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ABSTRACT

A two-dimensional stochastic–diffusive energy balancemodel (EBM) formulated on a sphere byG. R. North

et al. is explored and generalized. Instantaneous and frequency-dependent spatial autocorrelation functions and

local temporal power spectral densities are computed for local sites and for spatially averaged surface tem-

perature signals up to the global scale. On time scales up to the relaxation time scale given by the effective heat

capacities of the ocean mixed layer and land surface, respectively, scaling features are obtained that are rem-

iniscent of what can be derived from the observed temperature field. On longer time scales, however, the EBM

predicts a transition to a white-noise scaling, which is not reflected in the observed records. A fractional gen-

eralization, which can be considered as a spatial generalization of the zero-dimensional, long-memory EBM of

M. Rypdal and K. Rypdal, is proposed and explored. It is demonstrated that this generalized model describes

qualitatively the main correlation characteristics of the temperature field reported in the literature and those

derived herein from 500-yr-long control simulations of the NorESM Earth system model. A further general-

ization of the model, to include long-term persistence in the stochastic forcing, is also discussed.

1. Introduction

The enormous complexity of present-day general circu-

lation climate models implies that model data can only be

interpreted through advanced data analysis. Implicit in

such data analysis is always the application of concepts

based on simpler dynamic, stochastic–dynamic, or statisti-

cal model frameworks. Such models will in some form

describe the correlation structure of Earth’s climatic fields.

Zero-dimensional energy balance models (EBMs) only

describe correlation structure in time—in simplest form,

as an exponential relaxation time with a time constant

of a few years determined by the heat capacity of the

ocean mixed layer. Zero-dimensional two-layer models

include the energy exchange between the mixed layer

and the deep ocean, which introduces another and larger

time constant of the order of a century (Held et al. 2010;

Geoffroy et al. 2013). An alternative generalization of

the one-layer model, which yields a power-law impulse

response, was introduced by Rypdal (2012) and, by

further introducing stochastic forcing, in Rypdal and

Rypdal (2014). These generalizations thus provide a

phenomenological stochastic–dynamical model describing

the long-range temporal correlation structure on time

scales from years to centuries observed in global tem-

perature data as well as in millennium-long climate

model simulations (Østvand et al. 2014).

One-dimensional EBMs describe meridional energy

transport in addition to the vertical radiation balance

(Budyko 1969; Sellers 1969), and two-dimensional models

include also zonal transport. There is a plethora of papers

on such models, many of which include a stochastic forc-

ing. One of the earlier studies of such stochastic-diffusive

EBMswasmadebyNorth andCahalan (1981). Thismodel

was expanded to include a simple model for ocean diffu-

sion and upwelling by Kim and North (1992), and was

compared to early versions of atmospheric–ocean general

circulation models (AOGCMs) by Kim et al. (1996). The

latter study revealed power-law temporal spectra corre-

sponding to strong long-range temporal correlation struc-

ture in global temperature on time scales up to a decade in

the AOGCMs, but a loss of correlations on longer time

scales. The stochastic–diffusive EBM showed a more

gradual transition toward uncorrelated noise on longer time
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scales. Their spectra of instrumental global temperature

also shows the transition to uncorrelated noise on time

scales longer than a decade, which is now known not to

reflect the true correlation structure on time scales from

decades to centuries revealed in millennium-long temper-

ature reconstructions (Rypdal et al. 2013) and AOGCM

simulations (Østvand et al. 2014). The explanation of the

observed flattening of the spectra on long time scales may

be the particular spectral analysismethod used inKimet al.

(1996), which is based on fitting a high-order autoregressive

(AR) process to the data. AR processes cannot model

long-range dependence in data (Beran 1994).

Thework presented in the present paper focuses on the

more fundamental mechanisms by which spatiotemporal

long-range persistence may arise in Earth’s temperature

field. Hence the goal is not to construct a model that re-

flects the details in land–ocean topography, and param-

eters in the model are estimated from data, not derived

from modeling the actual physics. It is inspired by, and a

generalization of, the recent work by North et al. (2011).

In that paper the stochastic–diffusive EBM is first for-

mulated on a plane disk, where it takes the form

t
r

›T

›t
1T2 l2

�
›2T

›x2
1

›2T

›y2

�
5F(t, x, y) . (1)

Here t is time, x, y are the two spatial coordinates,

T(t, x, y) is the surface temperature field, and tr is a re-

laxation time constant that is proportional to the effective

heat capacity per unit area of the surface and inversely

proportional to the effective emissivity of outgoing long-

wave radiation. Also, F(t, x, y) represents the horizontal

turbulent energy flux into a vertical columnof unit area due

to atmospheric weather systems, and the standard choice is

to model it as a white-noise source field in space and time.

The generalization of this equation to the surface of a

sphere is straightforward, and is done in North et al. (2011).

The assumptions of isotropy and the uniformity of the dif-

fusion tensor are obviously unrealistic, since it ignores the

meridional dependence of the insolation and the uneven

distribution of landmasses. This distribution also affects the

time constant tr since the heat capacity of the ocean mixed

layer is much larger than that of the land surface.

It is shown in North et al. (2011) that the stationary ran-

dom field resulting from Eq. (1) exhibits an exponentially

decaying, frequency-dependent, spatial autocorrelation

function (ACF). They express this as a frequency-

dependent spatial autocovariance Cv(r) defined as the

inverse spatial Fourier transform (FT) of the space–time

spectral density Sv,k 5E[jTv,kj2]. Here Tv,k is the space–

time FT of the temperature field and E[�] denotes the ex-
pectation value. They give an analytic expression for Cv(r)

on the flat disk, which in the limit r/l/‘ decays

exponentially in space with a correlation length lv that de-

creases with increasing v. In the limit v/ 0 the correlation

length is l0 5 l. Thismeans that the spatial ACFs are short-

range (exponential rather than power law), and that this

model cannot describe long-range spatial correlations.

North et al. (2011) do not compute explicit in-

stantaneous spatial ACFs or temporal power spectral

densities (PSDs). Fromadata-analysis viewpoint temporal

spectra are of great interest because of the published evi-

dence that such spectra exhibit power-law scaling of the

form S(v);v2b with b 2 (0, 1) both for local and glob-

ally averaged temperature records (Rypdal et al. 2013;

Rypdal and Rypdal 2014; Østvand et al. 2014). The spec-

tral index b measures the degree of persistence in the re-

cord, and in local records it is close to unity over oceans,

and close to zero over land (Fraedrich and Blender 2003).

It also appears that b is larger in records averaged over

large areas, like global and hemispheric averages, than in

local time series.Aswewill demonstrate in section 2,many

of these features are described by the stochastic-diffusive

EBM of North et al. (2011) (in the following called the

North EBM) for time scales up to the relaxation time tr.

