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ABSTRACT 

 

This paper analyses equilibrium fares that arise from Collusion, Cournot, Stackelberg, 

Bertrand and Sequential Price Competition when two profit maximising transport firms 

produce symmetrically differentiable services and have identical costs. Special focus is placed 

on how different equilibrium fares are linked to trip length. Higher operator costs and higher 

demand from the authorities regarding the quality of transport supply result in steeper 

relationships (larger rate of change) between all fares and travel distance. Also, a higher 

degree of substitutability between the services will in most cases make these relationships 

steeper. The competitive situation has less influence on fares, both absolutely and relatively, 

the longer routes the operators compete on. 
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1. INTRODUCTION  

Throughout Europe and North America there has been a move in markets for public passenger 

transport towards a reduction in economic regulation (Banister et al., 1992). This has paved 

the way for increased competition between private companies to supply services both on 

subsidised contracts for the local government and commercially operated in the free-market. 

The deregulation has been the subject of many studies both with respect to privatization 

(Nash, 2005) and types of competitive contracts (e.g. Hensher and Stanley, 2003; Preston, 

2005). The liberalization of the British bus industry has given examples of fierce competition 

(Nash, 1993). Also within the railway industry a scope for on-track competition has been 

identified with fare reductions as a feasible outcome (Preston et al., 1999). Preston et al. 

(1999) states that the competition within the rail industry is, much like coach and air transport, 

characterised by a higher potential for differentiation of products compared to that of the bus 

industry which to a larger extent provides a homogenous service.  

 

On many transport routes, one, two or three suppliers are commonplace. Despite being 

competitors, such a limited number of suppliers of transport services can act in a collusive 

regime of some form when it comes to setting the price and/or the capacity. The strategic 

interactions between firms in such markets have been discussed theoretically by Pedersen 

(1999) and van Reeven (2003) and empirically found to be present e.g. in the Norwegian 

aviation industry (Salvanes et al., 2003) and in the British bus industry following the 

deregulation (e.g. Beesley, 1990). However, models of imperfect competition are scarcely 

used in order to analyse how the level of fare is related to travel distance or the length 

between the destinations.  

 

Theoretical works the last five years have, admittedly, dealt with how a monopolist will 

design the relationship between fare and trip length when it: (1) maximises profits or a 

weighted combination of profits and consumer surplus and (2) under different assumptions 

regarding the relationship between transport users demand and their generalised travel cost, 

see Jørgensen and Pedersen (2004) and Jørgensen and Preston (2007). Later on these models 

are seen in the light of empirical studies from passenger transport in Norway (Mathisen, 

2008b). Tsai et al. (2008) also develop a procedure in order to estimate simultaneously how 

fare, headway and transport quality on one hand should be related to trip length on the other 

hand, given one operator who wants to maximise profits. The latter analysis is carried out 

using an intercity transportation system as an example. Nevertheless, none of these works 



 3 

analyse the relationship between optimal fare and travel distance when two or more rivals 

compete. 

 

The aim of this paper is to analyse how fares are related to travel distance between locations 

when two profit maximising operators, producing symmetrically differentiated services, either 

collude or compete. In order to do so, we calculate equilibrium prices under Collusion, under 

quantity competition (Cournot and Stackelberg) and under price competition (Bertrand and 

Leader-Follower). The analysis is carried out under different degrees of substitutability in 

demand between the two transport services. Comparisons of the equilibrium solutions inform 

the transport authorities of the consequences of different regulatory policies for passengers 

travelling on routes of different lengths.  

 

The structure of the article is as follows. In section 2, we present the model and emphasise its 

central assumptions. In section 3, we solve for the market equilibrium at both Collusion and 

simultaneous and sequential competition on both quantity and price. Section 4 provides the 

analysis where special focus is placed on deriving the link between equilibrium fares and trip 

length and implications of the equilibrium fare solutions on passengers’ generalised travel 

costs. In section 5 we briefly relate the model results to empirical evidence. Lastly, in section 

6, we make some concluding remarks and present the implications for policy makers.  

 

2. THE MODEL 

Let us assume that two transport firms provide their own version of a transport service at the 

given distance (D) between the two locations Y and Z, as illustrated in Figure 1. We want to 

analyse the changes in equilibrium prices under different competitive situations when the 

transport distance (D) between the locations changes. The degree of substitutability between 

the transport services depends on how equal the travellers perceive them to be; the more equal 

perceptions they have about them, the more substitutable are the services. 

 

Insert Figure 1 about here. 

