together than for an exponential distribution, leading to a higher ratio of mean
signal value compared to the rms-value.

The uniform distribution
We use the uniform distribution

Pτ (τ ) = 1
2τw
, 0 ≤ τ ≤ 2τw, (2.42)

giving in Eq. (2.26)

q =

∫ ∞

0
dτ Pτ (τ ) exp

(
−
τ

τd

)
=
γ

2

(
1 − exp

[
−
2
γ

])
.
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Inserting this expression into Eq. (2.28), we find:

Φ2
rms

〈Φ〉2
=

1
γ



〈
A2

〉
2〈A〉2

+
(γ − 1) − (γ + 1) exp(−2/γ )

2/γ − 1 + exp(−2/γ )

, (2.43)

which has 1/γ as a pre-factor.

The limit γ → 0 If we let γ → 0, exp(−2/γ ) goes to zero and the second
term inside the square brackets in Eq. (2.43) goes to zero. Thus, in this limit

lim
γ→0

γ
Φ2
rms

〈Φ〉2
=

〈
A2

〉
2〈A〉2

, (2.44)

which is the same equation as for exponentially and Rayleigh distributed wait-
ing times.

The limit γ → ∞ For large values of γ , we can make the approximation
exp(−2/γ ) ≈ 1 − 2/γ + 2/γ 2 − 4/

�
3γ 3

�
, and Eq. (2.43) becomes

lim
γ→∞

γ
Φ2
rms

〈Φ〉2
=

〈
A2

〉
2〈A〉2

−
1
3
. (2.45)

Thus we subtract about the same factor in Eq. (2.45) as we do in Eq. (2.41). The
interpretation is the same, γ → ∞ leads to τw → 0, giving a sharply peaked
uniform distribution leading to a lower Φ2

rms/〈Φ〉
2 compared to the exponential

waiting time distribution.

The degenerate distribution
We use the degenerate distribution

Pτ (τ ) = δ (τ − τw), (2.46)

giving in Eq. (2.26)

q =

∫ ∞

0
dτ Pτ (τ ) exp

(
−
τ

τd

)
= exp

(
−
τw
τd

)
= exp

(
−
1
γ

)
.

Inserting this expression into Eq. (2.28), we find:

Φ2
rms

〈Φ〉2
=

1
γ

*.
,

〈
A2

〉
2〈A〉2

− γ +
1

exp(1/γ ) − 1
+/
-
, (2.47)

which again has 1/γ as a pre-factor.
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The limit γ → 0 If we let γ → 0, exp(1/γ ) goes to infinity and the fraction
in Eq. (2.47) goes to zero. Thus, in this limit

lim
γ→0

γ
Φ2
rms

〈Φ〉2
=

〈
A2

〉
2〈A〉2

. (2.48)

as for the previous cases considered. Again, at some point a small enough γ -
value ensures pulse separation and the exact waiting time distribution matters
less and less for the relative fluctuation level of the signal. When the waiting
time becomes much larger than the pulse duration time, the only thing affecting
the relation Φrms/〈Φ〉 is how long, on average, there is between pulses.

The limit γ → ∞ For large values of γ , we can make the approximation
exp(1/γ ) ≈ 1 + 1/γ + 1/

�
2γ 2

�
, and Eq. (2.47) becomes

lim
γ→∞

γ
Φ2
rms

〈Φ〉2
=

〈
A2

〉
2〈A〉2

−
1
2
. (2.49)

We subtract 1/2, where we in Section 2.1.3 subtracted 1 − 2/π and in Sec-
tion 2.1.3 subtracted 1/3. When the waiting times are degenerately distributed,
the waiting time distribution is the sharpest, most narrow peak of all the four
distributions we have considered. The intervals between pulses is exactly the
same. Thus, when the pulses arrive very close to each other, the mean of the
signal is much larger than the rms-value, compared to the exponential distri-
bution. (This also implies that this is the lowest intermittency relation possible
for any waiting time distribution, since no distribution has a sharper peak than
the degenerate distribution.
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Comparisons
We have in the previous sections seen how, in the limit of very large and very
small γ , all the four waiting time distributions have the same dependency on
γ , justifying this as the intermittency parameter of the signal. What remains is
investigating the behaviour of Eqs. (2.37), (2.39), (2.43) and (2.47) for γ of the
order of unity, which is the most relvant for comparisons with the experimental
data discussed in Section 1.2. In Figure 2.3, we present the relative fluctuation
level as a function of γ for various waiting time distributions. In Figure 2.4 the
same results are presented, but with double logarithmic axes in order to reveal
the similar asymptotic behaviour for small and large γ . From Figure 2.3 it is
evident that while there are differences, they are not huge; the 1/γ -behaviour
is still the strongest part of Φ2

rms/〈Φ〉
2. From figure 2.4 we see that the analytic

results in the limits of very low and very large γ hold; for γ → 0, Φ2
rms/〈Φ〉

2

converges. For γ → ∞, the process with the exponentially distributed waiting
times have the highest relative fluctuation level, while the process with the
degenerately distributed waiting times have the lowest relative fluctuation
level.

2.1.4 Distribution and characteristic functions of Φ(t)
We will now determine the characteristic function and the PDF of Φ(t) in the
case when pulses arrive in accordance with a Poisson process. This discussion
follows Garcia [2012] closely. The characteristic function of a random variable
Φ is the Fourier transform of its PDF PΦ(Φ):

〈exp(iΦu)〉 =
∞∫

−∞

dΦ PΦ(Φ) exp(iΦu), (2.50)

and then the probability that Φ takes a value in the range between Φ and
Φ + ∆Φ is given by the inverse transform:

PΦ(Φ)∆Φ = ∆Φ

2π

∞∫
−∞

du exp(−iΦu)〈exp(iΦu)〉.

A basic property of the characteristic function for a stochastic process is that
adding random variables corresponds to multiplying their characteristic func-
tions. If we have a sumΦK =

∑K
k=1 ϕk ofK pulsesϕk = Akφk , the characteristic

function of ΦK is:

〈exp(iΦKu)〉 =
K∏
k=1

〈
exp(iϕku)〉.
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Figure 2.3: Comparisons of the relative fluctuation level for exponential, Rayleigh and
degenerate waiting time distributions. The amplitudes are exponentially
distributed.
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Figure 2.4: Logarithmic scale of Figure 2.3 to see behaviour for γ → 0 and γ → ∞.
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The probability that this sum lies between values ΦK and ΦK + ∆Φ is then:

PΦK (ΦK )∆Φ = ∆Φ

2π

∞∫
−∞

du exp(−iΦKu)
K∏
k=1

〈
exp(iϕku)〉, (2.51)

where as usual the angular brackets denote an average over all random vari-
ables. Since the pulses arrive in accordance with a Poisson process, the arrival
times of the pulses are uniformly distributed (see Appendix, Section B.6 and
thus Ptk = 1/T for all k. Therefore, we have

〈
exp(iϕku)〉 = 1

T

T∫
0

dtk

∞∫
−∞

dAPA(A) exp(iAφ[t − tk ]u) (2.52)

for general waveforms and amplitude distributions. If we again assume that
the interval [0,T ] completely envelops φ(t − tk ) for all tk , all the characteristic
functions above are equal, and we can write equation (2.51) as:

PΦK (ΦK ) = 1
2π

∞∫
−∞

du exp(−iΦKu)〈exp(iϕku)〉K .
This distribution is conditional in the sense that it assumes exactly K pulses
appear in the interval with duration T. To get the PDF of Φ instead of ΦK , we
sum over all K :

PΦ(Φ) =
∞∑
K=0

PK (K ;T )PΦK (ΦK ), (2.53)

where PK (K ;T ) is the probability density for K events in a realization of du-
ration T . To get further, we need to make an assumption about PK (K ;T ), and
we will assume it is a Poisson-distribution as detailed in Section 2.1.1. Taking
T → ∞ gives the stationary distribution. This gives the result [Garcia, 2012,
Pécseli, 2000, Rice, 1944]

PΦ(Φ) = 1
2π

∫ ∞

−∞

du exp

{
−iΦu +

1
τw

∫ ∞

−∞

dAPA(A)
∫ ∞

−∞

dt [exp(iAuφ(t))]
}
.

(2.54)
where the characteristic function of PΦ(Φ) is

〈exp(iΦu)〉 = exp

{
1
τw

∫ ∞

−∞

dAPA(A)
∫ ∞

−∞

dt [exp(iAuφ(t))]
}
. (2.55)

By expanding the innermost exponential in Eq. (2.55), we can express the
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logarithm of this characteristic function in simpler terms:

ln(〈exp(iΦu)〉) = 1
τw

∫ ∞

−∞

dAPA(A)
∫ ∞

−∞

dt [exp(iAuφ(t))]

=

∞∑
n=1

1
τw

(iu)n
n!

∞∫
−∞

dAAnPA(A)
∞∫

−∞

dt [φ(t)]n

=

∞∑
n=1

γ
(iu)n
n!

〈
An〉In , (2.56)

where In is the integral defined in Eq. (2.3). The cumulants κn of a PDF are
given by

ln〈exp(iΦu)〉 =
∞∑
n=1

κn
(iu)n
n!
, (2.57)

and thus, for a shot noise process with Poisson-distributed pulses, we have that
the cumulants are

κn = γ
〈
An〉In . (2.58)

These cumulants will be discussed in depth in section Section 2.1.4.

If we assume that the pulse amplitudes are exponentially distributed, we have
〈An〉 = n!〈A〉n , and if we further assume that we have an exponential pulse
shape, In = 1/n. Using these, we find that the characteristic function of PΦ(Φ)
is

ln(〈exp(iΦu)〉) =
∞∑
n=1

γ
(i〈A〉u)n

n

= −γ
∞∑
n=1

−
(i〈A〉u)n

n

= −γ ln(1 − i〈A〉u)
= ln

�(1 − i〈A〉u)−γ �
,

giving
〈exp(iΦu)〉 = (1 − i〈A〉u)−γ . (2.59)

This is the characteristic function of a Gamma distribution with shape parame-
ter γ and scale parameter 〈A〉 (see Section B.5.5). Thus, we write the PDF of Φ
as

PΦ(Φ) = Φγ−1

〈A〉γ Γ(γ ) exp
(
−

Φ

〈A〉

)
. (2.60)

This PDF has the mean 〈Φ〉 = γ 〈A〉 and the rms-value Φrms = γ 1/2〈A〉, in
agreement with the results from Sections 2.1.2 and 2.1.3.
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Figure 2.5: The PDF of a shot noise process for various γ -values

For γ > 1, the PDF of Φ is unimodal, with mode (γ − 1)〈A〉. For γ = 1, it is an
exponential distribution with parameter 1/〈A〉, and for γ < 1, it is monotoni-
cally decreasing and has a singularity at Φ = 0. Writing the PDF in terms of
the mean value 〈Φ〉, we have

〈Φ〉PΦ(Φ/〈Φ〉) = γγ

Γ(γ )
(
Φ

〈Φ〉

)γ−1
exp

(
−

Φ

〈Φ〉

)
.

This is effectively a one-parameter distribution with shape parameter γ . Some
examples of this distribution for various γ is plotted in Figure 2.5. The essential
features described above for the PDF of a shot noise process hold, and notice
that the distribution seems to move towards a normal distribution for very large
γ . This is discussed below.

PΦ(Φ) in the limit γ → ∞
Let us return to Eq. (2.54), but replace the characteristic function (Eq. (2.55))
with the exponential of Eq. (2.56). The result is

PΦ(Φ) = 1
2π

∫ ∞

−∞

du exp


−iΦu +

∞∑
n=1

(iu)n
n!

γ
〈
An〉In


. (2.61)

It can be shown [Rice, 1944, Pécseli, 2000, Garcia, 2012] that by expanding the
characteristic function as a power series in u and integrating term wise, this
function can be written as

ΦrmsPΦ(Φ) = 1
√
2π

exp*
,
−
Φ̂2

2
+
-


1 +

κ3
(
Φ̂3 − 3Φ̂

)
3!
√
2πΦ3

rms

+𝒪
�
γ−1

�
, (2.62)
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where Φ̂ = (Φ−〈Φ〉)/Φrms and R are the remaining terms in the expansion. The
terms inside the square bracket are of order unity, γ−1/2 and 1/γ respectively.
Therefore, the PDF of any shot noise process with Poisson distribution of events
approaches a normal distribution as γ increases. A specific example of this is
that the limit of the Gamma distribution in Eq. (2.60) for γ → ∞ is a normal
distribution. This is a general result, shown in the appendix; Section B.7.

Moments of the shot noise process
Given a shot noise process with Poisson distribution of pulse arrivals, we have
that the cumulants of the PDF of the shot noise process are (from Eq. (2.58)):

κn = γ
〈
An〉In .

The four first central moments µn =
〈(Φ − 〈Φ〉)n〉 with n ≥ 2 are related to

the cumulants by (from Wolfram Math World):

µ = κ1,

µ2 = κ2,

µ3 = κ3,

µ4 = κ4 + 3κ2
2,

where µ is the mean. This gives

〈Φ〉 = µ = γ 〈A〉I1,

Φ2
rms = µ2 = γ

〈
A2

〉
I2,

SΦ =
µ3

µ3/22

= γ−1/2
I3

I2
3/2

〈
A3

〉
〈
A2〉3/2 ,

FΦ =
µ4

µ22
= 3 +

κ4

κ2
2

= 3 + γ−1
I4

I22

〈
A4

〉
〈
A2〉2 ,

where the expressions for skewness SΦ and flatness FΦ are found in the appendix
(Section B.3). We see that 〈Φ〉 is consistent with the first part of Campbell’s
theorem and we can express the flatness as a function of the skewness [Garcia,
2012]:

FΦ(SΦ) = 3 +
I2I4

I23

〈
A2

〉〈
A4

〉
〈
A3〉2 S2Φ. (2.63)

Thus, independent of the pulse shape and amplitude distribution, there is a
parabolic relation between the skewness and kurtosis moments. Also note that
if φ(t) is positive, SΦ ≥ 0 and FΦ ≥ 3.

http://mathworld.wolfram.com/Cumulant.html
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If we now assume that we have one of the exponential waveforms described in
section Section 2.1.1, we have that In = 1/n, and the moments become

〈Φ〉 = γ 〈A〉,

Φ2
rms =

γ

2

〈
A2

〉
,

SΦ =

(
8
9γ

)1/2 〈
A3

〉
〈
A2〉3/2 ,

FΦ = 3 + γ−1

〈
A4

〉
〈
A2〉2 ,

we see thatΦrms is consistentwith Eq. (2.37), and the relation between skewness
and kurtosis becomes:

FΦ(SΦ) = 3 +
9
8

〈
A2

〉〈
A4

〉
〈
A3〉2 S2Φ. (2.64)

With the additional assumption that the pulse amplitudes are exponentially
distributed, we find that 〈An〉 = n!〈A〉n , and we have:

〈Φ〉 = γ 〈A〉, (2.65)

Φ2
rms = γ 〈A〉

2, (2.66)

SΦ =
2

γ 1/2
, (2.67)

FΦ = 3 +
6
γ
. (2.68)

Now, the relation between FΦ and SΦ takes on the simple form

FΦ(SΦ) = 3 +
3
2
S2Φ. (2.69)

Application We have earlier stated that for the most common assumptions
(Poisson distribution of events, exponentially distributed pulse amplitudes and
an exponential waveform), 〈Φ〉2/Φ2

rms = γ . This relation is not particularly
useful when we consider the experimental data set, as we will wish to normalize
the signal according to

Φ̂ =
Φ − 〈Φ〉

Φrms
,

which by construction has 〈Φ̂〉 = 0 and Φ̂rms = 1. Under this normalization,
the statement

〈
Φ̂
〉2
/Φ̂2

rms = γ is obviously no longer true. However, as shown
in the appendix (Section B.3.5) SΦ̂ = SΦ and FΦ̂ = FΦ, such that we can still
find the intermittency parameter by γ = 4/S2

Φ̂
or γ = 6/

�
FΦ̂ − 3

�
.



2.1 SHOT NO ISE PROCESSES 37

2.1.5 Autocorrelation function and power spectral densityof the shot noise process
The autocorrelation function
From Pécseli [2000] we have that the autocorrelation function of the shot noise
process Φ(t) is

RΦ(τ ) = 〈Φ(t)Φ(t + τ )〉

=

〈
A2

〉
τw

∞∫
−∞

dt φ(t)φ(t + τ ) + 〈A〉
2

τ 2w



∞∫
−∞

dt φ(t)


2

= γ
〈
A2

〉
Rφ (τ ) + γ 2〈A〉2, (2.70)

where Rφ (τ ) is the convolution in Eq. (2.4). There are three separate cases to
consider (τr = 0, τr = τf and the general case with τr > 0 and τr , τf), with
different convolutions given in Eq. (2.10), Eq. (2.11) and Eq. (2.12). Listing all
cases gives:

RΦ(τ ) =




γ
〈
A2

〉
2

exp

(
−
|τ |

τd

)
+ γ 2〈A〉2 τr = 0 or τf = 0

γ
〈
A2

〉
2

(
1 +

2|τ |
τd

)
exp

(
−
2|τ |
τd

)
+ γ 2〈A〉2 τr = τf = τd/2

γ
〈
A2

〉
2(τf − τr)

[
τf exp

(
−
|τ |

τf

)
− τr exp

(
−
|τ |

τr

)]
+ γ 2〈A〉2 otherwise

.

(2.71)
This is listed in full for convenience, although all cases can be derived from
the last, most general case. In the following, only this general case will be
used.

The power spectral density
According to the Wiener-Khinchin theorem, the power spectral density and
autocorrelation function are a Fourier transform pair, SΦ(ω) = ℱ[RΦ(τ )]. Thus,
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the power spectral density is readily calculated as

SΦ(ω) =




γ
〈
A2

〉
2

2τd
1 + τ 2dω

2
+ 2πγ 2〈A〉2δ (ω) τr = 0 or τf = 0

γ
〈
A2

〉
2

32τd�
4 + τ 2dω

2
�2 + 2πγ 2〈A〉2δ (ω) τr = τf

γ
〈
A2

〉
2

2τd�
1 + τ 2f ω

2
��
1 + τ 2r ω2

� + 2πγ 2〈A〉2δ (ω) otherwise

.

(2.72)
Here, the delta function in the last term of each expression is the zero-frequency
contribution due to the finite mean value of the signal. Also striking is the
qualitative difference between the case of τr = 0 and τr > 0. In the first case,
the power spectral density is proportional to 1/ω2, while in the last case it is
proportional to 1/ω4. A shot noise process with a double-sided waveform has
thus more energy in low frequencies compared to a process with a one-sided
pulse shape.

The normalized autocorrelation and power spectral density
In the following, we will assume exponentially distributed waiting times and
amplitudes such that 〈Φ〉 = γ 〈A〉 and Φ2

rms = γ 〈A2〉. The autocorrelation
of the normalized shot noise process Φ̂(t) = (Φ(t) − 〈Φ〉)/Φrms is RΦ̂(τ ) =
〈Φ̂(t)Φ̂(t − τ )〉. The relation between RΦ and RΦ̂ is then

RΦ̂(τ ) =
〈
Φ̂(t)Φ̂(t − τ )〉

=

〈
Φ(t) − 〈Φ〉

Φrms

Φ(t − τ ) − 〈Φ〉
Φrms

〉
=
〈Φ(t)Φ(t − τ )〉 − 〈Φ〉2

Φ2
rms

=
RΦ(τ ) − 〈Φ〉2

Φ2
rms

, (2.73)

giving under the assumptions of exponentially distributed pulse amplitudes
and waiting times

RΦ̂(τ ) =
τf exp(−|τ |/τf) − τr exp(−|τ |/τr)

τf − τr
, (2.74)

which has RΦ̂(0) = 1, as the normalization requires.

To get the normalization of the power spectral density, we again use the prop-
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erty that SΦ̂(ω) and RΦ̂(τ ) are a Fourier transform pair:

SΦ̂(ω) = ℱ
�
RΦ̂(τ )

�
= ℱ

[
RΦ(τ ) − 〈Φ〉2

Φ2
rms

]

=
1

Φ2
rms

�
ℱ[RΦ] − ℱ[〈Φ〉2]�

=
1

Φ2
rms

�
SΦ(ω) − 2π 〈Φ〉2δ (ω)�. (2.75)

Under the assumptions stated previously, we then have that the normalized
power spectral density is

SΦ̂(ω) =
2τd�

1 + τ 2f ω
2

��
1 + τ 2r ω2

� . (2.76)

RΦ̂(0) = 1 gives a requirement on the normalized power spectral density:∫ ∞
−∞

dω SΦ̂(ω) = 2π . This is easy to verify from Eq. (2.76).

In Figure 2.6, RΦ̂(τ ) is plotted graphically for various values of τr/τd. It shows
how the different cases in Eq. (2.71) blend into each other. Figure 2.7 shows
the same for the normalized power spectral density. Note how, in Figure 2.7,
the power spectral density for τr = 0 is the lowest of the graphs plotted, with
the least amount of energy in the low frequencies.

RΦ̂(τ ) and SΦ̂(ω) for only positive values of τ and ω It is obvious that
Eqns. (2.74) and (2.76) are symmetric around τ = 0 and ω = 0. They can
therefore be formulated for only positive values of τ and ω, and the results are

RΦ̂(τ ) =
τf exp(−τ/τf) − τr exp(−τ/τr)

τf − τr
H0(τ ), (2.77)

and

SΦ̂(ω) =
4τd�

1 + τ 2f ω
2

��
1 + τ 2r ω2

�H0(ω). (2.78)

Here, we have multiplied SΦ̂(ω) by a factor of two to keep the requirement∫ ∞
−∞

dω SΦ̂(ω) = 2π .
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Figure 2.6: Auto-correlation function for the centered and scaled signal for a range of
τr.
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Figure 2.7: Power spectral density for the centered and scaled signal for a range of τr.
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2.2 The normalized time derivative of a shot
noise process

We define the normalized derivative of a shot noise process as

Θ(t) = τddΦ(t)dt
=

K (T )∑
k=1

Akτd
dφ(t − tk )

dt
=

K (T )∑
k=1

Akϑ (t − tk ), (2.79)

where ϑ (t) = τddφ(t)/dt . The individual pulses of the normalized derivative
are denoted θk (t) = Akϑ (t − tk ). Analogous to Eq. (2.3), we will use Jn for the
integral over the n’th power of ϑ (t):

Jn =
1
τd

∞∫
−∞

dt [ϑ (t)]n , n = 1,2,3, . . . . (2.80)

This process is a shot noise process as well, so Campbell’s theorem (from Sec-
tion 2.1.2) still holds, and we have for the mean value:

〈Θ〉 = γ 〈A〉J1,

where γ , 〈A〉 and τd are the same as for the process Φ(t). We do however have
an additional restriction on the waveform of Θ(t): Since we are assuming that
the shot noise process is stationary, we require 〈Φ〉 to be independent of time,
which implies that we require 〈Θ〉 = τd〈dΦ/dt〉 = 0. Using the equation above,
this means that we have a limitation on the waveform of the signal itself:

∞∫
−∞

dt
dφ(t)
dt
= 0. (2.81)

J1 for the one-sided exponential waveform If we use the one-sided
waveform with finite fall time φ(t) = exp(−t/τd)H1(t/τd), we get

ϑ (t) = τddφ(t)dt

= τd

[
−
1
τd

exp

(
−
t

τd

)
H1

(
t

τd

)
+ exp

(
−
t

τd

)
δ

(
t

τd

)]

= exp

(
−
t

τd

) [
δ

(
t

τd

)
− H1

(
t

τd

)]
,

where δ (t) = dHa(t)/dt is the Dirac Delta. Integrating this is straightforward,
and gives

J1 =
1
τd

[
τd exp

(
−
0
τd

)
− τd

]
= 0, (2.82)
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as required. Note, however, that because of the Dirac delta function in ϑ (t),
we cannot evaluate Jn for n > 1, as [δ (t)]n and H1(t)δ (t) are not defined.
Neither can we use the second part of Campbell’s theorem (section 2.1.3), as
this requires convolving the waveform with itself. We can also not simply ignore
the delta-function, since without it we violate the condtition in Eq. (2.81). Thus
we cannot say anything about the PDF ofΘ(t) for a one-sided exponential pulse
shape.

