

Data-Intensive Computing Infrastructure Systems for
Unmodified Biological Data Analysis Pipelines

Lars Ailo Bongo, Edvard Pedersen, Martin Ernstsen*

Department of Computer Science and Center for Bioinformatics,
University of Tromsø, Tromsø, Norway

*Now at Kongsberg Satellite Services AS, Tromsø, Norway
larsab@cs.uit.no, edvard.pedersen@uit.no,

martin.ernstsen@ksat.no

Abstract. Biological data analysis is typically implemented using a deep pipe-
line that combines a wide array of tools and databases. These pipelines must
scale to very large datasets, and consequently require parallel and distributed
computing. It is therefore important to choose a hardware platform and underly-
ing data management and processing systems well suited for processing large
datasets. There are many infrastructure systems for such data-intensive compu-
ting. However, in our experience, most biological data analysis pipelines do not
leverage these systems.

We give an overview of data-intensive computing infrastructure systems,
and describe how we have leveraged these for: (i) scalable fault-tolerant compu-
ting for large-scale biological data; (ii) incremental updates to reduce the re-
source usage required to update large-scale compendium; and (iii) interactive
data analysis and exploration. We provide lessons learned and describe prob-
lems we have encountered during development and deployment. We also pro-
vide a literature survey on the use of data-intensive computing systems for bio-
logical data processing. Our results show how unmodified biological data anal-
ysis tools can benefit from infrastructure systems for data-intensive computing.

Keywords: data-intensive computing, biological data analysis, flexible pipe-
lines, infrastructure systems.

1 Introduction

Recent advances in instrument, computation, and storage technologies have resulted
in large amounts of biological data [1]. To realize the full potential for novel scientific
insight in the data, it is necessary to transform the data to knowledge through data
analysis and interpretation.

Biological data analysis is typically implemented using a deep pipeline that com-
bines a set of tools and databases [2]. Biological data analysis is diverse and special-
ized, so the pipelines have a wide range of resource requirements. Examples include
the 1000 Genomes project [3] with a dataset of 260 TB analyzed on supercomputers
and warehouse-scale datacenters; the many databases [4] and web servers [5] built for

a specific type of biological process or organism; and simple analyses run using pre-
defined Galaxy pipelines [6]. An important challenge when building data analysis
tools and pipelines is therefore to choose a hardware platform and underlying data
management and processing systems that satisfies the requirements for a specific data
analysis problem.

A data analysis and exploration tool architecture typically has the following com-
ponents:

 A front-end that provides the user interface used by the data analysts, including:
web applications, pipeline managers [6], web services [7], and low-level interfaces
such as file systems, and cloud APIs [8, 9].

 Data analysis and interpretation services including: specialized servers, search
engines, R libraries such as BioConductor [10], and tool collections such as Galaxy
Toolsheds [11].

 Infrastructure system for data management including: file systems, databases, and
distributed data storage systems.

 Infrastructure system for parallel and distributed computing including: queuing
systems [12], and the Hadoop software stack [13].

 Hardware platform, such as virtual machines, dedicated servers, small clusters,
supercomputers, and clouds.

In this paper, we focus on the choice of data management and processing infra-
structure systems. In our experience, most biological data analysis uses a file system
in combination with a centralized database for data storage and management, and is
run either on a single machine or on a small cluster with a queuing system such as
Open Grid Engine [12]. This platform has four main advantages. First, the file sys-
tem-, and database interfaces are stable, and the technology is reliable. Second, many
clusters for scientific computing are designed to use a network file system and to run
jobs on a cluster using a queuing system. Third, the developers are familiar with these
systems and interfaces. Fourth, there are already hundreds of analysis tools imple-
mented for this platform.

An alternative infrastructure must therefore provide better scalability, performance,
or efficiency. Or, it must provide services not available on the standard platform. We
give an overview data-intensive computing systems, and describe how these can be
leveraged for biological data analysis. We describe how we used these systems to
transparently extended flexible biological data analysis frameworks with data inten-
sive computing services. We provide lessons learned, and describe the problems we
have encountered during development and deployment of the extended pipelines. In
addition, we provide a literature survey on the use of data-intensive computing sys-
tems in biological data processing.

