The Centre for Theoretical and Computational Chemistry

Density Functional Theory at the Basis Set Limit with Multiwavelets

Luca Frediani

CTCC, Dept. of Chemistry UiT, The Arctic University of Norway

> Modena, November 12, 2015

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Acknowledgments

- Current group members
 - Tor Flå
 - Stig-Rune Jensen
 - Peter Wind
- Previous group members
 - Antoine Durdek
 - Eirik Fossgaard
 - Jonas Juselius
- Support
 - Norwegian Research Council (\$\$)
 - NOTUR (High Performance Computing)

Main motivations

- Mainstream basis sets have reached a limit
- Very accurate calculations of energy and properties are extremely challenging
- A real-space basis set is better posed to harvest modern computational resources
- It's fun to do something completely different

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Remove this

remove this

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Remove this

remove this

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Remove this

remove this

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Languages

- Python scripting for configuration and input parsing
- C++ as the main working language
- CMAKE for compilation
- Git repository with Redmine interface
- Doxygen for documentation

Libraries

- Eigen3 for vector and matrix manipulation
- Several boost libraries (serialization, iterators...)
- XCFun for density functionals^a
- MPI and OpenMP for parallelization

^aU. EKSTRÖM, L. VISSCHER, R. BAST, A. J. THORVALDSEN, and K. RUUD, *J Chem Theory Comput* 6, 1971 (2010)

Structure of the code

- Function library (projections, algebraic operations)
- Operator library (application of operators)
- Chemistry overlay

Current capabilities

- Parallel, linear scaling application of Poisson/Helmholtz operators
- Solution of HF and KS equations
- Extensive library of functionals (XCFun)
- Static and dynamic linear response

Planned developments:

- Geometric gradients
- Quadratic minimization (HF/DFT)
- Higher order response (open-ended)
- Periodic boundary condition
- Four components relativistic treatment
- Time-development

Multiwavelets

SCF and Response

Orbital Free DFT

The MRChem program

Accurate DFT energies, (PBE, a.u.)

ϵ	H (D)	C (T)	C_2H_6 (S)
10 ⁻⁶	-0.499 990 657 5	-37.798 75 <mark>6 012</mark>	-79.739 93 <mark>8 330</mark>
10 ⁻⁷	-0.499 990 573 5	-37.798 755 <mark>587</mark>	-79.739 935 <mark>054</mark>
10 ⁻⁸	-0.499 990 55 <mark>4 0</mark>	-37.798 755 5 <mark>47</mark>	-79.739 934 7 <mark>08</mark>
10 ⁻⁹	-0.499 990 553 <mark>5</mark>	-37.798 755 55 <mark>1</mark>	
ϵ	O (T)	H ₂ CO (S)	CH ₃ OH (S)
10 ⁻⁶	-74.908 93 <mark>2 164</mark>	-114.429 27 <mark>1 744</mark>	-115.642 21 <mark>1 851</mark>
10^{-7}	-74.908 930 <mark>679</mark>	-114.429 269 <mark>873</mark>	-115.642 208 <mark>530</mark>
10 ⁻⁸	-74.908 930 5 <mark>44</mark>	-114.429 269 6 <mark>08</mark>	-115.642 208 1 <mark>52</mark>
10 ⁻⁹	-74.908 930 53 <mark>2</mark>	-114.429 269 57 <mark>3</mark>	
ϵ	F (D)	CI (D)	FCI (S)
10 ⁻⁶	-99.676 14 <mark>0 835</mark>	-459.974 6 <mark>86 431</mark>	-559.766 352 774
10^{-7}	-99.676 138 <mark>874</mark>	-459.974 67 <mark>3 116</mark>	-559.766 341 825
10 ⁻⁸	-99.676 138 6 <mark>63</mark>	-459.974 672 043	-559.766 340 099
10 ⁻⁹	-99.676 138 640		-559.766 340 1 <mark>36</mark>

NMR Shieldings: a difficult case for GTOs

			RHF		B3	B3LYP	
k	ϵ	$\Delta \phi$	$\sigma(Mg)$	$\sigma(O)$	$\sigma(Mg)$	$\sigma(O)$	
5	10 ⁻³	10 ⁻²	1041.20	-6738.21	964.09	-2051.05	
6	10^{-4}	10^{-3}	1538.92	-16726.34	1002.59	-24 <mark>54.58</mark>	
7	10^{-5}	10^{-4}	15 <mark>84.11</mark>	-17466.48	1006.22	-24 <mark>84.34</mark>	
8	10^{-6}	10^{-5}	157 <mark>8.73</mark>	-173 <mark>58.68</mark>	1007. <mark>08</mark>	-249 <mark>2.02</mark>	
9	10^{-7}	10 ⁻⁶	1579. <mark>46</mark>	-1737 <mark>5.42</mark>	1007.15	-2491. <mark>87</mark>	
	pcS-0	(19)	448.69	4880.30	8890.43	-63570.32	
	pcS-1	(33)	94.45	11293.43	1513.58	-6292.74	
	pcS-2	(61)	-19388.24	386900.50	1047.52	-2799.52	
	pcS-3	(121)	1757.72	-20822.54	1013.94	-2536.79	
	pcS-4	(199)	1617.50	-18143.84	1007. <mark>66</mark>	-249 <mark>8.74</mark>	

Outlook

- Potential: simplicity and robustness
- Technical Challenge: memory requirements
- Fundamental challenge: curse of dimensionality

Thank you!

All photos are from Francesco Verugi (https://www.flickr.com/photos/francesco_verugi/)