J1 for the double-sided exponential waveform Let us now use the full
waveform

φ(t) = exp

(
t

τr

)
H1/2

(
−
t

τd

)
+ exp

(
−
t

τf

)
H1/2

(
t

τd

)
.

The normalized and differentiated waveform is then

ϑ (t) = τd
τr

exp

(
t

τr

)
H1/2

(
−
t

τd

)
−
τd
τf

exp

(
−
t

τf

)
H1/2

(
t

τd

)
+

[
exp

(
−
t

τf

)
− exp

(
−
t

τr

)]
δ

(
t

τd

)
. (2.83)

There is a small difference between this waveform and the waveform from the
one-sided function: Here we have a Dirac delta multiplied by two exponen-
tials which cancel at t = 0. We may therefore discard the Dirac delta entirely,
meaning that we get the waveform

ϑ (t) = τd
τr

exp

(
t

τr

)
H1/2

(
−
t

τd

)
−
τd
τf

exp

(
−
t

τf

)
H1/2

(
t

τd

)
. (2.84)

Discarding the Dirac delta is desireable, as it means we will be able to compute
both the second part of Campbell’s theorem and compute Jn for n > 1. It is
not, however, obvious that the effects of the delta function are negliable. We
will for now assume that it is possible, and later justify this assumption.

Using the waveform from Eq. (2.84), we find that the requirement in Eq. (2.81)
is indeed fullfilled:

∞∫
−∞

dt ϑ (t) = −τd
τf
· τf +

τd
τr
· τr = 0.

Note that the result would be the same if we used the waveform from Eq. (2.83),
since the last term integrates to 0. Also note that when making the transition
from Eq. (2.83) to Eq. (2.84), the limits lim

τr→0
ϑ (t) and lim

τr→0
ϑ (t) are no longer

well defined; in effect we are removing the possibility of going from the double-
sided pulse shape to one of the one-sided pulse shapes.
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Jn for the double exponential waveform The integral Jn of the wave-
form in Eq. (2.84) becomes

Jn =
1
n

[
τr
τd

(
τd
τr

)n
+
τf
τd

(
−
τd
τf

)n]
. (2.85)

This is a more complicated result than the one found for the signal itself,
Eq. (2.9). Also, it does not have well defined limits for τr → 0 or τf → 0,
as discussed above.

Convolution of the double exponential waveform Applying the con-
volution in Eq. (2.4) to the normalized derivative of the double exponential
waveform given by Eq. (2.84) gives

Rϑ (τ ) = 1
τd

∞∫
−∞

dt ϑ (t)ϑ (t−τ ) = τ 2d
2τr(τf − τr) exp

(
−
|τ |
τr

)
−

τ 2d
2τf(τf − τr) exp

(
−
|τ |
τf

)
.

(2.86)
In particular, Rϑ (0) = τ 2d /(2τfτr). Comparing this convolution to the convolu-
tion of the waveform itself from Eq. (2.10), they both have the same rate of
exponential decay, only differentiated by the factors in front of the exponential
functions.

2.2.1 Variance of the time derivative of a shot noiseprocess
To find the variance of Θ(t), we will use Campbell’s theorem. We have from
Section 2.1.3 that:

〈
Θ2

〉
=

〈
A2

〉
τw

Rϑ (0)

+2

〈
A2

〉
τw



∞∫
0

dτ Pτ (τ )Rϑ (τ ) +
∞∫

0

dτ1

∞∫
0

dτ2 Pτ (τ1)Pτ (τ2)Rϑ (τ1 + τ2) + · · ·

.

(2.87)

Proceeding exactly as in Section 2.1.3 and remembering that the mean of Θ is
zero, we find

Θ2
rms = γ

〈
A2

〉*
,

τ 2d
τrτf
+

τd
τf − τr

[
qr

τr(1 − qr) −
qf

τf(1 − qf)
]

+
-
, (2.88)

where

qr =

∫ ∞

0
dτ Pτ (τ ) exp(−τ/τr)
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and

qf =

∫ ∞

0
dτ Pτ (τ ) exp(−τ/τf).

If we assume Poisson distribution of events, we have exponentially distributed
waiting times and this gives qr = τr/(τw + τr), qf = τf/(τw + τf) and

Θ2
rms =

γ
〈
A2

〉
2

τ 2d
τfτr
= Φ2

rms

τ 2d
τfτr
. (2.89)

In this case, we have not assumed anything about the distribution of the pulse
amplitudes A, except that its first two moments exist. Note that also here, the
impossibility of taking the limits τr → 0 and τf → 0 arises, and that in the case
of a symmetric waveform τf = τr = τd/2, we have Θrms = Φrms/2.

2.2.2 Moments of the time derivative of a shot noiseprocess
Since all assumptions about the main signal also hold for the normalized deriva-
tive of the signal, only In changes to Jn in the derivation of the characteristic
function ofΘ(t). Therefore, Eq. (2.56) holds forΘ(t) as well, and have the same
cumulants (up to the difference from Jn):

κn = γ
〈
An〉Jn . (2.90)

Following the calculations in Section 2.1.4, we have when calculating the inte-
grals:

〈Θ〉 = 0,

Θ2
rms =

γ
〈
A2

〉
2

τ 2d
τrτf
,

SΘ =

(
8
9γ

)1/2 〈
A3

〉
〈
A2〉3/2 τf − τr

(τfτr)1/2
,

FΘ = 3 + γ−1

〈
A4

〉
〈
A2〉2 (τf − τr)2 + τrτfτrτf

.

Note that the expression forΘrms here is the same as when applying Campbell’s
theorem, given above in Eq. (2.88). We see that the skewness vanishes for
τr = τf, implying the expected result that a symmetric pulse waveform gives a
symmetric PDF. Also,τr > τf gives negative skewness while τf > τr gives positive
skewness. Thus, when τf > τr, the negative ϑ -values contribute longer, pushing
the signal as a whole towards negative values and thus positive skewness. This
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does not imply that the mean value of Θ becomes different from 0. While
the negative ϑ -values may contribute more over time, the positive values have
higher base values (due to the 1/τr-factor in front of the exponential function),
keeping the requirement 〈Θ〉 = 0.

When assuming exponentially distributed amplitudes we have:

〈Θ〉 = 0, (2.91)

Θ2
rms = γ 〈A〉

2
τ 2d
τrτf
, (2.92)

SΘ = 2γ−1/2
τf − τr

(τfτr)1/2
, (2.93)

FΘ = 3 +
6
γ

(τf − τr)2 + τfτr
τrτf

. (2.94)

and we have the parabolic relation between FΘ and SΘ given by:

FΘ(SΘ) = 3 +
I2I4

I23

〈
A2

〉〈
A4

〉
〈
A3〉2 S2Θ

= 3 +
3
2
(τf − τr)2 + τfτr

(τf − τr)2
S2Θ. (2.95)

wile this relation appears to diverge for τr = τr, it must be recalled that the
PDF is symmetric in this case and thus SΘ vanishes. Note also that this relation
appears to have well-defined limits for τr → 0 and τf → 0. For both of these,
the last fraction goes to 1, and we end up with FΘ(S) = 3 + 3S2Θ/2, which is
the same relation that is found for the signal itself. However, SΘ approaches
infinity for both these cases.

2.2.3 The PDF of the time derivative of a shot noise processfor the double exponential waveform
In the following, Poisson distribution of pulse events are assumed, and the pulse
amplitudes are assumed to be exponentially distributed. From this, we can
start from Eq. (2.56) and get that the logarithm of the characteristic function
of PΘ(Θ) is

ln〈exp(iΘu)〉 =
∞∑
n=1

τr
τw

(iu〈A〉τd/τr)n
n

+

∞∑
n=1

τf
τw

(−iu〈A〉τd/τf)n
n

, (2.96)

with the corresponding characteristic function

〈iΘu〉 =

(
1 − iu〈A〉

τd
τr

)−τr/τw (
1 − iu(−〈A〉)τd

τf

)−τf/τw
. (2.97)
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This is the multiplication of two characteristic functions for gamma distribu-
tions; one distribution over the positive Θ-values with shape parameter τr/τw
and scale parameter 〈A〉τd/τr, and one mirrored distribution over the nega-
tive Θ-values with shape parameter τf/τw and scale parameter −〈A〉τd/τf. The
former distribution is called PΘ+(Θ; 〈A〉τd/τr,τr/τw) and the latter distribution
is called PΘ÷(Θ;−〈A〉τd/τf,τf/τw) Multiplying characteristic functions corre-
sponds to convolving the PDFs (see appendix, Section B.4):

〈iΘu〉 = 〈iΘ+u〉〈iΘ÷u〉 =

(
1 − iu〈A〉

τd
τr

)− τr
τw

(
1 − iu(−〈A〉)τd

τf

)− τf
τw

,

which implies that the PDF is given by

PΘ(Θ) = PΘ+

(
Θ; 〈A〉

τd
τr
,
τr
τw

)
∗PΘ÷

(
Θ;−〈A〉

τd
τf
,
τf
τw

)
=

∞∫
−∞

dx PΘ+(x)PΘ÷(Θ−x).
(2.98)

In order to simplify the notation, we introduce the dimensionless parameter
λ = τr/τd which signifies the asymmetry of the waveform. We have 0 ≤ λ ≤ 1.
Using this and γ = τd/τw, we find that τr/τw = γλ, τf/τd = 1 − λ and τf/τw =
γ (1 − λ). Then the PDF of the positive values becomes

PΘ+(Θ) =
Θτr/τw−1 exp(−Θτr/〈A〉τd)
(〈A〉τd/τr)τr/τwΓ(τr/τw)

H0(Θ) = Θγ λ−1 exp(−λΘ/〈A〉)
(〈A〉/λ)γ λΓ(γλ) H0(Θ),

and the PDF for the negative values is

PΘ÷(Θ) = −
Θτf/τw−1 exp(−Θτf/ − 〈A〉τd)
(−〈A〉τd/τf)τf/τwΓ(τf/τw)

H0(−Θ)

= −
Θγ (1−λ)−1 exp((1 − λ)Θ/〈A〉)

[−〈A〉/(1 − λ)]γ (1−λ)Γ(γ (1 − λ))H0(−Θ).

Thus, the PDF for the time derivative of the signal Φ(t) becomes

PΘ(Θ) =
∞∫

−∞

dΘ′ PΘ+(Θ′)PΘ÷(Θ − Θ′)

= −
(〈A〉/λ)1−γ λ[−〈A〉/(1 − λ)]1−γ (1−λ)

Γ(γλ)Γ(γ (1 − λ))
∞∫

−∞

dΘ′
[
Θ′γ λ−1(Θ − Θ′)γ (1−λ)−1

× exp

(
−
λΘ′

〈A〉

)
exp

( (1 − λ)(Θ − Θ′)
〈A〉

)
H0(Θ′)H0(Θ′ − Θ)

]
. (2.99)
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Some manipulations lead to the somewhat simpler expression:

PΘ(Θ) = (1 − λ)γ (1−λ)λγ λ〈A〉−γ
Γ(γλ)Γ(γ (1 − λ)) exp

(
−λ

Θ

〈A〉

)
×

∞∫
max(0,−Θ)

dΘ′(Θ + Θ′)γ λ−1(Θ′)γ (1−λ)−1 exp
(
−
Θ′

〈A〉

)
. (2.100)

For further simplification, we define Θ̂ = Θ/〈A〉, giving Θ̂′ = Θ′/〈A〉. This
gives the rescaled PDF:

〈A〉PΘ(Θ̂) = (1 − λ)γ (1−λ)λγ λ
Γ(γλ)Γ(γ (1 − λ)) exp

(
−λΘ̂

)
×

∞∫
max

(
0,−Θ̂

) dΘ̂′
(
Θ̂ + Θ̂′

)γ λ−1 (
Θ̂′

)γ (1−λ)−1
exp

(
−Θ̂′

)
. (2.101)

We could also express Eq. (2.100) with Θ scaled by 〈Φ〉 through Campbell’s the-
orem 〈Φ〉 = γ 〈A〉. This is sometimes advantageous, as 〈Φ〉 is easy to calculate
and γ is already a parameter in the function.

The PDF in Eq. (2.100) does not have a simpler form, and taking the limits
of λ → 0 and λ → 1 is not possible since lim

λ→0
λγ λ/Γ(γλ) = ∞. It is however

possible to evaluate the PDF numerically. Some examples are presented in
figure 2.8. Above, γ 〈A〉PΘ(Θ/〈A〉) is plotted as a function of Θ/〈A〉 for λ = 1/2
and various γ . Below, 〈A〉PΘ(Θ/〈A〉) is plotted as a function of Θ/〈A〉 for γ = 2
and various λ. For all cases in the figure, the mean of the distribution is zero. In
the figure below, the skewed distributions have a peak on one side of 0, but the
tail extends far to the other side, making the integral the same over both sides.
The sharp peak in the uppermost figure for γ = 1 is due to the singularity at
Θ = 0.

Note that for the the special case γ = 2, λ = 1/2, the integral can be calculated,
and the result is

PΘ(Θ) = 1
2〈Φ〉

exp

(
−
|Θ|

〈Φ〉

)
, (2.102)

which is the so-called Laplace distribution (see appendix, Section B.5.5) with
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Figure 2.8: The PDF of the time derivative of a shot noise process, from equation
(2.100). Above, λ = 1/2 for various γ . Below,γ = 2 for various λ.

location parameter 0 and scale parameter 〈Φ〉. It has the moments

〈Θ〉 = 0,

Θ2
rms = 2〈Φ〉,

SΘ = 0,

FΘ = 6,

which is consistent with setting γ = 2 and λ = 1/2 in Eqns. 2.91-2.94. SΘ = 0
for τr = τf is also seen in Figure 2.8, where the symmetry of the PDF around
λ = 1/2 is evident. These are consisitent, as a symmetric PDF has vanishing
skewness.
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Moments of Θ(t) from the PDF
The PDF of Θ(t) is given in Eq. (2.100), and in principle we can calulate the
moments of PΘ(Θ) by

〈
Θn〉 = ∞∫

−∞

dΘΘnPΘ(Θ)

= 〈A〉n+1
∞∫

−∞

dΘ̂ Θ̂nPΘ
(
Θ̂
)

=
〈A〉n(1 − λ)γ (1−λ)λγ λ
Γ(γλ)Γ(γ (1 − λ))

×

∞∫
−∞

dΘ̂

∞∫
max(0,−Θ̂)

dx Θ̂n
(
Θ̂ + x

)γ λ−1
xγ (1−λ)−1 exp[−(x + λΘ)], (2.103)

where we have written x instead of Θ′ for readability. This double integral can
be split in two, one over −∞ < Θ̂ < 0 and one over 0 < Θ̂ < ∞, giving

〈
Θn〉 = 〈A〉n(1 − λ)γ (1−λ)λγ λ

Γ(γλ)Γ(γ (1 − λ))

×




0∫
−∞

dΘ̂

∞∫
−Θ̂

dx Θ̂n
(
Θ̂ + x

)γ λ−1
xγ (1−λ)−1 exp[−(x + λΘ)]

+

∞∫
0

dΘ̂

∞∫
0

dx Θ̂n
(
Θ̂ + x

)γ λ−1
xγ (1−λ)−1 exp[−(x + λΘ)]



.

This equation can be solved by Mathematica for the first four moments, and it
gives the same result as calculating them from the characteristic function of Θ.
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2.3 The joint PDF PΦΘ(Φ,Θ)
By generalizing expression (9.22) in Pécseli [2000], Rowland [1936], and assum-
ing Poisson distributed pulses and exponentially distributed pulse amplitudes,
we have that the joint PDF between Φ(t) and Θ(t) is

PΦΘ(Φ,Θ) = 1

(2π )2
∞∫

−∞

du

∞∫
−∞

dv exp(−iΦu − iΘv)

exp



1
τw

∞∫
−∞

dAPA(A)
∞∫

−∞

dt exp[iuAφ(t) + ivAϑ (t)] − 1


.

(2.104)

2.3.1 The characteristic function of PΦΘ(Φ,Θ)
Let us for now concentrate on the integral inside the second exponential. Chang-
ing order of integration and remembering that

∫ ∞
−∞

dAPA(A) = 1, we get

1
τw

∞∫
−∞

dAPA(A)
∞∫

−∞

dt {exp[iuAφ(t) + ivAϑ (t)] − 1}

=
1
τw

∞∫
−∞

dt


−1 +

∞∫
−∞

dA
1
〈A〉

exp

(
−

A

〈A〉

)
exp(−[−iuφ(t) − ivϑ (t)]A)




=
1
τw

∞∫
−∞

dt

[
1

1 − iu〈A〉φ(t) − iv〈A〉ϑ (t) − 1

]
. (2.105)

Instead of using the Heaviside function in the waveforms, we here prefer to
write them as

φ(t) =
{

exp(t/τr) t < 0
exp(−t/τf) t > 0

, ϑ (t) =



1
λ
exp(t/τr) t < 0
1

1 − λ
exp(−t/τf) t > 0

,
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and split the integral in Eq. (2.105) into integrals over the positive line and the
negative line:

1
τw

∞∫
−∞

dt

[
1

1 − iu〈A〉φ(t) − iv〈A〉ϑ (t) − 1

]

=
1
τw

0∫
−∞

dt

[
1

1 − i〈A〉(u +v/λ) exp(t/τr) − 1

]

+
1
τw

∞∫
0

dt

[
1

1 − i〈A〉(u −v/(1 − λ)) exp(−t/τf) − 1

]

= −
τr
τw

ln
[
1 − i〈A〉

(
u +

v

λ

)]
−
τf
τw

ln
[
1 − i〈A〉

(
u −

v

1 − λ

)]
, (2.106)

where we have used Mathematica to perform the last integration. Taking
the exponential of this gives the characteristic function of PΦ,Θ(Φ,Θ) [where
τr/τw = γλ and τf/τw = γ (1 − λ)]:

〈iuΦ + ivΘ〉 =
[
1 − i〈A〉

(
u +

v

λ

)]−γ λ [
1 − i〈A〉

(
u −

v

1 − λ

)]−γ (1−λ)
. (2.107)

It is clear that this function is not separable into one function of u multiplied
by another function ofv, which means that Φ(t) and Θ(t) are not independent.
As a consistency check, we note that setting v = 0 gives

〈exp(iuΦ)〉 = (1 − i〈A〉u)−γ ,
which is the characteristic function for PΦ(Φ) given in Eq. (2.59), while setting
u = 0 gives

〈exp(ivΘ)〉 =
(
1 − i〈A〉

v

λ

)−γ λ (
1 + i〈A〉

v

1 − λ

)−γ (1−λ)
,

which is the characteristic function of PΘ(Θ) found in Eq. (2.97).

2.3.2 The full joint PDF PΦΘ(Φ,Θ)
We now have an expression for the joint PDF between Φ(t) and Θ(t):

PΦΘ(Φ,Θ) = 1

(2π )2
∞∫

−∞

du

∞∫
−∞

dv

{
exp(−iuΦ − ivΘ)

×

[
1 − i〈A〉

(
u +

v

λ

)]−γ λ [
1 − i〈A〉

(
u −

v

1 − λ

)]−γ (1−λ)}
. (2.108)
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Doing the change of varialbes x = u + v/λ, y = u − v/(1 − λ) and using the
shorthand

α =
λ

〈A〉
[Φ + (1 − λ)Θ],

β =
1 − λ
〈A〉

(Φ − λΘ),
we can write the joint PDF as

PΦΘ(Φ,Θ) = λ(1 − λ)
(2π 〈A〉)2

∞∫
−∞

dx [1 − ix]−γ λ exp(−iαx)
∞∫

−∞

dy [1 − ix]−γ (1−λ) exp(−iβy).
(2.109)

We now have two separate integrals over x and y. Mathematica can perform
these, and the result is

PΦΘ(Φ,Θ) = λ(1 − λ)
(2π 〈A〉)2

2π exp(−α)αγ λ−1H1/2(α)
Γ(γλ)

2π exp(−β)βγ (1−λ)−1H1/2(β)
Γ(γ (1 − λ)) ,

(2.110)
replacing α and β and doing the calulations possible, we end up with a general
expression for the joint PDF of Φ(t) and Θ(t):

PΦΘ(Φ,Θ) = λγ λ(1 − λ)γ (1−λ) exp(−Φ/〈A〉)
〈A〉γ Γ(γλ)Γ(γ (1 − λ))

× [Φ + (1 − λ)Θ]γ λ−1(Φ − λΘ)γ (1−λ)−1H [Φ + (1 − λ)Θ]H [Φ − λΘ]. (2.111)

The dependency between Φ and Θ is evident in this equation for the joint PDF,
they are not at all separable. It will be shown in Section 2.3.4 that this PDF
indeed can be reduced to the marginal PDFs of Φ and Θ [Equations (2.60) and
(2.100) respectively]. Note that only Φ falls off exponentially in the joint PDF,
even though there are exponential functions in the PDF of Θ. This is due to the
lack of independence, and how the exponential function in PΘ(Θ) appears is
seen in Section 2.3.4. Before discussing this function in depth, we will make
some remarks regarding correlations and dependencies in the joint PDF and
show that it is reducible to the marginal PDFs.

2.3.3 Correlation and dependencies in the joint PDF
From Eq. (2.111), it is clear that under the common assumptions, Φ(t) and Θ(t)
are not independent. We do however know that as long as Φ(t) is a stationary
process, they are always uncorrelated:

〈(Φ − 〈Φ〉)(Θ − 〈Θ〉)〉 = 〈(Φ − 〈Φ〉)Θ〉 = 〈ΦΘ〉 = τd
2

〈
dΦ2

dt

〉
=
τd
2

d
dt

〈
Φ2

〉
= 0.

(2.112)
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The derivation operator can be moved through the averaging, since it is a linear
operator [Stark and Woods, 2012], and

〈
Φ2

〉
is independent of time since Φ is

a stationary process.

We also see from Section 2.1.4 and Section 2.2.2 that in the limit of large γ ,
the skewness and flatness of both Φ and Θ disappear, and it can be shown
(Section 2.1.4) that PΦ(Φ) approaches a normal distribution in this limit. By
using the same arguments, Θ also approaches a normal distribution.