Our results make it easier to choose data-intensive computing platforms and infra-
structure systems for biological data analysis. First, our systems provide data analysis
services not available on the standard platform. Second, they do not require modify-
ing biological analysis tools. We believe this combination is essential to increase the
use of data-intensive systems in biological data processing.

2 Related Work

There are several specialized infrastructure systems developed for data-intensive
computing. Many of these were initially developed and deployed at companies such
as Google, Yahoo, Facebook, and Twitter, and then later implemented as open source
systems. There are also many new systems under development in academia, the open
source community, and the industry. We provide a short description of the features
provided by these systems. We limit our description to the most widely used systems
and omit many emerging systems, and systems that provide a traditional file system
or SQL interface.

Data intensive computing systems are often built on a distributed file systems such
as Hadoop Distributed File System (HDFS) [14, 15] that provide reliable storage on
commodity component hardware and high aggregate I/O performance. A HDFS clus-
ter co-locates storage and computation resources to avoid the bandwidth bottleneck of
transferring large datasets over the network to and from the computation nodes. The
main advantage of HDFS for biological data analysis is that the architecture is
demonstrated to scale to peta-scale datasets [14, 15], and it is widely used for data-
intensive computing in other fields. The main disadvantage is that HDFS does not
provide a traditional file system interface, so it is necessary to either rewrite the many
data analysis tools that use a POSIX file system interface, to incur an overhead for
moving data between HDFS and a local filesystem, or incur the overhead of third-
party library such as fuse-dfs [16]. In addition, it is not yet a common platform in
scientific computing, so it may be necessary to purchase and build a new cluster with
storage distributed on the compute nodes instead of a dedicated storage system.

MapReduce [8, 13] is a widely used programming model and infrastructure system
for data-intensive parallel computation. It provides fault-tolerant computation on a
HDFS-like file system, and makes it easy to write scalable applications since the sys-
tem handles data partitioning, scheduling and communication. Biological data analy-
sis applications, especially for next-generation sequencing data, have already been
implemented using MapReduce ([17] and [2] provides examples and references). The
main advantage of MapReduce is that it scales to peta-scale datasets. In addition, most
cloud platforms provide a MapReduce interface. The main disadvantage is that the
MapReduce programming model may be too restrictive for some biological applica-
tions.

HBase [18, 19] is a column based storage system that provides in-memory caching
for low latency random data access, and efficient compression. Biological data analy-
sis applications can use HBase to store data accessed interactively, to implement cus-
tom data structures, or to structure data for more efficient compression. Compared to
relational databases, HBase does not provide an advanced query engine nor ACID
properties. Other systems must implement these on top of HBase if such properties
are needed by an application.

An alternative for low-latency query processing is Spark [9, 20]. It offers a richer
programming model than MapReduce, including iterative operations. It is well suited
to implement machine learning algorithms, and interactive data analysis. Spark uses
the Scala programming language, which may be unfamiliar to many developers but

bindings exists for Java and Python. Compared to the systems discussed above Spark
has just recently become a top-level Apache project, but it is rapidly being adopted by
many other open-source and commercial systems.

Several high-level programming models are built on top of MapReduce to make it
easier to write data analysis programs, including Pig [21], Hive [22], Cascading [23]
and Cassandra [24]. To our knowledge, these are not widely used for biological data
analysis (see also the discussion in section 4).

Other data-intensive computing systems for Hadoop, HBase, and Spark includes,
Cloudera Impala [25] and Drill [26] that both provide a low-latency SQL query en-
gine (inspired by Dremel [27]), Storm [28] for stream processing, and the Mahout
[29] library of machine learning algorithms. To our knowledge, these are also not
widely used for biological data analysis (see also the discussion in section 4).

