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I. INTRODUCTION

Two-photon circular dichroism (TPCD), the differential
absorption of two photons with different circular polariza-
tions, has first been introduced as a theoretical concept by
Tinoco in 1975.1 Its first experimental realization has been
published in 1995.2 In 2005, the first computational treatment
using response theory was presented by Jansík, Rizzo, and
Ågren.3 One year later, Rizzo and coworkers investigated
the origin dependence of TPCD and could establish an
origin-independent scheme for TPCD calculations which was
based on the initial treatment by Tinoco.4 Both the first
experimental realization of TPCD and the origin independent
computational treatment led to a large amount of applications
which take place in the interplay between theory and
experiment.5–8 Therefore, the study of Tinoco in 1975 remains
fundamental for the theoretical treatment of this molecular
property.

The article of Tinoco presents the theory of two-photon
circular dichroism in a very condensed form which makes
it difficult to get into the details of the derivation. Facing
these difficulties, I got in contact with Ignacio Tinoco and
was kindly provided with copies of his original notes on two-
photon circular dichroism. These notes were very helpful to
understand the principles Tinoco has used. As Tinoco also
allowed me to use these notes for publications as long as
he is acknowledged properly, I decided to provide them to the
public by this addendum which explains some of the derivation
steps in the original article. Therefore, this addendum can
be considered as supplementary material to Ref. 1. Finally,
I will also explain a detail in the formulation of the
“transition polarizabilities” in Ref. 1 and provide some error
corrections.

II. THEORY

In this section, I will present the derivation of some
fundamental equations in Ref. 1. Mainly, the nomenclature
from the original article will be used but if needed some
additional indices and formattings will be introduced to make
things clearer. In general, two-photon circular dichroism δTPCD

is defined as the differential two-photon absorption for left and

a)Electronic mail: daniel.h.friese@uit.no

right circularly polarized photons,

δTPCD = δTPA
L − δTPA

R = B
�|λ · T0 f · µ |2 − |λ∗ · T0 f · µ∗|2� ,

(1)

B =
( e

m

)4
(

1
hc

)2g(νλ + νµ)
νλνµ

. (2)

In this expression, B is a constant factor consisting of the
elemental charge e, the electron mass m, the Planck constant
h, the speed of light c, the normalized line shape function g,
and the frequencies νλ and νµ corresponding to the photons
λ and µ. The vectors λ and µ are polarization vectors of the
photons λ and µ. The asterisk denotes complex conjugation.
A definition of the polarization vectors will be given later
when they are evaluated. The central dot denotes a dot product
between a polarization vector (λ, µ, or its complex conjugates)
and a perturbation vector (p, r, vide infra).

The tensor T0 f is the two-photon absorption probability
tensor following the lines of Peticolas.9 In the more recent
literature, this tensor is often referred to as the “two-photon
transition matrix element”10 or the “two-photon transition
moment.”11 The product λ · T0 f · µ is defined as

λ · T0 f · µ =

i,0

λ · (peζλ)0i(peζµ)i f · µ
ν0i − νλ

+
λ · (peζλ)i f (peζµ)0i · µ

ν0i − νµ


, (3)

where p is the momentum operator of the molecule.1 The
index 0 denotes the ground state, and i and f denote excited
states with f being the final state of the excitation and i
being an intermediate state. ν0i denotes the excitation energy
to state i in atomic units and νλ is the frequency of photon
λ. Note that for consistency with the original paper, we use
frequencies and not circular frequencies as it is common
in more recent publications. The exponent ζλ characterizes
photon λ according to

ζλ =
2πiνλkλ · r

c
, (4)

where i is the imaginary unit, kλ is a unit vector specifying the
propagation direction of photon λ, r is the position operator
of the molecule,1 and c is the speed of light.

