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Abstract: Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, 

including humans. All polyomaviruses encode the large T-antigen and small t-antigen 

proteins that share conserved functional domains, comprising binding motifs for the tumor 

suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present,  

13 different human polyomaviruses are known, and for some of them their large T-antigen 

and small t-antigen have been shown to possess oncogenic properties in cell culture and 

animal models, while similar functions are assumed for the large T- and small t-antigen of 

other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the 

only human polyomavirus associated with cancer. The large T- and small t-antigen exert 

their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, 

activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating 

metastasis. This review elaborates on the putative roles of human polyomaviruses in some 

of the emerging hallmarks of cancer. The reciprocal interactions between human 

polyomaviruses and the immune system response are discussed, a plausible role of 

polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the 

effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic 

strategies against these emerging hallmarks of cancer are also suggested.  
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1. Introduction 

Polyomaviruses are naked, circular double-stranded DNA viruses that infect birds and mammals, and 

recently the first fish-associated polyomavirus was described [1,2]. The genome of most polyomaviruses 

is approximately 5000 base-pairs and encodes regulatory proteins and structural proteins. The major 

regulatory proteins are the large tumor antigen (LT-ag) and the small tumor antigen (st-ag), while at least 

two structural proteins (VP1 and VP2) form the capsid. The regulatory proteins are expressed early 

during infection and participate in viral replication and viral transcription, while the structural proteins 

are expressed later in the infection cycle [3]. Many polyomaviruses encode additional regulatory and 

structural proteins (e.g., ALTO, VP3, VP4, agnoprotein) [4–6].  

Studies with mice in the 1950s initiated by Ludwik Gross, and extended by Sarah Stewart and Bernice 

Eddy led to the identification of the first polyomavirus. They showed that a filtrate from a mouse 

leukaemia could cause multiple tumors in new-born mice and later it was demonstrated that these 

multiple tumors were virus-indeed. Hence the virus was referred to as polyomavirus from the Greek 

πολύσ for many and ωµα for tumors (reviewed in [7]). The first primate polyomavirus was isolated in 

1960 [8]. This virus, Simian virus 40 (SV40), was shown to transform cells, including human cells, to 

induce tumors in animal models, and to be present in human cancers. The oncogenic potential of SV40 

primarily depends on its LT-ag, which can bind the tumor suppressor proteins p53 and pRb, interfere 

with DNA repair, apoptosis, cellular transcription, protein degradation, telomerase activity, immune- and 

inflammatory responses, and stimulate angiogenesis and cell migration. SV40 st-ag can contribute to 

transformation by inactivating protein phosphatase 2A [9,10]. Besides SV40 and murine polyomavirus, 

other non-human polyomavirus such as hamster polyomavirus, lymphotropic polyomavirus, and simian 

agent 12 were shown to possess oncogenic properties in cell cultures or animal models [11–13]. However, 

the oncogenic role of these viruses in their natural host is unclear. In fact, only one mammalian 

polyomavirus seems to be firmly associated with cancer in its genuine host. Raccoon polyomavirus 

(RacPyV) was first identified in tumors of frontal lobes and olfactory tracts from raccoons. Ten out of 

52 (19%) raccoons had brain tumors within the cranial portion of their frontal lobe(s), and all tumors 

contained RacPyV DNA, though not tissues from 20 unaffected animals. RacPyV genome was episomal 

in all tumors tested [14]. One case of hamster polyomavirus-induced lymphoma in a hamster outside of 

the laboratory environment has been described [15], while two novel mammalian polyomaviruses have 

been isolated from benign tumors. A polyomavirus was isolated from fibropapilloma on the tongue of a 

sea lion, and the complete genome of another polyomavirus was amplified in a biopsy from a fibroma 

on the trunk of an African elephant [16,17]. Further studies are required to assess whether these 

mammals are the genuine host, and whether these polyomaviruses are the causal infectious agent of such 

hyperplastic fibrous tissue in their natural host. 
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In contrast to mammalian polyomaviruses, bird polyomaviruses do not seem to induce tumors. 

Despite a similar genetic organization to that of mammalian polyomavirus, their LT-ag lacks homologies 

to the p53 binding sequences of mammalian polyomavirus and not all avian polyomavirus LT-ag possess 

the consensus sequence LXCXE required for pRb binding [18]. 

2. Human Polyomaviruses and Cancer  

The first two human polyomavirus viruses were isolated in 1971, and were named after the initials of 

the patient in which the virus was found: the BK virus (BKPyV) and the JC virus (JCPyV) [19,20].  

Both BKPyV and JCPyV possess a genomic organization that resembles SV40 more than the murine 

polyomavirus. The former three viruses lack the middle T-antigen that is encoded by the murine 

polyomavirus, but have an additional late gene referred to as the agnogene [3]. Because the genomic 

organization of SV40 displays a higher functional and sequence similarity with the BKPyV and JCPyV, 

SV40 became the polyomavirus model system for unveiling the oncogenic mechanisms of this  

family [21,22]. Since 2007, 11 novel human polyomaviruses have been described: KIPyV, WUPyV, 

Merkel cell PyV (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated PyV (TSPyV), 

HPyV9, HPyV10 (and the isolates MW and MX), STLPyV, HPyV12, and NJPyV-2013 [23–35]. The 

seroprevalence of the different human polyomavirus ranges from ~25% to ~100% depending on the 

virus. The high seropositivity therefore demonstrates that these viruses are common in the adult human 

population [36–38].  

Whereas the oncogenic properties of BKPyV, JCPyV and MCPyV in cell culture and animal models 

are well-documented [39–42], only MCPyV seems to be associated with cancer in its natural host. 