 

Let us denote a representative transport user’s generalised travel costs of using service 1 and 

service 2 by G1 and G2, respectively. Gi, where i = {1, 2}, is given by the sum of fare, Pi, and 

the time costs, (b0 + b1D), see for example Button (2010). 
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


  where b0, b1 > 0 

 

in which D denotes distance in km, b0 distance-independent time costs and (b1D) time costs 

when travelling by the mode. The b0 parameter depends on walking time, waiting time and 

time spent on boarding and alighting the mode (buses and trains) and/or transport time to 

airports (air transport), whilst the b1 parameter denotes each passenger’s time costs of 

travelling an extra km by the mode. The values of b0 and b1 are dependent on the quality of 

transport supply, the travellers’ income and the purpose of the journey. A review of the 

influence of different quality factors in transport is, for example, given in Paulley et al. 

(2006).
1
  

 

Note that we suppose that time costs of travelling with the two suppliers are the same and 

exogenous for them; i.e. we assume that the quality demands are set by the authorities. Hence, 

generalised travel costs using the two services can only differ through the fares P1 and P2. 

This means that our model applies to cases where two suppliers using the same type of mode 

compete, for example both offering bus transport, air transport etc. Since other factors than Gi 

such as the modes’ departure- and arrival times, their safety records, travellers’ habits and the 

firms’ brand image also influence modal choice, the two services are not necessarily perfect 

substitutes, even though they offer the travellers the same G-values.  

 

In the following we follow the model originally presented by Singh and Vives (1984) by 

assuming that a representative traveller has the following utility function based on the levels 

of the use of services supplied by firm 1, X1, and firm 2, X2 

 

(2) 
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where the parameter  1,0s  measures the degree of substitutability between the services 

offered by the two operators.
 
If s = 1 then the services are perfect substitutes and s = 0 is the 

                                                 
1
 Assuming k is time costs per hour and h is the mode’s speed measured in km per hour. Then b1 = k / h. This 

suggests that b1 is low (high) for fast (slow) modes. The b0 parameter is in general high for air transport 

compared to other modes.  The k-value and thereby the b1-value will be lower the better the service and quality 

onboard. 
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case of independent markets; hence this parameter can be thought of as indicating the degree 

of competition between the firms in any specific market situation, see also comments below 

equation (5).  

 

Assuming that the representative traveller maximises his consumer surplus, CS 

)),((
2

121  


i ii XGXXUCS , the utility function in (2) gives rise to the following linear and 

symmetric inverse demand functions 

 

(3) 
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Since Singh and Vives (1984) focus on price (Bertrand) and quantity (Cournot) competition 

within a duopoly framework their model is relevant for the problem we aim to model. The 

clear-cut conclusions between Bertrand and Cournot which they made have, admittedly, been 

subject to critique for example in an n-firm specification where it is not evident which type of 

competition that is more efficient (Häckner, 2000). It has also been demonstrated that 

Bertrand could give higher prices than Cournot when the firms have goals that extend beyond 

profit maximisation (Clark et al., 2009) and even higher prices than monopoly when the 

spatial dimension is included (Sanner, 2007). 

 

The expressions of generalised costs in (1) are inserted in the inverse demand function in (3) 

giving the following linear symmetric demand fare functions  

 

(4)  
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From (4) follows that higher values of b0 and b1 due to poorer transport quality lead to 

negative shifts in these inverse demand functions. The direct demand functions derived from 

(4) are presented in (5)  

 

(5)  
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                for 1 > s ≥ 0 
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From (5) follows that 
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 implying that a marginal increase in 

own price has always higher influence, in absolute terms, on own demand than on the rival’s 

demand; that is 
k

i

i

i

P

X

P

X









 when s < 1. The difference between

i
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k
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P
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 decreases, 

however, when the firms compete more fiercely (s increases).
2
 One can also calculate the 

price elasticities of demand as 
ki
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. Hence as 

products become more similar, the elasticity becomes more negative, and demand is more 

elastic. Lower values of s gives the providers the possibility of increasing fare without so 

much loss of demand. 

 

Since we assume operators with the same type of mode compete and additionally simplify the 

analysis by assuming no variation in efficiency levels between them, we specify the cost for 

providing the transport services with the following identical linear functions  

 

(6)  
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  )(),(
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           where a0, a1, a2 > 0   

 

These functions imply linear positive relationships between the number of passengers (Xi) and 

the number of passenger km (XiD), i = {1, 2}. Linear cost functions in transport are often 

good proxies of more advanced functions (Pels and Rietveld, 2000), and the above functions 

in particular are supported from several empirical cost studies carried out for bus (Jørgensen 

and Preston, 2003) and ferry transport (Jørgensen et al., 2004; Mathisen, 2008a) in Norway. 

From (6) it follows that 

 

(7)  Daa
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i
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2
 An s-value of for example 0.2 (0.6) implies that )56.1( 04.1 
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i

i

P
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k

i

P

X
 meaning that an 

increase in own price by one unit will decrease own demand by 1.04 (1.56) units and increase the rival’s demand 

by 0.21 (0.93) units. 
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Marginal costs increase linearly with trip length. The a1 parameter can be interpreted as the 

distance-independent marginal costs, while a2 is the costs for the transport firm of carrying a 

passenger an extra km.  

