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We present an implementation of analytical quantum mechanical molecular gradients within the
polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational anal-
ysis of molecules embedded in large, geometrically frozen environments. We consider a variational
ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham
density functional theory. As the first application of the implementation, we consider the internal
vibrational Stark effect of the C==O group of acetophenone in different solvents and derive its
vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients
and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum
region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polariza-
tion between acetophenone and water is essential in order to capture the structural modifications and
the associated frequency shifts observed in water. For more apolar solvents, a proper description of
dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized
structures relies to a larger extent on the quality of the Lennard-Jones parameters. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4905909]

I. INTRODUCTION

The organization of charged, polar, and polarizable amino
acids in a structured protein matrix generates large electric
fields that contribute to virtually all aspects of protein function.
Enzymatic catalytic power and ligand binding1–5 as well as
optical properties of embedded chromophores,6–8 to mention
a few, may all be substantially tuned or even driven by the
internal electric fields in proteins. While there is no direct way
of measuring electric fields in proteins, spectroscopic observ-
ables that mirror local electric fields can, once calibrated, act
as quantitative reporters of the electrostatic changes occurring
upon, e.g., mutations or structural rearrangements of the amino
acids.

Vibrational probes have proven to be particularly well
suited to act as local and directional metrics of protein electric
fields via the vibrational Stark effect,9–17 which describes the
susceptibility of a vibrational transition to an electric field.
Often one uses “internal” or “external” to distinguish the source
of the Stark effect, being either a surrounding environment
or an externally applied field. Protein fields are generally
much larger (1–100 MV cm−1) than the uniform fields that
can be applied in Stark experiments (∼1 MV cm−1) and vary
significantly in both magnitude and direction between sites
in the protein.8,10,18,19 Obviously, the spatial resolution that
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can be obtained is limited by the size of the probe. This
renders localized vibrational transitions, such as functional
group stretching modes, superior to electronic transitions,
which typically extend over the entire molecular (chromo-
phore) skeleton, thereby providing only an average picture of
the field within the molecular volume.19–22 Vibrational probes
are smaller than electronic chromophores and thus potentially
less perturbative, and the associated transitions also exhibit
smaller difference polarizabilities compared to their electronic
counterparts. Consequently, when electrostatic effects domi-
nate, many vibrations behave more or less according to the
simplified linear Stark effect theory. Within this model, the shift
in vibrational frequency (∆ν), reflecting a variation in the local
electric field (∆Flocal) experienced by the probe, is assumed to
be dictated by the field projection onto the difference dipole
vector between the excited and ground vibrational states of the
probe ∆µprobe

hc∆ν =−∆µprobe ·∆Flocal, (1)

where ∆µprobe is also known as the linear vibrational Stark
tuning rate, h is Planck’s constant, and c is the speed of light.

Vibrational Stark effect spectroscopy applied to an immo-
bilized, isotropic sample provides the direction and magnitude
of the vibrational Stark tuning rate for the vibrational mode
of the probe. For approximate one-dimensional modes, e.g., a
decoupled stretching between two atoms, µprobe will be aligned
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with the bond axis.23 With the Stark tuning rate of the probe
known, we can apply a reverse strategy by virtue of Eq. (1) to
relate a vibrational frequency shift to the concomitant change
in the electric field sensed by the probe due to a modification
of the surrounding environment. However, the determination
of total fields at the probe location requires a frequency–field
calibration of the probe on an absolute scale. Whenever a high-
resolution structure of the protein is available, computations
constitute a complementary tool that allows a direct evaluation
of the internal electric fields.24 Correlating the computed fields
with the vibrational frequency of the probe (experimental or
calculated), one obtains a calibration curve that provides a
quantitative mapping of the electrostatic landscape in other
complex environments based on the vibrational frequency of
the probe.

The polarizable embedding (PE) model25,26 is a discrete
quantum–classical approach tailored for efficient yet accu-
rate inclusion of the electrostatic and induction effects of a
surrounding environment. It has been successfully applied to
model the environmental effects on both electric and magnetic
molecular properties.8,27,28 The aim of the present study is
to broaden the scope of the PE model to vibrational prop-
erties of molecules embedded in large and complex environ-
ments. To this end, we have implemented molecular gradients
with respect to nuclear displacements in the quantum region
within the PE framework. This allows for partial geometry
optimizations and normal mode analyses based on numerically
calculated Hessians of an embedded molecule described at
the Hartree–Fock (HF), Kohn–Sham density functional theory
(DFT), or multiconfigurational self-consistent field (MCSCF)
level of theory. We use a sequential approach to compute the
vibrational properties of an embedded molecule that consists of
PE property calculations on statistically independent configu-
rations derived from molecular dynamics (MD) simulations. In
comparison to a geometry optimization and Hessian analysis of
the full molecular system, this procedure preserves the thermal
fluctuations in the environment, and thereby indirectly in the
embedded molecule, but assumes a decoupled description of
the embedded molecule–environment vibrational modes. A
compromise can be obtained by extending the quantum region.

Before moving to complex environments such as proteins,
it is important to test the performance of the PE model with
respect to vibrational properties by considering more simple
cases such as solvents. We here consider the vibrational Stark
shift of the carbonyl (C==O) stretching mode of acetophenone
in various solvents. Acetophenone is a model compound for
the unnatural amino acid p-acetylphenylalanine, which can be
site-specifically introduced into proteins by several methods.29

The carbonyl probe has attracted increasing attention due to the
observations that (i) it has a rather large oscillator strength and
Stark tuning rate,30 (ii) its frequency varies linearly with the
field also for hydrogen bonding solvents, as opposed to nitrile
vibrations,31 thus making it applicable across both hydrogen
and non-hydrogen bonding environments, and (iii) its experi-
mental use in proteins has been demonstrated by overcoming
the complication related to the C==O spectral overlap with the
intrinsic amide I vibration of the peptide bonds32 by a suitable
choice of reference sample.30,33 Here, we perform classical
MD simulations of the acetophenone–solvent systems, and the

PE–DFT model is used to compute the C==O vibrational fre-
quency as well as the corresponding local electric field sensed
by acetophenone in the geometrically frozen solvent cages for
each MD configuration.