Approximately 80% of Merkel cell carcinoma tumors are positive for the MCPyV genome, which is 

typically integrated and encodes a truncated form of LT-ag [43]. BKPyV and JCPyV DNA, RNA and 

proteins have been detected in several tumor tissues, but are also often present in control non-malignant 

tissues [44–46]. Hence, a causal role for these viruses in human cancers remains controversial, although 

the presence of BKPyV may increase the risk of the development of renal and prostate cancer, while JCPyV 

may be associated with colorectal cancer and CNS tumors [47–50]. Polyomavirus-associated colorectal 

cancer may be due to other polyomaviruses present in meat as suggested by Harald zur Hausen [51]. Recent 

analyses of beef samples have identified several bovine polyomaviruses related to the human polyomaviruses 

MCPyV, HPyV 6, HPyV7 or other animal polyomaviruses including fruit bat polyomavirus, RacPyV 

and chimpanzee polyomavirus [52,53]. It remains to be established whether these viruses can be detected 

in human colorectal biopsies. The possible association of the other human polyomaviruses with cancer 

has been scarcely examined, and in only few cases was viral DNA or protein detected in tumor tissue 

(Table 1). Based on our present knowledge, convincing proof of their role in these cancers is lacking. 
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Table 1. Prevalence of the novel human polyomaviruses in human cancers. BK virus 

(BKPyV), JC virus (JCPyV), Merkel cell PyV (MCPyV) are not included. 

 Number of samples Method Number of positive samples Comments Reference 

Melanoma (st-age IV) 18  PCR and IHC 

(HPyV6 

VP1moAb) 

HPyV6: 18 

HPyV7: 17 

TSPyV: 4 

HPyV9: 1 

HPyV10: 12 

Low viral DNA 

loads, but higher 

for HPyV6 

[54] 

Mucosal melanoma 37 PCR KIPyV: 0 

WUPyV: 0  

HPyV6:0 

HPyV7:0 

TSPyV: 0  

HPyV9:0  

MWPyV: 0 

 [55] 

Squamous cell carcinoma 63 PCR HPyV6: 2 

HPyV7: 1 

Low viral DNA 

loads 

[56] 

Basal cell carcinoma 50 PCR HPyV6: 1 

HPyV7: 2 

Low viral DNA 

loads 

[56] 

Melanoma 47 PCR HPyV6: 2 

HPyV7: 2 

Low viral DNA 

loads 

[56] 

Basal cell carcinoma 41 PCR HPyV6:3 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

Squamous cell carcinoma 52  PCR HPyV6:2 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

SCC in situ 8 PCR HPyV6:1 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

Keratoacanthoma 42 PCR HPyV6:2 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

Microcystic adnexal 

carcinoma 

5 PCR HPyV6:0 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

Atypical fibroxanthoma 14 PCR HPyV6:0 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 

Actinic keratosis 31 PCR HPyV6:1 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [57] 
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Table 1. Cont. 

 Number of samples Method Number of positive samples Comments Reference 

Breast cancer 

 

54 

 

PCR 

 

HPyV6: 1 

HPyV7:1 

 [58] 

Merkel cell carcinoma  deep 

sequencing 

HPyV6: 1 

HPyV7:1 

HPyV9:1 

 [59] 

Extracutaneous 

melanoma 

38 PCR KIPyV: 0 

WUPyV: 0 

 [60] 

SCC+AK 142 deep 

sequencing 

HPyV6: 1  [61] 

Chronic lymphocytic 

leukaemia 

27 PCR HPyV9: 0  [62] 

Primary cutaneous B-cell 

lymphomas 

(CBCLs) or cutaneous T-

cell lymphomas 

(CTCLs) 

130  PCR HPyV6: 6 

HPyV7: 1 

TSPyV: 0 

 [63] 

MCC 28 PCR HPyV6: 0 

HPyV7:0 

 [64] 

Pilomatricomas (benign 

skin tumor associated 

with hair follicles 

? ? TSPyV: 0  [65] 

Lung cancer 20 PCR KIPyV:9  [66] 

CNS tumors 25 PCR KIPyV: 0 

WUPyV: 0 

 [67] 

Neuroblastoma 31 PCR KIPyV: 0 

WUPyV: 0 

 [67] 

Acute lymphoblastic 

leukaemia 

50 PCR KIPyV: 0 

WUPyV: 0 

 [68] 

Lung cancer 30 

 

32 

PCR 

 

PCR 

KIPyV: 0 

WUPyV: 0 

KIPyV: 0 

WUPyV: 0 

 [69] 

 

[70] 

Neuroendocrine tumors 50 PCR KIPyV: 0 

WUPyV: 0 

HPyV6:0 

HPyV7:0 

TSPyV: 0 

 [71] 

Skin lesions from CTCL 

patients 

39 PCR HPyV6:11 

HPyV7:5 

TSPyV: 0 

HPyV9:0 

 [72] 
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Table 1. Cont. 

 Number of samples Method Number of positive samples Comments Reference 

Blood from CTCL 

patients 

39 PCR HPyV6:0 

HPyV7:0 

TSPyV: 0 

HPyV9:0 

 [72] 

Glioblastoma multiforme 39 PCR HPyV6:0 

HPyV7:0 

HPyV9:0 

 [73] 

 

Thymic epithelial tumors 

 

Thymic hyperplasias 

Foetal thymus tissue 

 

37 

 

 

20 

20 

PCR, FISH, 

IHC 

              PCR   FISH      IHC 

HPyV7:   20       23          17 

HPyV6:     0 

 

HPyV7:     8       14            6  

HPyV7:     0 

 [74] 

The cancer biology of BKPyV, JCPyV and MCPyV has been extensively reviewed by  

others [39,43,45,46,75–77] and is also discussed by others in this special issue on Tumor Viruses. This 

review will focus on novel strategies that human polyomaviruses may use to transform cells. Figure 1 

summarizes the novel mechanisms by which HPyV may contribute to cancer.  

