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Abstract 

Background: The role of prediabetes as a risk factor for hyperfiltration and albuminuria in 

persons who do not develop diabetes is unclear. The lack of evidence is mainly due to the 

difficulty of accurately assessing the glomerular filtration rate (GFR) in the near normal range 

of GFR. We investigated whether prediabetes is an independent risk factor for hyperfiltration 

and high normal urinary albumin-creatinine ratio (ACR) using measured GFR (mGFR) rather 

than estimated GFR.   

Study Design: Prospective cohort study based on the Renal Iohexol Clearance Survey in 

Tromsø 6 (RENIS-T6) and the RENIS-Follow-Up. The median observation time was 5.6 

years. 

Setting & Participants: A representative sample of 1261 persons without diabetes from the 

general population aged 50-62 years.  

Predictor: Prediabetes defined by fasting glucose and HbAR1cR according to the levels 

suggested by the American Diabetes Association (prediabetesRADAR) and the International 

Expert Committee of 2009 (prediabetesRIECR).  

Outcomes: Change in mGFR, hyperfiltration defined as mGFR > 90P

th
P percentile adjusted for 

age, gender, weight and height, and high normal ACR (ACR > 10 mg/g) at follow-up. 

Measurements: GFR was measured with iohexol clearance. 

Results: Baseline fasting glucose, HbAR1cR, and both definitions of prediabetes were predictors 

of a higher mGFR at follow-up and of a lower annual mGFR decline in multivariable-adjusted 

regression analyses. Participants with prediabetesRIECR had an odds ratio (95% CI) of 
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hyperfiltration of 1.95 (1.20-3.17) and high normal ACR of 1.83 (1.04-3.22) at follow-up. We 

adjusted for cardiovascular risk factors including ambulatory blood pressure at baseline and 

change in use of anti-hypertensive medication between baseline and follow-up. 

Limitations: Only middle-aged Caucasians participated. There is no consensus on how to 

define glomerular hyperfiltration. 

Conclusions: Our findings imply an independent role of prediabetes in development of 

hyperfiltration and albuminuria. Prediabetes might be a target for early treatment to prevent 

chronic kidney disease in chronic hyperglycemia.      

 

 

Diabetes-related kidney disease accounts for almost 50% of patients with end-stage renal 

disease in the developed world.P

1
P Even with optimal treatment of new-onset diabetes, a large 

percentage of patients will develop chronic kidney disease (CKD). Prediabetes is 

approximately twice as common as diabetes, affecting 20-35% of adults, and it progresses to 

diabetes in 45-50% of individuals after 10 years.PP

2,3 Prediabetes has been associated with CKD 

in cross-sectional studies,4,5 but whether prediabetes predicts CKD in persons who do not 

develop diabetes is unclear. Longitudinal studies did not find prediabetes to be an independent 

risk factor for albuminuria or incident CKD, defined as an estimated GFR < 60 ml/min/1.73 

m2.6-11 If prediabetes is a causal factor in the development of kidney disease, this condition 

would represent a window of opportunity to treat kidney damage at an early and reversible 

stage.   

Recently, we reported that prediabetes, defined as impaired fasting glucose, was associated 

with an abnormally high GFR, or glomerular hyperfiltration, in a cross-sectional study of the 
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general population.12 Glomerular hyperfiltration has been established as an early 

manifestation of diabetic nephropathy and has been shown to predict albuminuria and GFR 

decline in diabetes.13,14 Hyperfiltration is also a possible common causal pathway for other 

causes of CKD; however, the longitudinal association between prediabetes and hyperfiltration 

remains to be established. Previous longitudinal studies assessing the association between 

prediabetes and kidney function used estimated GFR (eGFR) to assess changes in GFR. eGFR 

has low precision, particularly in the higher range of GFR,15 and is expected to have low 

sensitivity for detecting hyperfiltration and GFR changes in the normal range. eGFR is also 

biased by non-GFR-related factors such as obesity, smoking, hyperglycemia and non-

traditional cardiovascular risk factors.16-18 

We hypothesized that prediabetes is a risk factor for renal hyperfiltration and high normal 

ACR during an intermediate follow-up time point. To overcome the limitations of using 

eGFR, we measured GFR (mGFR) by iohexol clearance at baseline in 2007-2009 and at 

follow-up in 2013-2015 in a general population cohort without self-reported diabetes, 

cardiovascular disease (CVD) or kidney disease at baseline. To study the independent role of 

prediabetes, we excluded persons diagnosed with diabetes at baseline and at follow-up.  