However, we also show that persistent long-range corre-

lations beyond this time scale cannot be described by this

model. In section 3 we generalize this model to include

long-memory delays in the surface temperature response

due to energy exchange between the ocean mixed layer

and the deep ocean. Mathematically this is done by re-

placing the exponential temporal relaxation due to vertical

radiative energy balance with a power-law relaxation

(Rypdal andRypdal 2014), and corresponds to introduction

of a fractional time derivative in the North EBM (Rypdal

2012). We demonstrate the power-law nature of spatio-

temporal correlations in this model and its consistency

with an observed reconstructed temperature time series.

In section 4 we compare these results with multicentury

long control simulations of the NorESM Earth system

model and find that the fractional EBM provides a better

description of the correlation structure observed in these

simulations than the North EBM. Transient relaxation

after a sudden increase in forcing in the NorESM shows a

long-range persistent response, but with a lower b than

observed in the control simulations. This motivates a

generalization of the fractional EBM to include persis-

tent, stochastic forcing in section 5. In section 6 we sum-

marize and conclude, and in the appendixes we elaborate

on some mathematical technicalities.

2. The North EBM on a sphere

a. Spatial ACFs and temporal PSDs of the North EBM

In this section we shall outline the derivation of the

frequency-dependent spatial ACF given by North et al.
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(2011) and then derive the corresponding temporal PSD

for a time series measured in a given location on the

sphere. On the unit sphere Eq. (1) for the temperature

field T(t, m, f) takes the form

t
r

›T

›t
1T2 l2 ›

›m

�
(12m2)

›T

›m

�
2

l2

12m2

›2T

›f2
5F(t,m,f),

(2)

where m5 cosu, where u is the polar angle, and f is the

azimuthal angle (longitude). This equation is now for-

mulated on the rectangle m 2 [21, 1], f 2 [0, 2p). To

avoid all the subtleties of stochastic integralswe shall start by

representing the random forcing fieldF(t, m, f, ) by a finite

series FK,N(t, m, f) of spherical harmonics Yn,m(m, f) in

space and harmonic functions exp(ivjt) in time:

F
K,N

(t,m,f)5 �
K/2

j52K/2
�
N

n50
�
n

m52n
F(v

j
,n,m)eivj tY

n,m
(m,f) .

(3)

Here vj 5 2pj, j52K/2, . . . , K/2, are the frequencies

of the discrete Fourier expansion of a time series with

K1 1 elements sampled at intervals Dt5 1/K (the time

record is supposed to have duration KDt5 1). We shall

let the integersK, N/‘ at the end, which corresponds to

the continuum limitDt/ 0 in time and also infinite spatial

resolution on the sphere. In appendix A it will be shown

that ifF(t, m, f) is a randomfield (awhite-noise process in

space and time) the variance of the expansion coefficients

will be the same for all terms in the sum, that is,

E[jF(v
j
, n,m)j2]5s2 , (4)

for all 2K/2# j#K/2 and 0# n#N. Higher spatio-

temporal resolution is obtained by increasing K and N,

and since all spatiotemporal scales are represented by

equal power in the random field the total power diverges

as K, N/‘. This power now takes the form

P
K,N

5

ð1
0

dt

ð
4p

dVE[jF
K,N

(m,f, t)j2] ,

where dV5 sinududf52dmdf is the solid angle dif-

ferential. Inserting Eq. (3) into this integral, using the

orthonormality of the basis functions Yn,m(m, f) and

exp(ivjt), and the random-field assumption Eq. (4), we

find after some straightforward algebra

P
K,N

5 (K1 1)(N1 1)2s2 . (5)

By expanding the temperature field in the same way as

the forcing field in Eq. (3), and substituting these ex-

pansions into Eq. (2), we find

T(v,n,m)5
F(v, n,m)

2ivt
r
1l2n(n1 1)1 1

, (6)

and hence

T(v,m,f)5 �
‘

n50
�
n

m52n

F(v,n,m)Y
n,m

(m,f)

2ivt
r
1l2n(n1 1)1 1

. (7)

This formula can be used for computing the frequency-

dependent spatial ACF as well as the temporal PSD.

The frequency-dependent covariance between the

‘‘North pole’’ given by the unit vector ẑ (given by m5 1)

and the point r̂ (given by m, f) is defined by

C
v
(r̂, ẑ)5C

v
(m)5E[T(v,m,f)T*(v, 1, 0)] . (8)

Because of the statistical uniformity of the fields on the

sphere this is the covariance between any two points r̂ and r̂0

separated by an angle a such that m5 cosa5 r̂ � r̂0. By in-

serting Eq. (7) into Eq. (8), using the white-noise relation

E[F(v,m, n)F*(v,m0, n0)]5s2d
m,m0dn,n0 ,

and the formula

�
n

m52n
Y

n,m
* (m,f)Y

n,m
(1, 0)5

2n1 1

4p
P

n
(m) , (9)

where Pn is the nth-order Legendre polynomial, we ar-

rive at the frequency-dependent ACF

r
v
(cosu)5 r

v
(m)5

C
v
(m)

C
v
(1)

,

where

C
v
(m)[

s2

4p
�
‘

n50

(2n1 1)P
n
(m)

v2t2r 1 [l2n(n1 1)1 1]2
. (10)

The frequency-dependent ACF rv(cosu) is plotted for

l5 0:4 and l5 0:2 and for different values of vtr in

Fig. 1. We observe that it approaches a limit function

r0(cosu) as vtr / 0. The instantaneous spatial co-

variance is computed in appendix B [Eq. (B2)] to yield

C(m)5E[T(t,m,f)T*(t, 1, 0)]

5
1

2p

ð‘
2‘

C
v
(m) dv . (11)

Equation (11) is also derived for a more general EBM at

the end of section 3a. The integral diverges in the limit

m/ 1 (u/ 0). This is because the diffusion operator is

unable to smoothen the irregularities introduced by the

1 NOVEMBER 2015 RYPDAL ET AL . 8381



random forcing field on the shortest time scales. This

irregularity vanishes if we truncate the Fourier expan-

sion in time at a finite K (i.e., if we assume that the

forcing field is smooth on time scales shorter than 1/vK).