 

Figure 1. Novel mechanisms by which HPyV may contribute to cancer. See text and  

Table 2 for details. 
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3. HPyV and Emerging Hallmarks of Cancer 

3.1. The Immune System and HPyV in Cancer 

Individuals with a dysfunctional immune system are more disposed to diseases, infections and  

(viral-induced) cancers. Moreover, oncoviruses can induce inflammation, which may predispose host 

cells to acquire carcinogenic mutations [78]. In accordance with the cancer immunoediting hypothesis, 

tumor cells need to proficiently traverse separate phases in a sequential order to attain cancer manifestation 

and progression. These phases constitute interactions between the immune system and the cancer cell, 

and include the elimination of newly transformed cells, an equilibrium in which the immune system 

restrains the outgrowth of tumors, and an escape in which the tumor cells are able to circumvent the host 

immune response phases [79–81]. For a virus to induce tumors, they need to circumvent elimination by 

the immune system and to induce alternations in the tumor microenvironment, including in the infected 

cell allowing the virus-transformed cell to progress [82,83]. Because MCPyV is the only HPyV 

associated with cancer, the main focus will be on MCPyV’s interaction with the immune system.  

Epidemiologic data show that patients with T cell dysfunction are at a 5- to 50-fold increased risk of 

developing MCC, thereby indicating the importance of the immune system (reviewed in [83]). However, 

immunocompetent individuals may also develop MCPyV-positive MCC, suggesting that the virus and 

virus-infected cells can avoid elimination by the immune system.  

3.1.1. HPyV and Evasion of the Innate Immune System 

One mechanism by which MCPyV circumvents the immune system is to abate the innate defence 

mechanism. MCPyV LT-ag and st-ag downregulate the Toll-like receptor 9 (TLR9), an important 

receptor of the host innate immune system that senses viral dsDNA in epithelial and MCC cells [84]. 

LT-ag inhibits TLR9 expression by decreasing the mRNA levels of the transcription factor C/EBPβ.  

LT-ag of BKPyV, but not JCPyV, KIPyV and WUPyV, is also able to repress TLR9 expression. 

Interestingly, C/EBPβ has a vital role in regulating IL-6, IL-8, and TNF-α cytokine transcription [85]. 

Moreover, it is also suggested that C/EBPβ has a tumor-suppressive activity by down-regulating CDK2, 

CDK4, and E2F complex activity [86,87]. Thus MCPyV LT-ag mediated suppression of C/EBPβ expression 

may perturb immune responses and provoke cell proliferation. 

3.1.2. Immune Cells in the Microenvironment of MCC 

To investigate inflammatory modulators in MCC required for escaping of the tumor from  

immune surveillance, and to deduce a possible contribution of MCPyV in oncogenesis, several groups 

have examined immune cells and inflammatory mediators virus-positive and virus-negative MCC. 

Differences in immune and inflammatory cells, markers, and gene expression in MCPyV-positive and 

MCPyV-negative MCC tumors are summarized in Table 2. Compared to virus-negative tumors, a higher 

number of infiltrating CD8+ T-cells in MCPyV-positive MCC has been observed [89–91], while  

others group have not detected a relationship with virus status and the number of intratumoral CD8+  

T-cells [92,93]. Other differences in the microenvironment of virus-positive and virus-negative MCC 

include a higher number of CD3+ T-cells, CD20+ B cells, CD16+ natural killer cells, and CD68+, 
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CD69+, CD163+ macrophages [88–90,93–95]. FoxP3+ regulatory T-cells were present in 4/4 LT-ag 

positive MCC, whereas 3/6 LT-ag negative tumors did not contain FoxP3+ regulatory T-cells [93]. 

Table 2. Immune cells and inflammatory mediators in MCPyV-positive and MCPyV-negative 

Merkel cell carcinoma (MCC). 

Component MCPyV-positive versus MCPyV-negative MCC Reference 

Cells in tumor microenvironment 

-CD3+ T-cells 

 

-CD4+ T-cells 

 

-CD8+ T-cells 

 

- CD16+ natural killer cell 

 

-CD20+ B cells 

 

 

-CD68+ macrophages 

 

-CD69+ macrophages 

 

-FoxP3+ regulatory T-cells 

 

 

higher number in MCPyV-positive MCC 

 

high number associated with high LT-ag expression 

higher number in MCPyV-positive MCC 

 

higher number in MCPyV-positive MCC 

 

more common in MCPyV-positive MCC; 

no significant difference between MCPyV-positive and –

negative MCC 

higher number in MCPyV-positive MCC 

 

higher number in MCPyV-positive MCC 

 

more common in MCPyV-positive MCC 

 

 

[88–90] 

 

[90] 

 

[89,91,92] 

  

[88,90] 

 

[93] 

[89] 

 

[88,90,94,95] 

 

[90,94,95] 

 

[93] 

Cell surface markers: 

-CD3D 

 

-CD3G 

 

-CXCR3 

 

-MHC-I 

 

-PD1 

 

-Tim-3  

 

enrichment of transcripts in MCPyV-positive MCC 

enrichment of transcripts in MCPyV-positive MCC 

lacking in CD8+ T-cells 

 

lower levels in MCPyV-positive MCC 

 

higher in MCPyV-positive MCC 

 

higher in MCPyV-positive MCC 

 

[89] 

 

[89] 

 

[93] 

 

[96] 

 

[95,97,98] 

 

[97] 

Signal transduction proteins 

-NFκB levels 

 

-IκB levels 

 

-TANK 

 

- ZAP70 

 

lower in MCPyV-positive MCC 

 

lower in MCPyV-positive MCC 

 

 

reduction in MCPyV st-ag expressing cells MCC13 cells 

compared to virus-negative cells 

enrichment of transcripts in MCPyV-positive MCC 

 

[99] 

 

[99] 

 

 

[99] 

 

[89] 
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Table 2. Cont. 