 

RESEARCH DESIGN AND METHODS  

Study participants  

The Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6) was conducted from October 

2007 to September 2009 as a sub-study of the population-based sixth Tromsø study (Tromsø 

6) in the municipality of Tromsø, northern Norway.19 The RENIS-T6 included a 

representative sample of 1627 persons aged 50-62 years from the general population without 

self-reported kidney disease, myocardial infarction, stroke or diabetes. A description of the 
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study participants and enrollment in the RENIS-T6 is shown in Figure 1 and has been 

previously published in detail.19 

The RENIS Follow-Up Study (RENIS-FU) was conducted from September 2013 to January 

2015. Seven persons had a possible adverse reaction to iohexol in the RENIS-T6, and 23 

persons died during the follow-up period. The remaining 1597 participants were invited to 

RENIS-FU, and 1368 (86%) gave a positive response, but 39 did not make their appointments 

and 5 subjects could not be examined because the antecubital vein could not be cannulated. 

Accordingly, a total of 1324 (83%) patients were examined in RENIS-FU (Figure 1). In the 

present investigation, an additional 25 persons with diabetes (fasting glucose >= 126 mg/dL 

(7.0 mmol/l) and/or glycosylated hemoglobin (HbAR1cR) >= 6.5%) at baseline were excluded. 

The study was approved by the Norwegian Data Inspectorate and the Regional Ethics 

Committee of Northern Norway (2012/122/REK nord). All subjects provided written 

informed consent.  

Data Collection and Measurements 

Both RENIS-T6 and RENIS-FU were conducted at the Clinical Research Unit at the 

University Hospital of Northern Norway with a standardized procedure and the same staff 

responsible for all measurements. Participants met between 8:00 and 10:00 a.m. after an 

overnight fast, including abstinence from tobacco.   

Iohexol clearance 

GFR was measured at baseline and follow-up using single-sample plasma clearance of 

iohexol. Participants were instructed to avoid large meals with meat and non-steroid anti-

inflammatory drugs during the 2 days prior to the investigation. A Teflon catheter was placed 

in an antecubital vein. Five milliliters of iohexol (Omnipaque, 300 mg/ml, Amersham Health, 
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London, U.K.) was injected, and the syringe was weighed before and after injection. The 

venous catheter was flushed with 30 ml of isotonic saline. After a calculated time period 

based on each person’s estimated GFR, the iohexol blood sample was drawn from the same 

catheter. The serum iohexol concentration was measured by high-performance liquid 

chromatography, as described by Nilsson-Ehle.20 The analytical coefficient of variation 

during the study period was 3% in RENIS-T6 and 3.1% in RENIS-FU. To explore the 

possibility of a drift in the method between baseline and follow-up we reanalyzed iohexol and 

recalculated mGFR in a random sample of 105 serum samples frozen at -80°C at baseline. 

There was a mean difference of 2.28 ml/min/1.73 m2 between the original baseline measure 

and the repeated baseline measure taken from the thawed sample. An adjustment was made by 

adding this difference to the baseline measurements. mGFR was calculated as described by 

Jacobsson.21 Details regarding the iohexol clearance measurements are published elsewhere.19 

Other measurements including albumin-creatinine ratio (ACR) 

Serum creatinine analyses were performed using a standardized enzymatic assay, and cystatin 

C was measured by particle-enhanced turbidimetric immunoassay as previously described.18 

GFR was estimated from creatinine or cystatin C using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI).15 

Three samples of first-void morning spot urine were collected on separate days at baseline 

and at follow-up. Urinary albumin excretion and urinary creatinine were measured with 

commercial kits as described previously.22 The albumin-creatinine ratio (ACR) in mg/mmol 

was calculated for each urine-specimen, and the mean ACR value was used in the analyses. 