   

The profit for each firm, i , are expressed in (8) using the demand functions in (3) and the 

cost functions in (5):  

 

(8)  
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The profit functions can also be written in terms of fares using expression (5) in combination 

with (8). We then get: 

 

(9) 
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for 1 > s ≥ 0. 

 

3. MARKET SOLUTIONS FOR DIFFERENT COMPETITIVE SITUATIONS 

The conditions for maximising the profit functions in (8) and (9) give us equilibrium 

quantities and fares. The equilibrium fare expressions will be deduced with the purpose of 

deriving how optimal fares are linked to operators’ costs ( 1a  and 2a ), the quality of transport 

supply ( 0b  and 1b ), the degree of substitutability between the services (s) and finally the 

distance travelled by the mode (D). Focus will be directed towards the collusive case and the 

four traditional forms of market competition where the firms act either simultaneously or 

sequentially and compete in either quantity or price. The five situations Collusion, Cournot, 

Stackelberg, Bertrand and Price Leader-Follower are denoted COLL, C, ST, B and SP, 
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respectively.
 3

 For the sequential games ST and SP the leader and follower are given the 

subscripts 1 and 2, respectively. Equilibrium fare and quantity are marked by an asterisk. 

Hence, a total of seven different equilibrium fares and quantities will be deduced. 

 

The profit expressions for each firm in equilibrium, 
j*

1  and 
j*

2  (j = {COLL, C, ST, B, SP}), 

are given in the Appendix. By inspecting the profit functions it can be verified that 0* j

i  

when jMaxDD , , 0
*






D

j

i  and 0
2

*2






D

j

i , i = {1, 2} where jMaxD ,  represents the maximum 

distance that can be operated profitably by the transport companies. Hence, for any of the 

competitive situations the relationship between equilibrium profits and trip length for each 

firm is convexly decreasing so that long distances )( , jMaxDD  cannot be profitably covered 

by two operators.
4
 Our further analysis applies for D-values resulting in positive profits for 

both operators.  

  

3.1 Equilibrium fares and quantities 

Simultaneous Quantity Competition (Cournot)  

When the transport operators maximise their profits by choice of the quantity variable we get 

the following common equilibrium quantity, CX * , and fare, CP*  using equation (8) 
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Sequential Quantity Competition (Stackelberg) 

Let firm 1 be the leader choosing its quantity, first. Using equation (8) the following 

equilibrium quantities ),( *

2

*

1

STST XX and fares ),( *

2

*

1

STST PP are derived 

                                                 
3
 These standard market models from the industrial organization literature (see e.g. Carlton and Perloff, 2005; 

Frank, 2010) are the shared monopoly (collusion or cartel), the simultaneous quantity competition (Cournot), the 

sequential quantity competition (Stackelberg), the simultaneous price competition (Bertrand) and the sequential 

price competition (Price Leader-Follower).  
4
 It can be verified from the firms’ profit expressions in equilibrium that maximum travel distance, jMaxD , , varies 

for different j; that is for different competitive situations. jMaxD , is derived by solving D when 0* j

i  . 
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Simultaneous Fare Competition (Bertrand)  

Maximising i (i = {1, 2}) in (9) gives the common equilibrium quantity, BX * , and fare, 

BP* , in simultaneous fare competition shown in (12). 
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Sequential Fare Competition  

Let us assume that firm 1 sets price first. The derived equilibrium quantities ),( *
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SPSP PP are then derived from (9) and shown in (13) 
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Collusion 

In this case the operators maximise 21    and we the get the following equilibrium 

quantity and fare for each operator 
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Influence on fares of changes in a, b and s parameters 

Using equations (10), (11), (12), (13) and (14) it can be determined that all equilibrium fares 

are increasing in the operators’ costs ( 1a  and 2a ) and decreasing when the passengers’ time 

costs ( 0b  and 1b ) increase. Consequently, higher demands from the authorities regarding the 

quality of the transport supply, causing lower values of 0b  and 1b , will increase fares. 

Furthermore, higher degree of substitutability between the firms’ services (s increases) will 

reduce all fares except for the collusive case; fare is then independent of the value of s.  

 

3.2 Ranking of Fares  

All equilibrium fares are lower when the firms compete than when they collude. In summary, 

the following ranking can be verified when all parameter values are positive  

  

                              
COLLCSTSTSPSPB PPPPPPP  **

2

*

1

*

1

*

2

*
 

 

Bertrand competition yields lowest fares and Collusion highest fares when s > 0. This ranking 

corresponds with the results found in ordinary textbooks dealing with duopoly models, profit 

maximising entities and linear cost- and demand functions, see for example Frank (2010). 