Component MCPyV-positive versus MCPyV-negative MCC Reference 

Cytokines/chemokines 

-CCL20 

 

-CXCL-9 

 

-IL-2 

 

-IL-8 

 

-Prokineticin 1 mRNA 

 

-Prokineticin 2 mRNA 

 

reduction in MCPyV st-ag expressing cells MCC13 cells 

compared to virus-negative cells 

reduction in MCPyV st-ag expressing cells MCC13 cells 

compared to virus-negative cells 

reduction in MCPyV st-ag expressing cells MCC13 cells 

compared to virus-negative cells 

reduction in MCPyV st-ag expressing cells MCC13 cells 

compared to virus-negative cells 

higher in MCPyV-negative MCC 

 

higher in MCPyV-positive MCC  

 

[99] 

 

[99] 

 

[99] 

 

[99] 

 

[90] 

 

[90] 

Other differentially expressed proteins 

-granzyme B (role in apoptosis) 

 

 

Expression was rare in CD8+ cells 

 

 

[93] 

Afanasieve et al. proposed that MCC tumors may prevent the invasion of lymphocytes by a reduction 

of E-selectin-positive vessels within the tumors because the downregulation of E-selectin in human 

squamous cell carcinomas was associated with a restricted entry of T-cells into tumors [100,101]. Of 56 

tested MCC biopsies, approximately half displayed a reduction of E-selectin-positive vessels within the 

tumors compared with vessels in peritumoral areas [102]. However, the association between the presence 

of virus and E-selectin levels was not investigated. 

3.1.3. Changes in Expression of Cell Surface Markers on MCC Cells 

Expression of cell surface markers was performed to determine the functionality of the immune cells. 

These analyses revealed that the expression of MHC-I in MCPyV-positive MCC was significantly lower 

than in virus-negative MCC [96]. Cell-surface MHC-I expression was down-regulated in 84%  

(n = 114) of MCC, and approximately half of the tumors had poor or undetectable MHC-I levels. The 

downregulation of MHC-I expression has been identified as a vital immune evasion strategy used by 

several viruses, including oncoviruses [103–108]. An identical mechanism can be employed by  

MCPyV, but it remains to be determined as to whether viral proteins are implicated in MHC-I  

down-regulation. Tumors that undergo a significant downregulation of MHC-I should become a target 

of natural killer cells. MCC can avoid this by e.g., reducing the expression of NK-activating receptors 

such as natural killer group 2, member D (NKG2D) [109]. Interestingly, BKPyV and JCPyV microRNA 

target ULBP3, which is the ligand of NKG2D (see further), though it is not known whether MCPyV 

microRNA targets ULBP3 or NKG2D. Another surface marker that was differentially expressed on 

MCPyV-positive and negative tumors is the immune-inhibitory ligand programmed death ligand-1  

(PD-L1) [95,97,98]. The major receptor for PD-L1, PD-1 is expressed by activated T lymphocytes, and 

when this receptor is engaged by its ligands PD-L1 it serves to inhibit the T-cell response. PD-L1 may 

be aberrantly expressed by tumor cells and protect against immune attack [110]. The number of  

intra-tumor T-cells is commonly higher in virus-positive MCC than virus-negative MCC, and PD-1 was 
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expressed on a high percentage of MCPyV-positive tumors [95,97,98]. Moreover, approximately 50% 

of MCPyV-positive MCC express PD-L1 on tumor cells, while no expression was detected in  

MCPyV-negative MCC. Hence, the association between PD-1-positive cells and PD-L1 expression in the 

tumor microenvironment seems to create immune resistance by the tumor, thereby allowing the tumor to 

progress [97,98]. The mechanism by which MCPyV provokes the expression of PD-L1 remains to be 

determined, but Lipson and co-workers anticipated that IFN-γ may drive PD-L1 expression, but other 

interleukins such as IL-6, IL-10, IL-17 and IL-21 cannot be excluded. A role for PD-1 positive cells in 

protecting PD-L1-expressing MCC cells is buttressed by observations in a complete or partial regression 

of MCC. The exact mechanism for spontaneous regression is not known, although T-cell-mediated 

response and apoptosis by T-cells has been suggested [111]. The rate of regression of MCPyV-positive 

versus MCPyV-negative MCC has not been evaluated, but complete regression has been reported in a 

76-year old Japanese man with virus-positive MCC [112]. In this patient, only ~3% of the  

tumor-infiltrating T-cells were PD-1 positive, while in three other patients (females, mean age 81.3 years) 

with MCPyV-positive MCC who did not show any regression of the tumor, 18.2%–23.0% of the T-cells 

were of PD-1 positive. This suggests that a reduction of PD-1-positive T-cells may be associated with 

spontaneous tumor regression [112]. Another surface protein that was aberrantly expressed on immune 

cells in the tumor microenvironment was CXCR3 [97]. All CD8+ cells lacked CXCR3, thus indicating 

that these T-cells were functionally compromised. CXCL12 or stromal cell-derived factor 1, a chemokine 

with pleiotropic functions, including the attraction of inflammatory cells [113], was expressed outside 

malignant nodules, but its receptor CXCR4 was expressed by tumor cells, though not on infiltrating 

CD8+ cells. Finally, the cell-surface protein T-cell immunoglobulin and mucin domain-3 (Tim-3), which 

also functions to inhibit T-cell responses, was also upregulated on infiltrating T-cells in MCPyV-positive 

MCC [97]. 