The remainder of this paper is organized in the following
way. The PE model is outlined in Sec. II A and the associated
molecular gradient contributions are presented in Sec. II B.
Computational details are given in Sec. III. The results for
acetophenone in various solvents obtained using the presented
extension of the PE model are discussed in Sec. IV. Finally,
concluding remarks are given in Sec. V.

II. THEORY

The key feature of the PE model is the inclusion of the
electronic response of the environment to the density of the
quantum region. Polarization is modeled by distributed aniso-
tropic electronic dipole–dipole polarizabilities assigned to the
atomic sites in the environment. The electrostatic energy is
described by distributed permanent multipole moments. In the
current version of the PE model, the effects of dispersion and
exchange–repulsion interactions between the quantum region
and the environment enter collectively only at the energy level
through the use of Lennard-Jones (LJ) 12–6 potentials.

Our procedure for computing vibrational frequencies
within the PE scheme is based on statistically independent
configurations taken from an MD simulation, on which we
perform a partial geometry optimization of the quantum region
using the PE approach, keeping the environment fixed. The
vibrational frequencies are then computed via a partial Hessian
analysis of the optimized quantum region embedded in the
polarizable environment (i.e., the geometry of the environment
is kept fixed), where the numerical Hessian is computed based
on analytic gradients. We here derive the PE contributions to
the molecular gradients with respect to displacements of the
nuclei in the quantum region within a variational ansatz for
the quantum region, covering HF, DFT, and MCSCF levels of
theories. The analytic first-order geometric derivatives of the
PE energy have been implemented in a development version of
the PE library34,35 which has been interfaced to a development
version of the Dalton program.36 The required one-electron
integrals are computed using the general one-electron integral
framework Gen1Int by Gao, Thorvaldsen, and Ruud.37,38 We
note that molecular gradients in combination with polarizable
and explicit environments have previously been reported in
Refs. 39–41.

In Subsection II A, we give a brief outline of the additional
energy contributions introduced by the polarizable environ-
ment and proceed to describe our implementation of the first-
order geometric derivatives of the PE energy terms.

A. The polarizable embedding energy

The free energy functional for the embedded molecule can
be partitioned into two contributions

E(X)= Evac(X)+EPE(X), (2)

whereEvac is the energy of the isolated quantum region (includ-
ing wave function polarization) and EPE is the energy
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originating from the interaction between the quantum region
and the polarizable environment. We emphasize that the im-
plementation covers all variational models in Dalton, not only
DFT but also MCSCF, which can be used to describe molecules
where static correlation is important. The energy is written as
an explicit function of the vector X of the nuclear coordinates
of the quantum region, for reasons that will become apparent
later. The PE energy can be decomposed as

EPE(X)= Ees(X)+Eind(X)+ELJ(X), (3)

where Ees and Eind are electrostatic contributions arising from
interactions between the quantum region and the permanent
and induced charge distribution of the environment, respec-
tively, and ELJ is the LJ energy.

The electrostatic contribution Ees accounts for the inter-
actions between the permanent multipoles in the environment
and the electrons and nuclei in the quantum region. In a multi-
index notation,42 these terms can be written as

Ees(X) = Emul,e(X)+Emul,n(X)

=

S
s=1

Ks
|k |=0

(−1)|k |
k!

M (k)
s

× *.
,


pq∈QM

t(k)pq,sDpq+


m∈QM

T (k)
smZm

+/
-
, (4)

where Dpq is an element of the one-electron density matrix in
the molecular orbital (MO) basis {φp}. The norm and factorial
of the multi-index k = (kx, ky, kz) are defined as |k | = kx+ ky

+ kz and k!= kx!ky!kz!, respectively. The summation over the
|k | norm in Eq. (4) is over the (|k |+1)(|k |+2)/2 multi-indices
for a given |k | (e.g., for |k | = 1, the summation is over the
three components (1,0,0), (0,1,0), and (0,0,1)). For later use,
note that addition/subtraction of two multi-indices proceeds
component-wise, i.e., k ± l = (kx ± lx, ky ± ly, kz ± lz). M (k)

s is
a Cartesian component of the |k |’th-order multipole moment
located at the s’th site of the environment, and Zm is the
nuclear charge of m’th nucleus in the quantum region. Ks is
the truncation level of the multipole expansion assigned to the
s’th site. A component of the |k |’th-order interaction tensor is
defined as a |k |’th-order derivative of the potential

T (k)
i j =

∂kx+ky+kz

∂xkx
j ∂ y

ky
j ∂zkzj

(
1

|r j−ri |
)
, (5)

where i and j here denote two arbitrary sites. The |k |’th-order
interaction integrals are then given as

t(k)pq,s =−⟨φp |T (k)
si |φq⟩, (6)

where i refers to an electronic coordinate.
The induction energy due to the polarization of the envi-

ronment both internally and by the electrons and nuclei of the
quantum region is half the corresponding interaction energy

Eind(X)=−1
2
µ̄TF=−1

2
µ̄T(Fmul+ ⟨F̂e⟩+Fn). (7)

Here, µ̄ is the 3S-dimensional column vector of the induced
dipole moments at the sites in the environment, whereas Fmul,
⟨F̂e⟩, and Fn are the electric fields produced at the positions
of the induced dipoles by the permanent multipoles in the

environment and by the electrons and nuclei in the quantum
region, respectively. Superscript T denotes transposition.