Using this ranking and making pair wise comparison of fares gives a total of 21 fare gaps
5
. 

Common for all of these is that they will all be reduced when the firms’ cost ( 0a  and 1a ) and 

                                                 
5
 Seven different fares imply (7 ∙ 6) / 2 = 21 possible fare differences. 
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trip length (D) increase. Also, lower demands regarding transport quality resulting in 

increased passengers’ time cost ( 0b  and 1b ) will reduce the fare differences.  

 

More substitutable services (s increases), will increase the differences between the Collusion 

fare and all other equilibrium fares. Generally speaking, the differences in equilibrium fares 

under quantity competition on one hand and price competition on the other hand increase in s. 

The difference between the Stackelberg follower’s fare and leader’s fare, )( *

1

*

2

STST PP  , 

increases (decreases) when s < (>) 0.73. Less intense competition, i.e. a sufficiently low s, 

gives the leader the freedom to increase fare even more above the following rival firm; this is 

due to the fact that prices decisions as s falls, have less effect on the rival’s quantity. Also the 

gaps between the Bertrand fare and the equilibrium fares under sequential fare competition 

)( ** BSP

i PP  , i = {1, 2} are ambiguous and depend on the magnitude of s; they are larger 

(smaller) for the leader when s < (>) 0.73 and for the follower for s < (>) 0.83. The difference 

between the fare leader’s price and the follower’s price, )( *

2

*

1

SPSP PP   also increases when s < 

0.73. Summing up, an increase in s will make the gaps in equilibrium fares higher providing 

that s < 0.73, i.e. that competition between the rivals is not too intense. When s is low, the 

demand for trips is less sensitive to fare changes, giving the scope for this result. 

  

4. TRAVEL DISTANCE AND FARES - FURTHER ANALYSIS 

4.1 Conditions for Increasing Fares with Distance 

The conditions for increasing fares with distance for Cournot, Stackelberg, Bertrand, 

Sequential fare setting and Collusion can be found using equations (10), (11), (12), (13) and 

(14), respectively. From (10) we can deduce the following conditions at Cournot competition:  
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The derivative of CP*  with respect to distance (D) shows that the function is monotonic and 

will be either positive or negative depending on the parameter values a2, b1 and s. The higher 

the costs of transporting a passenger an extra km (a2), the lower the extra time costs for each 

passenger of being transported an extra km (b1) and the more substitutable services the 
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operators produce the more likely it is that fare increases with travel distance. When s = 0.5, 

for example, the fare increases with distance provided that the .3/2/ 12 ba   

 

Under Stackelberg competition we get the following conditions using equation (11) 

              

   0 )(   ))( )(2(
4

1
*

1
1212

*

1 









D

P
basba

D

P STST

 when 
s

s

b

a






2

2
 )(

1

2  

 (16) 
2

2

2

2

1

*

2

2

)432()42(

4

1

s

ssassb

D

P ST










 

 0 )(
*

2 





D

P ST

when 
2

2

1

2

324

24
)(

ss

ss

b

a






 

 

 

Also for the Stackelberg case, the parameter values a2, b1 and s determine whether both 

leader’s and follower’s fares increase or decrease in distance. It can easily be worked out from 

the conditions under (16) that the threshold values of the 12 / ba  ratios resulting in positive 

relationships between both leader’s and follower’s fares and travel distance decrease when the 

firms compete more intensely; that is when s increases. If for, example, s = 0.5, 0
*

1 




D

P ST

 

and 0
*

2 




D

P ST

 when the 12 / ba  ratio is higher than 0.60 and 0.65, respectively.  

 

Under Bertrand competition the variation of common fares with respect to distance is derived 

by the differentiation of equation (12)  
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a
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From (17) follows that a sufficient, but not necessary, condition for increasing fare with 

respect to trip length under simultaneous price competition is that a2/b1 > 1. If, for example, 

5.0s  then 12 / ba  must be higher than 0.5.  

 

Furthermore, the following conditions can be worked out for sequential fare setting using 

equation (13)  

 



 13 
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Equation (18) implies that the conditions for increasing fares with respect to distance also for 

sequential price setting are determined by a2, b1 and s. It can be verified that the higher the 

degree of substitutability between the services (increasing s) the more likely it is that 

equilibrium prices increase with trip length. If for, example, s = 0.5, 0
*

1 




D

P SP

and 0
*

2 




D

P SP

 

when the 12 / ba  ratio is higher than 0.56 and 0.51, respectively.  

 

Finally, the expression in (14) for the collusive fare leads to: 

 

(19)  0
2

1
12 ) (

D

P
 )  b(a

D
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

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
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where 1
1

2 ) (
b

a
  

 

In the collusive case equilibrium fare increases with trip length when the operators’ costs of 

transporting a passenger an extra km (a2) exceed each passengers time cost of being 

transported an extra km (b1). For a more thorough discussion of the latter, we refer to 

Jørgensen and Preston (2007). 