High normal ACR was defined as ACR > 10 mg/g (>1.13 mg/mmol) as suggested by the 

CKD Prognosis Consortium because this level has been associated with increased risks of 

CVD, CKD and mortality.23,24 
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HbAR1cR was measured using liquid chromatography (Variant II instrument, Bio-Rad 

Laboratories, Hercules, CA, USA), and fasting serum glucose was measured on the Modular 

model P800 (Roche Diagnostics). The insulin samples were measured with an ELISA kit 

(DRG Instruments, Marburg, Germany) as previously reported.12 

Ambulatory blood pressure (aBP) recordings were started after the baseline iohexol clearance 

measurement (RENIS-T6) and continued for 24 hours; the method is described in a previous 

publication.25 

Definition of prediabetes and hyperfiltration 

We defined prediabetes according to fasting glucose (FG) and HbAR1cR to capture both fasting 

hyperglycemia and part of non-fasting hyperglycemia, both of which may represent distinct 

pathophysiological abnormalities.2 Prediabetes was defined as FG 110-125 mg/dL (6.1-6.9 

mmol/l) and/or HbAR1cR 6.0-6.4% according to the classification of “high risk state of 

developing diabetes” by the International Expert Committee of 2009 (prediabetesRIECR) or as FG 

100-125 mg/dL (5.6-6.9 mmol/l) and/or HbAR1cR 5.7-6.4% according to the American Diabetes 

Association criteria (prediabetesRADAR).26,27 In addition we made a separate group for those with 

prediabetesRADAR and not prediabetesRIECR (prediabetesR ADAnotIEC; RFG 100-109 mg/dL (5.6-6.0 

mmol/l) and/or HbAR1cR 5.7-5.9%). Diabetes was defined as FG ≥ 126 mg/dL (7.0 mmol/l) or 

HbAR1C R≥ 6.5% or the use of anti-diabetic medication or self-reported diabetes. 

Normoglycemia was defined as FG < 100 mg/dL (5.6 mmol/l) and HbAR1CR < 5.7%.  

Glomerular hyperfiltration was defined as an absolute GFR above the 90th percentile after 

adjusting for gender, age, weight and height, as previously described.12 

25 
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Information regarding health status, medications, smoking status and physical exercise were 

obtained using a questionnaire. Smoking status was divided into current smokers and non-

smokers. Physically active participants were defined as those performing hard physical 

exercise for > 1 h/wk and/or light physical exercise for > 3 h/wk.16 Obesity was defined as 

body mass index (BMI) ≥ 30 kg/m2. 

Statistical analysis 

Mean (SD) or median (IQR) values (for skewed distributions) were calculated for participants 

by glycemic groups at baseline. Linear trends across the three groups; normoglycemia, 

prediabetesRADAnotIECR and prediabetesRIECR were tested by ANOVA for mean values, quantile 

regression for median values and logistic regression for dichotomous variables.  

The associations between baseline fasting glucose (FG), HbAR1cR, prediabetes and mGFR 

expressed in ml/min/1.73 m2 and as ml/min at follow-up were assessed by multiple linear 

regression analysis. We adjusted for the following known or possible confounders: in model 

1, we adjusted for age, gender and baseline use angiotensin converting enzyme inhibitors 

(ACEi) or angiotensin receptor blockers (ARB); in model 2, we also adjusted for BMI, 

smoking, daytime systolic aBP, fasting insulin levels, physical exercise and ACR; and in 

model 3, we adjusted for all of the preceding covariates, as well as baseline mGFR and 

change in use of antihypertensive medication and change in FG from baseline to follow-up.  

Predictors of annual change in absolute mGFR (ΔGFRa in ml/min/year) were analyzed with 

ΔGFRa as the dependent variable and using the same independent and adjusting variables as 

described above, including an adjustment for baseline mGFR in all of the models. In these 

analyses, we also adjusted for a change in body weight because body weight is correlated with 
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absolute GFR (model 3). ΔGFRa was calculated by subtracting mGFR (ml/min) at baseline 

from mGFR (ml/min) at follow-up and dividing the difference by follow-up time in years.  

To investigate a possible non-linear association between FG or HbAR1cR and ΔGFRa or mGFR 

at follow-up, we used multiple fractional polynomial regression analyses, adjusting for the 

same variables as in model 3 of the linear regression analyses.  

 

Multiple logistic regression models were used to determine the odds ratios for hyperfiltration,  

mGFR < 60 ml/min/1.73 m2 or ACR > 10 mg/g (>1.1 mg/mmol) at follow-up associated with 

baseline FG, HbAR1cR and prediabetes status, adjusted for the same variables described in the 3 

models above. (In model 3 with ACR > 10 mg/g at follow-up as dependent variable we 

adjusted for baseline ACR instead of baseline mGFR). We tested for interactions between all 

independent variables and gender in all of the linear and logistic regression models.  