The induced dipoles are determined such that the total en-
ergy is stationary, which corresponds to solving the following
set of linear equations:

µ̄ =B(Fmul+ ⟨F̂e⟩+Fn), (8)

with B being the (3S × 3S)-dimensional classical response
matrix

B=
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, (9)

which contains the inverse of the distributed electronic dipole–
dipole polarizability tensors on the diagonal and second-order
interaction tensors in the off-diagonal blocks. Boldfacing is
used to emphasize the tensor nature of these quantities. B is
symmetric due to the polarizability tensors employed in the PE
scheme.

Finally, the non-classical part of the interaction energy ELJ
is, in this work, modeled by a LJ 12–6 potential

ELJ(X)=
S
s=1


m∈QM

εsm

×


(
rsm

|Rm−Rs |
)12

−2
(

rsm
|Rm−Rs |

)6
, (10)

where the equilibrium bond length rsm and well depth εsm
are obtained using the Lorentz–Berthelot combination rules,
i.e., rsm = 1

2 (rs + rm) and εsm =
√
εsεm, where rs and εs are

the atomic radius and well depth, respectively, of atom s and
likewise for atom m.

B. Derivatives of the PE energy terms

We now turn our attention to the derivatives of the free en-
ergy in Eq. (2) with respect to a nuclear coordinate a belonging
to the quantum region. The implementation of the PE contribu-
tions to the molecular gradient follows the second quantization
formalism given in Ref. 43.

By straightforward differentiation and use of Wigner’s
2n+1 rule,44 the first-order total derivatives of the free energy
with respect to quantum-region nuclear displacements and
evaluated at the reference geometry X0 can be written as43,45

E
a(X0)= ∂E(X)

∂Xa

�����X0

=Ea. (11)

The explicit differentiation on the r.h.s. of Eq. (11) (de-
noted with superscript a) cover the Hellmann-Feynman terms
as well as the integral and Pulay forces. By noting that the
environment enters the energy functional of the quantum re-
gion as zero- and one-electron contributions only, the PE part
of Eq. (11) can simply be added to the corresponding zero-
and one-electron vacuum contributions and treated as detailed
in Ref. 43, where the handling of the Pulay forces follows
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implicitly from the PE contributions to the Fock matrix. It
therefore suffices to consider the evaluation of the direct PE
contributions to the first-order geometric derivatives of the
energy.

Partial differentiation of the PE energy in Eq. (3) gives

Ea
PE=Ea

es+Ea
ind+Ea

LJ. (12)

We begin by considering the electrostatic part which, ac-
cording to Eq. (4), can be partitioned as

Ea
es=Ea

mul,e+Ea
mul,n. (13)

A component al of the nuclear part becomes

Eal
mul,n=

S
s=1

*.
,

Ks
|k |=0

(−1)|k |
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M (k)
s T (k+l)

sa Za
+/
-
, (14)

where the multi-index l denotes a Cartesian component of a
quantum-region nuclear coordinate, which in the case of the
gradient is truncated at first order, i.e., |l | = 1.

The electronic contribution is given by

Ea
mul,e=

S
s=1

Ks
|k |=0

(−1)|k |
k!

M (k)
s


pq∈QM

t(k)apq,sDpq, (15)

where all three components for a given nucleus a are consid-
ered simultaneously. As the operator in Eq. (15) is independent
of the nuclear coordinates belonging to the quantum region, the
derivatives of the integrals involve only differentiation of the
orbitals

t(k)apq,s =−
(
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We now proceed to the contribution from the induction en-
ergy. Recalling that Fmul and B are purely PE-related quantities
and B is symmetric, we obtain

Ea
ind=−µ̄

T (Fa
n +Fa

e ), (17)

where the derivative of the electric fields generated by the
nuclei in the quantum region at site s is

Fa
n,s =−

M
m=1

ZmT(1)a
ms = ZaT(2)

as . (18)

The geometric derivative of the corresponding field pro-
duced by the electrons in the quantum region is given by

Fa
e,s =−


pq∈QM

t(1)apq,sDpq, (19)

with the derivative integrals defined in Eq. (16).
Finally, differentiation of the LJ energy with respect to the

displacement of nucleus a in the quantum region yields

Ea
LJ= −12

S
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εsa
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The analytical gradients have been checked against nu-
merical finite difference results and discrepancies were found
to be below the numerical accuracy.

III. COMPUTATIONAL DETAILS

A. Preparation of the structures

The sampling of structures of acetophenone in different
solvents was performed using classical MD simulations. Start-
ing configurations were made by putting acetophenone in a
cubic box with edges of 55 Å and filling the rest of the box with
solvent molecules. Seven different solvents were considered:
the resulting starting structures contained one acetophenone
molecule with either 5430 water, 1272 dimethyl sulfoxide
(DMSO), 1137 dichloromethane (DCM), 1026 chloroform,
1008 tetrahydrofuran (THF), 848 diethyl ether (DEE), or 642
n-hexane molecules. The systems were minimized and equili-
brated in GROMACS version 4.6.346 using three-dimensional
periodic boundary conditions. The simple point-charge (SPC)
model47 was used for water and the optimized potentials for
liquid simulations (OPLS) force field48 for all other molecules.
The topologies for DCM, THF, DMSO, and chloroform were
taken from the GROMACS Molecule & Liquid Database.49,50