 

The above conditions are summarized in Figure 2 where the horizontal axis ranges from 0 

(independent services) to 1 (perfect substitutes) and the vertical axis follows the a2/b1 ratio, 

scaled from 0 to 1. Parameter combinations above the seven solid curves indicate increasing 

fares with respect to distance.  

 

When a2/b1 > 1 all forms of competition give increasing fares with distance. Opposite, 

combinations of a2/b1 and s below the Bertrand curve result in decreasing fares in distance. 

Except for the collusive case, Figure 2 shows that the necessary value of a2/b1 resulting in 

increasing fares with travel distance decreases in s. Under low degree of substitutability 
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between the services (s < 0.1), the threshold levels of a2/b1 are broadly speaking the same for 

all situations where the firms compete. When the firms’ services are more substitutable as 

measured by s moving towards 1, there is, however, a clear division between the curves 

related to competition in prices in the lower part of Figure 2 and competition in quantities in 

the upper part. The curves follow the same ranking for the value of a2/b1 from top to bottom 

in Figure 2 for all values of s > 0. The threshold levels of a2/b1 implying increasing fares with 

distance for all s under Cournot competition and Stackelberg competition are 1/2 and 1/3, 

respectively. 

Summing up, even though empirical studies show that fares usually increase with travel 

distance (see section 5), the model’s results do not give rise to such an unambiguous 

conclusion, having the original restrictions imposed on the a2, b1 and s parameters in mind. 

For certain combinations of a2/b1 and s values, it follows also from Figure 2 that the 

Stackelberg leader’s fare may increase in distance whilst the follower’s fare may decrease in 

distance. The same can be the case for the fare follower and the fare leader.  

Insert Figure 2 about here. 

 

4.2 Ranking of the Equilibrium Fares Regarding their Dependence on Trip Length 

The differentiations of the fare functions with respect to distance under different forms of 

competition given in equations (15), (16), (17) (18) and (19) enable us to derive the following 

unambiguous results when s > 0: 
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The interpretation of the above derivatives must be seen in relation to Figure 2. Let us first 

focus on a2 and b1 combinations such that a2/b1 > 1 which is the area above the Collusion 

curve in Figure 2. All fares are then increasing in distance. Then we can conclude 

unambiguously that trip length influences fares least under Collusion and most under Bertrand 

competition.  

 

When we have combinations of a2/b1 and s below the Bertrand curve in Figure 2, all 

competitive situations give the unusual results that fares decrease when trip length increases. 
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We then get the opposite conclusions regarding the importance of the competitive situation on 

the relationships between fares and travel distance (D); changes in trip length have a 

considerably lower impact on fares under price competition than under quantity competition 

and Collusion.   

 

4.3 The Influence of Parameter Values  

It has been demonstrated in the previous sections that, for all competitive situations, the 

influence that the trip length exerts on equilibrium fares depends on the three parameters a2, 

b1 and s. From equations (15), (16), (17), (18) and (19) it follows that  0
)/(

2

*






a

DP j

, j = 

{C, ST, B, SP, COLL} meaning that when the costs of transporting a passenger an extra km 

increase, the relationships between all equilibrium fares and trip length become steeper when 

fares increase in trip length and less steep when fares decrease in trip length. Furthermore, 

lower demands from the authorities regarding the quality of transport, which subsequently 

increase the time costs for the passengers of travelling an extra km (b1), have the opposite 

impact; that is 0
)/(

1

*






b

DP j

. In words: when the quality of transport increases (b1 

decreases), travel distance will influence all fares by more (less) when fares increase 

(decrease) in distance. Finally, it can be shown from the 
D

P j



 *

 expressions that 

 0
)/( *






s

DP j

, j = {C, ST, B, SP}; that is except for the collusive case. More intense 

competition between the firms (increasing s) results in steeper (less steep) relationships 

between all fares and travel distance when fares increase (decrease) in distance.  

 

Even though the ranking of the derivatives in (20) is independent of a2, b1 and s, the 

magnitudes of their differences are; it can easily be determined that the values of all the 21 

derivative differences are increasing in a2 and b1. Provided that s is not very high (s < 0.83), it 

can be verified that increasing s will also make the differences between the derivatives larger.
6
  

  

                                                 
6
 The differences between the derivatives for (1) Stackelberg leader’s and follower’s fares and (2) between the 

fares under price competition increase provided that s < 0.83. This s-value represents a direct price derivative 

and a cross derivative of about -3.21 and -2.67, respectively (see equation (5)). For all other cases the differences 

in the derivatives increase unambiguously in s.  
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4.4 Summarised Model Results for Fare and Distance  

The most important conclusions above are summarised in Figure 3 and Figure 4. Figure 3 

describes the most common situation, namely that all fares increase in distance. This applies 

to all combinations of a2 and b1 such that a2/b1 > 1. Figure 3 shows that the differences 

between all equilibrium fares, both relatively and absolutely decrease when trip length (D) 

increases. Increasing a2 and decreasing b1 make all relationships shifting upwards and being 

steeper. Except for the collusive case higher degree of substitutability between the services 

(higher s) makes all curves shifting downwards but being steeper. From section 3.2 follows 

too that all curves get closer to each other when a2 and b1 increase. An increase in s has an 

ambiguous effect, making some curves move closer together, while others do not.  