In Fig. 2a we have plotted the truncated CvK
(m) given in

Eq. (B2) for l5 0:2 for three different values of the

upper (Nyquist) frequency. We note that CvK
(m) con-

verges to a finiteC(m) except form5 1. However, because

CvK
(1) diverges, the decorrelation time of the truncated

ACF, rvK
(m)5CvK

(m)/CvK
(1), goes to zero as vK /‘,

as shown in Fig. 2b. In appendix B we also compute an

ordinary differential equation for the instantaneous spatial

ACF,C(m). The solution is given in terms of the Legendre

function, Qn(m), which in general diverges at m5 1. This

solution is plotted as the dashed curve in Fig. 2a. The im-

portance of Fig. 2 is to be aware that the instantaneous

ACF computed from observation data will depend on the

sampling rate of the data analyzed, while the frequency-

dependent ACFs will not.

From putting r̂5 ẑ in Eq. (8) we observe that

Cv(1)5E[jT(v, 1, 0)j2] is the temporal PSD of the

temperature time series at any point on the sphere. If we

set m5 1 in Eq. (10), and use that Pn(1)5 1 for all

n5 1, 2, . . . , we find

S(v)5C
v
(1)5

s2

4p
�
‘

n50

(2n1 1)

v2t2r 1 [l2n(n1 1)1 1]2
. (12)

The PSD S(v) is plotted in Fig. 3 for different values of l.

Note that since we operate on the unit sphere l is measured

in radians. For time scales longer than the relaxation time tr
(vtr , 1), the spectrum is flat, which indicates that there is

no memory on those time scales. According to North et al.

(2011) tr is a few months over land, and several years over

oceans. By estimating tr for the corresponding zero-

dimensional model (a model for global temperature),

Rypdal and Rypdal (2014) found tr 5 4:7 yr. The flat spec-

trum for longer time scales than this is not consistent with

spectra obtained from instrumental data records over

oceans, wherewefindpower-law spectrawithb’ 1 on time

FIG. 1. Frequency-dependent spatial ACF of temperature mea-

sured vs angular distance u from any reference point on the uniform

unit sphere given by Eq. (10) for (a) l5 0:4 and (b) l5 0:2.

FIG. 2. (a): Instantaneous spatial covariance, CvK
(cosu), as

computed from Eq. (B2) for s2 5 1, l5 0:2 and three different

values of the Nyquist frequency vK . Blue curve: vKtr 5 1, orange

curve: vKtr 5 10, green curve: vKtr 5 100, dashed curve:

1223C(cosu), where C(m) is given by Eq. (B6). (b) The corre-

sponding ACFs defined as rvK
5CvK

(cosu)/CvK
(1).
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scales up to a decade. In section 4 we shall demonstrate

that such power-law spectra also extend to century time

scales in the NorESM model.

b. Relating temporal and spatial correlations

A major objective of the present paper is to relate the

temporal correlation structure in regionally, hemispheric

or globally averaged temperature to the local temporal

correlations and the spatial, frequency-dependent corre-

lations. We start by defining a spatially averaged tem-

perature over a region (solid angle) V on the unit sphere,

T
V
(t)5

1

V

ð
V

T(u,f, t) df sinudu .

We make the Fourier transform of this integral in time

and then form the temporal PSD,

S
V
(v)5

1

V2
E[T

V,v
T

V,v
* ]

5
1

V2

ð
V

df0 sinu0 du0
ð
V

C
v
(cosu) df sinu du

5
1

V

ð
V

C
v
(cosu) df sinu du

5
S(v)

V

ð
V

r
v
(m) df dm .

Here we have used the (unrealistic) assumption that

E[T
v
(̂r)T

v
* (̂r0)]5C

v
(cosu)5C

v
(m) (13)

depends only on the angular distance u between two

points on the sphere. IfV is the solid angle of a spherical

cap characterized by m0 5 cosu0 this reduces to

S
m0
(v)5S(v)

1

12m
0

ð1
m0

r
v
(m) dm . (14)

If V is the entire sphere, then m0 521 and S21(v) is the

PSD of the global temperature. The interesting feature

of Eq. (14) is that it expresses the PSD of the regional or

global temperature as a product of the local PSD, S(v),

and a spatial integral over the frequency-dependent

spatial ACF, rv(m). It is generally valid for any statisti-

cally uniform field [satisfying Eq. (13)] on a sphere, and

not just for solutions of the North EBM. For the EBM

we saw in Fig. 1 that rv(m)/ r0(m) as vtr / 0. This

means that for vtr � 1 we have that S21(v)} S(v); that

is, the PSD of the global temperature scales the same

way as the local temperature for frequencies lower than

the inverse time constant. However, for vtr . 1, the

integral
Ð
1
21rv(m) dm varies with frequency and hence

explains the different scaling exponent b for local and

global temperature observed in Fig. 4. Equation (14)

shows that in general, if rv(m) for a statistically uniform

field on a sphere approaches a limit function r0(m) for

1/v greater than a certain time scale t, then local and

global temperature should scale the same way for all

time scales greater than t. In the NorESM data we are

not able to identify such a time scale t (i.e., if it exists it

must be more than several centuries). This is a major

motivation for searching for a generalization of the

North EBM, which does not exhibit the same scaling for

local and global time series at low frequencies.

3. Generalizations of the North EBM

a. Transfer function formulation

The Fourier representation (in time) of Eq. (2) given

by Eq. (7) is expressed through the transfer functions

g
n
(v)5

1

(2ivt
r
1 1)1 l2n(n1 1)

, (15)

FIG. 3. Log–log plots of the temporal PSD of temperature time

series at any point on the uniform unit sphere given by Eq. (9), for

l5 0:4, p/2, p, 100. For vtr � 1 the slope corresponds to b’ 1

for l � p and to b’ 2 for l � p.

FIG. 4. Log–log plot of power spectral density for the tempera-

ture averaged over a fractional area j5A/4p5 (12 cosu)/2 of the

unit sphere as given by Eq. (14), for j5 0, 0:03, 0:1, 0, 35, 1. The

slope for vtr � 1 and j5 0 approaches b5 1. For j5 1 (global

average) we have b5 2.
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such that

T(v,m,f)5 �
‘

n50

g
n
(v) �

n

m52n
F(v, n,m)Y

n,m
(m,f) . (16)

In the following we will specify a choice of the sequence

fgn(v)g that corresponds naturally to the generalization

from a zero-dimensional EBM with an exponential re-

laxation time to a zero-dimensional EBM with a long-

memory response, but first wewill point out some results

that are independent of the choice of functions gn(v).