There are many frameworks for specifying and running biological data analysis
pipelines. The most widely used systems is Galaxy [6]. It has been integrated with the
Hadoop software stack [30].

Table 1. Our use of data-intensive computing systems for biological data processing.

System Problem Solution Issues
Troilkatt Scalable analysis

pipelines
HDFS: scalable storage
MapReduce: I/O intensive
pipeline processing

Memory manage-
ment

GeStore Incremental up-
dates for analysis
pipelines

HBase: data structures for
generating incremental up-
dates

Hadoop MapRe-
duce job startup
time

Mario Tuning of analy-
sis pipelines

MapReduce: I/O intensive
pipeline processing
HBase: sparse data structure,
low- latency reads and
writes

Performance tun-
ing HBase

3 Transparent Data-Intensive Computing

We have extended several data-intensive computing systems to provide services for
biological data analysis. In this section, we answer the following questions:

 Why did we choose a particular infrastructure system?
 What problems did the system solve?
 What are the main limitations of the systems for our use?
 What are the lessons learned during development and deployment?

We have used three clusters, with 5, 10, and 64 nodes, for development and deploy-
ment of our systems over a period of five years. All were built for data-intensive
computing with storage distributed on the compute nodes. We chose the Hadoop
software stack, including HDFS for distributed storage and processing. Hadoop is the

mostly used data-intensive computing platform, and it has a very active development
community. By using Hadoop, we have benefited from improvements to the infra-
structure systems, and the addition of new infrastructure systems such as Spark to the
ecosystem. In this section, we describe achievements, issues, and lessons learned.

3.1 Troilkatt

Troilkatt is a system for batch processing of large-scale collections of gene expres-
sion datasets. We use Troilkatt to process data for the IMP integrated data analysis
tool [31]. We built Troilkatt in order to scale our gene expression dataset integration
pipeline to process all gene expression datasets for several organisms in NCBI GEO
[32]. The pipelines comprise tools for data cleaning, transformation, and signal bal-
ancing of these datasets. The integrated data compendium for organisms such as hu-
man have ten thousands of datasets. The raw data, pipeline results, and intermediate
data in a compendium use tens of terabyte of storage space.

Troilkatt provides infrastructure services for automated genomics compendium
management. It consists of five main components (Fig. 1). First, the large genomics
compendia maintained by Troilkatt are stored and processed on a cluster. Second,
Troilkatt leverages the Hadoop software stack for reliable storage and scalable fault-
tolerant data processing. Third, the Troilkatt runtime system provides data manage-
ment including versioning and a library of tools for downloading and processing data.
Fourth, Troilkatt can execute a large collection of external tools and scripts for data
processing. Finally, a command line based user interface provides an administrator
interface for managing compendium content and steering data processing,

Fig. 1. Troilkatt architecture.

The IMP pipeline processing is well suited for data-intensive systems since most
pipeline tools are I/O intensive. The data is stored in HDFS. We use MapReduce for

parallel processing and HBase for meta-data storage. We chose MapReduce since the
processing must scale to several tens of terabytes of data. We use one Mapper task per
dataset for each pipeline tool, since the datasets can be processed independently and
hence in parallel. In addition, many tools in the IMP pipeline process one row in a
gene expression table at a time, and are therefore well suited for the MapReduce pro-
gramming model.

Initially we considered using Hadoop streaming (MapReduce with unmodified bi-
naries). However, many biological analysis tools require specifying multiple meta-
database files as command line arguments, which is not possible with Hadoop
Streaming. To solve this problem, Troilkatt allows specifying multiple input files as
command line arguments using environment variables.

We achieved a system that efficiently executes pipelines for processing large-scale
integrated compendia. We did not have to implement data communication between
tasks, nor data locality aware mapping of tasks to compute nodes. Our main issue was
large in-memory data structures in two pipeline tools. Hadoop MapReduce is run in a
JVM, so the maximum heap size must be set at system startup time. The memory
usage of the largest tasks therefore limits the number of tasks that can be run in paral-
lel on each node. To achieve a good trade-off between memory usage and parallelism,
we had to divide the expression datasets by their memory usage and processes simi-
larly sized datasets together in a separate MapReduce job.