 

Insert Figure 3 about here. 

 

Insert Figure 4 about here. 

 

Figure 4 illustrates the more rare case, namely that fares decrease in distance. Opposite to the 

situation in Figure 3, increasing a2 and s and decreasing b1 make all curves less steep when 

the firms compete. 

 

4.5 Influence on Traveller’s Generalised Cost  

Inserting the equilibrium fares in equation (1) shows that for all competitive situations 

equilibrium generalised travel costs (
jG *
, j = {C, ST, B, SP, COLL}) will increase when 

operators costs ( 1a  and 2a ), travellers’ time costs ( 0b  and 1b ) and trip length (D) increase. If 

we disregard the collusive case, increasing competition between the operators will decrease 

generalised travel costs. In summary, we get the following: 
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The signs of 
0

*

b

G j




and 

1

*

b

G j




 imply that higher demands from the authorities regarding the 

quality of the transport supply give lower generalised travel costs; the negative effect for the 

travellers of higher fares when 0b  and 1b  decrease do not outweigh the positive effect of 
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reduced time costs. For all competitive situations and for all combinations of 2a , 1b and s 

values we can conclude unambiguously that generalised travel costs will increase with trip 

length. A closer look at these derivatives shows that when the firms compete, the magnitude 

of 
0

*

b

G j




 depend on s only whilst 

1

*

b

G j




 depend on s and D in the following ways 
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Higher demands regarding transport quality ( 0b and 1b decrease) have, thus, a larger positive 

effect on travellers’ well-being the more alike the perception of the services (s increases) and 

the longer they travel (D increases). In the collusive case it is easily inferred that 
2

1
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
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b

G COLL

 

and D
b

G COLL

2

1

1

*





.  

 

Note that the above results rest upon the assumption that that higher quality demand from the 

authorities will boost the operators’ productivity such that their costs are held constant. This 

assumption is not unreasonable; in particular for subsidised and/or publically own transport 

firms X-inefficiency may be present leading to scope for productivity improvements (Button, 

2010).
7
 If operators’ cost increase when quality is raised, the effect on 

jG *
 is ambiguous.

 8
  

 

 

5. MODEL RESULTS SEEN IN THE LIGHT OF PREVIOUS NORWEGIAN 

STUDIES 

In the work carried out by Jørgensen and Preston (2007) parameter values for a2 and b1 for the 

year 2002 are worked out using earlier empirical studies concerning bus transport and car 

ferry transport in Norway. For bus and ferry, respectively, they estimated that the parameter 

                                                 
7
 Jørgensen et al. (1997) estimated, for example, the average inefficiency in the regulated Norwegian bus 

industry in 1991 to be between 7 % and 14 %. 
8
 When the firms collude (j = {COLL}), Jørgensen and Pedersen (2004) conclude that generalised travel costs 

(G*) will decrease (increase) as the quality (Q) improves when the marginal costs of serving passengers increase 

less (more) than travellers reductions in generalised costs of the service improvement; that is when 

 )(
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G

QX

C





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values for a2 are 1.70 NOK
9
 and 4.79 NOK and for b1 are 1.00 NOK and 6.35 NOK. 

Consequently, the fraction a2/b1 is about 1.70 for bus transport and 0.75 for ferry transport.  

 

When relating these findings to Figure 2 we can conclude that bus operators will design a fare 

system implying increasing fares in distance for all forms of competition and for all degrees 

of substitutability. For ferry operators, however, fare will decrease with the length of the 

service when they collude. If they compete and the degree of substitutability between the 

services is sufficiently high (s > 0.4), Figure 2 shows that also ferry fares will be positively 

related to distance. If the competition between the operators is moderate such that s < 0.3, 

fares will decrease with distance for all forms of competition. When the ferry operators offer 

their services between the same destinations and therefore probably use the same quays, the 

variation in these services is low both respect to route choice and ferry size. It is, therefore, 

likely that the services provided by two operators are highly substitutable meaning that the s-

value is high so that fares increase with distance. 