Thus, in the limit of large γ , both marginal PDFs of Φ and Θ are normally
distributed and uncorrelated. This does not mean that they are independent,
however. They need to be jointly normally distributed to be independent, which
has not been shown. Therefore, the assumption of inependence that will be
made in Section 3.3 is still an assumption.

2.3.4 Reduction of the joint PDF to the marginal PDFs
PΦΘ(ΦΘ) to PΦ(Φ) First, we will get the PDF ofΦ. To save space, the heaviside
functions are evaluated directly in the second line below:

PΦ(Φ) =
∞∫

−∞

dΘ PΦΘ(ΦΘ)

=
λγ λ(1 − λ)γ (1−λ) exp(−Φ/〈A〉)
〈A〉γ Γ[γλ]Γ[γ (1 − λ)]

Φ
λ∫

− Φ
1−λ

dΘ [Φ + (1 − λ)Θ]γ λ−1(Φ − λΘ)γ (1−λ)−1.

Concentrating on just the integral and substituting x(Θ) = Φ + (1 − λ)Θ
gives

Φ
λ∫

− Φ
1−λ

dΘ [Φ + (1 − λ)Θ]γ λ−1(Φ − λΘ)γ (1−λ)−1

= (1 − λ)−γ (1−λ)
Φ/λ∫
0

dx xγ λ−1(Φ − λx)γ (1−λ)−1,
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and substituting y(x) = Φ − λx gives

(1 − λ)−γ (1−λ)
Φ/λ∫
0

dx xγ λ−1(Φ − λx)γ (1−λ)−1

= (1 − λ)−γ (1−λ)λ−γ λ
Φ∫

0

dy (Φ − y)γ λ−1yγ (1−λ)−1.

Mathematica can perform this integral, and the result is

PΦ(Φ) = exp(−Φ/〈A〉)
〈A〉γ Γ[γλ]Γ[γ (1 − λ)]

Φ∫
0

dy (Φ − y)γ λ−1yγ (1−λ)−1

=
exp(−Φ/〈A〉)

〈A〉γ Γ[γλ]Γ[γ (1 − λ)]
Φγ−1Γ[γλ]Γ[γ (1 − λ)]

Γ[γ ]
=

Φγ−1

〈A〉γ Γ[γ ] exp
[
−

Φ

〈A〉

]
. (2.113)

which is equal to the expression for PΦ(Φ) in Eq. (2.60).

PΦΘ(ΦΘ) to PΘ(Θ) Leaving the Heaviside functions alone for now and directly
substituting x(Φ) = Φ + (1 − λ)Θ gives

PΘ(Θ) =
∞∫

−∞

dΦ PΦΘ(ΦΘ)

=
λγ λ(1 − λ)γ (1−λ)

〈A〉γ Γ[γλ]Γ[γ (1 − λ)]

·

∞∫
−∞

dΦ exp(−Φ/〈A〉)[Φ + (1 − λ)Θ]γ λ−1(Φ − λΘ)γ (1−λ)−1H (Φ + (1 − λ)Θ)H (Φ − λΘ)

=
λγ λ(1 − λ)γ (1−λ)

〈A〉γ Γ[γλ]Γ[γ (1 − λ)]
∞∫

0

dx exp

(
−
x − (1 − λ)Θ
〈A〉

)
xγ λ−1(x − Θ)γ (1−λ)−1H (x − Θ).

Now, substituting y(x) = x − Θ gives

λγ λ(1 − λ)γ (1−λ)
〈A〉γ Γ[γλ]Γ[γ (1 − λ)]

∞∫
0

dx exp

(
−
x − (1 − λ)Θ
〈A〉

)
xγ λ−1(x − Θ)γ (1−λ)−1H (x − Θ)

=
λγ λ(1 − λ)γ (1−λ)

〈A〉γ Γ[γλ]Γ[γ (1 − λ)]
∞∫

max(0,−Θ)
dy exp

(
−
y + λΘ

〈A〉

)
(y + Θ)γ λ−1yγ (1−λ)−1,

(2.114)
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which is the same as the expression in Eq. (2.100) with Θ′ = y.

2.3.5 Discussion
In Figure 2.10, PΦΘ(Φ,Θ) and PΦ(Φ)PΘ(Θ) are plotted as functions of Φ̂ and Θ̂,
with Φ̂ = (Φ− 〈Φ〉)/Φ and Θ̂ = (Θ− 〈Θ〉)/Θrms. The two uppermost plots have
linear scaling while the two plots below have logarithmic scaling of the joint
PDF. In Figure 2.9, the joint PDF is presented for γ = 5 and various values of
λ. The white spaces in all figures are the values outside the domain where the
Heaviside functions in Eq. (2.111) are positively valued.

Withγ = 100 in Figure 2.10a, the joint PDF and the product of the two marginal
PDFs are quite close to each other, resembling a normal distribution. The left
side of the joint PDF is still triangular, although it is far removed from the do-
main where the Heaviside functions matter. This domain is seen in Figure 2.10a,
where differences between the joint PDF and the product of the marginal PDFs
are evident. In Figure 2.10c and Figure 2.10d, neither function is unimodal,
both have a singularity at (Θ̂ = 0, Φ̂ = −〈Φ〉). In these two Figures, the joint
PDF and the product of the two marginal PDFs no longer resemble each other,
signifying the importance of the dependency between Φ andΘ for small values
of γ .

In Figure 2.9, the effect of changing λ is seen. For λ = 0.5, the joint PDF is
symmetric around Θ = 0, as expected, since the PDF of Θ is symmetric for
λ = 0. As λ decreases, the distribution does not change shape as in Figure 2.10.
Instead, the haviside functions seems to truncate the joint PDF.

We have discussed the cutoff in the joint PDF in terms of the Heaviside functions
in Eq. (2.111), which limits the non-zero values of the join PDF to the range
−Φ/(1 − λ) < Θ < Φ/λ. The interpretation is the following: consider a point
in time t ′ in the shot noise process where every contributing pulse is growing
(that is, t ′ is before the arrival time of all contributing pulses). At this point, the
derivative is a scaling of the shot noise process, specificallyΘ(t ′) = τdΦ(t ′)/τr =
Φ(t ′)/λ. This is the highest possible value for Θ as a function of Φ, since any
contributing falling pulses reduces the value of the derivative. On the other
hand, at a point t ′′ where only decaying pulses contribute, the value of the
derivative becomes Θ(t ′′) = −τdΦ(t ′′)τf = −Φ(t ′′)/(1 − λ). In he same way as
above, any growing pulses contributing increases the value of Θ as a function
of Φ. Thus the range −Φ/(1 − λ) < Θ < Φ/λ is the range of all posible values
of Θ as a function of Φ.
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Figure 2.9: Joint PDF between Φ and Θ for γ = 5 with changing λ.
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(c) γ = 1, logarithmic scale.

−0.30.0 2.0

Φ̂

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Θ̂

−0.30.0 2.0

Φ̂

7.4e-04

1.9e-01

4.8e+01
PΦΘ (Φ,Θ) PΦ (Φ)PΘ (Θ)
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Figure 2.10: Joint pdf (left) and product of the marginal pdfs (right) between Φ and
Θ for λ = 0.25 and various γ .





3
Excess time statistics
It is often of interest to know how long a process Φ(t) spends above a certain
threshold valueC, how often it passes this value and how long, on average, the
signal spends above the threshold value for each up crossing. This endeavour
is frequently referred to as excess time statistics, and has been considered by
e.g Rice [1944], Israel and Nemirovsky [1972], Fattorini et al. [2012], Sato et al.
[2012], Kristensen et al. [1991] and Biermé and Desolneux [2012].

The time the n’th burst above the threshold spends above the threshold value C
is denoted 𝒯n(C). We do not consider the bursts below the threshold. The total
number of upcrossings above the threshold is N (C) such that the total time the
signal spends above the threshold value is T (C) = ∑N (C)

n=1 𝒯n(C). The average
time the signal spends above the threshold for each upcrossing is approximated
by

〈𝒯 〉(C) ≈
∑N (C)

n=1 𝒯n(C)
N (C) =

T (C)
N (C) . (3.1)

Note that normalli, the number of upcrossings over C is considered instead
of the total number of crossings, since for a stationary process, the number of
upcrossings is the same as the number of downcrossings. An example of excess
times is presented in Figure 3.1. In this figure, the blue line gives the signal
amplitudeΦ(t), the green dotted line gives the thresholdC and the red lines give
the time duration above the threshold for each burst, 𝒯n . We have excess times
𝒯n with n = 1 . . . 6, so N = 6, T =

∑6
n=1 𝒯n and 〈𝒯 〉 = T /N =

∑6
n=1 𝒯n/6.

59
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Figure 3.1: Example of excess times over the threshold ζ = Φ̂/2 for a synthetic signal
with γ = 1 and λ = 0.25.

3.1 Definition of total time above threshold,
number of upcrossings and average time
above threshold

We have a shot noise process Φ(t) with time duration T , the time derivative
Φ̇(t) = dΦ(t)/dt and well defined PDFs PΦ(Φ) and PΦΦ̇(Φ, Φ̇). We assume that
both the signal and its derivative are stationary, so the joint PDF and 〈Φ〉 are
independent of time and accordingly 〈Φ̇〉 = 0. The complementary CDF of Φ,
CDFΦ(C) gives the probability that the signal value is above C. Multiplied by
the total duration of the signal, T , this gives the total time the signal spends
above C:

T (C) = T
∞∫

C

dΦ PΦ(Φ) = T [1 − CDFΦ(C)]. (3.2)

The probability that the signal amplitude is somewhere in the interval [Φ,Φ + dΦ]
and at the same time the value of Φ̇ is somewhere in [Φ̇, Φ̇+dΦ̇] is dΦ dΦ̇ PΦΦ̇(Φ, Φ̇).
Since the time the signal takes to cross dΦ is dt = dΦ/Φ̇, and we don’t care
how fast the signal crosses the threshold, only that Φ̇ > 0, we then have that
the total number of upwards crossings is

N (C) =
T∫

0

dt

∞∫
0

dΦ̇ Φ̇PΦΦ̇
�
C, Φ̇

�
= T

∞∫
0

dΦ̇ Φ̇PΦΦ̇
�
C, Φ̇

�
, (3.3)

since the joint PDF is independent of time. In the following, we will use the nor-
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malized derivativeΘ = τdΦ̇, so we substitute and use PΦΦ̇(Φ, Φ̇) = (1/τd)PΦΘ(Φ,Θ)
to get the integral:

N (C) = T

τd

∞∫
0

dΘΘPΦΘ(C,Θ). (3.4)

This is the celebrated Rice’s formula [Rice, 1945, Leadbetter and Spaniolo, 2004]
for level crossings. It is also found formulated in the normal limit (Eq. (3.26)).

Then, from Eq. (3.1) we have an estimate for the average time spent above C:

∞∫
0

d𝒯 𝒯 P𝒯 (𝒯 |C) = 〈𝒯 〉(C) ≈ T

N
=

∞∫
C

dΦ PΦ(Φ)

∞∫
0

dΘΘPΦΘ(C,Θ)
, (3.5)

where P𝒯 (𝒯 |C) is the PDF of time intervals above C.

In general, since we only consider signals with positive pulse waveforms and
pulse amplitudes, we have Φ(t) > 0, giving a sharp cutoff at C = 0. Intuitively
we expect T (0) = T and N (0) = 0, giving 〈𝒯 〉(0) = ∞, since at C = 0, the
entire signal is above the threshold, and there are no upwards crossings over
the threshold. As C increases, we expect both T (C) and N (C) to converge
towards 0, since fewer and fewer bursts pass above the threshold. lim

C→∞
〈𝒯 〉(C)

is not as clear, as it depends on how fast T and N go towards 0. This implies
that T (C) is a monotonically decreasing function (which it is, since it is a
complementary CDF) and that N (C) has a maxima at some finite value of
C.

3.1.1 The models
The expressions above for total time above threshold ,Eq. (3.2), total number
of upwards threshold crossings, Eq. (3.4), and average time above threshold,
Eq. (3.5), will be investigated for a general model with two asymptotic limits,
γ → 0 and γ → ∞.

First, under the assumptions that the pulse waiting times and pulse amplitudes
are exponentially distributed and that we have the double exponential pulse
waveforms, we are able to calculate the expressions above from the joint PDF
in Section 2.3. This will be referred to as the ’general model’.
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Then, we will use the non-intermittent limit γ → ∞ where Φ(t) and Θ(t) are
assumed to have a joint normal distribution. This model is common in the
literature, and we will follow Fattorini et al. [2012] in this discussion.

Lastly, we investigate the strong intermittency limit for γ → 0 which uses the
same assumptions as the general model. In addition, we assume that there is
no pulse overlap, so each pulse is one burst in the resulting signal.

Note that since Φ(t) and Θ(t) are both shot noise processes, they are both nor-
mally distributed in the non-intermittent limit. However, we must still assume
that they are independent in order for them to have a joint normal distribu-
tion in the non-intermittent limit (see Section 2.3.3). A remaining question,
which is not explored in this thesis, is what the lowest order deviation from
PΦΘ(Φ,Θ) = PΦ(Φ)PΘ(Θ) is in the non-intermittent limit.

3.1.2 The normalized threshold
The threshold values are values in the main signal. When we are comparing
multiple signals, these threshold values will vary much, making comparisons
difficult. Therefore, we introduce the normalized threshold ζ over the normal-
ized threshold Φ̂ = (Φ − 〈Φ〉)/Φrms. The normalized threshold gives the lowest
value we register in the normalized signal:

Φ̂ > ζ

Φ − 〈Φ〉

Φrms
> ζ

Φ > ζΦrms + 〈Φ〉.

Thus the normalized threshold is related to the threshold by

C = ζΦrms + 〈Φ〉. (3.6)

In general, we only consider signals with positive values Φ(t) > 0, so the
threshold C has a sharp cutoff at C = 0. This corresponds to a cutoff for the
normalized threshold at ζ = −〈Φ〉/Φrms = −

√
γ .

The limit ζ � 1

We will wish to investigate the case of very large threshold, and to see if the
models have some common behaviour. To ensure we take the same limit in all
cases, we will use ζ for all, and let ζ → ∞.



3.1 DEFIN IT ION OF TOTAL T IME ABOVE THRESHOLD, NUMBER OF
UPCROSS INGS AND AVERAGE T IME ABOVE THRESHOLD 63

3.1.3 Another way to the number of upwards crossings
The previous discussion presupposes that PΦΘ(Φ,Θ) exists, which is not the
case for arbitrary pulse amplitude and waiting time distributions and pulse
waveform [an example is the pulse waveform φ(t) = exp(−t/τd)H1(t), for
which PΘ(Θ) does not exist]. A different approach is suggested by Biermé and
Desolneux [2012], where a shot noise process with Poisson distribution of pulse
events is considered. There, the Fourier transform of 〈N 〉(C) is found to exist
as long as:

• 〈A〉 < ∞,

• φ(t) and ϑ (t) are piecewise continuous functions with a finite amount of
discontinuous points,

•
∫ ∞
−∞

dt | f (t)| < ∞ where f (t) = φ(t), φ̇(t) and φ̈(t) with the points of
discontinuity removed.

This condition is fulfilled for both the double exponential pulse waveform and
the one-sided exponential pulse waveforms.

In the case of one-sided exponential waveforms (where the points of discon-
tinuity, and thus the delta functions in the derivative, have been removed),
the average value of N (C) in a time interval of length τd is found. The total
number of upwards crossings is this average value times T /τd, and we have

τd
T

N (C) = γ

Γ(γ + 1)
(
C

〈A〉

)γ
exp

(
−

C

〈A〉

)
. (3.7)

Note that in Biermé and Desolneux [2012], the total number of threshold cross-
ings is considered, so we divide their result by 2 in order to get the number of
upcrossings of the threshold for a stationary process.

In the case of exponentially distributed pulse amplitudes and either the double
exponential pulse waveform (which is continuous) or the one-sided exponential
pulse waveform [which has one jump discontinuity from φ(t < 0) = 0 to
φ(t = 0) = 1], the normal limit γ → ∞ of the average value of N (ζ ) in a
time interval of length τd has also been found in Biermé and Desolneux [2012]:

τd
T

N (ζ ) =



1

2π
√
λ(1 − λ) exp

�
−ζ 2/2

�
0 < λ < 1√

γ

2π
exp

�
−ζ 2/2

�
λ = 0 or λ = 1

, (3.8)
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although they did not consider the double-sided exponential waveform, which
follows from Rice’s formula.

Some comments are in order. First, we will later see that all these results can
be obtained from the general model, and that the second part of Eq. (3.8) can
be obtained from Eq. (3.7) by taking the limit γ → ∞. Second, note that there
is a qualitative difference between λ = 0 and λ > 0; the first case has a factor
√
γ not found in the second. Thus, for large γ , a definite difference should be

seen between these cases.

3.2 The general model
If we assume that we have the double-sided waveform, Poisson distribution of
events and exponentially distributed pulse amplitudes, we have from previous
sections that

PΦ(Φ) = γ

〈Φ〉Γ(γ )
(
γΦ

〈Φ〉

)γ−1
exp

(
−
γΦ

〈Φ〉

)
H0(Φ), (3.9)

and

PΦΘ(Φ,Θ) = λγ λ(1 − λ)γ (1−λ) exp(−Φ/〈A〉)
〈A〉γ Γ(γλ)Γ(γ (1 − λ))

× [Φ + (1 − λ)Θ]γ λ−1(Φ − λΘ)γ (1−λ)−1H1/2(Φ + (1 − λ)Θ)H1/2(Φ − λΘ).
For the threshold, we also note that 〈Φ〉 = γ 〈A〉 and that Φrms = γ 1/2〈A〉,
meaning that we can write

C

〈Φ〉
=

C

γ 〈A〉
=

ζ

γ 1/2
+ 1. (3.10)

3.2.1 Total time above threshold
The total time the signal spends above the threshold is given by the CDF of Φ.
For a Gamma distributed process, this is known:

T (C) = T [1 −CDFΦ(C)] = T
(
1 −

ΓL(γ ,γC/〈Φ〉)
Γ(γ )

)
= T

ΓU(γ ,γC/〈Φ〉)
Γ(γ ) = TQ

(
γ ,γ

C

〈Φ〉

)
.

(3.11)
We can remove the explicit appearance of 〈Φ〉 from this expression by using
the normalized threshold from Eq. (3.10):

T (ζ ) = TQ(γ , √γζ + γ ). (3.12)
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The regularized gamma function Q(γ ,C/〈A〉) behaves as expected; for large ζ ,
this function approaches zero andQ(γ ,0) = 1, to give T (0) = T . For ζ = 0, we
have C = 〈Φ〉 and T approaches 1/2 as γ increases, since a Gaussian process
is above the mean value half the time.

3.2.2 The total number of upwards threshold crossings
The total number of upward crossings is given by integrating the joint PDF as
given by Eq. (3.4):

τd
T

N (C) =
∞∫

0

dΘΘPΦΘ(C,Θ)

=
λγ λ(1 − λ)γ (1−λ) exp(−C/〈A〉)
〈A〉γ Γ(γλ)Γ(γ (1 − λ))

×

∫ ∞

0
dΘΘ

(C + (1 − λ)Θ)γ λ−1
(C − λΘ)1−γ (1−λ) H1/2(C + (1 − λ)Θ)H1/2(C − λΘ)

=
λγ λ(1 − λ)γ (1−λ) exp(−C/〈A〉)
〈A〉γ Γ(γλ)Γ(γ (1 − λ))

Cγ

γλ(1 − λ)
=
λγ λ−1(1 − λ)γ (1−λ)−1
γ Γ(γλ)Γ(γ (1 − λ))

(
C

〈A〉

)γ
exp

(
−

C

〈A〉

)
. (3.13)

The integral is done by Mathematica.

Using the normalized threshold If we substitute the normalized thresh-
old into N (C), we get

N (ζ ) = T

τd

λγ λ−1(1 − λ)γ (1−λ)−1
γ Γ(γλ)Γ(γ (1 − λ))

�√
γζ + γ

�γ
exp

�
−
√
γζ + γ

�
. (3.14)

Again, the result fits the intuition as we see that N (0) = 0 and N (ζ ) ap-
proaches zero as C increases.

3.2.3 The average time above the threshold
The average time above the threshold C is estimated by the total time divided
by the number of upwards crossings:

〈𝒯 〉(C) = T

N
(C) = τd γ Γ(γλ)Γ(γ (1 − λ))

λγ λ−1(1 − λ)γ (1−λ)−1Q
(
γ ,
γC

〈Φ〉

) (
γC

〈Φ〉

)−γ
exp

(
γC

〈Φ〉

)
.

(3.15)
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For C = 0, this equation is simple; 〈𝒯 〉(0) = 0. The limit of ζ → ∞ is more
complicated, and is covered in Section 3.2.6. The result is that in this limit,
〈𝒯 〉(ζ ) = 0.

3.2.4 The limit of large γ
In the limit of large γ , the regularized gamma function in T (C) has no simpler
form but still has values between 0 and 1, so it will not be investigated further.
N (C) and 〈𝒯 〉(C), on the other hand, can be simplified. First, we use Stirling’s
approximation for the gamma functions in these expressions:

lim
γ→∞

Γ(γλ)Γ(γ (1 − λ)) = 1
γλ

√
2πγλ(γλ)γ λ exp(−γλ)

×
1

γ (1 − λ)
√
2πγ (1 − λ)(γ (1 − λ))γ (1−λ) exp(−γ (1 − λ))

= 2πγγ−1λγ λ−1/2(1 − λ)γ (1−λ)−1/2 exp(−γ )
This result inserted into Eq. (3.13) and Eq. (3.15), and expressed by the nor-
malized threshold ζ , gives:

lim
γ→∞

N (ζ ) = T

τd

1

2π
√
λ(1 − λ)

(
ζ

γ 1/2
+ 1

)γ
exp

(
−γ 1/2ζ

)
(3.16)

and

lim
γ→∞
〈𝒯 〉(ζ ) = 2πτd

√
λ(1 − λ)Q

(
γ ,
γC

〈Φ〉

) (
ζ

γ 1/2
+ 1

)−γ
exp

(
γ 1/2ζ

)
. (3.17)

With the result in Section A.4, we have that lim
γ→∞

(
ζ /γ 1/2 + 1

)γ
exp

(
−γ 1/2ζ

)
=

exp
�
−ζ 2/2

�
, and we see that Eq. (3.16) is equivalent to the first expression in

Eq. (3.8).