Since all datasets can be processed in parallel, and most organisms have hundreds
or thousands of datasets, the parallelism in the pipeline exceeded the available com-
pute resources even on the biggest 64-node cluster. We can therefore efficiently uti-
lize a much larger cluster. The raw datasets are larger than the available storage on the
clusters. We must therefore periodically delete raw data downloaded from public
repositories. A full update of the dataset therefore requires re-downloading tens of
terabytes of data from public repositories. In addition, we share the clusters with other
non-MapReduce jobs. A cluster management system such as Mesos [33] may there-
fore improve the performance of Troilkatt jobs and improve resource utilization.

3.2 GeStore

GeStore [34] is a framework for adding transparent incremental updates to data pro-
cessing pipelines. We use GeStore to incrementally update large-scale compendia
such as the IMP compendia described in the previous section. GeStore is integrated
with Troilkatt and Galaxy [35]. We built GeStore since the processing time for a full
compendium update can be several days even on a large computer cluster, making it
impractical to frequently update large compendia. GeStore adds incremental updates
to unmodified pipeline tools by manipulating the input and output files of the tools.

GeStore must detect changes in, and merge updates into, compendia that can be
tens of terabytes in size. GeStore must also maintain and generate incremental updates
of meta-databases, such as UniProt [36]. These can be hundreds of gigabytes in size.
We use HBase for data storage and MapReduce for generating input files and merging
output files. HBase provides high-throughput random data accesses required for effi-
cient change detection and merging. GeStore stores meta-database entries as HBase

rows, and it updates entries by creating a new version of an HBase table cell. The
HBase timestamps enable efficient table scans to find entries that have changed in a
period and hence are part of an incremental update. In addition, the flexible schema of
HBase tables is utilized to reduce the work required to maintain plugins when file
structure or databases change, allowing several years of database versions to be stored
in the same HBase table.

Fig. 2. GeStore architecture.

GeStore provides a plugin system to support many biological tools and file formats
(Fig. 2). To add incremental updates for a new tool the plugin maintainer implements
a plugin. The plugin specifies how to partition input and meta- data files into entries,
which part of an entry are required for the analysis done by a tool, and how to com-
pare the entries to detect updates. In addition, the plugin contains code for writing
entries to an incremental input file, and merging incremental output with previous
output data. These plugins are relatively small in size; less than 300 lines of code in
our most complex plugin.

We achieved up to 82% reduction in analysis time for compendium updates when
using GeStore with an unmodified biological data analysis pipeline ([34] has addi-
tional experimental results). We found HBase to be well suited for the data manage-
ment requirements of GeStore. File generation and merging scales to large datasets
since we use MapReduce for data processing. In addition, we reduce storage space
requirements by storing multiple meta-databases versions in HBase instead of storing
all versions as separate files.

The overhead introduced by GeStore is high for incremental updates of small da-
tasets, since the startup time of Hadoop MapReduce jobs is tens of seconds. A system
with lower startup time, such as Spark, will significantly reduce this overhead. Ge-
Store overhead can also be large if the implemented plugin is not able to properly
detect incremental updates.

3.3 Mario

Mario [37] is a system for interactive iterative data processing. We have designed
Mario for interactive parameter tuning of biological data analysis pipeline tools. For
such interactive parameter tuning, the pipeline output should quickly be visible for the

pipeline developer. Mario combines reservoir sampling, fine-grained caching of de-
rived datasets, and a data-parallel processing model for quickly computing the results
of changes to pipeline parameters. It uses the GeStore approach for transparently add-
ing iterative processing to unmodified data analysis tools.

Fig. 3. Mario architecture.