Stata software version 13 (Stata Corp., College Station, Texas, USA) was used for statistical 

analysis. Statistical significance was set at P < 0.05.  

 

RESULTS 

Thirty-eight individuals had diabetes at follow-up (RENIS-FU); these persons were excluded. 

Accordingly, 1261 non-diabetic persons with a GFR measurement at baseline and at follow-

up remained for analyses (Figure 1). The median (interquartile range) observation time was 

5.6 years (5.2-6.0). 

Comparisons of the baseline characteristic of those included in the follow-up study (N=1299) 

and those lost to follow-up (N=295) are shown in Supplemental Table 1. Except for the 

percentage of current smokers (18 vs. 28, p<0.001), the differences were small.  
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A total of 595 participants had prediabetesRADAR (FG 5.6-6.9 mmol/l and/or HbAR1cR 5.7-6.4%), 

and 169 participants had prediabetesRIECR (FG 6.1-6.9 mmol/l and/or HbAR1cR 6.0-6.4%) at 

baseline. Baseline characteristics of the participants by glycemic status and in total are shown 

in Table 1. Age, night-time systolic aBP, BMI, insulin levels and triglyceride levels increased 

across the prediabetic groups while HDL-cholesterol levels, the proportion of females and the 

proportion performing physical exercise decreased across the groups. Baseline mGFR, but not 

eGFR from creatinine or cystatin C, was higher in the prediabetic groups. The distribution of 

mGFR and ACR (log-transformed) at baseline, and of change in mGFR and ACR (log-

transformed) between baseline and follow-up is shown in Figure 2. 

The association between baseline glycemic status and mGFR at follow-up 

Higher baseline FG and HbAR1cR values and prediabetes according to either definition were 

associated with a higher mGFR at follow-up, adjusted for age, sex and use of ACE-i or ARB, 

systolic aBP, BMI, smoking status, fasting insulin levels, physical exercise and ACR (Table 

2, model 2). One percentage unit higher HbAR1cR at baseline was associated with a 3.8 

ml/min/1.73 m2 (95% CI, 1.4-6.1) higher mGFR at follow-up. FG, HbAR1cR and prediabetesRIECR, 

but not prediabetesRADAR, remained predictors of an increased mGFR after adjusting for 

baseline mGFR, change in glucose and change in anti-hypertensive medication from baseline 

to follow-up (model 3). Similar results but with larger estimates were obtained when we used 

absolute GFR at follow up (without BSA indexing) as dependent variable (Supplemental 

Table 2) 

The mean annual change in mGFR (ΔGFRa in ml/min/year) was -1.0 (95% CI: -1.1 to -0.9) 

ml/min/year for persons without prediabetes and -0.7 (95% CI: -1.0 to 0.4) ml/min/year for 

those with prediabetesRIECR after adjusting for sex, age and baseline mGFR. One unit higher 

baseline FG and HbAR1cR values were associated with a 0.39 (95% CI: 0.08-0.69) ml/min/year 
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and 0.40 (95% CI: 0.04-0.76) ml/min/year slower mGFR decline (higher ΔGFRa), 

respectively, in the multivariable adjusted regression model (Figure 3 and Supplemental Table 

3).  

There were no significant non-linear associations between FG or HbAR1cR and ΔGFRa or 

mGFR at follow-up (Supplemental Figure 1a and 1b). 

Glycemic status and odds ratio for hyperfiltration, CKD and high normal ACR 

The adjusted odds ratios for incident hyperfiltration and for CKD, defined as mGFR < 60 

ml/min/1.73 m2 at follow-up, are shown in Table 3. Higher baseline FG and HbAR1cR values and 

prediabetesRIECR at baseline were associated with increased odds of hyperfiltration at follow-up 

(model 2, Table 3). HbAR1cR and prediabetesRIECR remained significant predictors of 

hyperfiltration after an additional adjustment for baseline hyperfiltration status (model 3). 