The general form of Eq. (10) is

C
v
(m)5

s2

4p
�
‘

n50

jg
n
(v)j2(2n1 1)P

n
(m) . (17)

If we take the inverse Fourier transform (in time) of

Eq. (16) we obtain the expression

T(t,m,f)5 �
‘

n50
�
n

m52n
Y
n,m

(m,f)

ð
g
n
(v)F(v,n,m)e2ivt dv,

and if the forcing is white noise (in time and space) we

have

E

�ð
g
n
(v)F(v, n,m)e2ivt dv

��ð
g
n0(v)F(v, n

0,m0)e2ivt dv

�
*

5s2

ð
jg

n
(v)j2 dvd

n,n0dm,m0 ,

and using this, we easily recover that Eq. (11) is valid for

any response function. The more cumbersome derivation

in appendix B serves to demonstrate why C(m) diverges

for m5 1 and how to understand the instantaneous

spatial ACF.

b. The fractional EBM

The response in global surface temperature can be found

by integrating the model over the sphere, or equivalently

letting l5 0 (note that this is very different from the limit

l/ 0; a spatiotemporal model with vanishing diffusion

coefficient). The first term in the denominator in Eq. (15) is

2ivtr 1 1, and we note that

G
0
(v)5

1

2ivt
r
1 1

is the transfer function corresponding to the differential op-

erator tr›t 1 1 (i.e., of the zero-dimensional EBM). Hence

the transfer functions gn(v) can be written in the form

g
n
(v)5

1

G21
0 (v)1 l2n(n1 1)

. (18)

The inverse Fourier transform of G0(v) is an expo-

nential function with time constant tr; that is,

the Green’s function for the zero-dimensional

EBM is

G
0
(t)5

2p

t
r

e2t/trQ(t) ,

whereQ(t) is the unit step function. This is the response

in the global surface temperature to a delta function d(t)

in the forcing. The generalization suggested in Rypdal

(2012) and Rypdal and Rypdal (2014) is to replace the

exponentially decaying response function by a power-

law function

G(t)5 (t/h)b/221
jQ(t) , (19)

which is equivalent to the fractional differential

equation

c

2p
Db/2

t T(t)5F(t) ,

with

c5
2phb/221

jG(b/2)
,

where G is the Euler gamma function and h is a con-

stant parameter of dimension time that characterizes

the strength of the response. The unit constant j5 1

has dimension (time)21. The Fourier transform of

G(t) is

G(v)5
1

2p
eipbsgn(v)/4G(b/2)jhjhvj2b/2 , (20)

and the corresponding modification of the North

EBM is the replacement G0(v)/G(v) in Eq. (18),

that is,

g
n
(v)5

1

ce2ipbsgn(v)/4jvjb/2 1 l2n(n1 1)
. (21)

The constant c has dimension (time)b/2, hence c2/bv is a

dimensionless frequency. Note that the solutionT(v, m, f)

obtained in Eq. (16) is the solution of the equation

e2ipbsgn(v)/4jc2/bvjb/2T2 l2=2T5F , (22)

where =2 is the dimensionless Laplace operator on the

unit sphere. The first termon the left can be considered as

the Fourier transform of a fractional time derivative

(Rypdal 2012). In the time domain this equation can be

written as
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c

2p
Db/2

t T2 l2=2T5F ,

which is why we call this equation a fractional

EBM. In the present context, however, the formalism

of fractional derivatives has no practical use, the

temperature response is computed by the inverse

Fourier transform of Eq. (16), using the transfer

functions Eq. (21). Figure 5 shows a snapshot of

such a solution computed for a simulated random

force field.

c. Spatial and temporal correlations in the fractional
EBM

From Eq. (21) we have

jg
n
(v)j2 5 1

jc2/bvjb 1 [l2n(n1 1)]2 1 2l2n(n1 1)jc2/bvjb/2 cos
�
pb

4

� , (23)

which we can insert into Eq. (17) to obtain explicit ex-

pressions for Cm(v) and S(v)5C1(v).

The frequency-dependent ACF is plotted in Fig. 6 for

two values of l and is the analog of Fig. 1 generalized to

the fractional EBM.We have the same tendency toward

loss of long-range spatial correlation at high frequencies,

but in the zero frequency limit the correlation function is

uniform; that is, the fluctuations are dominated by spa-

tially uniform (global) variations. Such behavior does

not appear in the conventional EBM since that model

lacks a long-range global response reflecting the slow

response of the deep ocean.

In Fig. 7 we plot the PSD of the local temperature for a

number of different l values. This figure is the fractional

analog of Fig. 3. For small and large l these spectra are

perfect power laws over most of the frequency range. For

small l (i.e., in the regime relevant for the Earth climate

system) the spectral exponent is b/2 (i.e., half of the

spectral exponent for the global temperature in the zero-

dimensional fractional model; Rypdal and Rypdal 2014).

For l � p, the spectrum is a power law with spectral

exponentb. This result is obvious, since in the large l limit

the fieldwill be spatially uniformand themodel reduces to

the zero-dimensional one. For intermediate values of

l there is a break in the scaling from exponent b at low

frequencies (dominated by global fluctuations) to b/2 at

high frequencies (dominated by local fluctuations).

We can also compute the PSD for the temperature

averaged over a fraction j of the globe surface, as we did

in Fig. 4 for the conventional EBM. The result is shown

in Fig. 8. It may not come as a surprise that the spectra

are power laws, and that local spectra have exponent

b/2, gradually increasing to b with increasing degree of

spatial averaging up to global.

In Fig. 9 we show that this feature is also reflected in

observation data. The figure shows the fluctuation functions

of a first-order detrended analysis (DFA1) (Kantelhardt

et al. 2001) of the centralEngland instrumental temperature

record and two globally averaged records. DFA1 does not

eliminate linear trends, but this trend is small in the 350-yr-

long central England record. The averaged records are

derived from the 160-yr-long HadCRUT3 global in-

strumental surface temperature (Brohan et al. 2006) and

the 2000-yr-long Northern Hemisphere reconstruction of

Moberg et al. (2005). The scaling properties of these re-

cords may be strongly influenced by the global radiative

forcing and hence not representative of the internal (un-

forced) variability. However, by using a reconstruction of

the forcing (Hansen et al. 2011; Crowley 2000) and amodel

for the global temperature response we can compute the

temperature response to this deterministic forcing. This

was done by Rypdal and Rypdal (2014), who also dem-

onstrated that a simple zero-dimensional, fractional EBM

response model yields a deterministic response almost

indistinguishable from the mean response in ensembles of

CMIP5 model runs. The residual noise obtained by sub-

tracting the deterministic response from the observed/

reconstructed record represents the internal variability,

and it is these records that have been subject to analysis in

Fig. 9. The slope a of the fluctuation-function curve is

related to the spectral exponent b via a5 (11b)/2, and

the slopes correspond to b’ 0:4 for the local central

England record, and to b’ 0:8 for the global-scale re-

cords, in agreement with the fractional EBM result that

the global b is twice the local b.