3.1.4. Expression Profile of Genes Associated with the Immune Response in MCC 

Gene expression profile analysis has been applied to identify differentially expressed genes in 

MCPyV-positive and MCPyV-negative MCC. Microarray technology, using >54,000 probes, identified 

1593 genes that were differently (>2-fold) expressed comparing virus-positive and virus-negative  

MCCs [89]. An enrichment of genes associated with the immune response included genes encoding the 

δ and γ chains of CD3, the tyrosine kinase ZAP70, which plays an important role in the T-cell response, 

and the C-region of the µ heavy chain. Another approach compared the transcriptome from cells with an 

inducible expression of MCPyV st-ag with that of control cells, and revealed that the induction of st-ag 

expression resulted in >2-fold reduced transcript levγels of genes associated with the immune response 

such as CCL20, CXCL-9, IL-2, IL-8 and TANK, a negative regulator of TLR signaling. Less CCL20 

and IL-8 were secreted by MCC13 cells expressing MCPyV st-ag compared with virus-negative MCC13 

cells after TNFα stimulation [99]. mRNA profiling of 35 MCC tumors (both MCPyV-positive and 

negative) with favorable prognoses overexpressed genes such as components of cytotoxic granules 

(granzymes A, B, H and K), chemokine CCL19 and chemokine receptor 2, MHC-II and NKG2D [92]. 

The contribution of MCPyV on the expression of these genes cannot be appreciated because the data 

originate from both MCPyV-positive and MCPyV-negative tumors. Gene expression profiling of MCC 

tumor cells showed the lack of expression of IL-2 and IFN-γ, whereas IL-12 was expressed [113]. 
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However, this study was performed before MCPyV was identified, so therefore a role of the virus in 

altered gene expression cannot be deduced. Another study monitored the transcript levels of the 

chemokine-like proteins prokineticin-1 and prokineticin-2, which are involved in angiogenesis, 

inflammation and cancer. MCPyV-positive MCCs had a higher than median prokineticin-2 mRNA 

levels, while virus-negative tumors had a higher than median prokineticin-1 transcript levels [90]. A 

high tumor prokineticin-2 mRNA content was associated with the expression of MCPyV LT-ag. The 

biological relevance of this observation for virus-induced MCC remains to be established. Wheat and 

co-workers observed that the expression of granzyme B, a mediator of apoptosis [114], was rare in MCC 

infiltrating CD8+ cells, hence suggesting that these cytotoxic T cells were functionally compromised [93]. 

3.1.5. Effect of st-ag on the NF-κB Pathway 

The molecular mechanism by which MCPyV may perturb gene expression in virus-positive MCC 

tumor cells is not known, but several of the genes listed in Table 2 (e.g., CXCL9, IL-2, IL-8, MHC-I, 

IκB) are known to be a target for NF-κB [115,116]. Interestingly, MCPyV st-ag was shown to downregulate 

NF-κB-mediated transcription [99]. St-ag-mediated inhibition of the NF-κB pathway seems to require 

an interaction of st-ag with NF-κB essential modulator (NEMO) adaptor protein and protein phosphatases 

2A and 4C. This will prevent IKKα/IIKβ-mediated phosphorylation of IκB, thus leading to a reduced 

nuclear translocation of NF-κB. MCPyV interference with the NF-κB pathway is further sustained by 

the observations that IκB levels were 60% lower in the MCPyV-positive MCC cell line MKL-1 compared 

with MCPyV-negative MCC13 cells, and by a declined expression of NF-κB and NF-κB-associated genes 

in virus-positive MCC compared to virus-negative MCC [99,117]. All these findings indicate that 

MCPyV interferes with the NF-κB pathway, and that MCPyV st-ag may help the virus to evade the host 

antiviral defence and to persist in the infected cell [99]. It is not known whether the st-ag of other HPyV 

has the same property, but residues 95 to 111, which are crucial for the interaction between MCPyV  

st-ag, NEMO and PP2A and PP4C are not conserved [118]. Interestingly, ultraviolet (UV) exposure,  

a risk factor for MCC [119], was shown to stimulate mutations in LT-ag and increase the expression of  

st-ag in the tumor cells [120]. Hence, UV exposure may be a virus-dependent mechanism that promotes 

MCPyV-induced MCC through the aforementioned st-ag:NF-κB interaction.   

3.1.6. Viral Microrna and Evation of the Immune Response  

Another mechanism by which HPyV may affect gene expression is by microRNA. MicroRNAs 

(miRNAs) are small RNAs that can down-regulate protein production by either degrading transcripts or 

inhibiting the translation of mRNA. SV40 miRNA, the first PyV miRNA to be described, was shown to 

reduce cytotoxic T lymphocyte-mediated lysis and IFN-γ release [121], whereas other HPyV seem to 

apply different strategies to escape the immune system. BKPyV, JCPyV and MCPyV miRNA were 

unable to inhibit IFN-induced transcription of the luciferase reporter gene [122], but BKPyV and JCPyV 

miRNAs inhibited the translation of UL16-binding protein 3 (ULBP3) mRNA [123]. ULBP3 is a ligand 

recognized by natural killer group 2, member D (NKG2D) receptor. NKG2D is expressed by NK and 

CD8+ T-cells and binding to ULBP3 triggers killing of the target cell [124]. Consequently, BKPyV- and 

JCPyV-infected cells may escape from NKG2D-mediated killing and circumvent the immune system. 

The proteins PSME3 and PIK3CD/p110δ, which are implicated in immune functions, were predicted to 
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be putative targets for MCPyV miRNA [125]. PSME3 is a subunit of a proteasome responsible for the 

generation of peptides loaded onto MHC I, and PI3KCD plays a unique role in antigen receptor signaling 

by activating T-cells and B-cell proliferation [126–128]. The depletion of these proteins may prevent 

MCPyV infection to be cleared by the immune system, thereby allowing the viral infection to sustain. 