High HbAR1cR and prediabetesRADAR were associated with reduced odds of having an mGFR < 60 

ml/min/1.73 m2 at follow-up in all models.  R  

Eighty-eight persons had an ACR > 10 mg/g at follow-up. High baseline FG and 

prediabetesRIECR, butR Rnot HbAR1cR and prediabetesRADAR, were associated with an increased odds for 

high normal ACR (Table 4). Baseline FG remained a significant predictor of high normal 

ACR in all models, whereas prediabetesRIECR was only borderline significant after adjusting for 

baseline ACR (model 3, Table 4). Persons with prediabetes defined by only an impaired 

fasting glucose (FG: 110-125 mg/dL) (N = 75) had an OR of 3.2 (95% CI: 1.4-7.3) for a high 

normal ACR in the fully adjusted model. 

Finally, we repeated all main analyses after adjusting for night-time instead of daytime aBP 

and after including the 38 persons with diabetes at follow-up. The results were essentially 

similar as in table 2, 3 and 4. The results were also similar without adjustment for the 2.28 
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ml/min/1.73 m2 drift in the method for iohexol clearance measurement between baseline and 

follow-up. 

 

DISCUSSION 

In this cohort from a general middle-aged population without diabetes, we found that different 

measures of borderline hyperglycemia were predictors of higher mGFR and hyperfiltration 

after nearly 6 years follow up. FG and prediabetesRIEC Rwere also risk factors for increased 

ACR.   

To our knowledge, no prior study of the general population has assessed the longitudinal 

association between prediabetes and mGFR. In a study of Pima Indians, Nelson et al. found 

that mGFR (given as absolute GFR in ml/min) increased during 4 years follow up in 28 

persons with an impaired glucose tolerance at baseline.28 However, the mean baseline BMI in 

these individuals was 39 kg/m2, and the increase in mGFR was most prominent in the 12 

persons who developed diabetes at follow-up.28 Moreover, the results were not statistically 

significant when the change in mGFR was scaled by body surface area (ml/min/1.73 m2).29 

Several previous population-based studies with 4-8 years of follow up reported that 

prediabetes did not predict CKD or decreased GFR when using eGFR after adjusting for 

cardiovascular risk factors.6-9 Schottker et al. concluded that prediabetes is not a likely a cause 

for the development of kidney disease.7 In contrast, we found that prediabetes predicted 

higher mGFR and hyperfiltration after almost six years of follow up. If hyperfiltration in 

prediabetes represents a maladaptive response to metabolic changes, as indicated by animal 

models and in studies of patients with diabetes,13,14,30 the process of kidney damage is likely 

to start early in the course of chronic hyperglycemia. The current finding of an increased risk 
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of developing elevated ACR for those with a higher baseline FG or prediabetesRIECR  after 

excluding persons with diabetes at baseline and follow-up supports this theory.   

Hyperfiltration combined with hyperglycemia has been found to induce podocyte stress, 

podocyte injury, and cell apoptosis in animal models.31 However, it remains unclear whether 

hyperfiltration itself is harmful and what the long-term consequences of hyperfiltration are in 

prediabetes. We did not find that prediabetes increased the odds ratio of having a mGFR < 60 

ml/min/1.73 m2 after 5.6 years. In contrast, HbAR1cR and prediabetesRADAR were associated with a 

reduced risk of mGFR < 60 ml/min/1.73 m2, most likely due to the hyperfiltration effect 

(Table 3). A study of mGFR with a longer follow up time is needed to address whether 

hyperfiltration in prediabetes predicts overt CKD. Interestingly, a meta-analysis of diabetes-

related hyperfiltration studies that used mGFR, and also a recent prospective study of mGFR 

in 600 hypertensive patients with type 2 diabetes, found an increased hazard ratio of 

developing diabetes nephropathy in those with hyperfiltration at baseline.13,32 However, 

hyperfiltration did not predict diabetes nephropathy in studies that estimated the GFR by 

creatinine or cystatin C.33,34 Compared to persons with normoglycemia, our study found a 

significantly higher mGFR, but not a higher eGFRcre or eGFRcys, in persons with 

prediabetes at baseline. This difference may be due to the low precision of the equations used 

to estimate GFR in the normal range of GFR. Furthermore, it has recently been shown that 

risk factors such as fasting glucose, obesity and smoking, as well as non-traditional CVD risk 

factors, influence cystatin C- and creatinine-based eGFR after accounting for mGFR.16-18 

Accordingly, eGFR should not be used in studies of hyperfiltration and may also be 

inadequate in examining the association between glucose and early GFR decline. 