3.2.5 The limit of the one-sided waveform
Surprisingly, although it is not possible to take the limits λ → 0 or λ → 1 in
any previous results, such as for PΘ(Θ) or PΦΘ(Φ,Θ), it is possible to take these
limits for N (C) and 〈𝒯 〉(C). This is because

lim
λ→0

γ Γ(γλ)Γ(γ (1 − λ))
λγ λ−1(1 − λ)γ (1−λ)−1 = lim

λ→0

γ (γλ)−1Γ(γ )
λγ λ−1

= lim
λ→0

λ−γ λΓ(γ )
= Γ(γ ),
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and the result of taking λ → 1 is the same. This gives

N (C) = T

τdΓ(γ )
(
C

〈A〉

)γ
exp

(
−

C

〈A〉

)
, (3.18)

〈𝒯 〉(C) = τdΓ(γ )Q
(
γ ,

C

〈A〉

) (
C

〈A〉

)−γ
exp

(
C

〈A〉

)
. (3.19)

Note that Eq. (3.18) is equivalent to Eq. (3.7). For these equations, we can also
take the limit γ → ∞, as above. The result is

N (C) = T

τd

√
γ

2π

(
C

γ 〈A〉

)γ
exp

(
γ −

C

〈A〉

)
, (3.20)

〈𝒯 〉(C) = τd
√

2π
γ
Q

(
γ ,

C

〈A〉

) (
C

γ 〈A〉

)−γ
exp

(
C

〈A〉
− γ

)
. (3.21)

It is not possible to get to this equation from the equations in Section 3.2.4, but
comparing equations tells us that for γ → ∞, there is a qualitative difference
between a continuous pulse waveform (0 < λ < 1) and a discontinuous pulse
waveform (λ = 0 or λ = 1), which is in agreement with the careful analysis
by Biermé and Desolneux [2012]. The main part of this difference is the γ 1/2-
behaviour in Eq. (3.20). Comparing Eq. (3.20) to the second part of Eq. (3.8),
and using the result from Section A.4, we find that

lim
γ→∞

(
C

γ 〈A〉

)γ
exp

(
γ −

C

〈A〉

)
= lim
γ→∞

(
ζ

γ 1/2
+ 1

)γ
exp

(
−γ 1/2ζ

)
= exp

(
−
ζ 2

2

)
.

and the equations are equivalent.
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3.2.6 The limit of ζ � 1

For large threshold values, we have from the appendix (Section A.2) that
lim
x→∞

ΓU(s,x) = xs−1 exp(−x), giving 〈𝒯 〉(C) in the limit of large ζ :

lim
ζ→∞
〈𝒯 〉(C) = lim

ζ→∞

γ Γ(γλ)Γ(γ (1 − λ))
λγ λ−1(1 − λ)γ (1−λ)−1

ΓU
�
γ ,
√
γζ + γ

�

Γ(γ )
�√

γζ + γ
�−γ

exp
�√

γζ + γ
�

= lim
ζ→∞

γ Γ(γλ)Γ(γ (1 − λ))
λγ λ−1(1 − λ)γ (1−λ)−1

×

�√
γζ + γ

�γ−1
exp

�
−
√
γζ − γ

�

Γ(γ )
�√

γζ + γ
�−γ

exp
�√

γζ + γ
�

= lim
ζ→∞

√
γ Γ[γλ]Γ[γ (1 − λ)]

λγ λ−1(1 − λ)γ (1−λ)−1Γ(γ )
�
ζ +
√
γ

�−1

∝
1

ζ +
√
γ
. (3.22)

This result will be discussed together with the results from the normal and the
strongly intermittent model in Section 3.5.1.

3.3 The normal limit γ � 1

Following the argumentation by Fattorini et al. [2012] and Kristensen et al.
[1991], we can analytically obtain a simple expression for 〈𝒯 〉 in the non-
intermittent Gaussian limit. We assume that PΦ(Φ) and PΘ(Θ) are normally
distributed, with means 〈Φ〉 and 〈Θ〉 = 0 and standard deviations Φrms and
Θrms:

lim
γ→∞

PΦ(Φ) = 1
√
2πΦrms

exp

[
−
(Φ − 〈Φ〉)2

2Φ2
rms

]
, (3.23)

lim
γ→∞

PΘ(Θ) = 1
√
2πΘrms

exp

(
−

Θ2

2Θ2
rms

)
. (3.24)

We also assume that Φ and Θ are statistically independent (see Section 2.3.3),
so PΦΘ(Φ,Θ) = PΦ(Φ)PΘ(Θ).
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3.3.1 The total time above threshold
We find that Eq. (3.2) simplifies to:

lim
γ→∞

1
T

T (C) = 1 −CDFΦ(C) = 1 −
1
2

[
1 + erf

(
C − 〈Φ〉
√
2Φrms

)]

=
1
2

[
1 − erf

(
C − 〈Φ〉
√
2Φrms

)]

=
1
2
erfc

(
C − 〈Φ〉
√
2Φrms

)
(3.25)

=
1
2
erfc

(
ζ
√
2

)
where we in the last equation have used the normalized threshold. Note that
for this T (ζ ), there is no minimal accepted ζ -value; T (ζ ) approaches T for
ζ → −∞ and it approaches 0 for ζ → ∞. At the mean value, we have as
expected T (ζ = 0) = T /2.

3.3.2 The total number of upwards crossings
Using the assumptions in this section, Eq. (3.3) becomes:

lim
γ→∞

τd
T

N (C) =
∞∫

0

dΘΘPΦΘ(C,Θ) = PΦ(C)
∞∫

0

dΘΘPΘ(Θ)

=
1

√
2πΦrms

exp

[
−
(C − 〈Φ〉)2
2Φrms

2

] ∞∫
0

dΘ
1

√
2πΘrms

Θ exp

−

(
Θ

√
2Θrms

)2
.

Substituting u = Θ2/
�
2Θrms

2
�
and integrating, we get that:

lim
γ→∞

τd
T

N (C) = 1
√
2πΦrms

exp

[
−
(C − 〈Φ〉)2
2Φrms

2

]
Θrms
√
2π

=
Θrms

2πΦrms
exp

[
−
(C − 〈Φ〉)2
2Φrms

2

]
(3.26)

=
Θrms

2πΦrms
exp

[
−
ζ 2

2

]
.

This equation has a maximal value at C = 〈Φ〉 (or ζ = 0), N (ζ = 0) =
TΘrms/(2πτdΦrms), and it goes towards 0 for ζ → ±∞.
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3.3.3 The average time above threshold
The Gaussian limit of 〈𝒯 〉 becomes:

lim
γ→∞
〈𝒯 〉(C) = T (C)

N (C)
= πτd

Φrms

Θrms
erfc

(
C − 〈Φ〉
√
2Φrms

)
exp

( (C − 〈Φ〉)2
2Φrms

2

)
(3.27)

= πτd
Φrms

Θrms
erfc

(
ζ
√
2

)
exp

(
ζ 2

2

)
.

For ζ → −∞, erfc
(
ζ /
√
2
)
→ 2 and exp

�
ζ 2/2

�
→ ∞, so 〈𝒯 〉(ζ → −∞)→ ∞,

as expected. The other limit, ζ → ∞ is more complicated and is covered below.
Also note that 〈𝒯 〉(ζ = 0) = πτdΦrms/Θrms.

The average time above threshold for ζ � 1

For large threshold values ζ , we can make the approximation (see appendix,
Section A.3)

lim
x→∞

erfc(x) = exp
�
−x2

�
√
πx

∞∑
n=0

(−1)n (2n − 1)!!
(2x2)n =

exp
�
−x2

�
√
πx

+𝒪
�
x−2

�

thus, we write 〈𝒯 〉(C) in the non-intermittent limit as

lim
ζ→∞

ζ 〈𝒯 〉(C) = lim
ζ→∞

πτd
Φrms

Θrms
ζ erfc

(
ζ
√
2

)
exp

(
ζ 2

2

)
= πτd

Φrms

Θrms

√
2
√
π

=
√
2πτd

Φrms

Θrms
(3.28)

=
√
2πλ(1 − λ)τd

wherewe in the last expression have usedΦrms =
√
γ 〈A〉 andΘrms =

√
γ/[λ(1 − λ)]〈A〉.

Thus, for very large ζ , 〈𝒯 〉(ζ ) ∝ 1/ζ , meaning that it approaches 0, and
the T (ζ )-tendency towards 0 is stronger than the N (ζ )-tendency towards
0.

3.4 The strong intermittency limit γ � 1

We will now investigate the limit of γ → 0, where the assumption of inde-
pendence between Φ(t) and Θ(t) evidently breaks down and we replace this
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with an assumption that the pulses do not overlap at all, such that each pulse
appears as a burst in the resulting signal. In this limit, we can find the total
time above threshold, the number of upwards crossings, the average time above
threshold and even the distribution of time above threshold for each upcrossing
without going through the joint PDF of Φ(t) and Θ(t).

3.4.1 The total time above threshold
Here, we use the CDF directly. If Φ(t) is gamma distributed, the expression for
T (C) becomes

T (C) = T [1 −CDFΦ(C))] = T ΓU (γ ,C/〈A〉)
Γ(γ ) , (3.29)

which obviously is equal to Eq. (3.11). When γ → 0, the upper incomplete
gamma function is still well defined, and lim

γ→0
Γ(γ ) = 1/γ . Thus, Eq. (3.29)

becomes:

lim
γ→0

T (C) = Tγ ΓU (0,C/〈A〉). (3.30)

Using the property given by Eq. (A.20) from the appendix (Section A.3), we
can express T (C) for the non-intermittent limit as a gamma function:

lim
γ→∞

T (C) = 1
2
erfc

(
C − 〈Φ〉
√
2Φrms

)
=

1

2
√
π
ΓU



1
2
,
1
γ

(
C

〈A〉
−
√
γ

)2
,

where we also have assumed that 〈Φ〉 = γ 〈A〉 and Φ2
rms = γ 〈A〉2 hold. The

difference in the first argument (0 for strong intermittency limit,1/2 for the non-
intermittent limit) causes Tγ→∞(C) to have higher values for small threshold
values, but the fact that this function depends on the square ofC ensures it falls
off much quicker than T (C) in the strong intermittency limit. This difference
with increasing threshold is seen in the uppermost part of Figure 3.5 (although
here, the rapid fall is also caused by the 1/γ -dependency of Tγ→∞(C), which
is significant for γ = 100).

3.4.2 The total number of upwards crossings
When the pulses are completely separated, the total number of upwards cross-
ings above the threshold must be the same as the total number of pulses with
amplitude higher than the threshold value. Therefore, the total umber of up-
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wards crossings can be written as

lim
γ→0

N (C) = K

∞∫
C

dAPA(A) = K

∞∫
C

dA
1
〈A〉

exp

(
−

A

〈A〉

)

= K exp

(
−

C

〈A〉

)
=

T

τd
γ exp

(
−

C

〈A〉

)
, (3.31)

where K is the total number of pulses, τw = T /K and τd/τw = γ . This is a
purely exponential function, and thus falls off much slower with increasing
C than N (C) does in the Gaussian limit, given by Eq. (3.26), which falls off
exponentially with C2.

Equivalence with Section 3.2.2 To see that Eq. (3.31) is equivalent to
Eq. (3.14), we start from Eq. (3.31) and take the limit γ → 0, using that
lim
s→0

Γ(s) = s:

N (C) = T

τd

λγ λ−1(1 − λ)γ (1−λ)−1
γ Γ(γλ)Γ(γ (1 − λ))

(
C

〈A〉

)γ
exp

(
−

C

〈A〉

)
=

T

τd
λγ λ(1 − λ)γ (1−λ)γ

(
C

〈A〉

)γ
exp

(
−

C

〈A〉

)
=

T

τd
γ exp

(
−

C

〈A〉

)
.

3.4.3 The average time above threshold
Estimating 〈𝒯 〉(C) by T (C)/N (C), given by Eq. (3.30) and Eq. (3.31), we find
that the average time above threshold is given by:

lim
γ→0
〈𝒯 〉(C) = T

N
(C) = τd exp

(
C

〈A〉

)
ΓU

(
0,

C

〈A〉

)
. (3.32)

The proportionality with τd is obvious; longer pulses means that the ones that
do reach above the threshold stay above the threshold for a longer time. This
expression has no dependency on τw, which is due to the assumption that we
have no pulse overlap.

3.4.4 The PDF of 𝒯 and another way to 〈𝒯 〉(C)
In Figure 3.2, an example of excess times in the strong intermittency limit is
presented. Φ(t) is given by the blue line, the threshold C is given by the green
dotted line. Here, the pulses are almost completely separated, so each pulse
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Figure 3.2: Excess times for a shot noise process with γ = 0.1 and λ = 0.5

corresponds to one burst. We see that for pulses with amplitudeAn > C (which
for the example in Figure 3.2, are all three), the signal spends a time 𝒯n above
the threshold. With the double exponential waveform, 𝒯n can be divided into
a time before the peak, 𝒯rn , and a time after the peak, 𝒯fn . The time before the
peak is given by

C = An exp

(
𝒯rn
τr

)
𝒯rn = −τr ln

(An

C

)
,

and the time after the peak is given by

C = An exp

(
−
𝒯fn
τf

)
𝒯fn = τf ln

(An

C

)
.

Thus, the total time that the n’th pulse spends above the threshold is

𝒯n = 𝒯fn − 𝒯rn = τd ln
(An

C

)
. (3.33)

This value is always positive, since An > C for all the relevant amplitudes.
We know that An are exponentially distributed, and can therefore find the
distribution of 𝒯n . However, since we are not using all the amplitudes, only
the ones above C, we must use the truncated exponential distribution (see
Appendix, Section B.8:

PA(A|A > C) = 1
〈A〉

exp

(
−
A −C

〈A〉

)
H (A −C). (3.34)
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To find the PDF of 𝒯 , we use the transformation of variables [Stark and Woods,
2012]:

P𝒯 (𝒯 ) = PA(a1)
�����
da1
d𝒯

�����
, (3.35)

where a1 is the root of An in Eq. (3.33). This root is

𝒯n = τd ln
(a1
C

)
a1 = C exp

(
𝒯
τd

)
,

and the derivative gives �����
da1
d𝒯

�����
=

C

τd
exp

(
𝒯
τd

)
.

Inserting these results into Eq. (3.35) gives

lim
γ→0

P𝒯 (𝒯 ) = C

τd〈A〉
exp

(
𝒯
τd
+

C

〈A〉

[
1 − exp

(
𝒯
τd

)])
H1

(
C

[
exp

(
𝒯
τd

)
− 1

])
.

A positive constant does not change a Heaviside function, and exp(𝒯 /τd) > 1
in the same ranges as 𝒯 > 0. Therefore, the PDF of 𝒯 becomes:

lim
γ→0

P𝒯 (𝒯 ) = 1
τd

C

〈A〉
exp

(
C

〈A〉

)
exp

[
𝒯
τd
−

C

〈A〉
exp

(
𝒯
τd

)]
H1(𝒯 ). (3.36)

This is the so-called Gompertz distribution (see the appendix, Section B.5.5)
with shape parameter C/〈A〉 and scale parameter 1/τd. Some examples of this
distribution are plotted in figure 3.3 for various threshold values. As the ex-
cess time increases, the probability falls as a double exponential, since the ex-
cess times are exponentially related to the pulse amplitudes, and the available
pulses which can give such large times fall off exponentially as the excess time
increases. Note that this function is independent of λ = τr/τd. This dependency
disappeared in Eq. (3.33), where the whole pulse contributes to the excess time
regardless of the exact shape. Also note that forC/〈A〉 < 1, the Gompertz distri-
bution has a peak at a positive value instead of decreasing monotonically from
0, as is the case for C/〈A〉 ≥ 1. When the threshold is below the mean ampli-
tude value, this mean value will generate excess times, and thus the most likely
excess time to be generated is [from Eq. (3.33)] 𝒯peak = τd ln(〈A〉/C).
Since P𝒯 (𝒯 ) is a well known distribution, the mean is also known and this is
given by

lim
γ→0
〈𝒯 〉(C) = τd exp

(
C

〈A〉

)
ΓU

(
0,

C

〈A〉

)
, (3.37)

which is exactly the same as the estimate given by Eq. (3.32). A graphical
presentation is given in figure 3.4 with error bars of ±𝒯rms. The function is
monotonically decreasing, although the decay is slow for large threshold values.
While there is an analytic expression for the rms-value of 𝒯 , the formula is
complicated and not discussed here.
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Figure 3.3: The PDF of time above threshold in the strong intermittency limit where
pulse overlap can be neglected, for various threshold values.
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pulse overlap can be neglected, with bounds of rms-value of time above
threshold.
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The average time above threshold for ζ � 1

If we let ζ � 1 for the normal limit γ � 1, we find that 〈𝒯 〉(ζ ) ∼ 1/ζ . If we
are in the strong intermittency limit γ � 1, and let ζ → ∞, we find that:

lim
ζ→∞
〈𝒯 〉(ζ ) = lim

ζ→∞
τd exp

(
γ 1/2ζ + γ

)
ΓU

(
0,γ 1/2ζ + γ

)
= τd exp

(
γ 1/2ζ + γ

) (
γ 1/2ζ + γ

)−1
exp

(
−γ 1/2ζ + γ

)
=

τd
√
γ

1
ζ +
√
γ
, (3.38)

where we have used that lim
x→∞

ΓU (s,x) = xs−1 exp(−x). Since in the strong

intermittency limit, γ � 1, such that 1/
�
ζ + γ 1/2

�
≈ 1/ζ , and 〈𝒯 〉(ζ ) has the

same ζ -dependency for large thresholds in the strong intermittency limit as in
the normal limit.

3.5 Comparisons
We now have expressions for T (C), N (C) and 〈𝒯 〉(C) for the general case
(Section 3.2) (under assumptions of exponentially distributed pulse amplitudes,
pulse arrivals according to a Poisson process and a double-sided exponential
waveform), the strong intermittency limit (Section 3.4) (under the same as-
sumptions) and the non-intermittent limit (Section 3.3) (under the assumption
that PΦΘ(Φ,Θ) is jointly normally distributed). We have in Section 3.4.2 shown
that strong intermittency limit is consistent with taking γ → 0 in the general
case.

In Figure 3.5, we present the fraction of time above threshold T (C/〈Φ〉)/T
(above), rate of threshold crossings (τd/T )N (C/〈Φ〉) (middle) and average
time above threshold τd〈𝒯 〉(C/〈Φ〉) as a function of C/〈Φ〉 for various values
of γ . The general model is computed for all γ -values, the strong intermittency
limit is computed for γ = 0.01 and the normal limit is computed for γ = 100
(for the normalized threshold C/〈Φ〉, we need a γ -value for both asymptotic
limits). In all three cases, it is evident that the general case converges to the
asymptotic cases for γ → 0 and γ → ∞.

In the uppermost part of Figure 3.5 for very small γ , the fraction of time above
threshold falls very slowly with increasing threshold. This is because very few
bursts fall below the threshold as the threshold increases, so the time above
threshold only decreases with the pulse decay. That few bursts fall below the
threshold is seen in the middle part of Figure 3.5, where the decay of the rate
of upwards threshold crossings is very slow for γ = 0.01.
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Figure 3.5: Comparison of analytic expressions for excess times for λ = 0.25 and
various intermittency parameters.
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Asγ increases, the signal value varies less and less around 〈Φ〉. Thus, the fraction
of time above threshold decays much more quickly with increasing threshold
as γ increases. For low threshold values, the fraction of time above threshold
approaches 1 as the entire signal ends up above the threshold. The rate of
threshold crossings is greatest around the mean value. As the threshold moves
away from the mean value of the signal, fewer bursts cross the threshold and the
rate of upcrossings decreases. This decay is amplified with increasing γ .

In the lowest part of Figure 3.5, the average time above threshold is seen. Despite
the qualitative differences seen in the fraction of time above threshold and in
the rate of upcrossings above the threshold, the average time above threshold
does not change qualitatively for changing γ , in all cases it is a monotonically
decreasing function with fast decay for small threshold values followed by slow
decay for large threshold values. The value of γ changes when this transition
occurs, but not the qualitative behaviour of 〈𝒯 〉(C/〈Φ〉).

3.5.1 Comparisons of expressions for ζ � 1

In both the strong intermittency limit and the non-intermittent limit, 〈𝒯 〉(ζ )
has the same dependency on ζ for ζ � 1, 〈𝒯 〉(ζ ) ∝ 1/ζ . For γ on the order
of unity, we have 〈𝒯 〉(ζ ) ∝ 1/

�
ζ +
√
γ

�
. Going from γ on the order of unity to

the strong intermittency limit is simple, since here, ζ �
√
γ is fulfilled. Going

to the non-intermittent limit is not as evident, and here ζ �
√
γ becomes a

real restriction. For instance, for γ = 10, we require ζ � 101/2 ≈ 3.2, so we
require (C − 〈Φ〉) > 3.2Φrms, which has a probability of less than 10−3 for a
Gaussian process. Thus, we will not likely see this behaviour in real data sets
for large γ .

3.6 Excess time statistics of synthetic data
Before applying excess time statistics to experimental data, some questions
need to be investigated. The expression for N (C) should be verified, especially
the differences found in Eq. (3.8) for 0 < λ < 1 vs. λ = 0 and λ = 1. The
estimate in Eq. (3.5) needs to be verified. While both the strong intermittency
limit and the normal limit follow analytically from the general model, the rate of
convergence is not known, and should be investigated. In addition, we have no
knowledge of P𝒯 (𝒯 |C) or 〈𝒯 2〉 for γ of order unity, and should investigate the
behaviour of these values. In the following, these investigations are erformed
through analysis of synthetic data.
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Figure 3.6: Fraction of time above threshold for λ = 0.25 and varying γ .

3.6.1 Method
T (C),N (C) and 〈𝒯 〉(C) are all computed directly from synthetically generated
time series. These time series are generated with exponentially distributed
pulse waiting times and pulse amplitudes and double exponential waveforms.
τd = 1, 〈A〉 = 1 and, in the first sections, λ = 0.25. We set K = 105γ , since this
ensures the time series are about the same length for each γ , N ≈ 107. The
threshold is C = Φrmsζ + 〈Φ〉, and ζ is plotted along the x -axis of the figures.
Generation of time series and calculation of excess time statistics are found in
the appendix, Chapter C.

3.6.2 Total time above threshold from synthetic data
Figure 3.6 shows logarithmic plots of T (ζ )/T computed from the synthetic
signal for varying γ , along with the three analytic expressions given by Eqns.
(3.11), (3.25) and (3.30). It is clear that the general expression obtained from
the joint PDF of Φ and Θ holds in all cases presented. The expression for the
strong intermittency limit holds well in Figure 3.6a when γ = 0.1, but quickly
becomes irrelevant as γ increases. The non-intermittent Gaussian limit has a
too strongly curved tail to make a good fit, although for γ = 100 it fits well
for ζ < 1. While PΦ(Φ) is well described by a Gaussian at γ = 100 (see for
instance Figure B.1), the true PDF of Φ evidently still has a weaker right tail
than a Gaussian. Thus, the normal limit is a slowly convergent limit, not fitting
for ζ > 2 for the total time above threshold with γ = 102.
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Figure 3.7: Rate of upwards crossings over threshold for λ = 0.25 and varying γ .

3.6.3 Number of upwards crossings from synthetic data
Figure 3.7 shows logarithmic plots of N (ζ )/N , where N is the total number of
data points in the time series, computed from the synthetic signal for varying
γ , along with the three analytic expressions given by Eqns. (3.13), (3.26) and
(3.31). The results are the same as in the previous section; the expression from
the joint PDF holds well for all cases shown, the expression for the strong in-
termittency limit holds for γ = 0.1 and the expression for the non-intermittent
limit holds in an area around ζ = 0 (C = 〈Φ〉) which increases as γ increases.
The interpretation is the same as above: the joint PDF of Φ and Θ has weaker
tails than a joint Gaussian distribution, and therefore the number of upwards
crossings falls slower. The normal limit is also here slowly convergent, not fitting
the signal with γ = 102 for ζ -values > 2 and < −2.