One of the SV40 strain RI257 miRNA targets is α-actinin 4 (ACTN4), a protein that activates the NFκB 

pathway [129]. Stable knockdown of ACTN4 reduces TNFα-mediated induction of NFκB and expression 

of e.g., IL-1β [130]. SV40-RI257I miRNA may therefore interfere with inflammatory responses. The 

3p, and the 5p miRNAs of BKPyV and JCPyV share sequence identity (16 out of 22 nucleotides) with 

SV40-RI257I miRNA [6], but it is not known whether they also target ACTN4. SV40 strain 776 

microRNA was shown to diminish the expression of the Serine/Threonine kinase MST4 in the African 

green monkey kidney epithelial cell line BSC-40, though not in human embryonal kidney 293T  

cells [129]. Interestingly, knockdown of MST4 in mice resulted in an exacerbated inflammation upon 

septic shock [131]. It is not known whether any of the HPyV encodes a miRNA that targets MST4, but 

if so, the following scenario can be imagined: A persistent HPyV infection may result in the depletion 

of MST4, thus causing the aggravation of inflammatory responses and a contribution to malignancy. 

3.2. The Role of HPyV microRNA and HPyV-induced microRNA in Cancer 

Some polyomaviruses have been shown to express viral miRNA, while others may encode a putative 

miRNA [6,132–134]. Although several viral miRNAs have been suggested to play a role in cancer [135], 

a direct implication of HPyV miRNA in cancer is lacking. Because RacPyV and MCPyV are the only 

PyV to so far be associated with cancer in their natural host, the expression of their miRNAs was examined 

in tumors. RacPyV miRNA was among the most abundant miRNAs detectable in RacPyV-associated 

tumors, but was not observed in RacPyV-negative non-tumor raccoon tissue [134]. This stands in 

contrast to MCPyV-positive MCC tumors, in which viral miRNA is only detectable in less than half of 

the tumors tested, and when present, MCPyV miRNA levels were <0.025% of total miRNAs in MCPyV-

positive MCC [125,136]. This observation suggests that MCPyV miRNA is not involved in MCC. 

PyV miRNA can modulate biological activities that can contribute to malignancy such as evading  

the immune system, apoptosis and perturbing cellular gene expression [137,138]. The role of  

HPyV-encoded miRNA in immune evasion was discussed above. PyV miRNAs may also prevent 

apoptosis. MCPyV miRNA targets the host cell protein AMBRA1, which is involved in autophagy and 

apoptosis [139], while mouse PyV miRNA downregulates the pro-apoptotic factor Smad2, resulting in 

a suppression of apoptosis in vivo [140]. Aberrant cellular gene expression may promote neoplastic 

progression, and PyV miRNAs may perturb cellular gene expression by interfering with splicing, thereby 

targeting transcription factors or proteins controlling the activity of transcription factors, or by inducing 

the expression of cellular miRNAs. SV40 miRNA is predicted to target the dual-specificity protein 

phosphatase DUSP8, a negative regulator of the JNK and p38 mitogen-activated protein kinases, 

whereas MCPyV may downregulate the expression of transcription factor RUNX1, the splicing factor 

RBM9/FOX2, as well as the repressor MECP2 [125,129]. Viral infection can induce a unique signature 

of host cell miRNAs, which may contribute to viral pathogenic processes [141]. MiRNAs are initially 

transcribed by RNA polymerase II, and SV40 LT-ag has been shown to interfere with RNA polymerase 

II-dependent transcription [142,143]. Hence, PyV infection may alter the pattern of cellular miRNA 
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expression. However, a common feature shared by all known PyV miRNA is the silencing expression of 

LT-ag so that no effect on cellular miRNA expression is expected [121,122,132,134,144,145]. On the other 

hand, interference with cellular miRNA expression is plausible in MCPyV-positive tumors because MCC 

do express LT-ag [146], and RacPyV-positive tumors also express LT-ag [147]. The effect of LT-ag on 

cellular miRNA expression has not been investigated, but the proteins of the oncovirus HBV, EBV, KSHV 

and HCV help regulate the levels of cellular miRNAs, including oncogenic miRNAs [148–154].  

Xie and co-workers compared miRNA profile in MCPyV-positive and negative MCC. One miRNA 

that was significantly lower expressed in MCPyV-positive MCC compared to MCPyV-negative MCC 

was miR-203. The overexpression of miR-203 in MCPyV-negative MCC inhibited cell growth and 

induced cell cycle arrest [155]. This finding suggests that MCPyV may cause cell proliferation by 

repressing the expression of miR-203, but the exact mechanism by which MCPyV may regulate this 

miRNA remains to be elucidated.   

3.3. Effect of HPyV on Energy Homeostasis 

In healthy cells, glycolysis initiates in the cytoplasm where glucose is metabolized into pyruvate, 

which then enters the mitochondria where it is converted into acetyl-CoA and enters the Krebs’ cycle to 

generate ATP. In cancer cells, a metabolic switch occurs: the suppression of mitochondrial glucose 

oxidation and the upregulation of aerobic breakdown of glucose. This phenomenon was first described 

by Otto Heinrich Warburg, and is known as the Warburg effect [156]. While mitochondrial glucose 

oxidation generates 36 molecules of ATP per molecule of glucose, only two molecules of ATP are 

produced per molecule of glucose by aerobic breakdown. Cancer cells compensate for this by increasing 

the uptake of glucose and by stimulating the transcription of almost all the glycolytic enzymes in the 

cytoplasm [79,157,158]. Metabolism in Merkel cells and (MCPyV-positive) MCC has not been studied, 

but a Positron Emission Tomography (PET) scan of MCC with glucose analogues suggests a high rate 

of glycolysis in these tumors [159]. However, a possible role for MCPyV in enhanced glucose 

metabolism in MCC remains to be determined. Several studies with polyomavirus-transformed cells 

indicate that these viruses may affect glucose metabolism. Additionally, a redistribution of membrane 

glucose transporters, increased aerobic glycolysis and an increased activity of glycolytic enzymes were 

observed in SV40-transformed cells compared to non-transformed cells [160–162]. A role for  