Non-bonded interactions were treated with a cutoff radius of
15 Å. Electrostatic interactions beyond this threshold were
treated with the smooth particle-mesh Ewald method51 with a
tolerance of 10−5. The minimization consisted of 20 steps of
steepest descent followed by 1000 steps of conjugate gradient.
To optimize the density of the system, an NPT equilibration
with time step 1 fs and length 500 ps was performed using the
Berendsen52 temperature (298 K) and pressure (1 bar) coupl-
ing. Initial velocities were obtained from a Maxwell distribu-
tion at 298 K. The lengths of the cubic simulation boxes were
between 51 and 55 Å for all simulation boxes after the NPT
equilibration. Subsequently, the systems were equilibrated for
2 ns in the NVT ensemble using the Berendsen thermostat52

at 298 K and a time step of 1 fs. The systems were simu-
lated for 40 ns in the NVT ensemble with the same time
step, non-bonded interactions, and other parameters as in the
equilibration step. A snapshot was made every 1 ns, generating
40 uncorrelated snapshots in total. The largest fluctuations
in the C==O stretching mode occur in water (see Sec. IV).
Thus, to verify that the sampling was sufficiently complete, the
mean and standard deviation of the C==O harmonic vibrational
frequency were compared to the corresponding values based
on 200 snapshots sampled in water at intervals of 200 ps.
The average frequency and the associated standard deviation
calculated over 200 snapshots deviated by only 0.1 cm−1 and
0.3 cm−1, respectively, from the average over 40 snapshots, so
results based on 40 snapshots were used throughout this work.

The structures used for the PE–DFT calculations are spher-
ical systems centered around acetophenone including all sol-
vent molecules with at least one atom within 15 Å from the
solute. A thorough analysis of electrostatic and polarization
interactions has shown that 15 Å is sufficient to capture the ef-
fect of a surrounding homogeneous medium such as a solvent.53

B. Generation of embedding potentials

The solvent embedding potentials for the PE–DFT calcu-
lations consist of quantum mechanics (QM)-derived perma-
nent electric multipole moments up to and including quad-
rupoles and anisotropic electronic dipole–dipole polarizabil-
ities located at the atomic centers as well as AMBER54 LJ

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.242.185.31 On: Tue, 16 Feb

2016 14:23:55



034119-5 List et al. J. Chem. Phys. 142, 034119 (2015)

parameters for all solvent atoms. For each snapshot, multi-
pole moments and polarizabilities were computed explicitly
for the individual solvent molecules according to the Lo-
Prop55 approach implemented in MOLCAS,56,57 employing
the B3LYP58–60 exchange–correlation functional and the aug-
cc-pVDZ61 basis set. The generation of the embedding poten-
tials was facilitated by the PE Assistant Script (PEAS).35

The basis set was recontracted to an atomic natural orbital
type basis as required for the LoProp approach.55 Additional
embedding potentials (denoted PC) were made using point
charges and AMBER LJ parameters. The point charges were
generated in accordance with the general AMBER force field
(GAFF) protocol62 by calculating HF/6-31G* charges for
every atom type using the restrained electrostatic potential
(RESP) approach.63 However, in this case, the final parame-
ters were constructed as averages over 1000 different solvent
conformations.

C. Frequency calculations

PE– and PC–B3LYP/cc-pVDZ61 geometry optimizations
were performed on each MD snapshot, optimizing acetophe-
none in the presence of the embedding potential representing
the solvent, while fixing the solvent molecules at the configura-
tion obtained from the MD trajectory. The Hessian of the quan-
tum region was then computed numerically from the analytical
gradients using displacements of 0.01 a.u. A reduced threshold
of 10−4 a.u. was used for the geometries and Hessians to speed-
up the calculations without sacrificing the accuracy. Subse-
quently, harmonic vibrational frequencies of acetophenone in
the seven solvents were computed by diagonalizing the Hes-
sian matrix for the quantum region in the fixed environment,
also known as a partial normal mode analysis.64 The C==O
stretching mode is a rather localized mode, and thus, it can be
reasonably well described within the vibrationally decoupled
solute–solvent picture provided by a partial Hessian analysis.65

We note that a basis set of triple-ζ quality is gener-
ally recommended for geometry optimizations and harmonic
vibrational frequencies when using the B3LYP exchange–
correlation functional.66 However, our focus is on vibrational
frequency shifts rather than on absolute frequencies, where the
basis set limitation is expected to be of less importance. The LJ
parameters for the quantum region were taken from Ref. 67,
where the parameters have been re-fitted for use in a hybrid
quantum mechanics/molecular mechanics (QM/MM) scheme
at the B3LYP(6-31G*)/AMBER/TIP3P level of theory. The
calculations were performed using a development version of
the Dalton program.36,68 For comparison, harmonic vibra-
tional frequencies were also computed with the polarizable
continuum model69,70 (PCM) at the same level of theory. In
these cases, the solvents were described in terms of their
static dielectric constants, i.e., water: 78.3553, DMSO: 46.826,
DCM: 8.93, chloroform: 4.7113, THF: 7.4257, DEE: 4.24, and
n-hexane: 1.8819. The radii of the interlocking spheres were
taken from the universal force field and scaled by a factor of
1.1. The PCM calculations were carried out in Gaussian 09.71

To correlate electric fields and vibrational frequencies,
the projections of the electric fields produced by the sol-
vents, FC==O = FC==OûC==O, onto the C==O bond unit vector

(ûC==O) at the center-of-mass (COM) of the C==O group of
acetophenone were computed for each geometry-optimized
solute–solvent configuration and include the contributions
from both the permanent multipole moments and the self-
consistent induced dipole moments. In this paper, we use the
physics convention for the direction of the dipole moment, i.e.,
the dipole vector points from the negative to the positive pole,
whereas the electric field is defined in the opposite manner,
pointing from the positive to the negative source. Thus, a
negative electric field projection onto the C==O bond vector
corresponds to a stabilization of the dipole by the electric field.
Moreover, we computed the electric field drop along the C==O
bond defined by subtracting the field projection evaluated at the
C-atom from that evaluated at the O-atom.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results of the PE–DFT
calculations of the vibrational Stark shifts of acetophenone in
various solvents and compare to those obtained using the PC
electrostatic embedding potential.