4. Comparison to NorESM data

The simple version of the North EBM and the fractional

EBM we have explored here assumes a uniform Earth

surface. Since the global spatial average of thesemodels are

identical to the zero-dimensional ‘‘exponential’’ and

‘‘scale-invariant’’ response models studied in Rypdal and

Rypdal (2014), we can use their methods for estimating the

model parameters tr (for theNorthEBM) andb andh (for

the fractional EBM). The temperature data records to
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use as input for such estimates can be the instrumental

record for global land temperature or sea surface temper-

ature, depending on whether we want to study spatiotem-

poral persistence over continental interiors or over oceans.

As discussed in the previous section, the b for un-

forced dynamics should be estimated from the residual

obtained by subtracting the deterministic response from

the observed record. In Figs. 10a and 11a the red full

curve is the deterministic solution to the fractional EBM

when b’ 0:61 is estimated from the full record. The

estimation method used here is to model the full record

as a fractional Gaussian noise (fGn) and determine the

b of that fGn that minimizes the mean square error. If

we subtract the red full curve from the observed record

and estimate b again from the residual record, we find

b5 0:28. The deterministic response with this new b is

the dotted red curve, which is almost the same. Hence in

the fractional EBM the response to the deterministic

forcing is not very sensitive to b, and hence that b5 0:28

self-consistently describes the unforced dynamics. The

situation is different for the North EBM for which re-

sults are shown in Fig. 10b. Here the time constant is

tr ’ 8:0 yr estimated from the full record and tr ’ 1:7 yr

from the residual, and the corresponding deterministic

responses are quite different. The response to the

deterministic forcing is better described by the large t,

but the random fluctuations requires a shorter re-

sponse time, and suggests that the response is char-

acterized by more than one time constant, as in the

two-layer model considered by Geoffroy et al. (2013).

Similar observations are made for the ocean temper-

atures as shown in Figs. 11a and 11b.

The diffusion parameter l cannot be estimated from

such globally averaged records, so thesemust be obtained

FIG. 7. Log–log plots of the temporal PSD of temperature time

series at any point on the uniform unit sphere given by Eq. (17) for

l5 0:1, 0:5, 1:0, 10. The blue dashed line has slope2b, and the red

dashed line has slope 2b/2.

FIG. 6. Frequency-dependent spatial ACFof temperaturemeasured

vs angular distance u from any reference point on the uniform unit

sphere given by Eqs. (17) and (23) for (a) l5 0:4 and (b) l5 0:2.

FIG. 5. Instantaneous temperature field in a simulation of the

fractional EBM on a sphere. The parameters are b5 0:75 and

l5 0:4, which are typical for an ocean planet.
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from spatiotemporal observation data, reanalysis data, or

data from AOGCMs. The latter provide the best data

coverage in space and longer temporal records, whichmake

it possible to ‘‘calibrate’’ the EBMs to general circulation

models. For this purpose we use the frequency-dependent

ACF rv(x) computed from the surface temperature field

derived from long control runs of the NorESM [see

Bentsen et al. (2013) and Iversen et al. (2013) for general

descriptions of the NorESM1-M model]. Such ACFs are

shown for Eurasian land temperature as the pointed curves

in Fig. 10c. Each curve corresponds to a given frequency

v5 2pf , where the highest frequency is f1 5 1 yr21 and the

other frequencies are f2 5 f1/3, f3 5 f1/10, f4 5 f1/30, and

f5 5 f1/100. This corresponds to periods 1/f of 1, 3, 10, 30,

and 100yr. There seems to be a weak elevation of theACF

for x; 4000 km for all these frequencies, and a strong el-

evation for periods approaching 100yr. The former may be

the characteristic spatial extent ofmodes of interannual and

decadal variability, while the latter may reflect the spatial

structure of a multidecadal oscillation. These modes are of

course not represented in the EBMs.

The next step is to compute rv(x) from the fractional

EBM with the parameters b and h estimated from the

observed global land temperature and different l and se-

lect the value of l that minimizes the mean square error

between the theoretical and observed ACFs in the range

0, x, 4000 km. The resulting ACFs computed from the

fractional EBMwith the estimatedmodel parameters, and

for the same frequencies as above, are shown as the full

curves in Fig. 10c. Because of the multidecadal oscillation

the correlation structure is poorly described by the model

for distances longer than 4000km, but otherwise theACFs

of the model has similar shapes and the same tendency

toward increasing width as periods are increased.

In Fig. 10d we show similar results for theNorth EBM,

where the time constant tr estimated from the global

land temperature record has the very low value tr ’ 1:7 yr.

In this model the width of the ACF does not increase

gradually with increasing period, as in the AOGCM data

and the fractional EBM. It rather converges to the zero-

frequency limit r0(x), and is close to this limit already for

periods greater than 3yr. For periods less than a decade

the model predicts much smaller correlation lengths than

observed in the NorESM model. Hence these results

show that for land data the fractional EBM provides a

much more accurate description than the North EBM.

Corresponding results for ocean temperatures are

shown in Fig. 11. To avoid a strong influence from El

Niño–Southern Oscillation in the ACF on interannual

time scales we study only the oceans south of 208S in the

NorESM control run. We obtain b’ 0:77 from the re-

sidual record, which is close to what we found for the

global observed temperature in Fig. 9. For these data the

fractional EBMproducesACFs that fit better to theACFs

from theNorESMmodel for periods less than a decade, but

not for longer time scales. The reason for this poor perfor-

mance of the fractional model for oceans will become clear

in the forthcoming section, where we propose a modifica-

tion of the model based on data fromNorESM simulations

with instantaneous (step function) increase in CO2 forcing.

The performance of the two EBM models with respect

to reproducing the observed global-scale PSDs is shown in

Fig. 12. The black curves are the spatially averaged spectra

FIG. 9. DFA1 fluctuation functions of the temperature record for

central England (blue triangles), Moberg’s reconstruction of the

mean surface temperature in the Northern Hemisphere in the last

millennium (red crosses), and the instrumental record for global

mean temperature (red circles). For the global data the records

analyzed are the residuals after the response to the deterministic

forcing has been subtracted. The blue dotted line corresponds to

b’ 0:4 and the red dotted line corresponds to a b’ 0:8.

FIG. 8. Log–log plot of power spectral density for the tempera-

ture averaged over a fractional area j5A/4p5 (12 cosu)/2 of the

unit sphere as given by Eq. (14) and S(v) and rv(m) computed from

the fractional EBM, for j5 0, 0:03, 0:1, 0, 35, 1.
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of local temperatures over the Eurasian continent

(Fig. 12a) and over the SouthernOcean (Fig. 12b). The red

curves are the theoretical spectra from the fractional EBM

and the blue curves for the North EBM, demonstrating

very clearly the superiority of the fractional model.