0021-9606/2015/143(9)/096101/7/$30.00 143, 096101-1 © 2015 AIP Publishing LLC
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A. The derivation of the two-photon absorption tensor
beyond the dipole approximation

The exponential eζλ is expanded according to

eζλ = 1 + ζλ + · · ·. (5)

For ordinary two-photon absorption, only the first element
of this expansion is taken into account while for TPCD, this
expansion is interrupted after the linear term. Inserting Eq. (5)
into Eq. (3) and keeping only the terms which are at maximum
linear in either ζλ and ζµ, we obtain

λ · T0 f · µ =

i,0

*.
,

λ · p0ipi f · µ + 2πi
c

(
λ · (pr)0i · kλνλpi f · µ + µ · (pr)i f · kµνµp0i · λ

)
ν0i − νλ

+
µ · p0ipi f · λ + 2πi

c

(
µ · (pr)0i · kµνµpi f · λ + λ · (pr)i f · kλνλp0i · µ

)
ν0i − νµ

+/
-
, (6)

and for the complex conjugate,

λ∗ · T∗0 f · µ
∗ =


j,0

*.
,

λ∗ · p0 jp j f · µ∗ − 2πi
c

(
λ∗ · (pr)0 j · kλνλp j f · µ∗ + µ∗ · (pr) j f · kµνµp0 j · λ∗

)
ν0 j − νλ

+
µ∗ · p0 jp j f · λ∗ − 2πi

c

(
µ∗ · (pr)0 j · kµνµp j f · λ∗ + λ∗ · (pr) j f · kλνλp0 j · µ∗

)
ν0 j − νµ

+/
-
. (7)

Note that in contrast to Eq. (1), the complex conjugate here
is also formed for the transition tensor and not only for
the polarization vectors. Eqs. (6) and (7) are intermediate
factors used to form the product in Eq. (8). In Eq. (1),
a difference between two of these squares is formed with
different polarization vectors. We have formed a summation of
the terms linear in ζk where every different type of p (p0i, pi f ,
etc.) is linear in ζ in one term. This resembles an alternative

derivation scheme for TPCD presented by Meath and Power in
their 1987 study where electric dipole operators are replaced
in turn by magnetic dipole and electric quadrupole operators.12

The approach Tinoco has used, however, is more flexible
and introduces the magnetic dipole and electric quadrupole
operators at a later stage. Ignoring all terms higher than linear
in ζ , we can write the product of the two expressions in Eqs. (6)
and (7) according to

|λ · T0 f · µ |2 = (λ · T0 f · µ)(λ∗ · T∗0 f · µ∗)
= p0ipi fp0 jp j f : µ∗λ∗µλ fλλ + p0ipi fp0 jp j f : λ∗µ∗µλ fλµ

+ p0ipi fp0 jp j f : µ∗λ∗λµ fµλ + p0ipi fp0 jp j f : λ∗µ∗λµ fµµ

+
2πi
c

(
− p0ipi f (pr)0 jp j f : µ∗kλλ

∗µλ · νλ − p0ipi f (pr) j fp0 j : λ∗kµµ
∗µλ · νµ

+ p0 jp j f (pr)0ipi f : µkλλµ
∗λ∗ · νλ + p0 jp j f (pr)i fp0i : λkµµµ

∗λ∗ · νµ
)

fλλ

+
(
− p0ipi f (pr)0 jp j f : λ∗kµµ

∗µλ · νµ − p0ipi f (pr) j fp0 j : µ∗kλλ
∗µλ · νλ

+ p0 jp j f (pr)0ipi f : µkλλλ
∗µ∗ · νλ + p0 jp j f (pr)i fp0i : λkµµλ

∗µ∗ · νµ
)

fλµ

+
(
− p0ipi f (pr)0 jp j f : µ∗kλλ

∗λµ · νλ − p0ipi f (pr) j fp0 j : λ∗kµµ
∗λµ · νµ

+ p0 jp j f (pr)0ipi f : λkµµµ
∗λ∗ · νµ + p0 jp j f (pr)i fp0i : µkλλµ

∗λ∗νλ ·
)

fµλ

+
(
− p0ipi f (pr)0 jp j f : λ∗kµµ

∗λµ · νµ − p0ipi f (pr) j fp0 j : µ∗kλλ
∗λµ · νλ

+ p0 jp j f (pr)0ipi f : λkµµλ
∗µ∗ · νµ + p0 jp j f (pr)i fp0i : µkλλλ

∗µ∗ · νλ
)

fµµ

, (8)

fλλ =
1

(ν0i − νλ)(ν0 j − νλ) , (9)
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fλµ =
1