Furthermore, the current finding of a longitudinal association between borderline 
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hyperglycemia and increased mGFR or hyperfiltration has consequences for the use of GFR 

decline rate as an outcome in observational studies and clinical trials.  

We found that high baseline FG and prediabetesRIECR were associated with increased odds for 

high normal ACR. A few longitudinal investigations have reported the association between 

prediabetes or non-diabetic hyperglycemia and the risk of albuminuria; the results are 

conflicting.9,10,35 Most of these studies did not adjust for other cardiovascular risk factors, but 

in two population-based studies in persons without diabetes, increased FG in men and HbAR1cR 

in both genders were found to be independent predictors of increased urinary albumin 

excretion.22,36 However, neither of these studies excluded persons with diabetes at follow-up. 

Because elevated ACR may be a result of hypertension and early nephropathy, we adjusted 

for baseline ambulatory BP, use of antihypertensive medication and change in 

antihypertensive medication during follow-up, and obtained similar results. We also adjusted 

for fasting insulin levels because reduced insulin sensitivity has been associated with greater 

risk of albuminuria.37 Our results are noteworthy because ACR > 10 mg/g has been found to 

predict CVD, CKD and death in general-population cohorts.23,24 Importantly, potential 

interventions like diet and physical activity promotion programs in prediabetes have been 

shown to reduces glucose levels.38 Furthermore, physical exercise have been shown to reduce 

the odds ratio of hyperfiltration and to modify the effect of fasting glucose on GFR.39 In 

addition, new treatment options in hyperglycemia like the Sodium/Glucose Cotransporter 2 

(SGLT2) inhibitors may prevent hyperfiltration independently of the glucose lowering 

effect.40 However, a possible renoprotective effect of physical exercise and SGLT2 inhibition 

needs to been confirmed.  

Our study has some limitations, including the following: only middle-aged Caucasians 

participated, limiting generalizability to other groups; furthermore, we did not perform a 
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glucose tolerance test to assess non-fasting hyperglycemia. However, we combined fasting 

glucose and HbAR1cR and used accepted definitions of prediabetes.26,27 There is no consensus on 

how to define glomerular hyperfiltration in population studies.  Hyperfiltration at a whole 

kidney level is likely to reflect hyperfiltration at the glomerular level, but is also influenced by 

the number of nephrons. Since nephron numbers varies between individuals and by sex and 

age, we used an adjusted definition of hyperfiltration as reported in detail previously.12 

A major strength of this study is that GFR was measured by iohexol clearance at baseline and 

follow-up in a large cohort from the general population. To our knowledge, RENIS is the only 

longitudinal study measuring GFR in the general population. FG and HbAR1cR were measured 

twice, and we excluded those persons who developed diabetes at follow-up. Urine was 

collected on three separate days both at baseline and at follow-up, and albumin and creatinine 

were assessed in unfrozen specimens. Finally, we were able to control for several possible 

confounders, including ambulatory BP at baseline and changes in antihypertensive medication 

during follow-up.  

 In conclusion, we found that prediabetes was an independent risk factor for hyperfiltration 

and increased ACR during 5.6 years follow up in a representative cohort of the general 

population. Our findings suggest an independent role of prediabetes in CKD development and 

may in part explain the negative results of previous longitudinal studies of prediabetes that 

defined CKD based on eGFR only. Studies with longer follow up times, preferably with 

measured GFR and/or with albuminuria as outcomes, are needed to establish whether non-

diabetic hyperglycemia is an independent predictor of CKD. If so, prediabetes might be a 

target for early treatment to prevent the increasing burden of CKD in diabetes.    

 

 

15 

 



ACKNOWLEDGMENTS  

We would like to thank Britt-Ann Winter Eilertsen, Bjørg Skog Høgset, Saskia van Heusden, 

and the rest of the staff at the Clinical Research Unit, University Hospital of North Norway 

(UNN), for their assistance in planning the study, performing the procedures, and collecting 

data according to the GCP standard. We also thank Harald Strand and the staff at the 

Department of Laboratory Medicine (UNN) for HPLC analyses of iohexol, and Inger Sperstad 

and Ingrid Dorthea Sandstad (Clinical Research Centre, UNN) for database support.  