5. Fractional forcing noise

From Figs. 10c and 11c we have observed that the

fractional EBM provides a less accurate description of

the correlation structure for sea surface temperatures as

compared to the land temperatures. However, the

comparison with the NorESM model improves signifi-

cantly if we allow the stochastic forcing F to be an fGn

with an exponent bf . 0 rather than the white noise

(bf 5 0) considered so far. If the average temperature of

the Southern ocean in the NorESM control run can be

modeled by a fractional EBM characterized by a response

exponent b, and this EBM is driven by an fGn with

spectral exponent bf , then the global-scale temperature of

the control run is a realization of an fGn with spectral

exponent bcr 5b1bf .

Such a generalization of the fractional EBMwould be

rather ad hoc if it was not directly suggested by other cli-

mate model simulations. Geoffroy et al. (2013) studied a

large number of such runs of CMIP5 models, with results

that were all similar to the black curve in Fig. 13a, which

is the global temperature following sudden quadrupling

of atmospheric CO2 concentration in the NorESM

model. Geoffroy et al. (2013) find good fits to these

curves with a function that is a linear combination of two

exponential functions with one small time constant of

the order of a few years and one larger of the order of a

century. In Fig. 13a the red curve is a fit of a power-law

function tb/2, with b5 0:36. On the shorter time scales

(up to few years) the fit is not good, because a power law

with b, 1 has a diverging derivative as t/ 0, which is

not physical. But our interest in the power-law response

FIG. 10. (a) The black curve is the global mean land surface temperature. The red solid curve is the mean temperature in

the fractional EBM with deterministic forcing and parameters estimated using the least squares method. The estimated

b value is 0.61. The red dotted curve is the same as the red solid curve, but in this case the b parameter is estimated from the

residual signal obtained by taking the difference between the temperature observations (black curve) and the least squares fit

(solid red curve). Thisb value is 0.28. (b)As in (a), but in this case for theNorthEBM.The solid blue line shows the response

to thedeterministic forcingwithparameters estimatedusing the least squaresmethod.This gives theestimate tr 5 8:0 yr. The

blue dotted curve is constructed by estimating the response time from the residual signal. This gives tr 5 1:7 yr. (c) The solid

curves are the spatial ACFs given by Eqs. (17) and (23), and the points are the corresponding estimates obtained from the

land surface temperatures over the Eurasian continent in a NorESM control run. The frequencies chosen are 1/100 yr21

(blue), 1/30 yr21 (dark green), 1/10 yr21 (light green), 1/3 yr21 (light red), and 1 yr21 (dark red).We estimated l5 0:275 by

fitting the spatialACF to theNorESMdataon the lowest frequency (1/100 yr21) on distances up to 2500km.Theparameters

b5 0:28 and c5 8:7 are estimated from the global response to the deterministic forcing as shown in (a). (d)As in (c), but for

the North EBM; i.e., the solid curves are given by Eqs. (17) and (15). The parameters are l5 0:18 and tr 5 1:7 yr.
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function is as a model for the response on time scales

from decades to centuries, for which it seem to perform

quite well. In this respect, these climate model runs

support the fractional EBM as a model for the global

response.We observe, however, that the estimated b for

the response is roughly half the value of bcr estimated

from global temperature [or average Southern Ocean

(SO) temperature] in control runs. This discrepancy is

explained if we assume a fractional forcing such that

bf 5bcr 2b. Recall that an estimate ofbcr can be obtained

from the spatially averaged SO temperature in the control

run, and b from the transient evolution shown in Fig. 13a.

Hence we have bf 5bcr 2b’ 0:772 0:365 0:41. The

deterministic response corresponding to b5 0:36 is given

by the red curve in Fig. 12b, and Fig. 12c shows the

frequency-dependent ACFs computed from this general-

ized, fractional EBM. The expressions for these ACFs are

slightly modified from the original fractional EBM, and

are given in appendix C [Eq. (C2)]. There we also show

that the local spectrum for the generalized, fractional

EBM has exponent bf 1b/2. The ACFs of the fractional

EBM are now much closer to those of the SO in the

NorESM. In Fig. 13d the lower black curve is the

spectrum of the averaged SO temperature and the red

line the power-law spectrum with the estimated expo-

nent bcr, hence the red line represents a fit to the spec-

trum. The upper black curve is the average of the local

spectra of the SO. Here the red line is the power-law

spectrumwith exponent bf 1b/2’ 0:59, where bf ’ 0:41

and b’ 0:36 have been estimated as described above.

Hence, this line is not a fit to the observed spectrum but a

result of the generalized fractional EBM. The fact that

the fit is good confirms the consistency between this

model and the NorESM data.

6. Conclusions

In an editorial comment, Mann (2011) asserted that the

scaling behavior in instrumental and long-term proxy

temperature reconstructions appears consistent with the

results of a standard, zero-dimensional EBM forced by

estimated natural and anthropogenic radiative forcing

changes, and subject to white-noise stochastic weather

forcing. According to this author, ‘‘nothing more exotic

than the physics of such a simple model is necessary to

explain the apparent scaling behavior in observed surface

FIG. 11. As in Fig. 10, but for sea surface temperatures. (a) The estimated scaling exponent is b5 1:03. The dotted red

line is the response to the deterministic forcing with the parameter b5 0:77 obtained from the residual signal. (b) The

estimate is tr 5 20:4 yr. The blue dotted curve is constructed by estimating the response time from the residual signal. This

gives tr 5 2:0 yr. (c) As in Fig. 10, the solid curves are the spatial ACFs, and the points are the corresponding estimates

obtained from the sea surface temperatures for the region south of 208S in aNorESMcontrol run. The frequencies chosen

are the same as in Fig. 10. We estimated l5 0:68 by fitting the spatial ACF to the NorESM data on the lowest frequency

(1/100 yr21). The parameters b5 0:77 and c5 63:6 are estimated from the global response to the deterministic forcing as

shown in (a). (d) As in (c), but for the North EBM. The parameters are l5 0:15 and tr 5 2:0 yr.
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temperatures.’’ This conclusion was drawn from applica-

tion of a number of standard estimation techniques for

b to realizations of the purely stochastically forced, and

stochastic plus radiatively forced, EBM. These estimates

were compared to results from the same techniques ap-

plied to observation data. Such comparisons show over-

lap of the distributions of b estimates for the model

realizations and the observation records, which lead the

author to conclude that the scaling properties of the ob-

servation data are consistent with this simple model.