(ν0i − νλ)(ν0 j − νµ) , (10)

fµλ =
1

(ν0i − νµ)(ν0 j − νλ) , (11)

fµµ =
1

(ν0i − νµ)(ν0 j − νµ) , (12)

where summation is over repeated indices and where the
notation,

p0ipi f (pr)0 jp j f : µ∗kλλ
∗µλ

= (p0i · λ)(pi f · µ)(p0 j · λ∗)(r0 j · kλ)(p j f · µ∗), (13)

has been introduced. Note that this notation corresponds to
the notation with the colon used in Ref. 1 which has not
been explained there. The two tensors T0 f and T∗0 f which are

multiplied in Eq. (8) are based on different intermediate state
summations. Namely, the summation over states in the left-
hand tensor is over i while in the right-hand tensor, it is over
j. The indices i and j illustrate that there are two different
summations over the same manifold of intermediate states.
This is also shown by the four different types of denominators
fλλ, fλµ, fµλ, and fµµ. We further note that Eq. (8) has
imaginary and real contributions. The real part, which is
obtained only from contributions eζ ≈ 1 corresponds to a
treatment in the dipole approximation and describes “normal”
two-photon absorption. The imaginary parts however go
beyond the dipole approximation. These terms are relevant
for the treatment of two-photon circular dichroism. In the
following, we will therefore only consider the imaginary parts
and we will ignore the real parts. First, we rewrite Eq. (8) such
that we gather terms which depend on the same polarization
vectors,

Im|λ · T0 f · µ|2 = 2πi
c

((−p0ipi f (pr)0 jp j f fλλ − p0ipi f (pr) j fp0 j fλµ) : µ∗kλλ
∗µλ · νλ

+ (p0 jp j f (pr)0ipi f fλλ + p0 jp j f (pr)i fp0i fµλ) : µkλλµ
∗λ∗ · νλ

+ (−p0ipi f (pr) j fp0 j fλλ − p0ipi f (pr)0 jp j f fλµ) : λ∗kµµ
∗µλ · νµ

+ (p0 jp j f (pr)i fp0i fλλ + p0 jp j f (pr)0ipi f fµλ) : λkµµµ
∗λ∗ · νµ

+ (−p0ipi f (pr)0 jp j f fµλ − p0ipi f (pr) j fp0 j fµµ) : µ∗kλλ
∗λµ · νλ

+ (p0 jp j f (pr)0ipi f fλµ + p0 jp j f (pr)i fp0i fµµ) : µkλλλ
∗µ∗ · νλ

+ (−p0ipi f (pr) j fp0 j fµλ − p0ipi f (pr)0 jp j f fµµ) : λ∗kµµ
∗λµ · νµ

+ (p0 jp j f (pr)i fp0i fλµ + p0 jp j f (pr)0ipi f fµµ) : λkµµλ
∗µ∗ · νµ

)
. (14)

Eq. (14) is now used to derive two-photon circular dichroism as a difference for different circularly polarized photons.

B. The derivation of TPCD

As we are only considering the imaginary parts of the polarization tensor, we can use the following relation between the
different polarization tensors in Eq. (14):

Imµ∗kλλ
∗µλ = −Imµkλλµ

∗λ∗ (15)

and its analogs. With these relations, we can write the difference in Eq. (1) as

|λ · T0 f · µ |2 − |λ∗ · T0 f · µ∗|2 = 4πi
c

(−p0ipi f (pr)0 jp j f fλλ − p0ipi f (pr) j fp0 j fλµ

− p0 jp j f (pr)0ipi f fλλ − p0 jp j f (pr)i fp0i fµλ) : Imµ∗kλλ
∗µλ · νλ

+ (−p0ipi f (pr) j fp0 j fλλ − p0ipi f (pr)0 jp j f fλµ
− p0 jp j f (pr)i fp0i fλλ − p0 jp j f (pr)0ipi f fµλ) : Imλ∗kµµ

∗µλ · νµ
+ (−p0ipi f (pr)0 jp j f fµλ − p0ipi f (pr) j fp0 j fµµ
− p0 jp j f (pr)0ipi f fλµ − p0 jp j f (pr)i fp0i fµµ) : Imµ∗kλλ