Figures 1(a) and 1(b) show the relation between the
ensemble-averaged C==O harmonic vibrational frequencies
of acetophenone and the associated scalar total electric field
projections along the C==O bond at its COM for acetophenone
in the seven different solvents as obtained using the PE– and
PC–DFT procedures, respectively. The PC embedding scheme,
which includes solvent polarization only in an implicit fashion
via overestimated charges, is often used in QM/MM geometry
optimizations and property calculations and is thus interesting
from a comparative point of view. The results are also tabulated
in Table I. The slope of a linear fit of the PE–DFT data (cf.
Eq. (1)) yields a Stark tuning rate of 0.34 cm−1/(MV cm−1)
(R2 = 0.95). This value compares well with the microscopic
tuning rates of 0.414 cm−1/(MV cm−1) (R2 = 0.99)30 and
0.484 cm−1/(MV cm−1) (R2 = 0.98),72 derived from a linear
correlation of experimental frequencies and electric field pro-
jections onto the C==O bond based on MD runs with a GAFF
point-charge force field and the AMOEBA polarizable force
field, respectively. On the other hand, the Stark tuning rate of
0.15 cm−1/(MV cm−1) computed within the PC–DFT scheme
is significantly underestimated. We note that the microscopic
tuning rates depend on the point at which the electric field
has been evaluated. The microscopic tuning rates reported by
Fried et al. are relative to the C==O bond midpoint, whereas
we used the COM of the C==O moiety. This difference will
affect the case of acetophenone in water, where a significant
field gradient exists along the bond (see Table I). Evaluating
the field at the bond midpoint in our case would yield a lower
field strength on average and thus a somewhat larger Stark
tuning rate. A notable difference to the tuning rates reported
by Fried et al. is that the one predicted in this study is based on
computed quantities only, including the harmonic vibrational
frequencies.

A. Electric fields

The average electric fields in Table I derived using PE–
DFT are similar to the GAFF-based results in Ref. 30, apart
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FIG. 1. C==O stretching frequency (in
cm−1) and total electric field projection
(in MV cm−1) along the C==O bond at
the center-of-mass for acetophenone in
different solvents. The frequencies and
the electric fields were calculated with
(a) PE–DFT (B3LYP/cc-pVDZ) using
QM-derived distributed permanent mul-
tipoles up to quadrupole moments and
distributed electronic dipole–dipole po-
larizabilities on all solvent atoms and
(b) PC–DFT (B3LYP/cc-pVDZ) using
averaged HF/6-31G*-charges on all sol-
vent atoms. The error bars are standard
errors from sampling (N = 40). The best-
linear fit is the dashed line with the slope
representing the microscopic Stark tun-
ing rate.

from a smaller field produced by chloroform. The PC–DFT
embedding scheme gives a trend for the frequency/field rela-
tion similar to the PE–DFT counterpart with the exception of
water, where the PC gives a significantly smaller field strength.
From a decomposition of the total PE electric field projec-
tions into contributions arising from the permanent multipole
moments and induced dipoles, we find that the field from
the permanent multipoles dominates the total field in all the
solvents considered (where the total field was calculated as
the sum of the absolute values of the field projections arising
from the permanent multipole moments and induced dipoles,
respectively). The induced field constitutes 42% of the total

field for hexane, 33% for water, 25% for DMSO, and less than
20% for the other solvents. The magnitudes of the PE fields are,
however, quantitatively very different from the fields computed
using the AMOEBA force field.72 The electrostatic compo-
nents of the embedding potentials for solvent molecules used in
the PE–DFT calculations were recently benchmarked against
full QM calculations and were found to provide high-quality
electrostatic potentials.73 Taken together with the similarities
to the AMOEBA protocol (both with respect to the electrostatic
model and the level of theory) for generating the electrostatic
parameters, the PE/AMOEBA field discrepancy seems to not
be related to the electrostatic portion of the interaction used in

TABLE I. Ensemble-averaged C==O stretching frequencies (νX in cm−1, where X = PE, PC) and scalar total electric field projections (FX
C==O in MV cm−1) along

the C==O bond of acetophenone in seven solvents, probed at the center-of-mass of the C==O bond. Results obtained using both the PE– and PC–B3LYP/cc-pVDZ
embedding schemes are given. The induced part of the electric field projections (Find

C==O) and the field drop across the carbonyl bond (∆FPE
C==O) are shown for the

PE–DFT calculations. Standard errors from MD sampling (N = 40) are shown in parentheses. PCM frequencies (νPCM) are included for comparison.