 

Norwegian studies that review the relationships between ordinary fares and travel distance for 

subsidised domestic bus, ferry, train and air transport in Norway, show close positive 

relationships for all these modes (Mathisen, 2008b). Bearing in mind that every Norwegian 

ferry operator meets low competition from other operators such that s is low, the above 

observations seem to be in conflict with the model’s conclusions as far as ferry transport is 

concerned. In that respect it is, however, worth noting that our model assumes profit 

maximising operators whilst the ferry fares in Norway are set by the central authorities and 

they have goals that extend beyond profit maximization; for example the well-being of the 

travellers. It can be deduced that the more weight a single operator (monopolist) places on 

consumer surplus compared to profits, the positive relationship between fares and trip length 

will be steeper and the increase in actual fare with distance will approach the marginal costs 

for the operator of transporting a passenger (car) an extra km (a2). Using the above mentioned 

a2 and b1 figures for buses and ferries, it can be derived that fares for bus transport always 

increase with distance irrespective of the weight the bus operator places on profit versus 

consumer surplus. For ferry transport, fares will increase with distance provided that the 

                                                 
9
 1€ ≈ 8 Norwegian kroner (NOK). Note that for ferry transport one passenger car is used as the numeraire. 
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single company puts less than four times higher weight on profit than on consumer surplus.
10

 

A thorough discussion of this matter is given in Jørgensen and Preston (2007). 

 

Historical fares on unregulated air transport between central destinations in Norway support 

the model’s results in the sense that the collusive case gives higher prices than any of the 

other equilibrium prices above. A survey carried out by Amundsveen (2004) shows, for 

example, that full fare prices between Oslo and Bodø (802 km) and between Oslo and Tromsø 

(1115 km) set by the only operator Scandinavian Airlines Systems (SAS)
11

 prior to 2002 were 

about 20 % lower one year after it met competition from the entrant low cost air company 

Norwegian Air Shuttle (NAS). A random check (26
th

 August 2009) on the two companies full 

fare price offers on these two routes shows that fares increase in distance. For SAS the full 

fare prices were 2593 NOK and 2793 NOK between Oslo and Bodø and between Oslo and 

Tromsø, respectively. Similar figures for NAS were 1800 NOK and 1999 NOK. The market 

share for SAS, measured in seat kms offered, is about 67 % between Oslo and Bodø and about 

62 % between Oslo and Tromsø (Norwegian Air Shuttle, 2009).   

 

SAS has, thus, both higher transport production and higher full fare prices than NAS on these 

two services. These results seen in combination with the models’ results above indicate that 

neither Stackelberg competition nor sequential fare competition are present on these routes. 

Stackelberg competition implies namely that the leader has highest fare but lowest quantity 

whilst sequential fare competition implies that the leader has lowest price and highest 

quantity; that is 
SPSPSPSPSTSTSTST XXPPXXPP *
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*

1 ,,,  . The absence of both 

Stackelberg and sequential fare competition in the Norwegian airline industry is supported 

from a study of the competitive situation in the industry after its deregulation in 1994, see 

Salvanes et al. (2003). Their study indicates that the air companies had a semicollusive 

behaviour; that is they collude in fares and compete in capacities. It is also worth noting that 

our model assumes that both firms have identical cost structure. This is not true for as far as 

                                                 

10
 According to Jørgensen and Preston (2007) fares increase with distance if  

1

2
12 0)(

b

a
ba  in which 

  is a function of the weight put on profit   compared to consumer surplus )1(  , 15.0  , defined by 

 /)12(  . 1  and 5.0  represent a pure profit maximizing firm and a firm aiming to maximise 

social surplus, respectively. For ferries 0)( 12  ba   implies 75.0 , 80.0  and 2.0)1(  .  
11

 The Norwegian subdivision of Scandinavian Airlines System (SAS) bought the other dominant Norwegian air 

transport company, Braathen, in 2001 and the two firms cooperated until 2005 when they merged and took the 

name SAS Braathen. The name was changed back to SAS in 2007.  
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SAS and NAS are concerned; NAS is regarded as a low cost company and is run more cost 

efficiently than SAS. 

 

 

6. CONCLUDING REMARKS 

The main purpose of this paper has been to analyse how the equilibrium fares that arise from 

Collusion, Cournot, Stackelberg, Bertrand and Price leader-follower competition are linked 

to: (1) transport operators’ costs; (2) the quality of transport supply; (3) the degree of 

substitutability between the transport services and (4) the trip length. The analysis is carried 

out by assuming profit maximising transport operators that have identical costs and produce 

symmetrically substitutable services. Moreover, the quality of transport supply is set by public 

authorities and, thus, exogenous for the transport operators.  

 

The analysis shows, as expected, that all equilibrium fares increase when the operators’ costs 

increase and when the authorities demand a higher quality of transport supply. If we disregard 

the Collusion case, more intense competition between the transport firms will decrease fares. 