∗λµ · νλ
+ (−p0ipi f (pr) j fp0 j fµλ − p0ipi f (pr)0 jp j f fµµ

− p0 jp j f (pr)i fp0i fλµ − p0 jp j f (pr)0ipi f fµµ) : Imλ∗kµµ
∗λµ · νµ


. (16)

In the following we use that the two different interme-
diate states i and j are equivalent and we can exchange
the summations such that the pairs p0ipi f (pr)0 jp j f and
p0 jp j f (pr)0ipi f as well as p0ipi f (pr) j fp0 j and p0 jp j f (pr)i fp0i

are equivalent. However in Eq. (16), they are multiplied by the
denominators fλλ, fλµ, fµλ, and fµµ (Eq. (9)). As a shift from
p0ipi f (pr)0 jp j f to p0 jp j f (pr)0ipi f or from p0ipi f (pr) j fp0 j to
p0 jp j f (pr)i fp0i refers to an exchange of the intermediate
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states i and j in the numerator, the shift also has to be
carried out in the denominators and we therefore have to
write, e.g.,

p0ipi f (pr)0 jp j f fλµ = p0 jp j f (pr)0ipi f fµλ. (17)

Note that shifts of the denominators only have to be carried
out between fλµ and fµλ. Though the denominators fλλ
and fµµ also contain νi and νj, both these energies are
combined with either νλ or νµ and therefore they are
symmetric in the intermediate state energies. Furthermore,
the imaginary parts of the polarization tensors are symmetric

with respect to the exchange of contribution vector pairs
according to

Imµ∗kλλ
∗µλ = Imµ∗kλλ

∗λµ, (18)

Imλ∗kµµ
∗µλ = Imλ∗kµµ

∗λµ. (19)

Note that these relations only hold as long as there
is no orientational average. These relations will become
clear with the discussion of the polarization tensors in
Subsection II C. Using these relations, we obtain from
Eq. (16),

δTPA
L − δTPA

R =
8π
c
· B ·

(
p0ipi f (pr)0 jp j f fλλ + p0ipi f (pr) j fp0 j fλµ + p0 jp j f (pr)0ipi f fµλ

+ p0 jp j f (pr)i fp0i fµµ
)

: Imµkλλµ
∗λ∗ · νλ +

(
p0ipi f (pr) j fp0 j fλλ

+ p0ipi f (pr)0 jp j f fλµ + p0 jp j f (pr)i fp0i fµλ + p0 jp j f (pr)0ipi f fµµ
)

: Imλ∗kµµ
∗µλ · νµ


. (20)

Note that compared to Eq. (16), all signs have been inverted
in this expression as also the polarization tensors have
been replaced by their complex conjugates (Eq. (15)).
We now end up with a slightly modified version of
Eq. (9) of Tinoco. The re-substitution of p0ipi f (pr)0 jp j f

and p0ipi f (pr) j fp0 j yields exactly the same terms as in
Ref. 1. For p0 jp j f (pr)0ipi f and p0 jp j f (pr)i fp0i, the pertur-
bation tensors r0i and ri f are modified to r0 j and r j f ,
respectively, and treated as parts of the summation over j
and not of the summation over i. In p0 jp j f (pr)i fp0i, this
also requires an exchange of the perturbation tensors p0i and
pi j.

Eq. (20) now describes two-photon circular dichroism of
a molecule which is fixed in space, e.g., in a crystal. The
description of an isotropic sample, e.g., a gas, a liquid, or a

solution, requires rotational averaging which is carried out in
the next part.

C. Rotational averaging

The derivation of the isotropic two-photon circular
dichroism cross section requires rotational averaging. The
fundamental equations for rotational averaging of two-photon
absorption have been presented by Monson and McClain in
1970.13 There has been a lot of work on this topic after Ref. 1
was published, namely, by Andrews and Thirunamachandran14

and Wagniére.15 In the following, the expressions from Ref. 14
will be used to carry out the rotational averaging of Eq. (20).