The Mario architecture consists of four main components: storage, logic/computation,
the web server and the client/UI (figure 3). The system runs on a cluster of computers,
with the master process at the cluster frontend, and the workers at the compute nodes.
These are co-located with HBase master at the cluster frontend and the HBase region
servers at the compute nodes. The web server and the MySQL server can be located
on the cluster frontend, or on separate computers. The user runs the Mario controller,
and data visualization and analysis tools on her computer.

Mario must efficiently produce random samples from a stream for reservoir sam-
pling, implement a cache of fine-grained pipeline tool results, and implement parallel
pipeline stage processing. We use HBase as storage backend due to its low-latency
random read and write capability, its ability to efficiently store sparse data structures,
and its scalability. Mario stores all intermediate data records produced during pipeline
execution in HBase, and uses the cached data to quickly find the data records that
must be updated when pipeline tool parameters are changed. Mario also uses HBase
for data provenance and single-pass reservoir sampling. The iterative processing in
Mario is similar to Spark Streaming [38]. Mario splits the data randomly into many
small parts and distributes these on the cluster nodes. Mario process the parts in paral-
lel. However, it only process a small subset at a time since there are many more parts
than processor cores. Mario therefore iteratively updates the output data.

We achieved a system for iterative parallel processing that adds less than 100ms of
overhead per pipeline stage, and that does not add significant computation, memory,
or storage overhead to compute nodes (additional experimental results are in [37]).
We found HBase to be very well suited for efficiently storing and accessing the sparse
data-structures used by Mario.

Our main issue was to configure HBase to achieve the required performance. We
chose a configuration where HBase region servers allocate 12GB DRAM on the clus-
ter nodes, and we traded reliability for improved write latencies by keeping write-
ahead logs in memory (and periodically flushing these to disk). The reduced reliabil-
ity is acceptable for Mario since it can recompute the intermediate data stored in
HBase at low cost, if needed.

4 Discussion

We have assumed that data-intensive computing systems are not widely used for bio-
logical data processing. We base this assumption on our own experience, and discus-
sions we have had with bioinformatics users, model developers, and infrastructure
maintainers. In this section, we verify this assumption by conducting a literature sur-
vey. We do not conduct a comprehensive survey, but we still believe our results pro-
vides insights into the usage of data-intensive computing systems for biological data
processing by showing the interest for such systems in the bioinformatics literature.
The results for the searches described in this section are in Supplementary materials
(http://bdps.cs.uit.no/data/cibb14-supplementary.pdf). [2, 17] provides additional
references to articles that describe biological data analysis using data-intensive sys-
tems.

4.1 Data-Intensive Computing Articles in BMC Bioinformatics

We first examined Software articles published in BMC Bioinformatics. It is a popular
and important journal for bioinformatics analysis tool articles. We also examined
Genome Biology and the Web Server and Database special issues of Nucleic Acids
Research, but these journals have few infrastructure articles compared to BMC Bioin-
formatics. The Software articles in that journal also provide detailed implementation
details and list of required libraries. We used this information to determine whether
the described software uses data-intensive computing systems.

We first got a list of articles from the BMC Bioinformatics website
(http://www.biomedcentral.com/bmcbioinformatics/content) by setting Article types
to Software, and Sections to All sections. We examined the 23 Software articles pub-
lished between August 2014 and November 2014. Of these, two used a HPC platform,
one used a data warehouse, and the remaining were implemented for a server or a
desktop computer. The results show that most software articles in BMC Bioinformat-
ics describe user interfaces, or data analysis and interpretation services. However, the
software in many articles used tools such as BLAST [39] that are ported to both HPC
and data-intensive computing platforms. In addition, these articles usually do not
describe the backend processing systems used to generate the analyzed data. These
may therefore use data-intensive computing systems. To get results that are more
specific for our analysis we refined our search to find articles that describe infrastruc-
ture systems.