3.6.4 Average time above threshold from synthetic data
Figure 3.8 shows logarithmic plots of 〈𝒯 〉(C) computed from the synthetic
signal for various γ , along with the three analytic expressions given by Eqns.
(3.15), (3.27) and (3.32). Note that while the conclusion for the expressions
from the joint PDF and the strong intermittency limit is the same as in the cases
above, the expression for the non-intermittent limit with ζ > 0 is a very good fit
for γ ≥ 1; only in Figure 3.8a is there an appreciable difference. Note, however,
that the non-intermittent limit is not a good fit for low and negative ζ -values.
Apparently, where the right tails of T (C) and N (C) from the non-intermittent
limit fall off too quickly, this effect is cancelled for 〈𝒯 〉(C) = T (C)/N (C) and
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the Gaussian analytic expression ends up being better for ζ > 0. For ζ < 0,
the expression for the total time above threshold in the non-intermittent limit
is good, while the expression for the number of upwards crossings does not fit
well, meaning that the non-intermittent expression for the average time above
threshold does not fit well for thresholds close to the minimal signal value.
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Figure 3.8: Average time above threshold for λ = 0.25 and varying γ .

Effects of changing λ
In Section 3.1.3, it was shown that there should be a qualitative difference
between λ = 0 and λ > 0 in the expressions for the total number of up-
wards crossings (and therefore, also for the average time above threshold). In
Figure 3.9, the average time above threshold as a function of the normalized
threshold ζ is presented for various γ . From Eq. (3.8), we have that 〈𝒯 〉(ζ ) for
λ = 0 should be smaller than 〈𝒯 〉(ζ ) for λ > 0 by a factor [2πγλ(1 − λ)]−1/2, so
this difference should be small for small intermittency parameters and increase
as γ increases. This is exactly the behaviour seen in Figure 3.9. The reason for
this difference is discussed in depth in Section 3.6.5, where we also have 〈𝒯 2〉
for synthetic data.

Behaviour of the average time above threshold for largethreshold values
In this section we will test the prediction that for ζ � 1 the average time
above threshold 〈𝒯 〉(ζ ) ∝ 1/ζ in both the strongly intermittent limit and in
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Figure 3.9: Comparison of average time above threshold for λ = 0 and λ > 0 calcu-
lated from synthetic data.

the non-intermittent limit, while 〈𝒯 〉(ζ ) ∝ 1/(ζ + √γ ) for γ -values of order
unity. Figure 3.10 presents the average time above threshold (blue line), the
average time above threshold in the limit of large ζ given by Eq. (3.22) (red
dotted line) and power law fit to the largest values (green line) as a function
of ζ for different intermittency parameters. Concentrating on the expression
for the limit of large ζ (Eq. (3.22)), this is approximately correct for γ = 1
(Figure 3.10c). For lower γ , this value is too high, although in Figure 3.10b, 〈𝒯 〉
from the synthetic data converges towards the analytic expression. In the same
way, in the figures for γ > 1, the analytic expression is too small, although
the synthetic data in Figure 3.10d also seems to converge towards the analytic
expression.

Looking at the power law fit, this is the fit 〈T 〉fit = αζ β , where α and β are
fit parameters. The fit range is the same as the plot range for the fits, from
ζ = 1 until (at most) ζ = 102, although this decreases with increasing γ .
While the power law fits are acceptable for all figures except Figure 3.10a,
the exponent is around −0.75 in all cases, not consistent with the asymptotic
scaling 〈𝒯 〉(ζ ) ∝ ζ −1. Thus, while it seems possible to find a power law fit to
the synthetic data for large ζ , the expression from the general model seems
to indicate that these synthetic data sets are not long enough to reach large
enough ζ -values for 〈𝒯 〉(ζ ) ∝ ζ −1 to be fulfilled.
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Figure 3.10: Average time above threshold for large threshold. λ = 0.25 and γ varies.
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3.6.5 The rms-value of the time above threshold
While we have no theoretical expression for 𝒯rms, it can still be found numer-
ically from synthetic data. Figure 3.11 presents the second raw moment of 𝒯
as a function of ζ comparing different λ for four given values of γ . Similarly,
Figure 3.12 presents 〈𝒯 2〉 as a function of ζ for two values of λ, comparing dif-
ferent values of γ . In all cases, 〈𝒯 2〉(ζ ) is a monotonically decreasing function
which has a singularity at a threshold corresponding to Φ = 0.

In Figure 3.11, the same difference between λ = 0 and λ > 0 can be seen as for
the average time above threshold, the 〈𝒯 2〉-value for λ = 0 becomes smaller
with increasing γ compared to the 〈𝒯 2〉-value for λ > 0. The lack of a finite
rise time for λ = 0 gives less possibilities for pulse build up, any steps over
the threshold happens suddenly and after the threshold is crossed upwards,
new pulses are needed to keep the signal above the threshold. For λ > 0, any
crossing over the threshold is caused by a rising pulse, allowing for build up
above the threshold even in the absence of other pulses. Although the time
above threshold is the same for any pulse of the same amplitude, independent
of λ, the fact that for λ = 0, the pulses are only falling decreases both the
time above threshold for the bursts and the variation possible in the length of
the bursts. As γ increases, this difference increases since closer pulses means
there are more ways pulses with λ > 0 can interact to form bursts than pulses
with λ = 0, leading to both larger 〈𝒯 〉 and larger 〈𝒯 2〉 for λ > 0 than for
λ = 0.

In Figure 3.12, it can be seen how, for increasing γ , the 〈𝒯 2〉-value decreases
for all ζ . This is due to pulse overlap becoming more significant, decreasing the
ratio ofΦrms/〈Φ〉 and thus decreasing the variation in excess times for any given
ζ . The increase towards∞ forC → 0 is due to the large variation in time above
threshold seen for thresholds below 〈Φ〉. As the threshold decreases, it begins
catching the bursts that essentially make up the baseline mean value, so it gets
both very long bursts and extremely short bursts, leading to a sharp increase
in the variation of time above threshold for small threshold values.
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Figure 3.11: The second raw moment of time above threshold for changing γ
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Figure 3.13: The PDF of time above threshold for λ = 0.25 and changing γ

3.6.6 The PDF of the time above threshold
In Figure 3.13, P𝒯

(
𝒯 |Φ̂ > ζ ) is plotted against 𝒯 for changing thresholds ζ

and various values of γ . In Figure 3.13a and Figure 3.13b, the dots refer to the
PDF calculated from the signal, while the dotted lines is the analytic expression
for the PDF of 𝒯 in the strong intermittency limit, given by Eq. (3.36). In
Figure 3.13b and Figure 3.13d, the dots refer to the PDF calculated from the
signal, while the dotted lines is an exponential fit to the synthetic data.

For γ = 0.01, the analytic expression fits the data very well, the points outside
the fits are most likely due to binning issues and lack of data points for large
𝒯 . In contrast, for γ = 0.1, the fits are acceptable for low 𝒯 -values, but have
a much weaker tail than the analytic expression for the strong intermittency
limit predicts. Evidently, the strong intermittency limit is not a good fit for
γ ≥ 0.1.

Considering the Figures for γ = 1 and γ = 10, they are in all cases well
approximated by an exponential. In addition, going from γ = 1 to γ = 10
appears to have little effect on the PDF of 𝒯 .



4
Conditional averaging
4.1 Theory and methods
The conditional average is a method for picking out large-amplitude structures
in noisy signals; examples of previous applications include fusion plasma de-
vices [Antar et al., 2005, Boedo et al., 2001, Rudakov et al., 2002, Garcia, 2009],
magnetized tori [Øynes et al., 1998, Fredriksen et al., 2008, Block et al., 2006]
and linear devices [Grulke et al., 1999, Huld et al., 1991, Nielsen et al., 1996].
We intend to use the same methods to discuss the statistics of large-amplitude
fluctuations in a shot noise signal, the distribution of pulse amplitudes and
waiting times and the preservation of the signal pulse shape.

Note that there is a discrepancy between the assumptions we use and the
assumptions in the works referenced above; these works assume the signal
consists of non-overlapping coherent structures with overlapping noise, and a
central problem is whether the condition is fulfilled by a coherent structure
or randomly due to noise. We, on the other hand, assume that the signal con-
sists completely of overlapping, coherent structures. Thus, the question for us
becomes whether the condition is fulfilled by a single, large structure or a
superposition of many, smaller structures.

Given a time series Φ(t), we use a condition C to pick out certain subintervals
from the main signal. This can for instance simply be the condition that the
signal value reaches a certain threshold. The conditionally averaged signal is

87
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then the ensemble average of all subintervals

ΦC = 〈Φ|C〉. (4.1)

We will use the following condition: First, we find all the maxima of Φ above a
threshold value α . Then, we pick out the subintervals (tm − ∆,tm + ∆) where tm
is the time of the maxima and 2∆ is the length of a subinterval. To ensure sta-
tistical independence between the subintervals, they are not allowed to overlap.
In cases where overlap happens, the larger maxima is preferred. An example
of this method is shown in Figure 4.1. Note especially how, in the first subin-
terval, a lower peak has been picked. This is to ensure independence between
the subintervals, since picking the higher peak would cause overlap with the
third subinterval. The waiting time distribution is constructed from the time
between the red stars and the amplitude distribution is constructed from the
signal value of the subsequent maxima, indicated by the red stars in Figure 4.1.
The conditionally averaged signal is then constructed as

ΦC =
1
M

M∑
m=1

Φ(t − tm) for t − tm ∈ (−∆,∆) (4.2)

In addition to finding the subintervals, we also note the time and amplitude
of their peaks, and construct waiting time and amplitude distributions of the
peaks of the signal.
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Figure 4.1: Left: A synthetically generated shot noise process with λ = 0.25 and γ = 1
(blue lime), threshold (black dotted line), found peak values (red stars) and
corresponding subintervals (green horizontal bars). Right: The average
from all subintervals.
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4.1.1 Problems and prospects
It has been demonstrated elsewhere Block et al. [2006] that conditional av-
eraging does not preserve signal amplitude or the size of the waveforms. For
us, this means that and estimate of 〈A〉 and τd, which we would like to get for
PA(A) and Pτ (τ ) are out of reach by conditional averaging methods. Neither
can we find τw, since only waiting times larger than 2∆ are found. We are
instead focusing on the following questions:

• Is the pulse amplitude distribution PA(A) preserved by conditional aver-
aging?

• Is the pulse waiting time distribution Pτ (τ ) preserved?
• Is the waveform of the pulses preserved?

• Is λ preserved?

Looking at figure 4.1, we see that for the peaks to be registered as such, they
must have an amplitude higher than the threshold value, and must be further
away from each other than the length of a subinterval. Lower peaks and wait-
ing times are not recorded. Thus when we are fitting distributions to the data
we get from the conditional average, we cannot simply compare the result to
the original PDFs PA(A) or Pτ (τ ), we must compare them to PA(A|A > α) and
Pτ (τ |τ > ∆), where α is the threshold value and ∆ is the subinterval length.
(At least for highly intermittent signals it is this clear cut. When the intermit-
tency becomes lower, bursts will overlap and for instance two bursts which
individually were not large enough to satisfy the condition Φ > C will give
one large peak if they are close enough together, that is, for significant pulse
overlap. But the main point, that the distributions we get are truncated, still
holds). Thus all comparisons to analytic distributions will be comparisons to
truncated distributions, covered in Section B.8.

4.1.2 Choice of threshold
There are two main ways to set the threshold value α . One way is to say that

Φ − 〈Φ〉

Φrms
> α , (4.3)

while another way is to use

Φ − 〈Φ〉

〈Φ〉
> β , (4.4)
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which can also be formulated as

Φ − 〈Φ〉

Φrms
> β
〈Φ〉

Φrms
= α .

From Section 2.1.3 we know that for degenerate, uniform, Rayleigh and ex-
ponential pulse amplitude distributions and pulse waiting time distributions,
〈Φ〉/Φrms ≈ γ

1/2, so the two conditions are not qualitatively different. Eq. (4.4)
has the advantage that it is not dependent on γ . Therefore, it can be useful for
comparing signals with different intermittency parameter. Sometimes, how-
ever, it is necessary to remove the mean value of the signal before starting
analysis. Then we have to use Eq. (4.3). In the following analysis of synthetic
data, we have used the threshold Eq. (4.3) since it is the most commonly used
method for analyzing experimental data. In addition, it will in the next section
turn out that when using the threshold in Eq. (4.3), the number of conditional
bursts remains roughly equal for all generated processes when the number of
of pulses in the process is proportional to γ .

4.2 Conditional averaging of synthetic data
Here, we present results from conditional averaging of synthetically generated
shot noise data. The data is generated with a sampling time ∆t = 0.01 and we
have set τd = 1 and 〈A〉 = 1. The number of data points in the signal varies,
and we have used K = 105γ pulses, giving N ≈ 107 data points. Thus the
synthetic signals have an end time of T /τd ≈ 105. Conditional averaging has
been performed as described in the previous chapter, with the threshold in
Eq. (4.3) and α = 2.5. This threshold, together with K ∝ γ kept the number
of stored events after conditional averaging in the same ballpark, at around
2000 − 5000 stored events.

When testing the preservation of amplitude and waiting time distributions, λ
is set to 0.2 and γ varies, deciding τw through τw = τd/γ = 1/γ . Amplitudes
and waiting times for the pulses in the shot noise process are degenerately,
exponentially, uniformly and Rayleigh distributed. These distributions have
all been defined through their mean value as described in the appendix, Sec-
tion B.5.

When testing pulse waveform preservation, we have used fewer (K = 104γ )
pulses and λ has been allowed to vary. Pulse amplitudes and waiting times are
only exponentially distributed.

Distributions are calculated using a histogram method, so we will present the
complementary CDF in the results instead of the PDF to minimize binning
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Figure 4.2: Graphical representation of complementary CDFs

issues. We fit the cCDF to truncated distributions, see Section B.8 with the
distribution parameter and the truncation threshold are parameters to be fitted.
We will call the distribution parameter l and the truncation parameter a for
universality.

We will be comparing the complementary CDF of the distributions in log-lin-
plots, and a graphical presentation of these distributions is given in Figure 4.2a.
In all cases, the complementary CDF has a maximal value of 1 at X = 0 and
decays monotonically with increasing X . All distributions have the same mean
value, 〈X 〉 = 1. The distributions we present in the following Sections will
also be truncated, as described in Section 4.1.1. An example of the effect of
truncation on the CDF of the uniform distribution can be seen in Figure 4.2b.
Truncation effectively causes the complementary CDF to start at the truncation
parameter at with a maximal value of 1. In addition, truncation rescales the
signal such that

∫ ∞
−∞

dx PX (x |x > at) = 1.
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(b) Rayleigh distributed pulse waiting
times and amplitudes.

Figure 4.3: Waiting time distributions of conditionally averaged signals with γ = 1,
with fitted exponential and Rayleigh distributions.

4.2.1 Preservation of waiting time distribution
In Figure 4.3, complementary CDFs of waiting time distributions of condition-
ally averaged signals with γ = 1 are presented together with fitted truncated
exponential and Rayleigh distributions. In all cases, the fits are made between
the truncation parameter at and τC/〈τC〉 = 3. In Figure 4.6a, the truncation
parameter is at = 0.47 and the exponential distribution parameter is 1.94. In
Figure 4.6b, the truncation parameter is at = 0.44 while the exponential dis-
tribution parameter is 1.76. It is evident that in both cases, despite differences
in both pulse waiting time distribution and pulse amplitude distribution, the
resulting waiting time distributions of the conditionally averaged signals are
remarkably similar.

In Figure 4.4, we present waiting time distributions between large-amplitude
events from a variety of pulse waiting time distributions, pulse amplitude distri-
butions and intermittency parameters. In all cases, the resulting waiting times
are clearly exponentially distributed for more than two orders of magnitude
on the ordinate.

It should be noted that not all cases are clearly exponentially distributed; two
examples are shown in Figure 4.5. In both cases, the intermittency is signifi-
cant (γ = 0.1), so there is little pulse overlap. In Figure 4.5a, we see that for
degenerately distributed pulse amplitudes, the conditionally averaged waiting
times follow a Rayleigh distribution, which is the same as the pulse waiting
time distribution. For all other pulse amplitude distributions, the conditionally
averaged waiting times are exponentially distributed. In Figure 4.5b, we see
that for a low intermittency parameter and degenerately distributed pulse am-
plitudes, the waiting time distribution follows the underlying pulse waiting
time distribution.
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(a) γ = 0.5 and the pulse amplitudes
are exponentially distributed for
various pulse waiting time distribu-
tions.
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(b) γ = 1.0 and the pulse waiting
times are exponentially distributed
for various pulse amplitude distri-
butions.
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(c) γ = 5.0 and the pulse amplitudes
are Rayleigh distributed for various
pulse waiting time distributions.
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(d) γ = 10.0 and the pulse waiting
times are Rayleigh distributed for
various pulse amplitude distribu-
tions.

Figure 4.4: Comparisons of waiting time distributions for large-amplitude events.
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(a) Varying pulse amplitude distri-
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Figure 4.5: Comparison of conditionally averaged waiting times with intermittency
parameter γ = 0.1.
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Conclusion and interpretation
In conclusion, the waiting time distribution of a conditionally averaged shot
noise process is exponentially distributed for almost all pulse waiting time-
and amplitude distributions and all but the most intermittent signals. Of the
cases investigated here, only for γ = 0.1 and degenerately distributed pulse
amplitudes does the conditionally averaged waiting times follow the same
distribution type as the pulse waiting times. Therefore, conditional averaging
does not seem equipped to determine the waiting time distribution of the pulses
of a shot noise process.

A possible interpretation of the uniformity of the exponentially distributed
waiting times is the following: For a shot noise process with pulse overlap, the
position of the largest bursts is determined by a combination of the degree of
pulse overlap (γ ), increasing with the distribution of large pulse amplitudes and
the distribution of waiting times (many short waiting times after one another
may lead to a single, large burst). Thus, any information about where the
original pulses are is lost. This may mean that we also lose any dependencies
in the signal, such that even if the number of pulses in a certain time interval
did depend on the number of pulses in a previous interval, the bursts display no
such dependency. We already know that two large bursts cannot occur at the
same time for a conditionally averaged process, and since the shot noise process
is stationary, it is reasonable to expect the conditionally averaged process to be
stationary as well. If all this is true, then the number of bursts in a conditionally
averaged shot noise process is a Poisson process, and the waiting time between
bursts must have an exponential distribution.

4.2.2 Preservation of amplitude distribution
The amplitude distribution of the conditionally averaged bursts exhibits the
same type of information loss as the waiting time distribution, although in-
stead of a pure exponential distribution, the amplitudes taper off, sharper with
increasing intermittency parameter. Two examples of this, with exponential
and Rayleigh fits, are seen in Figure 4.6. Here, both processes end up with
conditionally averaged amplitudes closer to a Rayleigh distribution than to an
exponential distribution.

While a degenerate pulse waiting time distribution ensures that we retain
the pulse amplitude distribution, even in the case of significant pulse overlap,
(Figure 4.7), any other pulse waiting time distribution leads to information loss
(Figure 4.8). Note how the burst amplitude distribution in Figure 4.8a remains
an exponential while the burst amplitude distribution in Figure 4.8b tapers
off.
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(a) Pulse amplitudes are exponentially
distributed.
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Figure 4.6: Conditionally averaged amplitude distributions with fitted exponential and
Rayleigh distributions.γ = 1 and the pulse waiting times are exponentially
distributed.
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(a) γ = 0.1.
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(b) γ = 1.

Figure 4.7: Comparison of conditionally averaged amplitude distributions. The pulse
waiting times are degenerately distributed.

As a final note before discussing these results, we point to the influence of
the pulse waiting time distribution on the conditionally averaged amplitude
distribution, Figure 4.9. Here we again see that the degenerate pulse waiting
time distribution preserves the pulse amplitude distribution, at least for highly
intermittent signals (Figure 4.9a). This is less pronounced for less intermittent
signals, (Figure 4.9b). Note that while there is a clear difference between the
plots for the exponentially and Rayleigh distributed pulse waiting times in
Figure 4.9a, Figure 4.10 reveals that this is not a difference in distribution,
only in parameters; the Rayleigh distribution parameter in Figure 4.10a is 0.51,
while the distribution parameter in Figure 4.10b is 0.42.

Conclusion
The pulse waiting time distribution has a greater effect on the conditionally
averaged amplitudes than the pulse amplitude distribution has on the condi-
tionally averaged waiting times. In addition, we see that if the conditionally
averaged amplitudes go towards a common distribution, it is rather the Rayleigh
distribution than the exponential distribution, and here they display a greater
range of fit parameter discrepancy than the conditionally averaged waiting
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(a) γ = 0.1 and exponentially dis-
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(b) γ = 1 and Rayleigh distributed
pulse waiting times.

Figure 4.8: Comparison of conditionally averaged amplitude distributions with non-
degenerate pulse waiting time distributions.
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(a) γ = 0.5.
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Figure 4.9: Comparison of conditionally averaged amplitude distributions with uni-
formly distributed pulse amplitudes and varying pulse waiting time distri-
bution.
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Figure 4.10: Conditionally averaged amplitude distributions fitted to exponential and
Rayleigh distributions. γ = 0.5 and pulse amplitude distribution is uni-
form.
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times. This is termed tapering off of the distribution tail, and may be due to
the pulse overlap; the signal amplitude increases due to short waiting times
and we get a greater range of amplitudes in the resulting signal than in the
individual pulses. In the case of the waiting times, the pulse overlap leads to
increased likelihood of peaks over the entire range of waiting times, and the
tapering off does not occur.

4.2.3 Preservation of the pulse waveform
Preservation of the waveform shape
To reveal the extent of waveform preservation, we have analyzed the same shot
noise process with four different waveforms: a double exponential waveform,
given in Eq. (2.5) with τr = τf = τd/2, the derivative of this waveform, given in
Eq. (2.84), a box waveform:

φbox(t) =
{

1, if − τd
2 ≤ t ≤ τd

2
0, else

, (4.5)

and a Gaussian waveform

φGauss(t) = exp

−π

(
t

τd

)2
. (4.6)

All of these waveforms have the maximal value φ(0) = 1 and all have I1 =
1.

In Figure 4.11, an example of a conditionaly averaged signal is presented. The
original signal had exponentially distributed pulse amplitudes and waiting
times, γ = 10 and τr = τf. This is the average of 200 recorded bursts, from 105

pulses. In order to get from this signal to the (assumed) pulse shape, it must
be centered and scaled to have a maximal value of 1 at τ = 0 and to fall off
towards 0 as the absolute value of τ increases. It is centered by subtracting
the average value of ΦC for the parts where |τ | � 0. Then we divide by the
maximal value of the resulting signal to get the desired shape.