In Ref. 14, rotational averaging of a general fifth-rank
tensor is carried out according to

L =
1

30

(
ϵk1k2k3δk4k5ϵκ1κ2κ3δκ4κ5 + ϵk1k2k4δk3k5ϵκ1κ2κ4δκ3κ5 + ϵk1k2k5δk3k4ϵκ1κ2κ5δκ3κ4 + ϵk1k3k4δk2k5ϵκ1κ3κ4δκ2κ5

+ ϵk1k3k5δk2k4ϵκ1κ3κ5δκ2κ4 + ϵk1k4k5δk2k3ϵκ1κ4κ5δκ2κ3 + ϵk2k3k4δk1k5ϵκ2κ3κ4δκ1κ5 + ϵk2k3k5δk1k4ϵκ2κ3κ5δκ1κ4

+ ϵk2k4k5δk1k3ϵκ2κ4κ5δκ1κ3 + ϵk3k4k5δk1k2ϵκ3κ4κ5δκ1κ2

)
, (21)

where ki denotes laboratory-fixed coordinates which refer to
the experimental setup (i.e., the polarization of the photons in
this case) while κi denotes molecule-fixed coordinates which
refer to the transition tensor. ϵ i jk is the Levi-Civita tensor
and δi j is the Kronecker symbol. The strings with κ and
k can be interpreted as operators working on the elements
of the polarization tensor and the transition strength tensor,
respectively.16

This expression implies that all contributions to the
rotationally averaged transition cross section must have three
different indices (three indices of the Levi-Civita tensor) and
that one index must occur three times (once due to the index

on the Levi-Civita tensor and twice due to the Kronecker
delta).

The notation used by Andrews and Thirunamachandran
refers to tensor components while in Ref. 1, a tensor notation
is used,

⟨ABCDE · IJKKK⟩ = 1
30

(A · B × C)(D · E)
+ (A · B × D)(C · E)
+ (A · B × E)(C · D) , (22)

where ABCDE refers to perturbation operators while IJKKK
refers to basis vectors which form the polarization vectors. I,
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J, and K denote right-handed orthogonal basis vectors which
form the polarization vectors λ, µ, λ∗, and µ∗ (vide infra). The
chevrons denote rotational averaging.

We immediately note that Eq. (22) contains the constraint
that three different indices have to occur in contributing
elements of the polarization tensors and that one of the indices
has to occur three times.

An explicit rotational averaging now requires explicit
knowledge of the polarization tensor. In the following, two
photons with the same circular polarization propagating in the
same direction will be assumed; however, other polarizations
and propagation directions are possible. In this case, the
polarization tensors in Eq. (16) can be simplified using

µ = λ µ∗ = λ∗ kµ = kλ. (23)

If we now define the polarization vector λ for a circularly left
polarized photon,

λ =
1
√

2
(I − iJ), (24)

where I and J are orthogonal unit vectors and the propagation
direction vector kλ as K, where K is a unit vector orthogonal

to I and J, we can write the polarization tensor as

(λ∗kλλ
∗)(λλ) = 1

4 [IKI + i(JKI + IKJ) − JKJ]
× [II − i(JI + IJ) − JJ]. (25)

If we now leave out all terms that vanish in the rotational
averaging for the reasons outlined above, we obtain

⟨(λ∗kλλ
∗)(λλ)⟩ = 1

4
i

− IKIJI − IKIIJ + JKIII − JKIJJ

+ IKJII − IKJJJ + JKJJI + JKJIJ

. (26)

We are now able to do a cyclic exchange of I, J, and K
according to I → J → K → I. Using this procedure, we can
apply Eq. (22) for every term of Eq. (26) and get

⟨(λ∗kλλ
∗)(λλ)⟩

=
1
4

i

−KJKIK −KJKKI + IJKKK −KIJKK

+KJIKK − JIKKK +KIKKJ +KIKJK

. (27)

Exploiting the Levi–Civita tensors in Eq. (21), we can
formulate the following equalities:

⟨ABCDE · IJKKK⟩ = −⟨ABCDE · JIKKK⟩
=

1
30

(A · B × C)(D · E) + (A · B × D)(C · E) + (A · B × E)(C · D) , (28)

− ⟨ABCDE ·KIJKK⟩ = ⟨ABCDE ·KJIKK⟩
=

1
30

(A · B × C)(D · E) + (B · C × D)(A · E) + (B · C × E)(A · D) , (29)