We used the Advanced Search in the Bioinformatics website
(http://www.biomedcentral.com/bmcbioinformatics/search). We searched in All fields
for “infrastructure”, and set Include to Software. This search returned 142 articles in
total. We examined 15 articles published between November 2013 and November
2014. Of these, eight described software run on a single server or a desktop computer,
six used a cluster for either file storage or as a computational resource, and one sys-
tem [40] used data-intensive computing techniques. These results indicate that data-
intensive computing systems are not widely used for biological data analysis infra-
structures.

4.2 Articles About Specific Data-Intensive Computing Systems

In this section, we examine articles describing specific data-intensive computing sys-
tems. We want to find which systems that are used for biological data processing, and
what these systems are used for. We searched for specific keywords and manually
filtered the articles in the returned results to exclude articles that do not describe the
system we searched for. We set Include to All article types to increase the number of
articles in the search results. The search results includes articles published before
December 2014.

 We first searched for “Hadoop” since it is the most widely used data-intensive
computing platform. The search returned 24 articles. Of these, the software in 14
articles used systems in the Hadoop stack; three articles describe virtual machine
images or provisioning systems that include Hadoop, and the remaining only mention
Hadoop in related work. The Hadoop systems were used for search, integrated analy-
sis, data integration, machine learning, and distributed analysis of different data types

We also searched for the Hadoop alternative Azure [41]. There were six articles
discussing Azure. The software described in two articles used Azure in combination
with MapReduce. Two articles propose to use Azure for processing and storage, one
describes a virtual machine provisioning systems, and one is a review article.

We then searched for the names of the data-intensive computing systems described
in section 2. For MapReduce we found 54 articles. In order to remove articles that just
mention MapReduce in the citations, we refined the MapReduce search by limiting
the search to Title+Abstract+Text. This reduced the number of articles to 27. Of
these, 12 describe software that used Hadoop MapReduce and three software that
used the MapReduce programming model. Most of these articles are also in the Ha-
doop search results discussed above. We found four HBase articles; of which two [40,
42] describe software that used HBase as a storage backend for sequencing data. The
remaining two mention HBase in related work. We found two Spark articles. One
described how they implemented distributed processing of next-generation sequenc-
ing data [43] using Spark. Cassandra, Hive, and Mahout were not used by the soft-
ware in any articles in the search results, but are discussed in the related work in two
articles. We did not find Impala in any articles.

We also searched for the Pig, Cascading Drill, and Storm systems, but these return
many false positives. We therefore refined the search to: “Pig Apache”, “Cascading

SQL”, “Drill Apache”, and “Storm Apache”. Pig and Cascading are both discussed
in the related work in two articles. We did not find any articles for Drill and Storm.

The above results show that MapReduce is the most popular system for data-
intensive biological data processing, and that most MapReduce tool implementations
use the Hadoop stack. We also found a few articles where HBase and Spark were
used. MapReduce, Spark, and HBase are all core systems. We did not find any Bioin-
formatics articles that described tools that use higher-level systems. This may suggest
that the services and abstractions provided by these are not well suited for biological
data. The systems that were not mentioned in any articles (Impala, Drill, and Storm)
are all recently developed, and may therefore have been unstable when the bioinfor-
matics tools described in the articles were implemented.

4.3 Usage Trends

We also examined whether data-intensive computing systems are becoming more
used for biological data analysis. To answer this question we counted the number of
articles mentioning MapReduce and Hadoop. The MapReduce design [44] was pub-
lished in 2004, the open-source Hadoop MapReduce project [13] was started in 2005,
and Hadoop became popular around 2008. Since then, an increasingly number of
articles mention MapReduce and Hadoop each year, especially in the last two years
(Table 2). The results indicate that data-intensive computing systems are becoming
more popular for biological data processing, but that it takes a few years from the
systems become popular until bioinformatics tools use them.

Table 2. Number of articles per year for keywords MapReduce and Hadoop (many articles are
in both results). 2014 does not include articles published in November and December.