The results of this process are presented in Figure 4.12. Here, the same shot
noise process with four different pulse shapes has been conditionally averaged
and fitted to an exponential function. It is quite clear that only the originally
exponential waveform can be well fitted to an exponential. It is also interesting
to note that only the originally exponential and Gaussian waveforms have been
preserved. The derivative of the double exponential should fall below 0 as far as
it rises above, since with τr = τf, this waveform is symmetric. The box waveform
has been distorted as well, most likely since the largest peaks arise from layers
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Figure 4.11: An example of a conditionally averaged signal with threshold α = 2.5.

of box waveforms arriving after one another, creating a pyramidal shape. Note
that the exponential pulse shape, while being well preserved, did not conserve
τd. For the exponential pulse shape, the fitted τd was 1.45, for the derivative of
the exponential pulse shape, it was 0.36, the box shape gave τd = 0.89 and the
Gaussian waveform gave τd = 1.13. In all cases, the decay time of the original
signal was τd = 1.

Even if the fit is not perfect to the signal with double exponential, these results
seem to indicate that if the conditionally averaged signal has an exponential
shape, then the pulse waveform is exponential as well.

Preservation of τr/τd and τf/τd
We have previously stated that conditional averaging does not preserve τd. It
is, however, possible that it preserves the relationship between τr and τf (that
is, it preserves the parameter λ, where τr/τd = λ and τf/τd = 1 − λ). The
results presented here only use exponential pulse amplitude- and waiting time
distributions.

In Figure 4.13a, normalized, conditionally averaged signals with various values
ofγ have been fitted to the functionφ(t) = exp(tτd/λ)H (−t)+exp(−tτd/(1 − λ))
where τd and λ are fit parameters. Estimated standard deviation error is < 10−2

in all cases, and does not exceed the plot points. Setting τd to its true value does
not increase accuracy of λ. In this figure, the loss of accuracy with increasing γ
is clear; for γ = 0.1, the results can be trusted, but for γ ≥ 1, they can only be
used as an indicator of which way the waveform is skewed. Note, however, that
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−6 −4 −2 0 2 4 6

τ/τd

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
(τ
/τ

d
)

−6 −4 −2 0 2 4 6

τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Box waveform Gaussian waveform Exponential fit

(b) Pulse waveforms are box (left) and gaussian (right).

Figure 4.12: Conditionally averaged signals with K = 105 and γ = 10. Pulse ampli-
tudes and waiting times are exponentially distributed. The conditionally
averaged signal has been normalized to fall off towards 0 and to have a
peak at 1
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Figure 4.13: Comparisons of λ and waveforms after conditional averaging and normal-
ization.

the error decreases as λ → 0.5, implying that a very symmetric conditionally
averaged signal indeed has symmetric underlying pulse waveforms, at least for
signals with mid-range intermittency parameters.

Figure 4.13b presents waveforms from conditional averaging with λ = 0.0 for
increasing γ , and it is clear how the discontinuous jump is gradually lost. This
is due to the fact that for weakly intermittent signals, the largest peaks are not
necessarily due to only large pulse amplitudes, but also to pockets of lower
amplitude pulses forming one large burst.

4.2.4 Conclusion
Returning to the questions in Section 4.1.1, only the third question can be
answered positively; when we have exponential pulse waveforms, they are
well preserved. The other questions cannot in general be answered positively
for γ ≥ 1, although if the ratio between τr and τf is close to 1, then this will
show up in conditional averaging as well.

Conditional averaging may also point to a loss of information about the underly-
ing pulse amplitude and waiting time distributions. In the case of pulse waiting
times, this loss leads to exponentially distributed waiting times between the
peaks of the signal, which may be interpreted as pulse overlap pushing the num-
ber of large scale events in the shot noise process towards a Poisson distribution.
In the case of pulse amplitudes, pulse overlap seems to create a lessening of
large values, pushing the distribution of large scale events towards a Rayleigh
distribution.

Thus, conditional averaging will reveal the structure of the waveforms, but little
else of interest to us. It does however present an interesting thought: if the
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pulse amplitude distribution and pulse waiting time distribution is irrevocably
lost in the creation of the signal, then the assumptions about them may be
very flexible; that is effects that could be due to changes in waiting time and
amplitude distribution will instead be ascribed to changes in (for instance) the
intermittency parameter.





5
Results from TCV
In the introduction, we presented the TCV tokamak and the results from a
particular experimental run of the machine, discharge 26701. We used condi-
tional averaging of the experimental data to motivate the investigation of the
statistical properties of a shot noise process, and to place particular weight on
shot noise processes with exponentially distributed pulse amplitudes, Poisson
distribution of pulse events and the double-sided exponential pulse shape. Even
though Section 4.2 shows that the waiting time distribution and amplitude dis-
tribution of conditionally averaged data cannot be used to conclusively predict
the waiting time- and amplitude distribution of the underlying pulses, these
assumptions still lead to strong results in other areas, particularly in excess
time statistics. Here, we will present the results from applying the methods in
this thesis to the experimental data set from TCV.

From the introduction, we have a preliminary estimate of γ = 1.92 from the
PDF of the normalized, detrended ion saturation current Ĵsat. We also have
two different sets of rise- and fall time. From conditional averaging, these have
the values τr = 5.14µs and τf = 10.7µs. From fitting to the autocorrelation
function, we have τr = 0.615µs and τf = 15.3µs. These describe vastly different
pulse waveforms, the waveform from conditional averaging is a double sided
waveform with τf ≈ 2τr, while fitting to the autocorrelation function implies
that the waveform is close to a one-sided waveform.

Still, both of these estimates give τd = 15.9µs. And they are not inconsistent;

103



104 CHAPTER 5 RESULTS FROM TCV

−2 0 2 4 6 8 10 12
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Figure 5.1: PDF of the normalized particle density

from Section 4.2.3, we know that the pulse shape of the conditionally averaged
signal is more symmetric than the pulse shape of the original shot noise process,
and that this effect increases with γ . This value for τd will in the following
be kept fixed, and for further parameter fitting we will use λ = τr/τd. From
conditional averaging, we have λC = 0.323, while the fit to the autocorrelation
function gives λR = 0.0387.

5.1 Moments of the normalized ion saturation
current

From the detrended ion saturation current probe time series, we calculate the
skewness and kurtosis moments. They are presented below:

S Ĵsat = 1.51 (5.1)

F Ĵsat = 6.65 (5.2)

Using SΦ = 2/γ 1/2, we estimate γ to have the value 1.75. Figure 5.1 presents
the PDF of Ĵsat along with the normalized gamma distribution [see appendix,
Eq. (B.25)] with shape parameterγ = 1.75. Comparing this to Figure 1.6, there
is little difference between the analytic expressions withγ = 1.75 andγ = 1.92.
We will in the following use γ = 1.75 as our base estimate of the intermittency
parameter, since it comes directly from the signal, and not from a fit to a PDF.
Note that γ = 1.75 gives a theoretical flatness of FΦ = 3+ 6/γ = 3+ 6/1.75 =
6.43, which is consistent with the flatness measured from the signal.
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5.2 Moments of the derivative of the normalized
ion saturation current

To have a unitless time derivative of the ion saturation current, we will use

η = τd
d Ĵsat
dt
=

τd
Jrms

J̇ , (5.3)

where we have from the introduction that Jrms = 4.89mA, and τd is given above.
In Table 5.1, we present the moments of η. In the first column, the moments are
calculated from the signal. In the second column, we have used the analytical
values from Section 2.2.2 with γ = 1.75 and λ = λC. In the third column, we
have used analytical expressions with the same γ and λ = λR. It is evident that
neither fit the values from the signal well. Indeed, there is no good fit to these
moments for the moments of the derivative of a shot noise process.

Experimental λC λR〈
η
〉

3.04 · 10−5 0 0
ηrms 4.02 2.14 5.19
Sη 1.02 1.13 7.24
Fη 19.3 8.36 85.0

Table 5.1: Comparison of moments of the derivative of the normalized ion saturation
current.
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Figure 5.2: PDF of the normalized derivative of the ion saturation current from TCV
Discharge 27601. Note the logarithmic scale used for the y-axis.

In Figure 5.2 we present the PDF of η along with the analytical expression from
Eq. (2.100) with γ = 1.75 and both λ = λR and λ = λC [〈A〉 has been rescaled
away since we divide by Jrms in Eq. (5.3)]. From this figure, it is clear why
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the moments in Table 5.1 do not fit, as the analytic model is a poor match to
the actual shape of the PDF. These differences should not come from either
the 5-point polynomial method for differentiation of the signal or from the
Gaussian kernel method used for estimating the PDF; both of these methods
have been tested against synthetic data. The likeliest source of these differences
is the same as for the problems with the PDF estimate of Ĵsat; the signal has
negative values not reachable by a shot noise process with positive definite
pulse shapes.

Compared to the experimental measurement, the analytic PDF for λ = λR is
too low for large negative values of η (η < −5) and for small positive values
for η (0 < η < 15), while it is too high for small negative and large positive
values (−5 < η < 0 and η > 15). A possible interpretation is the following: For
a signal with small rise time and large fall time, we expect to see a derivative
with small negative values (due to the slow decay) and large positive values
(rapid growth). When the signal falls to negative values frequently and stays at
negative values for extended periods, we expect to see more large negative val-
ues for the derivative (to bring the signal value down) and more small positive
derivatives (not bringing the signal values up to higher values). By comparison,
large, positive derivatives becomes less likely. The peak seen at small negative
values for the analytic expression in Figure 5.2, which is not present for the PDF
from the experimental signal, is due to the overwhelming amount of time spent
at slow decay, compared to the time spent at rapid growth. This disappears
when the large negative values and the small positive values become more
likely. Note that the fit for λ = λC is no better, with less likelihood of both
positive and negative values as compared to the PDF from the signal.
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5.3 Excess time statistics for the TCV data
We will now look at excess time statistics of the TCV ion saturation current.
With the estimated value γ = 1.75, we are in the intermediate regime. We
will in the following compare the general model found in Section 3.2 to the
non-intermittent limit found in Section 3.3, since these two are qualitatively
different and the non-intermittent limit is prevalent in the literature [Rice, 1945,
Fattorini et al., 2012, Sato et al., 2012]. The strong intermittency model is found
by taking the limit γ → 0 in the general model, and is therefore not discussed
here. Note that since we are using the normalized signal, we are also using the
normalized threshold, Ĵsat > ζ .

It is also important to note that while the problems with the experimental
data set and therefore the signal η above may influence comparisons with the
analytic, general model (since it depends on the joint PDF between the signal
and its derivative), these problems do not affect the calculation of the excess
time statistics from the experimental data set itself, since these calculations
only use the signal, and not its derivative.

5.3.1 Fraction of time above threshold
In Figure 5.3, the fraction of time spent above threshold, T (ζ )/T is presented.
The solid blue line is found from the signal itself, the dashed red line is Eq. (3.12),
with γ = 1.75 and the black dotted line is the non-intermittent Gaussian limit,
Eq. (3.25). The expression for the general model fits very well, at least for ζ < 6.
This is to be expected, as the expression for the general model is simply the
complementary cumulative distribution of Ĵsat, and we already know that Ĵsat
is well fitted by a Gamma distribution. The non-intermittent limit does not fit
at all. Again, this is to be expected as γ estimated from the experimental data
is of order unity.

5.3.2 Rate of positive threshold crossings
The rate of upwards crossings, N (ζ )/N , with N = 5.8 × 106 being the total
number of data points in the time series, is presented in Figure 5.4. The blue
line is calculated from the signal itself, the red dashed line is for the general
model, from Eq. (3.14) with τd = 15.9µs, γ = 1.75 and λ = λR, and the black
dotted line is the Gaussian model, Eq. (3.26), with the mean and rms-values of
Ĵsat and η calculated from the signal. Again, the non-intermittent limit falls off
far too quickly, as expected. Neither does the general model fit exactly, the peak
of the general model is too far to the right, it is too low for negative ζ -values and
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Figure 5.3: TCV Discharge 27601: Fraction of time above threshold as a function of
the normalized threshold, compared to the general model and the non-
intermittent limit.
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Figure 5.4: TCV Discharge 27601: Rate of positive threshold crossings as a function
of the normalized threshold, compared to the general model and the non-
intermittent limit.

too high for positive ζ -values. This is because the general model is derived by
using the joint PDF of Ĵsat and η, and we know that the PDF of η does not fit the
theoretical PDF from Eq. (2.100). The difference can also be explained from the
negative ion saturation current values. Since the signal spends more time at low
values, the threshold crossings for ζ < 0 happen more often than is expected
from theory. For the same reason, threshold crossings at higher values happens
less often than the general model predicts. Still, the qualitative behaviour of the
general model is very close to the qualitative behaviour of the calculations from
the signal, and is a large improvement over the non-intermittent model.
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Figure 5.5: TCV Discharge 27601: Average time above threshold as a function of
the normalized threshold, compared to the general model and the non-
intermittent limit.

5.3.3 Average time above threshold
In Figure 5.5, the average time above threshold, 〈𝒯 〉(C), is presented. The blue
line is the average time above threshold calculated from the signal, the red
dashed line is the general model, from Eq. (3.15), with the same parameter
values as above and the black dotted line is the Gaussian limit, from Eq. (3.27),
with the same parameters as above. The discrepancy between the general
model and the signal values has the same explanation as for N (ζ ), since the
analytic expression for 〈𝒯 〉(ζ ) uses the expression for N (ζ ). Despite the prob-
lems with the predictions in the non-intermittent limit in Sections 5.3 and 5.3.2,
for ζ > 0 these problems cancel out. The Gaussian limit and the general model
predict essentially the same behaviour for these ζ -values, only for ζ < 0 is the
behaviour of the Gaussian limit qualitatively different from the general model
and the signal values. As in Section 5.3.2, the general model is qualitatively
in agreement with the experimental measurements although it predicts lower
average time above threshold for large ζ than is found from the TCV data
set.

Note that the time above threshold falls very slowly for large threshold values.
For ζ < 0, the decrease in 〈𝒯 〉 is very rapid, but from ζ = 0 (which is threshold
at the mean value) to ζ = 6 (threshold equals 6 times the rms-value above the
mean value), 〈𝒯 〉 decreases from 8.28 · 10−6s to 2.43 · 10−6s. As the threshold
value increases, the time the large bursts spends above threshold decreases,
lowering the average time above threshold. But at the same time, the smaller
bursts no longer contribute short times above threshold to the average value,
increasing the average time above threshold. Evidently, these two effects al-
most cancel each other, resulting in a slowly decreasing average time above
threshold.
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Figure 5.6: TCV Discharge 27601: Rms-value of time above threshold as a function of
the normalized threshold.

5.3.4 Rms-value of time above threshold
In Figure 5.6, we present the rms-value of time above threshold, 𝒯rms, as a
function of ζ . Included is also an exponential fit in the interval 0 < ζ < 6.
The rms-value has some of the same basic behaviour as the average time above
threshold; as ζ increases from negative values towards zero, the function falls
rapidly. This is followed by a slow decay for ζ > 0. At the mean signal value,
we have 𝒯rms(ζ = 0) = 1.50 × 10−5, while 6 times the rms-value above 〈 Ĵsat〉,
𝒯rms(ζ = 6) = 2.16 × 10−6. The 𝒯rms-value falls less than one decade in this
interval. The fitted exponential function suggests exponential behaviour of the
rms-value for large threshold values.

5.3.5 PDF of time above threshold
In Figure 5.7, the PDF of 𝒯 is presented for some values of ζ , along with expo-
nential fits to these functions. In all cases, the PDF is a monotonically decreasing
function with exponential decay for large 𝒯 . The first data point in all figures
is above the exponential fit, suggesting faster than exponential decay for small
𝒯 -values. This decreases as the threshold ζ increases, although otherwise the
shape of the PDFs are universal. This qualitatively fits with the PDFs of 𝒯 for
synthetic data, see Section 3.6.6, where we concluded that the PDF is a mono-
tonically decreasing function for γ > 1.
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Figure 5.7: TCV Discharge 27601: PDF of time above threshold as a function of time
above threshold for different threshold values.





6
Conclusion
In this thesis, we set out to investigate the statistical properties of the inter-
mittent plasma fluctuations in the tokamak SOL. Our investigation focused
on a shot noise process with exponential pulse shapes with exponentially dis-
tributed pulse amplitudes, arriving according to a Poisson process, and we will
exclusively focus on this process in the summary unless otherwise noted. This
particular model was motivated by conditional averaging of the TCV Discharge
27601 ion saturation current, which yielded exponentially distributed waiting
times and amplitudes of the conditionally averaged bursts, as well as expo-
nential burst waveforms. In addition, the PDF, autocorrelation function and
power spectral density of the ion saturation current coincided well with those
predicted by the shot noise process described above, further motivating this
particular model.

Chapter 2 focused on the statistical properties of the shot noise model. Camp-
bell’s theorem gave the mean and rms-value of a shot noise process and we
found that for four different waiting time and amplitude distributions, the rel-
ative fluctuation level Φrms/〈Φ〉 primarily scales as 1/γ = τd/τw, justifying this
as an intermittency parameter. We found the PDF and moments of Φ, as well
as the parabolic relation between skewness and flatness of Φ: FΦ = 3 + 3S2Φ/2,
showing that the flatness of a shot noise process is always greater than or equal
to the flatness of a Gaussian process. Φ was shown to be Gamma-distributed,
with scale parameter γ and shape parameter 〈A〉. The autocorrelation function
and power spectral density of the shot noise process were also discussed.
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Using the double-sided exponential waveform, we were able to compute the
moments of the derivative of the shot noise process, Θ, as well as the PDF
of Θ. We also found an expression for the joint PDF between Φ and Θ. This
joint PDF was then used in Chapter 3 to derive a general model for the excess
time statistics of a shot noise process. This general model was compared to the
non-intermittent Gaussian limit, the strong intermittency limit and the results
presented by Biermé and Desolneux [2012]. It was found that for γ → ∞, the
general model and the non-intermittent limit are in agreement. It was also show
how, in the strong intermittency limit, the probability density function for the
time above threshold P𝒯 (𝒯 |C) can be found. These results were compared to
computations of excess time statistics from synthetically generated shot noise
processes. For synthetically generated time series, the PDF of 𝒯 and 𝒯rms were
also discussed. The cases studied suggest that P𝒯 (𝒯 |C) is unimodal for γ < 1,
while it is monotonically decreasing for γ ≥ 1.

In Chapter 4, conditional averaging of synthetically generated shot noise pro-
cesses with different pulse shapes, pulse waiting times and pulse amplitudes
was presented. It was shown that the waiting time between conditionally aver-
aged bursts tends towards an exponential distribution, irrespective of the under-
lying waiting time distribution for individual pulses. This may come from the
loss of information about the underlying distributions, as discussed in Chapter
4. In the same way, the amplitude distribution also tended towards an exponen-
tial distribution. For the waveforms tested, conditional averaging does seem to
preserve the pulse shape, but not the parameters τr and τf. The shapes become
more symmetrical with increasing γ .

In Chapter 5, we applied excess time statistics to the TCV Discharge 27601 ion
saturation current. It was found that the PDF of the derivative of this current
did not fit well with the data, most likely due to the problems with negative
values in the original data set. Still, the general model for excess time statistics
was in qualitative agreement with the excess time statistics computed from the
signal itself. This was compared to the non-intermittent Gaussian limit, which
did not fit for T (ζ ) or N (ζ ), but coincided well with the general model for
〈𝒯 〉(ζ )with large ζ -values. It was noted how 〈𝒯 〉(ζ ) and 𝒯rms(ζ ) exhibited slow,
exponential decay for ζ > 0. The PDF of 𝒯 was computed for some values of ζ .
All were well fitted to an exponential for large 𝒯 , and all exhibited faster than
exponential decay for small values of 𝒯 .

The primary results of this thesis, which as far as we know has not been derived
before, is extending the one-sided exponential waveform to the continuous
double-sided exponential waveform, allowing the computation of the joint PDF
between a shot noise process and its derivative. Further, this was used to find a
general model for the excess times of the shot noise process. Lastly, it was shown
that the predictions of this model agrees better with the excess time statistics of
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the TCV Discharge 27601 ion saturation current than the predictions of the non-
intermittent Gaussian model, used before in the literature. The general model
derived agrees qualitatively with the excess statistics for the ion saturation
current.

6.1 Future work and prospects
In this thesis, we have performed excess statistics for the TCV data set. In
the future, these methods will be applied to Alcator C-Mod gas puff imaging
data [Garcia et al., 2013a,b]. Other future plasma applications include divertor
region measurements, including probes and radiation. Previously, excess time
statistics has been applied to for instance basic plasma experiments [Fattorini
et al., 2012], space plasma [Sato et al., 2012] and concentration fluctuations in
the atmosphere [Kristensen et al., 1991, ?].

Concerning further work on the material in this thesis, exploring other pulse
shapes, pulse waiting time and amplitude distributions may be fruitful. The
general model should also be tested for robustness concerning changes in these
values. The conditional average gave similar results for a wide range of pulse
amplitude and waiting time distributions and the general excess time model
may prove to do the same. Lastly, the PDF for the time above threshold in the
strong intermittency limit has already been found, and the form of the PDF of
time above threshold for the TCV Discharge 27601 ion saturation current gives
hope that it is possible to find a general expression for this PDF.





A
Special Functions
The appendix contains results from and formulations of some non-elementary
functions and statistical distributions in addition to the definition and nota-
tion of fourier transform, statisitcal moments and the characterisitc functions
used througout this text. Wikipedia and Wolfram Math World have been used
extensively as resources.

A.1 The Fourier transform ℱ
For two functions д(t) and G(ω) defining a Fourier transform pair

д(t) ℱ
←→ G(ω),

we will use the asymmetric Fourier transform:

G(ω) = ℱ[д(t)](ω) =
∫ ∞

−∞

dt д(t) exp(−iωt), (A.1)

д(t) = ℱ−1[G(ω)](t) = 1
2π

∫ ∞

−∞

dωG(ω) exp(iωt). (A.2)
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A.2 The gamma function Γ(s)
The gamma function is given as:

Γ(s) =
∞∫

0

dt ts−1 exp(−t). (A.3)

The defining properties of the gamma function are:

Γ(1) = 1, (A.4)

Γ(s + 1) = s Γ(s). (A.5)

A.2.1 Large arguments
We will use Stirling’s approximation for Γ(s) for large s:

lims→∞
Γ(s + 1)

√
2πs ss exp(−s) = 1. (A.6)

A.2.2 Small argument
When the argument s of Γ(s) is close to zero, we can use properties (A.4) and
(A.5):

lim
s→0

sΓ(s) = Γ(s + 1) = Γ(1) = 1. (A.7)

A.2.3 The incomplete gamma functions
The gamma function can be split into an upper and lower incomplete gamma
function,

Γ(s) = ΓL(s,x) + ΓU(s,x), (A.8)

where the lower incomplete gamma function is

ΓL(s,x) =
x∫

0

dt ts−1 exp(−t), (A.9)

and the upper incomplete gamma function is

ΓU(s,x) =
∞∫

x

dt ts−1 exp(−t). (A.10)
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We will also use the regularized gamma functions

P(s,x) = ΓL(s,x)
Γ(s) , (A.11)

and

Q(s,x) = ΓU(s,x)
Γ(s) . (A.12)

Note that P(s,x) +Q(s,x) = 1.