The results derived in the present paper demonstrate

that there is a clear discrepancy between the scaling

properties of the North EBM and data derived from ob-

servations and climate models. The conclusions of Mann

(2011) arise from uncritical application of estimation

techniques for the scaling exponent to time series that do

not exhibit scaling. For instance, the stochastically forced

model signal is an AR(1) process, which scales like a

Wiener process (b5 2) on scales shorter than the auto-

correlation time and as a white noise (b5 0) on longer

time scales. There is no unique scaling exponent for this

process. Careful examination of power spectra or fluctua-

tion functions for model data and observation data, in

particular of the residual resulting from subtracting the

(deterministic) radiatively forced response from the ob-

servations, demonstrates very clearly that the spatiotem-

poral scaling properties of the North EBM data are

different from those of the observation data. We also

demonstrate that the model can produce the observed

scaling by a generalization which involves a long-range

memory response that can be interpreted as a delayed heat

exchange between the ocean mixed layer and the deep

ocean. This physics goes beyond the simple ‘‘one-box’’

energy balance model, but it is not particularly ‘‘exotic.’’

The fractional EBM not only explains the power-law

temporal scaling, but also how and why the spectral

exponent increases with increased spatial averaging, and

it describes themain features of the frequency-dependent

spatial autocorrelation functions. An inconsistency be-

tween the standard fractional EBM and climate models

simulations is observed in the transient response to sud-

den change in forcing, giving a lower b for the response

than observed in the control runs. The consistency is re-

stored by assuming that the stochastic forcing is a frac-

tional noise with b’ 0:4. One can think of this forcing as

exchange of sensible and latent heat between the at-

mosphere and land surface/ocean mixed layer influ-

enced by atmospheric weather systems, but radiative

forcing, such as the CO2 greenhouse effect, also has a

noisy component that may exhibit long-range persis-

tence. This assertion is supported by recent direct ob-

servations of CO2 forcing at Earth’s surface. Feldman

et al. (2015) measured the clear-sky radiative CO2 sur-

face forcing and obtained time series as shown in

Fig. 14a. The PSD of this time series has a spectral ex-

ponent b’ 2 (Fig. 14b), but this value is determined by

the strong anthropogenic trend. There is also a strong

seasonal trend that appears as peaks at the first and

FIG. 12. (a) The black circles show the average power spectral density for the temperatures on the Eurasian

continent in a control run of the NorESMmodel. The blue curve is the power spectral density for local temperatures

in the North EBM [Eq. (12)] with parameters tr 5 1:73 and l5 0:18. The red curve is the power spectral density for

local temperatures in the fractional EBM [Eqs. (17) and (23)] with parametersb5 0:28 and l5 0:44. (b)As in (a), but

for ocean temperatures. The black circles show the average power spectral density for the temperatures in sea surface

south of 208S in a control run of the NorESM model. The blue curve is the power spectral density for local tem-

peratures in the North EBM with parameters tr 5 2:0 and l5 0:15. The red curve is the power spectral density for

local temperatures in the fractional EBM with parameters b5 0:77 and l5 0:51.
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second harmonic of the annual cycle. We have modeled

these trends by the predictor function

y(t)5 (a1bt)1 (c
1
1 d

1
t) sin(2pt/1001f

1
)

1 (c
2
1 d

2
t) sin(4pt/1001f

2
) , (24)

and regressed it to the observation data. The result is the

red dotted curve in Fig. 14c. The residual obtained after

eliminating the linear and seasonal trends seems to

exhibit a power-law spectrum with b’ 0:5 on time scales

from a month to a decade as shown in Fig. 14d. The PSD

has a shape quite similar to the surface temperature over

land, and suggests that the radiative CO2 forcing, and radi-

ative forcing in general exhibits a noisy component that is

persistent, and not white. The length of the observation re-

cord is too short to claim statistical significance of this per-

sistence on time scales longer than a month, but the noisy

CO2 forcing record illustrates that radiative forcing has a

noisy component, and there are good reasons to believe that

this noise exhibits persistent scaling properties.
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APPENDIX A

Expansion Coefficients for a Random Field

Let K, N/‘ in Eq. (3) and define

F(m,f, t)5 lim
K,N/‘

F
K,N

(m,f, t) .

We form the inner product of each side of this equation

with the basis functions exp(2ivj0 t)Yn0,m0(m, f) by in-

tegrating in time
Ð
1
0dt and in space over solid angleÐ

4pdV5
Ð
1
21dm

Ð
2p
0 df. By using that these basis func-

tions are orthonormal we find

F(v
j
, n,m)5

ð1
0

dt

ð
4p

dVe2ivtY
n,m

(m,f)F(m,f, t). (A1)

Now, let us use Eq. (A1) to compute a covariance of the

expansion coefficients:

FIG. 13. (a) The temperature response to a step function forcing scenario in theNorESMmodel (black curve) and a least

squares fit of a power-law expression } tb/2 with b5 0:36. (b) With b5 0:36 the response to the deterministic forcing is

optimized to fit the global sea surface temperature. The residual signal is analyzed and found consistent with an fGn with

exponent b1bf 5 0:80. This gives the estimate bf 5 0:44. (c) The spatial autocorrelation functions for the sea surface

temperatures south of 208S in aNorESM control run. As in Fig. 10 the solid curves are the theoretical expressions, which in

this case are in the formofEq. (C2).Wehave estimated l5 0:41. (d) The lower black curve is the spectrumof the averaged

SO temperature and the red line the power-law spectrum with the estimated exponent bcr. The upper black curve is the

average of the local spectra of the SO. Here the red line is the power-law spectrum with exponent bf 1b/2’ 0:59.
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E[F(v
j
,n,m)F*(v

j0 , n
0,m0)]5

ð1
0

dt0
ð1
0

dt0 e2ivj t1ivj0 t
0
ð
4p

dV

ð
4p

dV0E[F(m,f, t)F(m0,f0, t0)]Y
n,m

(m,f, t)Y
n0 ,m0* (m0,f0, t0) .

(A2)

Now we make the assumption of a statistically uniform,

random field; that is, we assume that

E[F(m,f, t)F(m0,f0, t0)]5s2d(t2 t0)d(m2m0)d(f2f0) ,

(A3)

where d(x) is the Dirac delta-function and s is a constant

indicating the strength of the field. By substituting Eq.

(A3) into Eq. (A2) we find

E[F(v
j
,n,m)F*(v

j0 , n
0,m0)]

5s2

ð1
0

dt e2i(vj2vj0 )t
ð
4p

dVY
n,m

(m,f, t)Y
n0,m0* (m,f, t)

5s2d
j,j0dn,n0dm,m0

(A4)

and hence

E[jF(v
j
,n,m)j2 5s2 . (A5)

Thus, we have proven the validity of Eq. (4) for a

random field.