Year Hadoop MapReduce
2009 1 1
2010 4 7
2011 4 7
2012 4 8
2013 4 15
2014 7 14
Total 24 52

5 Conclusion

We have transparently extended flexible biological data analysis frameworks to uti-
lize data intensive computing infrastructure systems. Our results show that even un-
modified biological data analysis tools can benefit from these for: (i) scalable fault-
tolerant computing for large-scale data; (ii) incremental updates in order to reduce the
resource usage required to update large-scale data compendium; and (iii) interactive
data analysis and exploration.

We have identified several limitations of the infrastructure systems we used. How-
ever, by using new systems recently added to the Hadoop ecosystem we can remove
many of these limitations. We will therefore continue using these systems to extend
biological data processing pipelines with new services for making data analysis more
efficient and for improving the quality of the analysis results.

We believe that centralized storage system performance is becoming a bottleneck
for large-scale biological data processing, and that it will become necessary to use
data-intensive computing infrastructure systems and a platform with distributed stor-
age to avoid this bottleneck. The systems presented in this paper motivate and make
the transition to such platforms and infrastructure systems easier for two reasons.
First, they provide data analysis services that are not available on the standard HPC
platform. Second, it is not necessary to modify the biological analysis tools. We be-
lieve the combination of novel services and backward compability is essential to in-
crease the use of data-intensive systems in biological data processing.

Troilkatt, GeStore and Mario are all open source:

 https://github.com/larsab/troilkatt
 https://github.com/EdvardPedersen/GeStore
 http://bdps.cs.uit.no/code/mario/

Acknowledgements

Thanks to Kai Li, Olga Troyanskaya, and Alicja Tadych for their help developing and
deploying Troilkatt. Thanks to our colleagues at the Tromsø ELIXIR node for their
expertise in developing and deploying biological data processing systems. Thanks to
Einar Holsbø, Giacomo Tartari and Bjørn Fjukstad for their comments and insights
while writing this paper.

References

1. Kahn, S.D.: On the Future of Genomic Data. Science (80-.). 331, 728–729 (2011).
2. Diao, Y., Roy, A., Bloom, T.: Building Highly-Optimized, Low-Latency Pipelines for

Genomic Data Analysis. 7th Biennial Conference on Innovative Data Systems Research
(CIDR’15), Asilomar, CA, USA (2015).

3. Clarke, L., Zheng-Bradley, X., Smith, R., Kulesha, E., Xiao, C., Toneva, I., Vaughan, B.,
Preuss, D., Leinonen, R., Shumway, M., Sherry, S., Flicek, P.: The 1000 Genomes Project:
data management and community access. Nat. Methods. 9, 459–62 (2012).

4. Fernández-Suárez, X.M., Rigden, D.J., Galperin, M.Y.: The 2014 Nucleic Acids Research
Database Issue and an updated NAR online Molecular Biology Database Collection.
Nucleic Acids Res. 42, (2014).

5. Benson, G.: Editorial: Nucleic Acids Research annual Web Server Issue in 2014. Nucleic
Acids Res. 42, W1–W2 (2014).

6. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences.
Genome Biol. 11, R86 (2010).

7. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics. 20, 3045–54 (2004).

8. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM. 53,
72 (2010).

9. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. Proc. of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association (2012).

10. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney,
L., Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5, (2004).

11. Blankenberg, D., Von Kuster, G., Bouvier, E., Baker, D., Afgan, E., Stoler, N., Taylor, J.,
Nekrutenko, A.: Dissemination of scientific software with Galaxy ToolShed. Genome
Biol. 15, 403 (2014).

12. Open Grid Scheduler, http://gridscheduler.sourceforge.net/.
13. Hadoop homepage, http://hadoop.apache.org/.
14. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System.

26th Symposium on Mass Storage Systems and Technologies. IEEE (2010).
15. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. ACM SIGOPS

Operating Systems Review. p. 29 (2003).
16. MountableHDFS, http://wiki.apache.org/hadoop/MountableHDFS.
17. Taylor, R.C.: An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics. BMC Bioinformatics. 11 (2010).
18. Apache HBase, http://hbase.apache.org/.
19. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,

T., Fikes, A., Gruber, R.E.: BigTable: A Distributed Storage System for Structured Data.
ACM Trans. Comput. Syst. 26, 1–26 (2008).