Contributions: research idea and study design: BOE, TM, UDM; data acquisition: BOE, TM, 

UDM, JS; data analysis/interpretation: TM, BOE, JS, VTNS, MDS, TW; statistical analysis: 

TM, BOE, TW; supervision or mentorship: BOE, TGJ, MDS. Each author contributed 

important intellectual content during manuscript drafting or revision and accepts 

accountability for the overall work by ensuring that questions pertaining to the accuracy or 

integrity of any portion of the work are appropriately investigated and resolved. TM and BOE 

take responsibility that this study has been reported honestly, accurately, and transparently; 

that no important aspects of the study have been omitted, and that any discrepancies from the 

study as planned have been explained. 

 

Support and Financial Disclosure Declaration 

The RENIS-FU was funded by the Northern Norway Regional Health Authority (SFP 1100-

13) with additional grants from Boehringer-Ingelheim (1235.104 IIS). The funders did not 

have any role in study design; collection, analysis, and interpretation of data; writing the 

report; and the decision to submit the report for publication. None of the authors have 

declared any other conflicts of interest. 

16 

 



 

REFERENCES: 

 

1. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA 
Consensus Conference. Am J Kidney Dis. Oct 2014;64(4):510-533. 

2. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for 
diabetes development. Lancet. Jun 16 2012;379(9833):2279-2290. 

3. Morris DH, Khunti K, Achana F, et al. Progression rates from HbA1c 6.0-6.4% and other 
prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. Jul 
2013;56(7):1489-1493. 

4. Zhou Y, Echouffo-Tcheugui JB, Gu JJ, et al. Prevalence of chronic kidney disease across levels 
of glycemia among adults in Pudong New Area, Shanghai, China. BMC Nephrol. 2013;14:253. 

5. Plantinga LC, Crews DC, Coresh J, et al. Prevalence of chronic kidney disease in US adults with 
undiagnosed diabetes or prediabetes. Clin.J.Am.Soc.Nephrol. 4/2010 2010;5(4):673-682. 

6. Fox CS, Larson MG, Leip EP, Meigs JB, Wilson PW, Levy D. Glycemic status and development 
of kidney disease: the Framingham Heart Study. Diabetes Care. 10/2005 2005;28(10):2436-
2440. 

7. Schottker B, Brenner H, Koenig W, Muller H, Rothenbacher D. Prognostic association of 
HbA1c and fasting plasma glucose with reduced kidney function in subjects with and without 
diabetes mellitus. Results from a population-based cohort study from Germany. Preventive 
medicine. Nov 2013;57(5):596-600. 

8. Selvin E, Ning Y, Steffes MW, et al. Glycated hemoglobin and the risk of kidney disease and 
retinopathy in adults with and without diabetes. Diabetes. Jan 2011;60(1):298-305. 

9. Sun F, Tao Q, Zhan S. Metabolic syndrome and the development of chronic kidney disease 
among 118 924 non-diabetic Taiwanese in a retrospective cohort. Nephrology (Carlton, Vic.). 
Feb 2010;15(1):84-92. 

10. Lucove J, Vupputuri S, Heiss G, North K, Russell M. Metabolic syndrome and the development 
of CKD in American Indians: the Strong Heart Study. Am J Kidney Dis. Jan 2008;51(1):21-28. 

11. Tozawa M, Iseki C, Tokashiki K, et al. Metabolic syndrome and risk of developing chronic 
kidney disease in Japanese adults. Hypertens Res. Oct 2007;30(10):937-943. 

12. Melsom T, Mathisen UD, Ingebretsen OC, et al. Impaired fasting glucose is associated with 
renal hyperfiltration in the general population. Diabetes Care. 7/2011 2011;34(7):1546-1551. 

13. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration 
associated with the future risk of developing diabetic nephropathy? A meta-analysis. 
Diabetologia. 4/2009 2009;52(4):691-697. 

14. Moriya T, Tsuchiya A, Okizaki SI, Hayashi A, Tanaka K, Shichiri M. Glomerular hyperfiltration 
and increased glomerular filtration surface are associated with renal function decline in 
normo- and microalbuminuric type 2 diabetes. Kidney Int. 12/7/2011 2011. 

15. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum 
creatinine and cystatin C. N.Engl.J.Med. 7/5/2012 2012;367(1):20-29. 