Solvent νPE νPC νPCM νexp
a FPE

C==O ∆FPE
C==O Find

C==O FPC
C==O

Water 1743.6 (2.9) 1762.5 (1.6) 1742.3 1669.4 −66.4 (7.2) −50.3 (5.8) −6.6 (5.9) −51.2 (3.5)
DMSO 1761.8 (1.7) 1766.4 (1.8) 1742.8 1682.0 −27.1 (2.4) −3.8 (1.8) −0.6 (1.5) −30.6 (2.1)
Chloroform 1763.5 (0.9) 1767.8 (0.9) 1751.0 1683.3 −12.6 (1.4) −5.5 (1.1) 0.3 (0.5) −15.7 (1.8)
DCM 1761.4 (1.1) 1765.8 (1.2) 1747.0 1684.6 −19.7 (1.9) −5.7 (1.2) −0.4 (0.5) −22.4 (2.0)
THF 1762.2 (0.6) 1767.2 (0.6) 1747.9 1689.5 −12.9 (1.1) −1.0 (1.0) 0.4 (0.5) −15.0 (1.3)
DEE 1763.6 (0.7) 1767.8 (0.8) 1751.9 1692.9 −8.7 (0.9) −0.7 (0.6) 0.7 (0.3) −11.3 (1.0)
Hexane 1767.0 (0.5) 1770.8 (0.5) 1760.8 1696.4 −0.1 (0.4) −0.7 (0.4) 0.0 (0.1) 0.1 (0.2)

aReference 30.
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the PE model. Following the discussion in Ref. 72, the discrep-
ancy can rather be traced to the solute–solvent configurations
produced by the point-charge MD run employed in the present
study (see below).

B. Solute–solvent configurations

Radial distribution functions (RDFs) from our non-polar-
izable MD simulations of the solvent molecules around the
carbonyl oxygen of acetophenone show that water is the only
solvent with clear H-bonding character. In fact, the first peak
of the RDF is just below 3 Å for water and just above 4 Å for
the other six solvents, while the closest contact is at 2.4 Å for
water and between 2.7 and 3.1 Å for the other six solvents.
Thus, in contrast to Ref. 30, we find no evidence for H-bonding
with chloroform from the present MD runs. The H-bonding
in water can explain why the variation in C==O frequency
is much larger in water than in the other solvents.30 Indeed,
the carbonyl oxygen atom can participate in zero, one, or
two H-bonds in the different snapshots, which has a rather
large impact on the electrostatic field experienced by the
C==O bond. The proximity of the water solvent molecules
to acetophenone is also reflected in the large field drop along
the C==O bond (Table I). This large field drop is not found
for the other solvents, in contrast to results from Fried et al.
based on calculated fields from the AMOEBA polarizable

MD trajectories,72 where field drops over 15 MV cm−1 were
also found for THF and DMSO. From the comparison with
the polarizable MD runs in Ref. 72, it is clear that the lack
of favorable induction interactions in the MD simulations
produces too “loose” solute–solvent configurations. This poor
starting point cannot be remedied in the subsequent PE–DFT
geometry optimization on acetophenone with fixed solvent
molecules, and thus, it gives rise to underestimated electric
fields and field drops.

C. Performance of the embedding potentials

To examine the quality of the full embedding potentials in
a setting that excludes the impact of the MD run, we computed
one-dimensional potential energy curves along the C==O bond
of acetophenone in increments of 0.01 Å. The results were
compared to those obtained using an enlarged quantum region
in the PE–DFT calculation, including solvent molecules within
4.0 Å of acetophenone. The results for a single and arbitrarily
chosen MD configuration in water and DMSO are depicted in
Figures 2(a) and 2(b), respectively. We also tested the perfor-
mances of the PC and PE-nopol schemes, where the latter is
the electrostatic embedding potential obtained by turning off
polarization in the PE potential.

For water, we find an excellent agreement between the
PE potential curves generated on the basis of the small and

FIG. 2. C==O stretching potential en-
ergy curve for an arbitrarily chosen
(a) acetophenone–water and (b) aceto-
phenone–DMSO configuration. All
atoms except oxygen are kept fixed.
Single point energy calculations have
been performed using PE–DFT with
the following quantum regions: (i)
acetophenone and solvent molecules
within 4 Å (water: 35, DMSO: 16)
as shown in the insets (denoted
ExtPE) and (ii) acetophenone
only (denoted PE). Comparison to
the two electrostatic embedding
schemes: (i) PC–DFT calculations
employing averaged HF/6-31G*
charges representing all the solvent
molecules (PC model) and (ii)
PE-nopol–DFT, which contains the
same permanent multipole moments as
PE but no polarizabilities. The quantum
regions were in all cases treated at the
B3LYP/cc-pVDZ level of theory.
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extended quantum regions. In the configuration studied, ace-
tophenone accepts two near-linear H-bonds from neighboring
water molecules (cf. inset of Figure 2(a)). This indicates that
the PE potential captures the major part of the specific inter-
actions between acetophenone and water. In other words, the
main contribution is seemingly of electrostatic origin, whereas
quantum effects such as overlap and charge-transfer are less
important in this case. This is in line with the prevalence of the
linear Stark effect for the C==O stretch mode of acetophenone
across both H-bonding and non H-bonding solvents.31 From
an inspection of the various energy terms to the interaction (at
the minimum) between the quantum and classical regions, we
find the electrostatic energy dominates (60%), whereas induc-
tion and exchange–repulsion/dispersion each contribute about
20%. The relative importance of electrostatics and induction
to the interaction energy is thus in agreement with the relative
magnitudes of the corresponding contributions to the field
projection. For the energy derivatives, however, the impact of
polarization becomes more pronounced, as can be seen from
a comparison of the PE and PE-nopol curves. The changes
in the minimum bond distance (lengthened by ∼0.01 Å) and
the curvature caused by the mutual coupling between the QM
and PE regions are essential in order to reproduce the poten-
tial energy curve. This increase of the equilibrium distance
amounts to about half the total shift induced by the solvent.
Turning to the PC–DFT results, we find that the polarization,
implicitly included in the embedding potential through pre-
polarized charges, is too weak (for the given LJ parameters),
leading to a minimum at a too short C==O bond distance as
well as a too narrow potential curve, almost coinciding with
the profile obtained using PE-nopol.