JCPyV LT-ag in regulating the metabolic utilization of glucose in brain tumors has been recently 

suggested [163]. Another study showed that JCPyV LT-ag expressing medulloblastoma cells had a 

significantly lower mitochondrial respiration and glycolysis, but a three-fold higher consumption of 

glutamine compared to non-LT-ag expressing cells [164]. Oxygen consumption and glucose uptake were 

compared in fibroblast transduced with the telomerase catalytic subunit, or in combination with SV40 

LT-ag or LT-ag plus st-ag. A progressive increase in both metabolic markers was measured, as cell lines 

expressed more oncogenes. This observation underscores a role for LT-ag and st-ag in decreasing the 

cell’s dependence on mitochondrial energy production [165]. SV40 st-ag can activate Akt, while Akt 

can stimulate the expression of glycolytic enzymes and aerobic glycolysis [166–168]. SV40 st-ag can 

also activate the MEK/ERK mitogen-activated protein kinase pathway, which can then increase glucose 

transport [169,170]. These findings suggest that st-ag may stimulate glucose uptake and aerobic 

glycolysis. The tumor suppressor p53 acts as an anti-Warburg molecule because it acts as a potent 
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inhibitor of glycolysis [171]. The LT-ag of BKPyV and JCPyV has been shown to bind and inactivate 

p53 [172,173]. Although the LT-ag-mediated inactivation of p53 may promote glucose uptake and 

stimulate the glycolytic pathway, it may not be operational in MCPyV-positive MCC because the 

truncated form of LT-ag expressed in Merkel cell carcinomas does not bind p53 [40]. The interaction 

between p53 and LT-ag of other HPyV has not been investigated, but they all encompass a putative  

p53-binding motif [6]. 

Autophagy is another mechanism that allows cancer cells to maintain the levels of nutrients and 

energy in nutrient-limited environments, which helps to facilitate the survival of tumor cells. Moreover, 

autophagy regulates cellular invasion and metastasis [173]. The human tumor viruses EBV, KSHV, 

HBV, and HCV can modulate the autophagy pathway to favor viral infection by enhancing viral 

replication, prevent apoptosis or maintain a persistent and life-long infection [174]. Hence, viral 

interference with the autophagy pathway may contribute to tumorigenesis by these viruses, though less 

is known about the effect of HPyV on autophagy and the biological consequences. Bouley et al. could 

establish a supporting role for autophagy in BKPyV infection [175]. Using transformed human foreskin 

fibroblasts and HEK cells expressing or lacking the SV40 st-ag, it was demonstrated that st-ag helps to 

maintain energy homeostasis in glucose-deprivation cancer cells by activating AMP-activated protein 

kinase (AMPK), thereby inhibiting the mammalian target of rapamycin (mTOR) to shut down protein 

translation, and inducing autophagy as an alternate energy source. This protective role of st-ag under 

conditions of glucose deprivation depends on its ability to interact with protein phosphatase  

2A [176]. It is not known whether the st-ag of other HPyV may exert similar functions, but BKPyV, 

JCPyV, MCPyV and MWPyV (HPyV10) st-ag have also been shown to interact with PP2A [99,177–181]. 

Other effects of HPyV on autophagy came from a study by Khalili et al., who found that JCPyV LT-ag 

suppressed the expression of Bcl-2-associated athanogene Bag3, a protein implicated in apoptosis and 

autophagy [182]. On the other hand, overexpression of Bag3 induces autophagy-mediated degradation 

of JCPyV LT-ag. Bag3 interacts with the C-terminal half region of LT-ag which encompasses a zinc 

finger structure and partially overlaps with the p53 binding domain [183]. Consequently, LT-ag may 

repress the expression of Bag3 and protect itself from being degraded by Bag3-mediated autophagy. 

MCPyV-positive MCCs express C-terminal truncated LT-ag, which may impede interaction with Bag3. 

Under stress conditions, primary neuroglial cells immortalized with SV40 LT-ag had increased levels of 

the autophagy marker LC3B compared to non-LT-ag expressing cells [184]. However, the biological 

implication was not investigated. 

3.4. HPyV and Exosomes  

Exosomes are endosome-derived membrane vesicles of approximately 50 nm–100 nm in diameter 

that are shed by cells and act as a communication tool between cells. Exosomes contain cellular proteins, 

carbohydrates, lipids, DNA, rRNA, mRNA, siRNA and other non-coding RNAs (for recent reviews,  

see [185–187]). Exosomes secreted by tumor cells participate in the modulation of angiogenesis,  

cell proliferation, cell invasion, gene regulation and immune evasion, thereby creating advantages for 

malignant growth [186]. Exosomes released by virus-infected cells can also contain viral-derived 

components and are implicated in the pathogenesis of viruses. Indeed, the human oncoviruses Epstein-Barr 

virus, Kaposi sarcoma-associated herpes virus, hepatitis B virus, hepatitis C virus and human  
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T-lymphotropic virus type 1 all utilize exosomes to transfer viral (onco)proteins, mRNA and miRNAs 

to non-infected cells [188–194]. Exosomes captured by target cells may facilitate the spread of 

(onco)viral proteins and nucleic acids, thereby promoting malignancy in the recipient cells in the absence 

of an infection by virions. Exosomes can provoke immune alterations that may play a role to create an 

immunotolerogenic microenvironment during the carcinogenesis process. They can promote host 

immune and inflammatory responses by activating T- and B-cells, and by releasing exosome-trapped 

inflammatory molecules such as TNFα and IL1β in the recipient cells. Even so, exosomes have also been 

shown to inhibit immune responses by preventing CD4+ T-cell proliferation, CD8+ CTL response or 

transporting anti-inflammatory molecules (reviewed in [187]). 