APPENDIX B

The Spatial Covariance

Here we will prove Eq. (11). By expanding T(t, m, f)

in the same way as in Eq. (3), using Eq. (7) and Eq. (A4),

we get

FIG. 14. (a): Measured CO2 forcing at the surface measured at the North Slope of Alaska from 2000 throughout

2010. Time resolution is 1022 yr. The red dashed line is a linear fit to the data. The slope (trend) is 0.2Wm22 per

decade. (b) The power spectral density (PSD) estimated by the periodogram of the time series in (a). The red dashed

line has slope2b522. The slope is strongly influenced by the linear trend. (c) The red dashed curve is a nonlinear

regression of the predictor function given by Eq. (24), to the observed time series. (d) The PSD of the residual,

defined as the difference between the blue and red curves in (c). The blue dotted line has slope 2b522, and the

slope of the red dashed line is 2b520:5.
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C(m)5E[T(t,m,f)T*(t, 1, 0)]

5 �
‘

n50
�
n

m52n
�
‘

n050
�
n0

m052n0
Y

n,m
(m,f)Y

n0m0(1, 0) �
K/2

j52K/2
�
K/2

j052K/2

ei(vj02vj)tE[F(v
j
,n,m)F*(v

j0 , n
0,m0)]

5s2 �
K/2

j52K/2
�
‘

n50
�
n

m52n

Y
n,m

(m,f)Y
n,m

(1, 0)

v2
j t

2
r 1 [l2n(n1 1)1 1]2

. (B1)

By means of Eqs. (10), (11), and (B1) this reduces to

C
vK
(m)5

s2

4p
�
K/2

j52K/2
�
‘

n50

(2n1 1)P
n
(m)

v2
j t

2
r 1 [l2n(n1 1)1 1]2

5 �
j52K/2

K=2

C
vj
(m)/

K/‘

1

2p

ð‘
2‘

C
v
(m) dv . (B2)

The integral on the right-hand side of Eq. (B2) diverges

for m5 1.

The spatial covariance can also be computed directly

from Eq. (2). Let us introduce the short-hand notation

h5 (m, f) and =2
h the Laplace operator in spherical

coordinates given by the second and third terms on the

left-hand side of Eq. (2). If we compute each side of Eq.

(2) at (h, t) and multiply by T(h0, t), and then compute

each side of Eq. (2) at (h0, t), and multiply by T(h, t),

then addition of the resulting equations yields

›

›t
[T(h0, t)T(h, t)]2 l2[T(h0, t)=2

hT(h, t)

1T(h, t)=2
h0T(h

0, t)]1 2T(h0, t)T(h, t)

5T(h0, t)F(h, t)1T(h, t)F(h0, t) . (B3)

Now, we take the expectation of both sides of

Eq. (B3). Stationarity implies that ›tC(h
0, h, t)[

›tE[T(h
0, t)T(h, t)]5 0, and the white-noise character

of the forcing field implies that E[T(h0, t)F(h, t)]5
E[T(h, t)F(h0, t)]5 0. Thus, the expectation of Eq.

(B3) must satisfy the equation

=2
hC(h

0,h)1=2
h0C(h,h

0)5
2

l2
C(h0,h) . (B4)

The spherical symmetries of the temperature field implies

that =2
hC(h

0, h)5=2
h0C(h, h0), and we can without loss of

generality set h0 [ (m0, f0)5 (1, 0). Since covariance only

depends on the cosine of the angle between the two

vectors h and h0, we can then write C(h0, h)5C(m),

and hence Eq. (B4) reduces to the Legendre equation

=2C(m)[
›

›m

�
(12m2)

›C(m)

›m

�
5

1

l2
C(m) . (B5)

This equation has solutions in the form of the LegendrePn

and Qn functions, where n is given by 21/l2 5 n(n1 1),

wheren is a nonnegative integer;Pn(m) diverges atm521

and Qn(m) at m5 1. We have already seen that the co-

variance should diverge at m5 1, so we should select the

solution

C(m)5AReQ
n
(m) , (B6)

with A being a constant and

n5

2
41
2

0
@211

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 2 4

l2

s 1
A
3
5 .

APPENDIX C

Formulation of the Fractional EBM using Fractional
Derivatives

The global mean temperature in the fractional EBM is

given by convolving the (spatial averaged) forcing F(t)

with the power-law kernel given by Eq. (19); that is,

T(t)5 j

ðt
2‘

�
t2 s

h

�b/221

F(s) ds .

In practice we have no information about the forcing

F(t) in the infinite prehistory, and it is useful to write

T(t)5 j

ðt
0

�
t2 s

h

�b/221

[F
0
1F(s)] ds , (C1)

where F0 is a parameter describing the deviation from

equilibrium at time t5 0. We use the following notation

for the Riemann–Liouville integral:

aD
2a
t f (t)5

1

G(a)

ðt
a

(t2 s)a21
f (s) ds ,

which allows us to write Eq. (C1) in the form

T(t)5
jG(b/2)

hb/221 0D
2b/2
t [F

0
1F(t)] .
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We have defined

c5
2phb/221

jG(b/2)
,

so the zero-dimensional fractional EBM can be formu-

lated as a fractional differential equation,

c

2p 0D
b/2
t T(t)5F

0
1F(t) .

If we consider only purely stochastic forcing the zero can

be omitted from the notation on the fractional derivative.

Hence, the modification from the zero-dimensional EBM

consists of replacing the differential operator tr›t 1 1 with

the fractional operator Db/2
t . If we apply the same modi-

fication to the spatiotemporal model we arrive at

c

2p
Db/2

t T2 l2=2T5F .

Taking the Fourier transform yields

c

2p
G(v)21

T2 l2=2T5F ,

where G(t)5 j(t/h)b/221Q(t), and thus we arrive at

Eq. (22).

ACFs and PSDs in the generalized, fractional EBM

If we replace the white-noise stochastic forcing by a

forcing that is fractional in time and white in space, then

the relation

E[F(v,m, n)F*(v,m0, n0)]5s2d
m,m0dn,n0

is replaced by the expression

E[F(v,m,n)F*(v,m0, n0)]} d
m,m0dn,n0v

2bf .

This is actually the expression for the temporal PSD of

the forcing noise. From Eq. (16) we then have the fol-

lowing modification of Eq. (17):

E[T(v,m,f)T(v,m0,f0)*]}v2bf �
‘

n50

jg
n
(v)j2(2n1 1)P

n
(m) .

It follows that

S(v)5C
v
(1)}v2bf �

‘

n50

jg
n
(v)j2(2n1 1). (C2)

When gn(v) is given by Eq. (21) we have

�
‘

n50

jg
n
(v)j2(2n1 1);v2b/2

and hence the expression in Eq. (C2) scales as;v2(b/21bf ).
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