We find a good alignment between the structures of ace-
tophenone in water optimized using the PE–DFT scheme
model with, respectively, the small and the extended quantum
regions (keeping all water molecules fixed in the optimiza-
tion). The structural differences are displayed graphically in
Figure 3, where the two structures are superimposed. The
corresponding geometric parameters are reported in Table II
together with those derived using the PC–DFT model. It
is clear that an overall improvement is gained by allowing
the water molecules to become polarized in the PE scheme,
particularly for the C==O bond length.

For the acetophenone–DMSO configuration, on the other
hand, the PE–, PE-nopol–, and PC–DFT curves are quite
similar with the small variations being ascribed to the lack
of induction in the PC and PE-nopol potentials. The inter-
action is now dictated by dispersion and exchange–repulsion
(70%), while electrostatics and induction only account for
25% and 5%, respectively. Indeed, the effect of dispersion and
exchange–repulsion increases steadily with reduced polarity of
the solvents. The difference between the PE potential curves
using small and large quantum regions can thus be attributed
to an inadequate description of the quantum effects in the
interaction through the LJ potentials. This leads to slightly
underestimated bond lengths in both the PE and PC embedding
schemes.

In short, the geometrical changes induced by the polariza-
tion component of the water solvent, particularly on the C==O
bond length, are significant and cannot be neglected. In apolar
solvents, the influence of dispersion and exchange–repulsion
increases such that the quality of the optimized structures to a
larger extent depends on the employed LJ potentials.

FIG. 3. Superposition of the two opti-
mized structures for an arbitrarily cho-
sen MD configuration of acetophenone
in water obtained using PE–B3LYP/cc-
pVDZ with the small (green) and ex-
tended (violet) quantum regions. All
water molecules were kept fixed at the
positions from the classical MD simula-
tion. Structural parameters are listed in
Table II.
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TABLE II. Intra- and intermolecular structural parameters for acetophe-
none in water derived from PE–B3LYP/cc-pVDZ calculations with two
different quantum regions: acetophenone and solvent molecules within
4 Å (ExtPE) and acetophenone only (PE) and compared to the corresponding
PC–B3LYP/cc-pVDZ results. Distances are reported in Å and the dihedral
angle in degrees. The atom numbering is provided in Figure 3.

ExtPE PE PC

C==O 1.236 1.235 1.224
C–C1 1.496 1.495 1.502
C1–C2 1.405 1.403 1.402
C2–C3 1.398 1.397 1.397
C3–C4 1.400 1.398 1.397
C4–C5 1.403 1.402 1.400
C5–C6 1.397 1.395 1.395
C6–C1 1.409 1.407 1.405
φO–C–C1–C2 134.4 132.1 127.8
O–Hwat1 1.745 1.706 1.837
O–Hwat2 1.857 1.839 1.919

On the basis of the potential curve analysis, we briefly
comment on the resulting computed vibrational frequencies.
We recall that the calculated Stark tuning rate computed using
the PC scheme is markedly different from the PE result (cf.
Figure 1). In fact, the frequency difference between hexane and
water is much lower for the PC calculations (PC: 8.3 cm−1;
PE: 23.4 cm−1; exp: 27.0 cm−1) (cf. Table I). In light of the
discussion above, this can be understood from the severely un-
derestimated electrostatic interaction in water provided by the
PC model, which results in an overestimated frequency. Note
also that the more compact C==O bonds (cf. Figure 2) amplify
the differences in the electric field projections between the
two embedding schemes. In addition to the neglect of explicit
polarization, there are at least three approximations made in the
PC electrostatic treatment that may be partially responsible for
the differences to PE: (i) the charge distribution of the solvents
is represented by charges rather than by a multipole expansion
up to quadrupoles; (ii) the electrostatic parameters are calcu-
lated using a lower level of theory; and (iii) the electrostatic
parameters are averages over 1000 conformations rather than
being calculated explicitly for every conformation separately.
Judging from Figure 2, the similar potential curves provided
by the PE-nopol and PC schemes indicate that the effects of (i)
and (ii) are not too critical. However, to be conclusive on these
points, a thorough analysis, including several solute–solvent
configurations, is required. The influence of the third approx-
imation is being investigated in ongoing work in our groups.

D. Experimental versus computed frequencies

In Table I, we have included the experimental frequencies
of Fried et al.30 and frequencies obtained using PCM in addi-
tion to the PE– and PC–DFT harmonic vibrational frequencies
for the C==O stretch (see also Figure S1 in the supplementary
material74). Good agreement with experimental frequencies
should give a slope and correlation coefficient close to one.
None of the methods show a good correlation with the exper-
imental values. The PE–DFT frequencies show a higher slope
of the linear fit (0.77) than PC–DFT (0.26) and PCM–DFT

(0.58) and a correlation coefficient (0.77) similar to PC–DFT
(0.84) and higher than PCM–DFT (0.66), and thus the best
correlation with experiment. Discrepancies in the trend in
C==O frequency across the different solvents are expected
from the limitations in the computational approach: in addition
to the assumption of a decoupled and harmonic C==O stretch-
ing mode, the lack of polarization in the classical MD simu-
lation leads to imperfect geometries for both intra- and inter-
molecular geometric parameters that affect the Stark tuning
rate. This holds in particular for the configuration of the solvent
molecules whose geometries are kept fixed in the PE geometry
optimization step. A more accurate way of obtaining the
structures is with polarizable MD, QM/MM, or full QM MD
simulations. Also related to the geometries is the rather crude
modeling of exchange–repulsion and dispersion by the empir-
ical LJ terms. Even though we used LJ parameters developed
specifically for the quantum region,67 they are optimized to
be compatible with a B3LYP/6-31G*/AMBER/TIP3P embed-
ding scheme. This leads to an imperfect balance between
electrostatics, dispersion, and exchange–repulsion in the PE
calculations (and apparently also for the PC calculations), as
clearly seen for the acetophenone–DMSO configuration in
Figure 2(b). The poor balance between LJ parameters and elec-
trostatics in the PC scheme is also pronounced from the non-
smooth transition from the apolar solvents to the computed gas
phase value of 1769.8 cm−1.