The generation of exosomes by HPyV-infected cells has scarcely been investigated. Studies with 

mouse primitive glioblastoma-like brain tumor cell lines harbouring integrated SV40 large T-antigen 

DNA revealed the presence of SV40 large T-antigen sequences in exosomes produced by these  

cells [195]. Recently, JCPyV microRNA was detected in exosomes derived from human plasma and 

urine [196], although studies on the possible roles of exosomes released by HPyV-infected hosts cells 

are lacking. 

4. Therapeutic Strategies against Emerging Hallmarks of Cancer 

Specific inhibitors against HPyV are lacking, and the development of vaccines and vaccination are 

still in a very preliminary phase [197–201]. Therapeutic strategies directed against emerging features of 

cancer such as inflammation, immune evasion, exosomes, microRNA and energy homeostasis may offer 

alternatives to help combat HPyV-positive tumors. In vitro studies and MCC xenograft mouse models 

suggested a beneficial effect of IFN. Intratumoral administering of a mixture of different IFNα subtypes 

and IFNβ resulted in a regression of MCPyV-positive, but not MCPyV-negative xenografts of MCC 

cells, while IFNα-2b, IFNβ-1b, and IFNγ-1b challenge resulted in an increased cell-surface expression 

of MHC-I on MCC cell lines [96,202]. However, studies in patients with MCPyV-positive MCC have 

been proven to exhibit variable effects. Subcutaneous administration of IFN-β resulted in a complete 

regression of MCPyV-positive MCC tumors in a Japanese patient, but IFN-α-2b treatment of an  

84-year-old man and an 81-year-old woman had no effect [203,204]. IFNβ stimulated MHC-I expression 

on tumor cells of 3/3 MCPyV-positive MCC patients [96]. Intralesional treatment of a 67-year old 

MCPyV-positive MCC patient with INFβ-Ib, followed by re-infusion of expanded MCPyV  

LT-ag-specific CD8+ T-cells resulted in a complete response in two of three metastatic lesions and a 

delayed appearance of new metastasis compared to controls [205]. Tumor necrosis factor (TNF) can be 

considered as an alternative for treating MCC because this cytokine displayed a high efficacy in three 

patients [206,207], and in one patient out of three treated with IFNγ plus TNFα a complete response was 

noticed, while a partial and no response was observed in two others [208]. Because the three aforementioned 

TNFα studies were performed before the discovery of MCPyV, the presence of virus in the tumors was 

not known. Interestingly, patients who have been treated with TNFα inhibitors show an increased risk 

of developing MCC [209,210]. Another immunotherapy approach for the treatment of MCC could be 

PD-1 ligand and Tim-3, with these receptors highly expressed on MCPyV-specific CD+ T-cells. Drugs 

targeting the PD-1/PDL-1 pathway such as nivolumab (a blocking antibody against PD-1), 
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pembrolizumab (anti-PD-1 antibody) and BMS-936559 (anti-PDL-1 antibody) have been used in other 

cancers and may be used to treat MCC [211].  

Therapeutic strategies aimed at other emerging hallmarks of cancer have been little explored. 

Intratumoral delivery of anti-microRNA may help in silencing viral microRNA or viral-induced cellular 

microRNA, while RNA interference may turn off the expression of viral oncoproteins. RNA interference 

targeting LT-ag has been shown to abrogate HPyV replication in vitro and suppress tumor growth  

in vitro and in an animal model [180,212–217]. The use of exosomes as vaccines against cancer and 

infectious diseases has been suggested and exosomes pulsed with MCPyV LT-ag could be considered 

to treat MCPyV-positive MCC patients [187,218]. Lastly, therapeutic strategies directed against the 

metabolic changes in tumor cells (anti-glycolysis therapy) may be considered. The hexokinase inhibitor  

2-deoxyglucose inhibited growth of fibroblasts transformed by the telomerase catalytic subunit plus SV40 

LT-ag, and by the telomerase catalytic subunit plus SV40 LT-ag plus st-ag [165]. To our best knowledge, 

the effect of 2-deoxyglucose on the growth of MCPyV-positive MCC cells has not been investigated. 

5. Conclusion and Future Perspectives 

Seroprevalence studies demonstrate that HPyV viruses are common in the human population [36]. 

Although HPyV LT-ag and st-ag possess proven or putative transforming properties, only MCPyV 

seems to be associated with human cancer. This virus encodes additional early proteins (ALTO protein 

and 57 kD protein), whose functions are not completely understood [4,219]. Proper immune surveillance 

may explain why HPyVs establish a harmless life-long infection in most individuals, while immune 

deficiencies may lead to viral-associated pathologies, including malignancy. The role of HPyVs in the 

emerging hallmarks of cancer has been little investigated and further investigations are required to 

elucidate the mechanisms by which HPyV-positive tumors can evade the antiviral responses of the host 

and affect energy homeostasis. A better understanding of the tumor microenvironment is required to 

comprehend the development of MCC. A possible involvement of exosomes in HPyV-induced cancer 

and modulation of the immune system have not been addressed, and the role of viral microRNA or 

HPyV-induced microRNA in tumorigenesis is incompletely understood. Unveiling the mechanisms by 

which these viruses participate in emerging hallmarks of cancer may therefore enable the development 

of novel therapeutic strategies. 
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