20. Apache Spark, https://spark.apache.org/.
21. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Olston, C.,

Reed, B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow system on top of
Map-Reduce: the Pig experience. Proc. of the VLDB Endowment. pp. 1414–1425 (2009).

22. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proc. of VLDB
Endowment. pp. 1626–1629 (2009).

23. Cascading, http://www.cascading.org/.
24. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM

SIGOPS Oper. Syst. Rev. 44, 35 (2010).
25. Impala, http://www.cloudera.com/content/cloudera/en/products-and-

services/cdh/impala.html.
26. Apache Drill, http://incubator.apache.org/drill/.
27. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.:

Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow. pp. 330–339.
(2010).

28. Storm, https://storm.incubator.apache.org/.
29. Mahout homepage, https://mahout.apache.org/.

30. Pireddu, L., Leo, S., Soranzo, N., Zanetti, G.: A Hadoop-Galaxy adapter for user-friendly
and scalable data-intensive bioinformatics in Galaxy. Proc. of 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics. pp. 184–191. (2014).

31. Wong, A.K., Park, C.Y., Greene, C.S., Bongo, L.A., Guan, Y., Troyanskaya, O.G.: IMP: a
multi-species functional genomics portal for integration, visualization and prediction of
protein functions and networks. Nucleic Acids Res. 40, W484–90 (2012).

32. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F.,
Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., Holko,
M., Ayanbule, O., Yefanov, A., Soboleva, A.: NCBI GEO: archive for functional
genomics data sets--10 years on. Nucleic Acids Res. 39, D1005–10 (2010).

33. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker, S.,
Stoica, I.: Mesos: a platform for fine-grained resource sharing in the data center. Proc.of
the 8th USENIX conference on Networked systems design and implementation. USENIX
Association (2011).

34. Pedersen, E., Willassen, N.P., Bongo, L.A.: Transparent incremental updates for Genomics
Data Analysis Pipelines. HiBB 2013 – 4th Workshop on High Performance Bioinformatics
and Biomedicine. LNCS, vol. 8374. Springer LNCS (2014).

35. Pedersen, E., Raknes, I.A., Ernstsen, M., Bongo, L.A.: Integrating Data-Intensive
Computing Systems with Biological Data Processing Frameworks. Euromicro Conference
on Parallel, Distributed and Network-Based Processing (2015).

36. Magrane, M., Consortium, U.: UniProt Knowledgebase: a hub of integrated protein data.
Database (Oxford). 2011, bar009 (2011).

37. Ernstsen, M., Kjærner-Semb, E., Willassen, N.P., Bongo, L.A.: Mario: interactive tuning
of biological analysis pipelines using iterative processing. in Proc. of 5th International
Workshop on High Performance Bioinformatics and Biomedicine. LNCS, vol. 8805
(2014).

38. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams. Proc.
of Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 423–438. ACM
Press (2013).

39. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. J. Mol. Biol. 215, 403–10 (1990).

40. Killcoyne, S., del Sol, A.: FIGG: simulating populations of whole genome sequences for
heterogeneous data analyses. BMC Bioinformatics. 15, 149 (2014).

41. Azure: Microsoft’s Cloud Platform, http://azure.microsoft.com/en-us/.
42. O’Connor, B.D., Merriman, B., Nelson, S.F.: SeqWare Query Engine: storing and

searching sequence data in the cloud. BMC Bioinformatics. 11 Suppl 1, S2 (2010).
43. Roberts, A., Feng, H., Pachter, L.: Fragment assignment in the cloud with eXpress-D.

BMC Bioinformatics. 14, 358 (2013).
44. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Proc. of

Operating Systems Design & Implementation. USENIX (2004).