⟨ABCDE ·KIKKJ⟩ = −⟨ABCDE ·KJKKI⟩
=

1
30

(A · B × E)(C · D) − (B · C × E)(A · D) − (B · D × E)(A · C) , (30)

⟨ABCDE ·KIKJK⟩ = −⟨ABCDE ·KJKIK⟩
=

1
30

(A · B × D)(C · E) − (B · C × D)(A · E) + (B · D × E)(A · C) . (31)

With these equations, we can simplify Eq. (27),

⟨(λ∗kλλ
∗)(λλ)⟩ = 1

2
i

KIKJK +KIKKJ + IJKKK −KIJKK


. (32)

Using Eq. (32) and Eqs. (28)–(31), we can write

⟨ABCDE · (IJKKK −KIJKK +KIKKJ +KIKJK)⟩
=

i
30

(A · B × D)(C · E) + (A · B × E)(C · D) − (B · C × D)(A · E) − (B · C × E)(A · D) . (33)

The rotationally averaged TPCD will now be derived from Eq. (16) which is rewritten using our assumptions on the polarization
tensors,

δTPA
L − δTPA

R =
4πi
c
· B ·

(
p0ipi f (pr)0 jp j f fλλ + p0ipi f (pr) j fp0 j fλµ + p0 jp j f (pr)0ipi f fλλ + p0 jp j f (pr)i fp0i fµλ

)
νλ

+
(
p0ipi f (pr) j fp0 j fλλ + p0ipi f (pr)0 jp j f fλµ + p0 jp j f (pr)i fp0i fλλ + p0 jp j f (pr)0ipi f fµλ

)
νµ

+
(
p0ipi f (pr)0 jp j f fµλ + p0ipi f (pr) j fp0 j fµµ + p0 jp j f (pr)0ipi f fλµ + p0 jp j f (pr)i fp0i fµµ

)
νλ

+
(
p0ipi f (pr) j fp0 j fµλ + p0ipi f (pr)0 jp j f fµµ + p0 jp j f (pr)i fp0i fλµ + p0 jp j f (pr)0ipi f fµµ

)
νµ


: λkλλλ
∗λ∗. (34)

This expression is further simplified using again the relation (see Subsection II B),
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p0ipi f (pr)0 jp j f fλλνλ + p0 jp j f (pr)0ipi f fλλνλ = 2p0ipi f (pr)0 jp j f fλλνλ, (35)

and its analogs to get

δTPA
L − δTPA

R =
8πi
c
· B ·

(p0ipi f (pr)0 jp j f )( fλλνλ + fλµνµ + fµλνλ + fµµνµ)
+ (p0ipi f (pr) j fp0 j)( fλµνλ + fλλνµ + fµµνλ + fλµνµ)


: λkλλλ

∗λ∗. (36)

Due to the notation with the colon (Eq. (13)) where the order of the polarization vectors and the perturbation vectors is inverted,
the substitution of the uppercase perturbation vectors A, B, C, D, and E with the perturbation operators has to be performed
backwards according to

⟨p0ipi f (pr)0 jp j f : λ∗kλλ
∗λλ⟩ = ⟨p j f r0 jp0 jpi fp0i · (IJKKK +KIJKK +KIKKJ +KIKJK)⟩

=
i

30

(p j f · r0 j × pi f )p0 j · p0i + (p j f · r0 j × p0i)p0 j · pi f

− (r0 j · p0 j × pi f )p j f · p0i − (r0 j · p0 j × p0i)p j f · pi f


, (37)

⟨p0ipi f (pr) j fp0 j : λ∗kλλ
∗λλ⟩ = ⟨p0 jr j fp j fpi fp0i · (IJKKK +KIJKK +KIKKJ +KIKJK)⟩

=
i

30

(p0 j · r j f × pi f )p j f · p0i + (p0 j · r j f × p0i)p j f · pi f

− (r j f · p j f × pi f )p0 j · p0i − (r j f · p j f × p0i)p0 j · pi f


. (38)

These building blocks, which still have to be combined with the proper frequencies (νλ, νµ) and denominators ( fλλ, fλµ, fµλ,
fµµ) can now be used to form the rotational average of Eq. (16),
δTPA