The Collusion fare is globally the highest, whilst Cournot competition yields highest fares and 

Bertrand competition lowest fares when the firms compete. The internal ranking of the 

equilibrium fares is independent of the firms’ costs, the quality of their transport services, the 

degree of substitutability between their services and trip length. These factors influence, 

however, the magnitudes of the differences in price values. Less cost efficient firms, lower 

demands regarding transport quality and longer trip lengths will reduce the differences 

between all equilibrium fares. On the other hand, more substitutable services (higher value of 

s) will increase fare gaps across different market situations; the gap between fares under 

quantity competition and fare competition is especially affected. 

 

A more in-depth look at the relationships between equilibrium fares and trip length shows that 

all competitive situations imply increasing relationships between fares and travel distance 

when the costs for the operators of transporting a passenger an extra km exceed each 

passenger’s time costs of travelling another km; that is when  0)( 12 ba  or 1)/ ( 12 ba . 

When 0)( 12 ba , fares are decreasing in distance when the firms collude. Also when the 

firms compete, fares may decrease with trip length when the competition between them is 

fairly low. Moreover, fares that increase with trip length are more likely under fare (price) 
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competition than under quantity competition. It is, thus, worth noting that the model’s results 

do not rule out that fares may decrease in distance when both the 12 / ba  ratio and s value are 

sufficiently low. Hence, the probability for decreasing fares with distance raises if a transport 

mode is slow and holds passengers with high time costs (high 1b value), differs significantly 

from the alternatives (s low) and has low costs of transporting passengers an extra km              

( 2a low). Since empirical studies from Norway show positive relationships between fares and 

travel distance both for regulated and unregulated transport services, such combinations of the 

a2, b1 and s parameters are probably rare.  

 

Given a2, b1 and s values such that all equilibrium fares increase in distance, increasing costs 

of transporting a passenger an extra km and higher demands regarding transport quality, result 

in steeper relationships between all equilibrium fares and trip length. Except for the collusive 

case, all fares increase faster according to trip length the more intense the firms compete. 

Fares under quantity competition are less dependent on trip length than under price 

competition implying that all equilibrium fares get closer as travel distance increases. 

Increasing a2, b1 and s values also result in how much travel distance influences equilibrium 

fares.  

 

The above relationships between all equilibrium fares and travel distance result in positive 

relationships between generalised travel cost and trip length for all positive values of a2, b1 

and s. Since all aspects with transport quality captured in generalised travel costs are equal for 

both operators, ranking of these costs are in accordance with the fare rankings; that is 

Collusion gives highest generalised costs and Bertrand lowest generalised costs etc. Given 

that higher demands from the authorities regarding transport quality not will increase the 

operators’ costs but improve their productivity
12

, we can conclude unambiguously that 

generalised travel costs will be reduced. Hence, such transport policy initiatives will benefit 

the transport users.  

 

To sum up, the competitive situation between transport firms has higher importance on fares 

and thereby on passengers’ generalised travel costs, the more productive the firms are, the 

higher demands the authorities set regarding the quality of transport supply and, broadly 

                                                 
12

 It is not unreasonable to believe that increased quality demands from the authorities will give the operators 

incentives to boost their efficiency.  
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speaking, the more substitutable services they produce. This suggests, for example, that it is 

more important for the transport users that collusion is hindered when operators’ productivity 

is high, passengers’ time costs are low (fast speed modes) and competition is high. Since 

passengers’ time costs in general have increased over time due to rises in income, the way the 

transport firms compete has become more important for the transport users. Another 

important finding is that the competitive situation exerts more influence on fares, both 

absolutely and relatively, on shorter trips than on longer trips. Transport regulators should, 

thus, focus most on the organisation of transport supply on short routes. Higher productivity 

among the transport firms, higher degree of substitutability between their services and lower 

demands regarding transport quality makes the latter recommendation even more relevant.  
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APPENDIX 

The profit functions for the different types of competition with corresponding first- and 

second order derivatives with respect to distance are presented in this appendix. The positive 

restrictions on the equilibrium quantities imply that 0)1( 1201  DbDaba .  

 

Cournot competition (using eq. (10) in eq. (9)) 
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Stackelberg competition (using eq. (11) in eq. (9)) 
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Follower’s profit:
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Bertrand competition (using eq. (12) in eq. (9)) 
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Sequential fare competition (using eq. (13) in eq. (9)) 
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Collusion (using eq. (14) in eq. (9))
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Figure Captions 

 

Figure 1: Substitutable transport services over the distance D between the locations Y and Z. 

 

 
Figure 2: Conditions for increasing fares with respect to distance, dP*/dD > 0, for substitutable transport services 

under different forms of competition. 

 

 
Figure 3: The relationships between equilibrium fares and travel distance when fares increase in distance. 

 

 
Figure 4: The relationships between equilibrium fares and travel distance when fares decrease in distance. 
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