As an aside we note that the PCM–DFT value for the
C==O frequency in water, and thereby, the PCM frequency
range across the solvents, is strongly affected by the choice
of PCM cavity parameters (in the simple Onsager model, the
asymptotic value for the reaction field is R−3, where R is the
cavity radius). The good agreement between the PCM– and
PE–DFT C==O frequencies in water as well as the reasonable
PCM–DFT hexane to water shift does, therefore, not merit
further consideration as can also be seen from the incapability
of PCM to capture the trend across the solvents.

E. Effects of electronic conjugation

Returning to the vibrational Stark effect, Figure 1(a) clearly
demonstrates a correlation (R2 = 0.95) between the average
C==O stretching frequencies and electric field projections
along the C==O bond for acetophenone in various solvents.
This correlation is an effect of the averaging over 40 snapshots
for each of the solvents. In fact, we do not find a correlation
at the level of the snapshots, i.e., when considering the 40
snapshots of each solvent as individual data points. This stands
in contrast to the linearity found at the snapshot level for
the C==O stretching mode of acetone in water in the work
by Choi and Cho.31 The individual frequencies, however, do
correlate with the bond length of the optimized geometry
of acetophenone in the PE potential of the seven solvents
(0.73 < R2 < 0.97) with a progressively longer C==O distance
for increasingly polar solvents. Such linear frequency–bond
length correlations have been demonstrated previously for
numerous vibrational probes.31,75,76 This seems to indicate that
the frequency is not only determined by the electric field of the
solvent but also by intramolecular factors of the probe. The
lack of correlation at the snapshot level can be explained by
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two competing mechanisms. The direct field effect is that a
large electric field along the C==O bond lengthens the bond,
thereby decreasing the C==O vibrational frequency. On the
other hand, the indirect field effect (i.e., large field components
normal to the plane defined by the acetyl group) leads, together
with thermally driven fluctuations, to an out-of-plane rotation
of the C==O group. The resulting non-planarity reduces the
electronic resonance and is associated with a shortening of
the C==O bond and an increased vibrational frequency. Non-
linearities in the Stark tuning rate are thus introduced at the
microscopic level by the varying degree of electronic conjuga-
tion. Indeed, in water and DMSO, which generate the largest
electric field (Table I), the average deviation from planarity
of acetophenone (16◦ < φ < 17◦) is larger than the average for
the other five solvents (6◦ < φ < 11◦), where φ is the dihedral
angle between the carbonyl group and the phenyl ring. These
competing mechanisms can explain why acetophenone has
a similar C==O stretching frequency in DMSO and chloro-
form even though the field generated by DMSO is larger (cf.
Table I). Other factors that contribute to deviations from a
linear correlation between frequency and field at the snapshot
level are non-linearities due to the breakdown of the linear
Stark effect at sufficiently high field strengths as well as the
spatial field heterogeneity (cf. field drops in Table I) across
the vibrational probe, which is not taken into account by
the point dipole model in Eq. (1).31 The fact that electronic
conjugation plays a role is also clear from a comparison of the
measured macroscopic Stark tuning rates (|∆µ| f , where f is
the local field factor) when going from aliphatic to increasingly
conjugated C==O groups; acetone: 0.8 cm−1/(MV cm−1)77

< acetophenone: 1.05 cm−1/(MV cm−1)30 < 6-propionyl-2-
(dimethylamino)naphtalene: 1.8 cm−1/(MV cm−1).78 In con-
trast to acetone,31 the C==O group of acetophenone cannot be
viewed as being electronically decoupled and the variations
in electronic conjugation occur within the same molecule.
However, this effect is averaged out over the snapshots and thus
not manifested in the macroscopic behavior.

V. SUMMARY

In this work, we have implemented analytical molecular
gradients in the PE model, which makes it possible to perform
geometry optimizations and numerical Hessian analysis for
molecules embedded in polarizable environments. The first
application of the new implementation is on the vibrational
Stark effect of the C==O stretching mode of acetophenone
in seven solvents of different polarities, using solute–solvent
starting configurations obtained from non-polarizable MD
simulations. In particular, we focused on the impact of explicit
polarization on geometries and vibrational frequencies by
comparing to a typical point-charge embedding scheme.

We find that inclusion of explicit polarization in the PE
scheme is essential to capture the electrostatic component of
the H-bonding interaction between acetophenone and water,
which induces an elongation of the C==O bond and a concom-
itant bathochromic frequency shift. For the more apolar sol-
vents, where quantum effects are of increasing importance, the
performance of the PE scheme is similar to that of PC embed-

ding and limited by the description of the non-electrostatic
effects modeled through LJ potentials.

The Stark tuning rate based solely on PE–DFT-computed
quantities is slightly smaller than the semi-experimental values
found by Fried et al.30,72 It turns out that this difference largely
relates to the quality of the underlying solute–solvent config-
urations derived from the MD simulations, which indeed is
sensitive to the incorporation of polarization irrespective of the
solvent, as demonstrated by Fried et al.72 It is thus clear that
the LJ potentials and underlying solute–solvent configurations
constitute critical factors in our procedure, which require care-
ful handling.
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