A.2.4 The limit of large x
In the case x → ∞, we have

lim
x→∞

f racΓU(s,x)xs−1 exp(−x) = 1, (A.13)

lim
x→∞

ΓL(s,x) = Γ(s). (A.14)

A.2.5 The limit of small x
For x � 1, we have

lim
x→0

ΓL(s,x)
xs/s

= 1, (A.15)

lim
x→0

ΓU(s,x) = Γ(s) − lim
x→0

ΓL(s,x) = Γ(s) − 1
s
xs . (A.16)

A.3 The error function
The error function and the complementary error function are defined as

erf(x) = 2
√
π

∫ x

0
dt exp

�
−t2

�
, (A.17)

erfc(x) = 1 − erf(x) = 2
√
π

∫ ∞

x
dt exp

�
−t2

�
. (A.18)

These functions are related to the incomplete gamma functions by

ΓL

(1
2
,x

)
=
√
π erf

�√
x

�
, (A.19)

ΓU

(1
2
,x

)
=
√
π erfc

�√
x

�
. (A.20)
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A.3.1 The limit x → ∞
The complementary error fuction has an asymptotic limit for large, real valued
x ,

lim
x→∞

erfc(x) = exp
�
−x2

�
√
πx

∞∑
n=0

(−1)n (2n − 1)!!
(2x2)n . (A.21)

A.4 A useful limit
Given a function f (x) such that

f (x) =
(
1 +

x

a1/2

)a
exp

(
−a1/2x

)
,

where a > 0 is a free parameter. The limit a → ∞ turns out to be simple:

lim
a→∞

f (x) = exp
{
lim
a→∞

ln[f (x)]
}

= exp
{
lim
a→∞

−a1/2x + a ln
(
1 +

x

a1/2

)}
= exp

{
lim
a→∞

−a1/2x + a

(
x

a1/2
−
x2

2a
+

x3

3a3/2
+ . . .

)}
= exp

{
lim
a→∞

−
x2

2
+

x3

3a1/2
+ . . .

}
= exp

(
−
x2

2

)
.



B
Statistical Concepts
In the following, X denotes a random variable with the probability density
function (PDF) (or, if X only takes on discrete values, the probability mass
function) PX (X ) and the cumulative distribution function (CDF) CDFX (X ).
Here and in the following, 𝒫[A] is the probability of A.

B.1 The cumulative distribution function
We define the CDF of a random variable X as

CDFX (x) = 𝒫[X ≤ x], (B.1)

and it has the following properites:

• CDFX (∞) = 1, CDFX (−∞) = 0.

• CDFX (x) is a nondecreasing function of x .

• CDFX (x) is continous from the right.
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B.2 The probability density function
The PDF of X is defined from the CDF of X :

PX (x) = dCDFX (x)
dx

. (B.2)

It has the properties

• PX (x) ≥ 0.

•

∞∫
−∞

dx PX (x) = 1.

• CDFX (x) =
x∫

−∞

dξ PX (ξ ).

• 𝒫[a ≤ X ≤ b] =
b∫

a

dx PX (x)

IfX only takes discrete values, the integrals in the above equations are replaced
by sums, such that for instance

∞∑
x=−∞

PX (x) = 1.

B.3 Moments of X
The moments 〈Xn〉 where n is an integer are used to characterize the PDF ofX .
Here and in the following, the angular brackets denotes an average of a random
variable over all its values. The first four moments are the most important,
as they estimate the essential properties of the distribution (location, spread,
skewedness and flatness). The raw moments are

〈
Xn〉 = ∫ ∞

−∞

dx xnPX (x), (B.3)

while the central moments are

µn =
〈(X − 〈X 〉)n〉, n > 1. (B.4)
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B.3.1 The mean value 〈X 〉
The mean value is the first raw moment,

〈X 〉 =

∫ ∞

−∞

dx xPX (x). (B.5)

The mean may coincide with, but is not equivalent to, the most likely value in
the distribution (called the mode) or the value separating the left half of the
distribution from the right half (called the median).

B.3.2 The variance and rms values
The second central moment is called the variance,

µ2 =
〈(X − 〈X 〉)2〉 = 〈

X 2
〉
− 〈X 〉2. (B.6)

This value denotes the spread of the likely values from a PDF; a small variance
means that the X -values are close to the mean 〈X 〉, while a large variance
means theX -values spread out far from the mean. We will often use the square
root of the variance (which we call the rms-value) instead of the variance,

Xrms =
〈(X − 〈X 〉)2〉1/2, (B.7)

and, if we are referring to the variance, we will use the notation X 2
rms =

µ2.

B.3.3 Skewness
The skewness is a measure of the asymmetry of the distribution function. Neg-
ative skewness indicates that the left tail of the distribution is longer or fatter
than the right tail. Positive skewness indicates a longer or fatter right tail. A
symmetric distribution has zero skewness. The skewness of X is written as SX ,
and we have

SX =
µ3

µ3/22

. (B.8)

B.3.4 Kurtosis
The kurtosis (or flatness) is a measure of how peaked a distribution function
is, and how heavy its tail is. A sharp distribution or one with fatter tails has a
large kurtosis, while a distribution with a rounded peak and thin tails has a
low kurtosis. The flatness of X is written as FX , and is given by

FX =
µ4

µ22
. (B.9)
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Excess kurtosis is definded as FX − 3, and a normal distribution has zero excess
kurtosis.

B.3.5 Preserving SX and FX under normalization
We will sometimes wish to make the normalization

X̂ =
X − 〈X 〉

Xrms
,

such that 〈X̂ 〉 = 0 and X̂rms = 1. Thus the central moments of X̂ are

µ̂n =
〈(
X̂ −

〈
X̂
〉)n〉

=

〈(
X − 〈X 〉

Xrms

)n〉
=

〈(X − 〈X 〉)n〉
Xn

rms

=
µn

µn/22

.

In this case, we have SX̂ = SX and FX̂ = FX since

SX̂ =
µ̂3

µ̂3/22

=
µ3

µ3/22

= SX ,

and

FX̂ =
µ̂4

µ̂22
=

µ4

µ4/22

= FX .

B.3.6 Estimation of moments
If {xk}Kk=1 is a collection of K data points drawn from the distribution of X , we
can estimate the mean value by

〈x〉 =
1
K

K∑
k=1

xk , (B.10)

and we estimate the central moments by

〈
xn

〉
=

1
K

K∑
k=1

√
(xk − 〈x〉)n . (B.11)

The estimate of the mean is unbiased, while the rest of the estimators are bi-
ased, although they can be redefined to provide unbiased estimations. It has
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previously been found that for a shot noise process with one-sided exponential
pulse shapes, exponentially distributed pulse amplitudes and arrivals according
to a Poisson process, the mean square error of all estimators are inversly pro-
portional to the number of samples N forN∆t/τd � 1 [Kube and Garcia, 2015].
In addition, it was demonstrated that the estimated kurtosis has significaltly
larger relative error than the estimated skewness.

B.4 The characteristic function
The characteristic function of a random variable X and the PDF of X are a
Fourier transform pair [although commonly defined with the 1/(2π )-constant
on the other transformation compared to Eq. (A.1) and Eq. (A.2)].

〈exp(iXu)〉 =
∫ ∞

−∞

dXPX (X ) exp(iXu), (B.12)

PX (X ) = 1
2π

∫ ∞

−∞

du exp(−iXu)〈exp(iXu)〉. (B.13)

The characteristic function has two properties we will use: If X and Y are two
random variables with characteristic functions 〈exp(iXu)〉 and 〈exp(iYv)〉, then
adding the random variables corresponds to multiplying their characteristic
functions:

Z = X + Y ⇐⇒ 〈exp(iZu)〉 = 〈exp(iXu)〉〈exp(iYu)〉. (B.14)

The second property comes from the Fourier transform nature of the characteris-
tic function: if the characteristic function of a random variable can be separated
into two characteristic functions, then the PDF of the random variable is the
convolution of the PDFs corresponding to each of the separate characteristic

functions. That is, if PX1(X ) ℱ
←→ 〈exp(iX1v)〉 and PX2(X ) ℱ

←→ 〈exp(iX2w)〉, then

〈exp(iXu)〉 = 〈exp(iX1v)〉〈exp(iX2w)〉 ℱ
←→ PX (X ) = PX1(X ) ∗ PX2(X ), (B.15)

where PX1(X ) ∗ PX2(X ) is the convolution∫ ∞

−∞

dξ PX1(ξ )PX2(x − ξ ).

B.5 Commonly used distribution functions
In this section, we present some properties of PDFs frequently appearing in
this thesis, namely the exponential distribution, the Rayleigh distribution, the
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degenerate distribution and the uniform distribution. We are particuarly in-
terested in one-parameter distributions for positive valued random variables,
X > 0. In the thesis, we frequently define the distributions by their mean value
〈X 〉, so having one-parameter distributions is desireable. We will also express
the raw moments (up to 4th moment) as functions of the mean value.

B.5.1 The exponential distribution
The exponential distribution is a one-parameter distribution defined as:

PX (x ; λ) = λ exp(−λx), x ≥ 0.

The mean of the random varialbe is given as

〈X 〉 = λ−1,

so we prefer to write the exponential function as

PX (x) = 1
〈X 〉

exp

(
−

x

〈X 〉

)
, x ≥ 0. (B.16)

The raw moments of the exponential distribution are are〈
Xn〉 = n!

λn
= n!〈X 〉n ,

giving 〈
X 2

〉
= 2〈X 〉2,〈

X 3
〉
= 3〈X 〉3,〈

X 4
〉
= 4〈X 〉4.

B.5.2 The Rayleigh distribution
The Rayleigh distribution is another one-parameter distribution in standard
form given by

PX (x ;σ ) = x

σ 2 exp

(
−

x2

2σ 2

)
, x ≥ 0,

where σ is the mode. For the Rayleigh distribution, we have the raw mo-
ments 〈

Xn〉 = σn2n/2Γ (1 + n

2

)
.
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This gives the mean value

〈X 〉 = σ

√
π

2
,

and we can alternatively write the Rayleigh distribution as

PX (x) = πx

2〈X 〉2
exp

(
−
πx2

4〈X 〉2

)
, x ≥ 0. (B.17)

The raw moments are given in terms of the mean value as:〈
X 2

〉
=

4
π
〈X 〉2,〈

X 3
〉
=

6
π
〈X 〉3,〈

X 4
〉
=

32
π 2 〈X 〉

4.

B.5.3 The degenerate distribution
For the degenerate distribution, only one value of the random variable has
nonzero probability:

PX (x) = δ (x − 〈X 〉) (B.18)

Thus all the values are simply 〈X 〉 and the moments are given by 〈Xn〉 =

〈X 〉n . This means that the variance of the degenerate distribution is 0 and that
the skewness and kurtosis, which are defined by dividing by the variance, are
undefined.

B.5.4 The uniform distribution
The uniform distribution is given as

PX (x) =
{

1/(b − a) a ≤ x ≤ b
0 otherwise

. (B.19)

The mean value of the uniform distribution is

〈X 〉 =
b − a

2
,

and assuming the lowest cutoff point is 0, we have a = 0, b = 2〈X 〉 and the
distribution becomes

PX (x) =



1
2〈X 〉

0 ≤ x ≤ 2〈X 〉

0 otherwise
. (B.20)

The centralmoments of this uniform distribution are given by µk = (2〈X 〉)k/(k+
1) for k > 1.
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B.5.5 Other relevant distributions
Here, we present some other relevant distribution functions, used throughout
the thesis.

The Poisson distribution
The Poisson distribution is a discrete one-parameter distribution. Its probability
mass function is

PX (x ; λ) = λx

x!
exp(−x), x ∈ 1,2,3,/cdots . (B.21)

The Poisson distribution has equal mean and variance

〈X 〉 = X 2
rms = λ. (B.22)

The Gamma distribution
The gamma distribution is a two-parameter distribution, with shape parameter
k > 0 and scale parameter λ > 0:

PX (x ;k,λ) = xk−1

Γ(k)λk exp(−x/λ), x ≥ 0. (B.23)

This distribution has mean 〈X 〉 = kλ and variance X 2
rms = kλ

2. The character-
istic function of the Gamma distribution is

〈exp(iXu)〉 = (1 − λiu)−k . (B.24)

The normalized Gamma distribution If we use the normalized random
variable X̂ = X/Xrms − 〈X 〉/Xrms, we can get the PDF for this normalized
variable Stark and Woods [2012]:

PX̂ (x̂ ;k ,λ) = XrmsPX (Xrmsx̂ + 〈X 〉;k,λ) = kk/2

Γ(k)
(
x̂ + k1/2

)k−1
exp

(
−k1/2x̂ − k

)
.

(B.25)
Note that this equation is independent ofλ, effectively becoming a one-parameter
distribution with shape parameter k. This is consistent with SX̂ = SX = 2/k1/2

and FX̂ = FX = 3 + 6/k, where the equivalence of the moments comes fron
Section B.3.5.



B.5 COMMONLY USED D ISTR IBUT ION FUNCT IONS 129

The mirrored Gamma distribution The gamma distribution is only de-
fined for positive values. We also need a gamma distribution mirrored around
X = 0 which is only defined for negative values. The shape parameter is the
same as above, k > 0, while the scale parameter only takes negative values,
λ < 0. The PDF is:

PX (x ;k,λ) = − 1

Γ(k)λk x
k−1 exp

(
−
x

λ

)
, x ≤ 0. (B.26)

This distribution has negative mean 〈X 〉 = kλ and positive variance X 2
rms =

kλ2.

The normal distribution
The normal distribution is defined in terms of the mean and the rms-value:

PX (x ; 〈X 〉,Xrms) = 1
√
2πXrms

exp

−
1
2

(
x − 〈X 〉

Xrms

)2
. (B.27)

The Laplace distribution
The Laplace distribution is given as

PX (x ;k,λ) = 1
2λ

exp

(
−
|x − k |

λ

)
, (B.28)

where k is the location parameter and λ > 0 is the scale parameter. The four
first moments of the Laplace distribution are

〈X 〉 = k ,

X 2
rms = 2λ2,

SX = 0,

FX = 6.

The Gompertz distribution
This is from http://www.math.uah.edu/stat/special/Gompertz.html. The Gom-
pertz distribution is a two-parameter distribution over positive values, with a
shape parameter k > 0 and a scale parameter λ > 0:

PX (x ;k ,λ) = λk exp[λx + k − k exp(λx)], x ≥ 0. (B.29)

The mean of the Gompertz distribution is

〈X 〉 =
1
λ
exp(k)ΓU(0,k), (B.30)

http://www.math.uah.edu/stat/special/Gompertz.html
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and the variance is

X 2
rms =

1
λ2

exp(k)


−2k

∞∑
n=0

(−k)n
n!(n + 1)3 − [Γ

′(1)]2 + π
2

6

− 2Γ′(1) ln(k) + [ln(k)]2 − exp(k)[ΓU(0,k)]2
}
. (B.31)

Note that the mean and variance are often written in terms of the Exponential
Integral, Euler-Mascheroni constant and hypergeometric functions. Here, we
have related all of these to gamma functions.

B.6 The connection between the Poisson
distribution, the uniform distribution and
the exponential distribution

Consider a random process where events happens consecutively and where we
are interested in the time between events (for example time between alpha
particle decay of radium, sea waves over a certain amplitude or pulse events
of a shot noise process).

Let K(T ) denote the number of events in a time interval [0,T ], and the arrival
times are ordered as t1 < t2 < · · · < tK . We will make three assumptions
regarding this process:

• The probability of events happening at the same time is negligible.

• The PDF of K(T ) only depends on the length of the interval [0,T ] (and
not, for instance, on how many pulses have arrived before the start of
the interval).

• The number of pulses in one interval is independent on the number of
pulses in other, disjoint, intervals.

In other words, we assume that the process K(T ) has independent, stationary,
increments. Under these assumptions,K(T ) has a Poisson distribution [Walpole
et al., 2007] with rate parameter λT ,

PK (K ; λT ) = (λT )K
K!

exp(−λT ), (B.32)

where the rate of arrivals is λ (so the mean time between events is 1/λ). From
Section B.5.5 we know that 〈K(T )〉 = λT .
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We will now show that if K(T ) is a Poisson process, the waiting time between
events τk = tk+1 − tk is exponentially distributed with rate λ:

Pτ (τ ) = λ exp(−λτ )H (τ ) (B.33)

tk is the time until the k ’th event. The waiting time until the k ’th event is larger
than T if and only if there are less than k pulses arriving in the time T :

tk > T ⇐⇒ K(T ) < k . (B.34)

Thus these two events must have the same probability:

𝒫[tk > T ] = 𝒫[K(T ) < k]. (B.35)

If we now look at the waiting time until the first pulse arrives, we have from
Eq. (B.32):

𝒫[t1 > T ] = 𝒫[K(T ) < 1] = 𝒫[K(T ) = 0] = PK (0; λT ) = exp(−λT ), (B.36)

giving
𝒫[t1 ≤ T ] = 1 − exp(−λT ), (B.37)

which is the CDF of an exponential distribution. Thus the waiting time until
the first pulse arrives is exponentially distributed with parameter λ:

Pt1(T ; λ) = λ exp(−λT )H (T ). (B.38)

Since the number of events in one interval is independent of the events in
another interval, it follows that the waiting time between t1 and t2 is also
exponentially distributed, and so on for all waiting times. Thus, the waiting
times are all exponentially distributed and Eq. (B.33) holds. Note that the
result is one-way: Poisson distributed events leads to exponentially distributed
waiting times, but exponentially distributed waiting times can (in theory) arise
from other event distributions. It is also possible to show that if K(T ) is a
Poisson process, the arrival times tk are uniformly distributed on the interval
[0,T ] [Boxma and Yechiali, 2007].

B.7 Equivalence of Gamma distribution and
Gaussian distribution in the limit of large
shape parameter

We will now show that in the limit k → ∞, the gamma distribution (slightly
rewritten)

G(x ;k,λ) = 1
λΓ(k)

(x
λ

)k−1
exp

(
−
x

λ

)
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approaches the normal distribution

N (x ; 〈X 〉,Xrms) = 1
√
2πXrms

exp

−
1
2

(
x − 〈X 〉

Xrms

)2
.

From Section B.5.5, we have for the Gamma distribution 〈X 〉 = kλ and Xrms =

k1/2λ. Writing

x̂ =
x − 〈X 〉

Xrms
x

λ
= k1/2x̂ + k,

the normal and Gamma distributions can now be written as

N (x ; 〈X 〉,Xrms) = 1
√
2πXrms

exp

(
−
x̂2

2

)
,

and

G(x ;k ,λ) = k1/2

XrmsΓ(k)
(
k1/2x̂ + k

)k−1
exp

[
−
(
k1/2x̂ + k

)]

=
k1/2+k−1 exp(−k)

XrmsΓ(k)
(

x̂

k1/2
+ 1

)−1 (
x̂

k1/2
+ 1

)k
exp

[
−k1/2x̂

]
.

Now, lim
k→∞

(
1 + x̂/k1/2

)−1
= 1, lim

k→∞
Γ[k] = √2πkkk−1 exp(−k) and from Sec-

tion A.4, we have that

lim
k→∞

(
x̂

k1/2
+ 1

)k
exp

(
−k1/2x̂

)
= exp

(
−
x̂2

2

)
.

Thus, we have

lim
k→∞

G(x ;k ,λ) = 1
√
2πXrms

exp

(
−
x̂2

2

)
= N (x ; 〈X 〉,Xrms). (B.39)

The result in Eq. (B.39) show that the Gamma distribution and the normal
distribution are the same in the limit of large scale parameter k. Obviously, this
is not true for all values of x . The Gamma distribution is not defined for negative
values, but as k increases, so does 〈X 〉, and the probability of getting negative
values from the normal distribution diminishes. However, the approximation
in the curly brackets does not hold for x̂ ∼ −

√
k, and in numerical solutions

the gamma function falls quickly to −∞ for such values. In Figure B.1, three
Gamma distributions with different scale parameterk are shown togetherwith a
normal distribution. The failure of the approximation at −

√
k is clearly visible

for the two smallest values (
√
5 ≈ 2.2 and

√
10 ≈ 3.2 respectively). For

k = 150, the failure is further to the left than the plot limits. As k increases,
the approximation becomes better, and at k ∼ 1000 there is no discernible
difference (not pictured).
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Figure B.1: Comparison of the normal distribution to the Gamma distribution for three
different values of the scale parameter k.

B.8 Truncated distributions
In Section 4.1, we encounter the problem of finding PX (x |x > a) when PX (x)
and CDFX (x) are known. We have from Stark and Woods [2012] that:

CDFX (x |x > a) = 𝒫[X ≤ x ,x > a]
𝒫[x > a] . (B.40)

This equation can be written as

CDFX (x |x > a) = 𝒫[X ≤ x ,x > a]
𝒫[x > a] =

x∫
a
dξ PX (ξ )H0(x − a)
∞∫
a
dξ PX (ξ )

, (B.41)

where the denominator follows directly from the definintion of the CDF and
the numerator is the probability of finding X between x and a. The heaviside
function H0(x − a) is needed since we already know that x > a. Now, we use
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the definition of the PDF, Eq. (B.2), to find the truncated PDF:

PX (x |x > a) = d
dx

CDFX (x |x > a)

=

d
dx

x∫
a

dξ PX (ξ )H0(x − a)

∞∫
a

dξ PX (ξ )

=
PX (x)H0(x − a)
1 − CDFX (a) . (B.42)

Thus, the truncated distribution is simply the original distribution with no
values below a allowed, rescaled to preserve

∫ ∞
−∞

dx PX (x) = 1. To find the
truncated CDF, we go back to Eq. (B.41):

CDFX (x |x > a) =

x∫
a

dξ PX (ξ )H0(x − a)

∞∫
a

dξ PX (ξ )
=

CDFX (x) − CDFX (a)
1 − CDFX (a) H0(x − a).

(B.43)

Truncated exponential distribution
The exponential distribution has the PDF and CDF

PX (x ; λ) = λ exp(−λx),
CDFX (x ; λ) = 1 − exp(−λx).

Giving the truncated PDF and CDF

PX (x |x > a; λ) = λ exp(−λ[x − a])H (x − a), (B.44)

CDFX (x |x > a; λ) = [1 − exp(−λ[x − a])]H (x − a). (B.45)
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Truncated Rayleigh distribution
The Rayleigh distribution has the PDF and CDF

PX (x ;σ ) = x

σ 2 exp

(
−

x2

2σ 2

)
,

CDFX (x ;σ ) = 1 − exp

(
−

x2

2σ 2

)
.

Giving the truncated PDF and CDF

PX (x |x > a;σ ) = x

σ 2 exp

(
−
x2 − a2

2σ 2

)
H (x − a), (B.46)

CDFX (x |x > a;σ ) =
[
1 − exp

(
−
x2 − a2

2σ 2

)]
H (x − a). (B.47)





C
Source Code
In this chapter, the Python code is listed. We only provide code for generating
synthetic time series and performing some analysis on these time series, such as
calculating PDF and CDF, the conditional average and excess time statistics. We
do not provide code for plotting or evaluating the analytic results, as this is all
done using standard and straight forward python libraries and methods.