L − δTPA
R


=

8π
30c
· B ·

((p j f · r0 j × pi f )p0 j · p0i + (p j f · r0 j × p0i)p0 j · pi f

− (r0 j · p0 j × pi f )p j f · p0i − (r0 j · p0 j × p0i)p j f · pi f

)( fλλνλ + fλµνµ + fµλνλ + fµµνµ)
+

((p0 j · r j f × pi f )p j f · p0i + (p0 j · r j f × p0i)p j f · pi f − (r j f · p j f × pi f )p0 j · p0i − (r j f · p j f × p0i)p0 j · pi f

)
× ( fλµνλ + fλλνµ + fµµνλ + fλµνµ)


. (39)

If we now use the following relations for the cross product terms:

r0 j · p0 j × pi f = pi f · r0 j × p0 j pi f · p0 j × r0 j = −pi f · r0 j × p0 j, (40)

we can rewrite the equation as
δTPA

L − δTPA
R


=

8π
30c
· B ·

(
− p0i · (pr)0 j × p j f · p0i − pi f · (pr)0 j × p j f · p0i

+ (pi f · p0 j × r0 j)p j f · p0i + (p0i · p0 j × r0 j)p j f · pi f

)( fλλνλ + fλµνµ + fµλνλ + fµµνµ)
+

(
− p0i · (pr) j f × p0 j · pi f − pi f · (pr) j f × p0 j · p0i + (pi f · p j f × r j f )p0 j · p0i + (p0i · p j f × r j f )p0 j · pi f

)
× ( fλµνλ + fλλνµ + fµµνλ + fλµνµ)


, (41)

where (pr) denotes a tensor product. This is Eq. (11) in Ref. 1.
The notation with the colon in Ref. 1 is the same as used here
and yields, e.g.,

p0i · (pr)0 j × p j f · pi f = (pr)0 j × p j f : p0ipi f . (42)

Depending on the experimental setup, other polarizations and
propagation directions can be involved, e.g., antiparallel and
perpendicular propagation as well as combinations of linear
and circular polarization. Derivations for these combinations
can be carried out in the same manner as outlined here. Results
are shown in Ref. 1.

III. DERIVATION OF TRANSITION POLARIZABILITIES

After deriving the fundamental expressions for TPCD,
Tinoco reformulates them to “transition polarizabilities.” In

this transformation, the two identities,

(pr + rp)0i = 2πim
e

ν0iQ0i, (43)

(pr − rp)0i = 2mc
e

(I ×m0i), (44)

are used which in my opinion requires a short explanation.
These identities are used to express the operator (pr)0i
according to

(pr)0i = me

e
(pr + rp)0i − i(pr − rp)0i

2
. (45)

This enables the treatment of the non-Hermitian operator
(pr)0i in terms of Hermitian operators. It is important to
note that the operator (p × r)0i solely enters the magnetic
dipole contributions to the transition polarizabilities but
that the operator (pr)0i contributes to both the magnetic
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dipole and the electric quadrupole transition polarizabil-
ities.

IV. ERROR CORRECTIONS

For the sake of completeness, I will provide two minor
error corrections in this section. Tinoco has acknowledged
misprints in the original paper, namely, in Eq. (17) and in
the non-numbered equation between Eqs. (16) and (17). The
non-numbered equation is a tensor and therefore, the dot after
pi f has to be removed. The correct equation then reads

β0 f =

i

p0i(p × r)i f + pi f (p × r)0i
ν0i − ν

. (46)

In contrast to this, Eq. (17) in Ref. 1 is a scalar and therefore
needs a dot after pi f . It therefore reads

β0 f =

i

p0i · (p × r)i f + pi f · (p × r)0i
ν0i − ν

. (47)

Furthermore, it has to be noted that it is difficult to distinguish
between bold and normal symbols in the electronic form
of Ref. 1 due to the digitalization. Bold symbols represent
tensors while normal symbols represent scalars. In Eq. (14)
of Ref. 1, the two last terms are scalars while the others are
tensors which are contracted together. The first equation in
Eq. (16) of Ref. 1 is a tensor, while the second one is a scalar.
Eqs. (18) and (19) of Ref. 1 are both tensors.
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