# −*− cod ing : u t f −8 −*−
" " "
Created on Thu May 14 11:09:11 2015

@author : ath019

This i s a code f i l e generated and summarized fo r i n c l u s i on in the t h e s i s .
I t con ta ins code fo r :
− Generat ing s yn t h e t i c shot no i se time s e r i e s
− Performing der i va t ion , c a l c u l a t i o n of PDF and CDF and auto−c o r r e l a t i o n

func t ion and power s p e c t r a l dens i t y
− Performing cond i t i ona l average
− Performing excess time s t a t i s t i c s .

No p l o t t i n g or ana l y t i c computation i s present . For p r i n t i ng reasons ,
some l i n e s have been s p l i t .
" " "
import numpy as np
import s c i py . s t a t s as sps
import s c i py . s i gna l as s c s
import s c i py . i n t e g r a t e as sp i

137
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def gen_amp_ta ( Tdis t , Adis t , K , tw ,mA=1. ,
ST=None , SA=None , randT = False , randA = Fa l se ) :

" " " This func t ion generates the ampli tudes and a r r i v a l t imes
used to make a shot no i se s i gna l .

Tdis t , Ad i s t : what type of d i s t r i b u t i o n .
0: degenerate , 1: exponent ia l , 2: ray le igh , 3: uniform
K: number of bu r s t s
tw : average wai t ing time (1/gamma)

Output i s a r r i v a l t imes Ta , ampli tudes A and end time tend

Advanced opt ions :

ST and SA are seeds to the random s ta te ,
s p e c i f y them to have a p a r t i c u l a r seed .

randT and randA are used to scramble wai t ing t imes and ampli tudes .
Use in con ju ra t i on with ST and SA to keep va lues the same ,

but at d i f f e r e n t l o c a t i on s .
" " "
# Generate array o f a r r i v a l t imes .
# Random numbers are drawn from the wa i t ing t ime d i s t r i b u t i o n ,
# the wa i t ing t ime i s added to the l a s t a r r i v a l t ime
# to g e t the nex t a r r i v a l t ime .

# F i r s t , we g ene ra t e K va l u e s Tw=[t1 , t2 , . . . , tk −1, tk ]
# Then , we make sur e t h e r e i s a bu r s t at the s t a r t :
# Tw=[0, t1 , t2 , . . . , tk −1, tk ]
# We then take the a r r i v a l t imes as the cummulative sum o f the s e ,
# ta0=0, ta1=ta0+t1 e t c . up t i l tak−1=0+...+ t (k−1)
# The l a s t tk i s saved to make the end t ime

prngT = np . random . RandomState ( seed = ST)
prngA = np . random . RandomState ( seed = SA)

i f Td i s t==0: # Degenera te d i s t r i b u t i o n
Tw = tw*np . ones (K)

e l i f Td i s t==1: #expon en t i a l wa i t ing t imes
Tw = prngT . exponent ia l ( s c a l e=tw , s i z e=K)

e l i f Td i s t == 2: #
Tw = prngT . r ay l e i gh ( s c a l e=np . s q r t (2 . / np . p i )* tw , s i z e = K)

e l i f Td i s t ==3:
Tw = prngT . uniform ( low=0.0 , high=2*tw , s i z e=K)

else :
print ( ’ I n v a l i d Td i s t ! ’ )
return None

i f randT == True :
np . random . s hu f f l e (Tw)

Tw=np . i n s e r t (Tw, 0 . , 0 )
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Ta=np . cumsum(Tw[:−1])
# Generate ampl i tude s
i f Adi s t==0:

A=mA*np . ones (K)
e l i f Adi s t==1:

A=prngA . exponent ia l ( s c a l e=mA, s i z e=K)
e l i f Adi s t==2:

A=prngA . r ay l e i gh ( s c a l e=np . s q r t (2 . / np . p i )*mA, s i z e=K)
e l i f Adi s t ==3:

A = prngA . uniform ( low=0.0 , high=2.*mA, s i z e=K)
else :

print ( ’ I n v a l i d Ad i s t ! ’ )
return None

i f randA == True :
np . random . s hu f f l e (A)

tend=Ta[−1]+Tw[−1]

return Ta ,A , tend

def make_signal (Ta ,A , tend , dt , t r , t f , c u t o f f =10**−30,
d e r i v a t i v e=False , waveform = 0):

import numpy as np
" " " This func t ion c r ea t e s the s i gna l :
Ta : ar ray of a r r i v a l t imes
A : array of ampli tudes
N: number of time po in t s
K : number of bu r s t s
dt : time r e s o l u t i on
t r : r i s e time
t f : f a l l time ( t r+t f=1)
cu t o f f : when to stop c a l c u l a t i n g
d e r i v a t i v e : I s t h i s the main s i gna l or i t s d e r i v a t i v e ?
waveform : 0: exponent ia l ,

1: box (no dependence on t r / t f )
2: gauss ian (no dependence on t r / t f )

Return s i gna l and time vec to r T .

In the fo l lowing ,
t_ r e f e r s to time in the main s igna l , s r e f e r s to time per bur s t
" " "
i f waveform !=0:

t r =0.5
t f =0.5

T=np . arange (0 , tend , dt )
N=len (T)
K=len (A)
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# The only th ing s e pa ra t i n g the s i g n a l and i t s d e r i v a t i v e
# i s a f a c t o r in f r o n t o f the waveform .
i f de r i v a t i v e == Fa l se :

pr=1.
pf=1.

e l i f de r i v a t i v e == True :
i f t r != 0:

pr=1/ t r
e l i f t r == 0:

pr = 1.
i f t f != 0:

pf=−1/ t f
e l i f t f == 0:

pf = −1

# De f in e the waveform
i f waveform == 0:

def ps i ( t ) :
p s i=np . zeros ( len ( t ) )
i f t r != 0 and t f != 0:

L=np . where ( t <=0)[0][−1]
p s i [0 : L]=pr*np . exp ( t [0 : L ]/ t r )
p s i [L:]=pf *np . exp(− t [L : ] / t f )

e l i f t r == 0:
p s i = pf *np . exp(− t / t f )

e l i f t f == 0:
p s i=pr*np . exp ( t / t r )

return ps i

e l i f waveform == 1:
def ps i ( t ) :

p s i=np . zeros ( len ( t ) )
L=np . where ( t <=0)[0][−1] #Midpoint o f box
xmax = L+( t f+t r )/(2* dt )
xmin = L−( t f+t r )/(2* dt )
p s i [xmin : xmax]=1
return ps i

e l i f waveform == 2:
def ps i ( t ) :

p s i = np . exp(−np . p i *( t /( t r+t f ))**2)
return ps i

sgn l = np . zeros (N) #Main s i g n a l array

for k in range (0 ,K ) :
tk= Ta[k]
a = A[k]
#How much should we i n c l u d e ?
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#We f i nd the t imes where the bu r s t f a l l s below cu t o f f ,
#and remove tho s e .
#Thus the bu r s t s become s i g n i f i c a l n t l y s h o r t e r .
# Also , make sur e we don ’ t go uo t s i d e the t ime domain :
smin = max( −tk , t r * np . log ( c u t o f f /( a*pr ) ) )
smax = min( tend−tk−dt , − t f * np . log ( c u t o f f /abs (a*pf ) ) )
# above : − dt to s t a y i n s i d e domain
S=np . arange ( smin , smax , dt )
sgnl_tmp=ps i (S)
t s t a r t=in t (round (( tk+smin )/ dt ))
t s t op=t s t a r t+len ( sgnl_tmp )
sgn l [ t s t a r t : t s t op ] += a* sgnl_tmp

# There i s a problem with the l a s t po in t go ing to ze ro .
# Thi s i s a qu i ck f i x to make sur e i t doesn ’ t
sgn l = sgn l [:−1]
T = T[:−1]
return sgnl , T

def de r i v a t i v e (S , dt , run = None , p o l y f i t = Fa l se ) :
’ ’ ’ This func t ion takes the d e r i v a t i v e of a given s i gna l S .
S : the s i gna l
dt : the time r e s ou l t i on of the s i gna l
run : i f run i s given , a running mean of window run i s taken .

t h i s uses the numpy grad ien t method . From the websi te :
The grad ien t i s computed using second order accura te
c en t r a l d i f f e r e n c e s in the i n t e r i o r and e i t h e r f i r s t d i f f e r e n c e s or
second order accura te one−s i d e s ( forward or backwards ) d i f f e r e n c e s
at the boundaries .
The returned grad ien t hence has the same shape as the input array .

r e tu rn s the d e r i v a t i v e dS as a numpy array .
’ ’ ’

def make_pdSn(Sn , dt ) :
" " "
This func t ion es t imate s the d e r i v a t i v e of Sn by doing the fo l lw ing :
f o r each point Sn[ i ] :
− f i v e po in t s are used to f i t the s i gna l Sn to a polynomial

p( t)=a* t 2̂+b* t+c at the middle po int Sn[ i ]
( so two po in t s a t each s ide of Sn[ i ])

− This polynomial i s then der i va ted ; p ’ ( t )=2at+b .
− The middle po int i s s tored , pdSn[ i ] = p ’ (0 ) = b
− F i r s t and l a s t po in t s are f i t t e d to a 1 . s t degree polynomial

with f i r s t and second point . ( so p( t)=a* t+b ; pdSn[0]=a)
− Second and next to l a s t po in t s are midpoins of

2nd . deg polynomial with 3 po in t s (one on each s ide )
" " "
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N = len (Sn)
pndSn = np . zeros (N)

# f i r s t po in t
pndSn[0]=np . p o l y f i t ( [0 , dt ] , Sn [ :2 ] ,1 ) [0]
#second po in t
pndSn[1]=np . p o l y f i t ([−dt , 0 , dt ] , Sn [ :3 ] ,2 ) [1]
#next−to l a s t po in t
pndSn[−2]=np . p o l y f i t ([−dt , 0 , dt ] , Sn[ −3:] ,2)[1]
# l a s t po in t
pndSn[−1]=np . p o l y f i t ([−dt , 0 ] , Sn[ −2:] ,1)[0]

for i in range (2 , N−2):
pndSn[ i ]=np . p o l y f i t ([−2*dt ,−dt , 0 , dt ,2* dt ] , Sn[ i −2: i +3] ,2)[1]
#pr i n t ( i /N)

return pndSn

def runmean( values , window ) :
import numpy as np
weigths = np . repeat (1 .0 , window)/window
#in c l u d i n g v a l i d w i l l REQUIRE th e r e to be enough da tapo in t s .
#f o r example , i f you take out va l i d , i t w i l l s t a r t @ po in t one ,
#not having any p r i o r po in t s , so i t l l be 1+0+0 = 1 /3 = .3333

# OTOH, us ing ’ same ’ en su r e s we have the same amount o f p o i n t s
# as b e f o r e . There may be boundary i s s u e s as s t a t e d above
smas = np . convolve ( values , weigths , ’ same ’ )
return smas # as a numpy array

i f p o l y f i t==True :
dS = make_pdSn(S , dt )

e l i f p o l y f i t == Fa l se :
dS=np . grad ien t (S) / dt

i f run != None and run != 0:
dS=runmean(dS , run )

return dS

def d i s t r i b u t i o n (Data ,N, kerne l=False , ccd f = True ) :
" " " This func t ion c a l c u l a t e s the pdf and ccdf of Data ,

e i t h e r by histogram or by gauss ian ke rne l s .
N:
I f histogram i s used , N i s the number of b ins to separa te the data in to .
I f kerne l i s used , N g i ve s the number of data po in t s .
ccd f : i f true , r e tu rn s the complementary cdf
" " "
i f kerne l==Fa l se :

# Ca l c u l a t e wa i t ing t ime d i s t r i b u t i o n s
h i s t , edges = np . histogram (Data ,N)
#We are i n t e r e s t e d in the middle p o i n t s i n s i d e the bins ,
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# not the edge s o f the b in s :
b in_cen te r s=np . ar ray ( [ ( edges [ i ]+edges [ i +1])/2

for i in range (0 , len ( edges )−1)])

pmf = h i s t /sum( h i s t ) # P r o b a b i l i t y mass f un c t i o n (pmf ) o f T_w

# P r o b a b i l i t y d e n s i t y f un c t i o n ( pdf ) o f T_w
pdf= h i s t / np . t rapz ( h i s t , x=b in_cen te r s )

# The cummulative d i s t r i b u t i o n f un c t i o n ( c d f )
cdf = np . zeros (N)
cdf [0] = pmf[0]
for n in range (1 ,N) :

cdf [n] = cdf [n−1] + pmf[n]
i f ccd f == True :

# We want the complementary cummulative d i s t r i b u t i o n f un c t i o n
cdf=1.0−cdf

return pdf , cdf , b in_cen te r s
e l i f kerne l==True :

X = np . l i n spa ce (min(Data ) ,max(Data ) ,N)

pdf_func=sps . gaussian_kde (Data )
pdf=pdf_func (X)

cdf_ func = lambda ary :
np . ar ray ([ pdf_func . integrate_box_1d(−np . in f , x ) for x in ary ])

cdf=1−cdf_ func (X)

return pdf , cdf , X

def RS_make( sgnl , dt ) :
" " " This func t ion es t imate s the power s p e c t r a l dens i t y

and au to co r r e l a t i on func t ion of a s i gna l .
The normalized process i s used ,
so the normalized autocorr and psd w i l l be given .
sgn l : The r e a l i z ed process
dt : sampling time
" " "

sgn l = ( sgnl−np .mean( sgn l ) )/ ( np . s td ( sgn l )) # Normalize the s i g n a l

def e s t ima t e_au t co r r e l a t i on (x ) :
" " "
Modified , the o r i g i n a l i s found at :
h t tp :// s tackover f low . com/q/14297012/190597
ht tp :// en . wik ipedia . org /wiki / Au toco r r e l a t i on#Est imat ion
" " "
n = len ( x )



144 APPEND IX C SOURCE CODE

r = np . c o r r e l a t e (x , x , mode = ’ f u l l ’ )[−n : ]
r = r /(np . arange (n , 0 , −1))
return r

N=len ( sgn l )
T=dt *np . arange (N)
estR=es t ima t e_au t co r r e l a t i on ( sgn l )
f , e s tS=sc s . welch ( sgnl , f s =1./dt , nperseg=2**13)

return f , estS , T , estR

def cond_av ( s igna l , time , dt , t r i g , de l t a ) :
" " " This func t ion c r ea t e s the cond i t i ona l average of a given s i gna l .
Input :
s i gna l : the s i gna l i t s e l f
time : the time vec to r of the s i gna l

( assumed to be as long as the s i gna l )
dt : the time s tep in the time vec to r
t r i g : t r i g g e r t r e sho ld . De fau l t i s 2.5
de l t a : 2* de l t a i s both the width of the record ing

and the minimal d i s t ance between two peaks .
In t h i s implementation , record ings can touch , but can ’ t over lap .
de l t a i s measured in time .

Output :
s i gna l_av : c ond i t i o na l l y averaged s i gna l
time_av : the time s c a l e of the cond i t i ona l averaging ( fo r p l o t t i n g )
peaks : peak ampli tudes
wait : wai t ing t imes between peak va lues
" " "
’ ’ ’ Lowest order moments of the s i gna l ’ ’ ’
sgnl_avg = np .mean( s i gna l ) # Mean o f s i g n a l
sgn l _ s td = np . s td ( s i gna l ) # Standard Dev ia t i on o f s i g n a l

’ ’ ’ Cond i t iona l averaging of s i gna l ’ ’ ’
sgn l = ( s igna l −sgnl_avg )/ sgn l _ s td # The rms−normal ized s i g n a l
print ( ’ ( rms/mean)^2 = {} ’ . format ( sgn l _ s td **2/ sgnl_avg **2))
print ( ’ normal iza t ion done ’ )

p lace s=np . where ( sgnl>t r i g )[0]
print ( ’ Length of s i gna l i s {} , ob j e c t s to be checked are {} . ’

. format ( len ( s i gna l ) , len ( p lace s ) ) )
s_tmp=np . ar ray ([ s i gna l [ p lace s ] , time [ p lace s ] ] )

# Sor t a c co rd ing to ampl i tude s in s i gna l ,
# keep ing t ime t o g e t h e r with s i g n a l
# ( a l s o f l i p , so h i g h e s t v a l u e s are f i r s t )
s_tmp=np . take ( s_tmp , s_tmp [ 0 , : ] . a r g so r t ( ) , 1 ) [ : , : : −1]
print ( ’ assignment and so r t i ng done ’ )
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index = 0
# Thi s i s the main loop . I t p i c k s out peaks ,
# making sur e peaks are not c l o s e to peaks a l r eady chosen .
while index<len ( s_tmp [ 0 , : ] ) :

#The ind e x e s o f t ho s e c l o s e to the cu r r en t peak
# ( have to add one as t h i s g i v e s the i nd e x e s from the nex t )
t _ t o _ c l o s e=np . where (abs ( s_tmp [1 , index+1:]

−s_tmp [1 , index])<=2*de l t a )[0]+( index+1)
s_tmp=np . de l e t e ( s_tmp , t _ to_c lo se ,1 )
index+=1

# The peaks are the remaining va lu s a f t e r a l l s u p e r f l o u s have been d e l e t e d .
peak_values=s_tmp [0 , : ]
t ime_ t r i g=s_tmp [1 , : ]
t ime_ t r i g=np . s o r t ( t ime_ t r i g )
wait=np . ar ray ( [ ( t ime_ t r i g [ i+1]− t ime_ t r i g [ i ] )

for i in range (0 , len ( t ime_ t r i g )−1)])
t ime_ t r i g_ ind=np . round (( t ime_ t r i g −time [0])/ dt ) . as type ( in t )
print ( ’ main loop done , {} bu r s t s recorded ’ . format ( len ( s_tmp [0 , : ] ) ) )

s i gna l_av=np . zeros (2* in t ( de l t a / dt )+1)
# I t e r a t e through the s e l e c t e d i n s t an c e s ,
# r e g i s t e r i n g the r e qu i r e d pa r t s o f the main s i g n a l
for i in range (0 , len ( t ime_ t r i g_ ind ) ) :

# Lowest index o f s e l e c t e d par t (make sur e i t i s a f t e r s t a r t )
low_ind=max(0 , t ime_ t r i g_ ind [ i ]− in t ( de l t a / dt ))
# Highe s t index o f s e l e c t e d par t (make sur e i t i s b e f o r e end )
high_ind=min( len ( s i gna l ) , t ime_ t r i g_ ind [ i ]+ in t ( de l t a / dt )+1)
#In ca s e we don ’ t have an array o f the f u l l l eng th , we need to pad i t .
pad=( 2* in t ( de l t a / dt ) +1) − ( high_ind−low_ind )
s i gna l_av=s igna l_av + np . append( s i gna l [ low_ind : high_ind ]

, np . zeros (pad) )/ len ( t ime_ t r i g_ ind )

# Thi s i s the t ime v e c t o r o f the s i gna l , f o r e a s i e r p l o t t i n g
t ime_av=np . array ( range(− in t ( de l t a / dt ) , in t ( de l t a / dt )+1))*dt

return s igna l_av , time_av , peak_values , wait

def e x c e s s _ s t a t (S ,A , dt ) :
’ ’ ’ This f i nd s the t o t a l time spent above thresho ld Theta ,
number of upwards c r o s s i ng s N and average time above thresho ld avT .
I t a l so re tu rns the length of a l l excess t imes given A as a d i c t i ona r y :
dT_array={A[0 ] : [ t01 , t02 , t03 , . . . ] , A[1 ] : [ t11 , t12 , t13 , . . . ] . . . } , to be used
fo r c a l c u l a t i n g the pdf P(dT|A)
by look ing d i r e c t l y a t the array i t s e l f .
S : the s i gna l
A: a numpy array of th resho ld va lues
dt : time r e s o l u t i on
’ ’ ’
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Theta_array = np . array ( [ ] )
N_array = np . array ( [ ] )
avT_array = np . array ( [ ] )
rmsT_array = np . array ( [ ] )
dT_dict={}
for a in A:

#Thi s i s the b a s i s :
# the pa r t s o f the s i g n a l tha t are above the t h r e s h o l d .
p lace s = np . where (S>a )[0]
i f len ( p lace s )>0:

#pr i n t ( ’Num, p l a c e s to check : { } ’ . format ( l en ( p l a c e s ) ) )
Theta = dt * len ( p lace s )

#Find N, avT an d i s t r i b u t i o n o f dT
# Each b lob i s connec ted ,
# so d i s c r e t e b l ob s have more than one t ime l eng th between them
dplaces = p lace s [1:]− p lace s [:−1]
# s p l i t the array
# at p l a c e s where d i s t a n c e between po i n t s i s g r e a t e r than one
s p l i t = np . where ( dplaces !=1)[0]
lT = np . s p l i t ( dplaces , s p l i t )
# To ge t c o r r e c t l e ng th o f the f i r s t
lT [0] = np . append( lT [0] ,1)
# Number o f upwards c r o s s i n g s i s equal to number o f b l ob s
N = len ( lT )
i f p lace s [0]==0:

N+=(−1) #Don ’ t count the f i r s t b lob i f t h e r e i s no c r o s s i n g .
# Array o f e x c e s s t imes
dT = np . array ([ dt * len ( lT [ i ]) for i in range (0 , len ( lT ) ) ] )
avT = np .mean(dT)
rmsT = np . s td (dT)

e l i f len ( p lace s )==0:
Theta = 0
N = 0
avT = 0
rmsT = 0
dT=np . array ( [ ] )

Theta_array = np . append( Theta_array , Theta )
N_array = np . append(N_array ,N)
avT_array = np . append( avT_array , avT)
rmsT_array = np . append( rmsT_array , rmsT)
dT_dict . update ({a : dT})

return Theta_array , N_array , avT_array , rmsT_array , dT_dic t

def excess_s ta t_pdf_dT (dT , dt ,A) :
’ ’ ’
Ca l cu l a t e the pdf P(dT|A) and avT from t h i s pdf .
dT : d i c t i ona r y . Should be found using exce s s_ s t a t , above .
A: th resho ld va lues



147

n : length of time array

Returns the time array t , the array of averages avT_th2 ,
and the 2d−array dTpdf , conta in ing the pdfs .
t and dTpdf are both 2d−ar ray s s t o r i ng the va lues f o r each
A along the ax i s . The pdf f o r A[ i ] i s dTpdf [ i , : ] , t [ i , : ] .
’ ’ ’
avT_th2 = np . zeros ( len (A))
dTpdf = np . zeros (( len (A) ,32))
t = np . zeros (( len (A) ,32))

for i in range (0 , len (A ) ) :
a = A[ i ]
i f len (dT[a])>=1:

dTpdf [ i , : ] , bin_edges=np . histogram (dT[a ] , b ins=32, dens i t y=True )
t [ i , : ] = ( bin_edges [1:]+ bin_edges [:−1])/2 #Record bin c e n t e r s
avT_th2 [ i ] = sp i . simps ( dTpdf [ i , : ] , t [ i , : ] )

else :
continue # Need not do anything , e v e r y t h i n g i s z e r o e s .

#p r i n t ( ’ { } o f {} done ’ . format ( i +1, l en (A) ) , f l u s h = True )
return avT_th2 , dTpdf , t
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