16. Mathisen UD, Melsom T, Ingebretsen OC, et al. Estimated GFR Associates with Cardiovascular 
Risk Factors Independently of Measured GFR. J.Am.Soc.Nephrol. 5/2011 2011;22(5):927-937. 

17. Rule AD, Bailey KR, Lieske JC, Peyser PA, Turner ST. Estimating the glomerular filtration rate 
from serum creatinine is better than from cystatin C for evaluating risk factors associated 
with chronic kidney disease. Kidney Int. 6/2013 2013;83(6):1169-1176. 

18. Melsom T, Fuskevag OM, Mathisen UD, et al. Estimated GFR Is Biased by Non-Traditional 
Cardiovascular Risk Factors. Am J Nephrol. 2015;41(1):7-15. 

17 

 



19. Eriksen BO, Mathisen UD, Melsom T, et al. Cystatin C is not a better estimator of GFR than 
plasma creatinine in the general population. Kidney Int. 12/2010 2010;78(12):1305-1311. 

20. Nilsson-Ehle P. Iohexol clearance for the determination of glomerular filtration rate: 15 
years´ experience in clinical practice. eJIFCC. 2006 2006;13(2). 

21. Jacobsson L. A method for the calculation of renal clearance based on a single plasma 
sample. Clin.Physiol. 8/1983 1983;3(4):297-305. 

22. Solbu MD, Kronborg J, Eriksen BO, Jenssen TG, Toft I. Cardiovascular risk-factors predict 
progression of urinary albumin-excretion in a general, non-diabetic population: a gender-
specific follow-up study. Atherosclerosis. 12/2008 2008;201(2):398-406. 

23. Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic 
kidney disease: a KDIGO Controversies Conference report. Kidney Int. Jul 2011;80(1):17-28. 

24. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration 
rate and albuminuria with all-cause and cardiovascular mortality in general population 
cohorts: a collaborative meta-analysis. Lancet. Jun 12 2010;375(9731):2073-2081. 

25. Mathisen UD, Melsom T, Ingebretsen OC, et al. Ambulatory blood pressure is associated with 
measured glomerular filtration rate in the general middle-aged population. Journal of 
hypertension. Mar 2012;30(3):497-504. 

26. Nathan D. International Expert Committee report on the role of the A1C assay in the 
diagnosis of diabetes. Diabetes Care. 7/2009 2009;32(7):1327-1334. 

27. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes 
Care. Jan 2014;37 Suppl 1:S81-90. 

28. Nelson RG, Bennett PH, Beck GJ, et al. Development and progression of renal disease in Pima 
Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. 
N.Engl.J.Med. 11/28/1996 1996;335(22):1636-1642. 

29. Nelson RG, Tan M, Beck GJ, et al. Changing glomerular filtration with progression from 
impaired glucose tolerance to Type II diabetes mellitus. Diabetologia. 1/1999 1999;42(1):90-
93. 

30. Kriz W, Lemley KV. A Potential Role for Mechanical Forces in the Detachment of Podocytes 
and the Progression of CKD. Journal of the American Society of Nephrology. February 1, 2015 
2015;26(2):258-269. 

31. Lewko B, Stepinski J. Hyperglycemia and mechanical stress: targeting the renal podocyte. 
J.Cell Physiol. 11/2009 2009;221(2):288-295. 

32. Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular Hyperfiltration and Renal Disease 
Progression in Type 2 Diabetes. Diabetes Care. 7/6/2012 2012. 

33. Ficociello LH, Perkins BA, Roshan B, et al. Renal hyperfiltration and the development of 
microalbuminuria in type 1 diabetes. Diabetes Care. 5/2009 2009;32(5):889-893. 

34. Thomas MC, Moran JL, Harjutsalo V, et al. Hyperfiltration in type 1 diabetes: does it exist and 
does it matter for nephropathy? Diabetologia. 5/2012 2012;55(5):1505-1513. 

35. Watanabe H, Obata H, Watanabe T, Sasaki S, Nagai K, Aizawa Y. Metabolic syndrome and risk 
of development of chronic kidney disease: the Niigata preventive medicine study. 
Diabetes/metabolism research and reviews. Jan 2010;26(1):26-32. 

36. Brantsma AH, Atthobari J, Bakker SJ, De Zeeuw D, de Jong PE, Gansevoort RT. What predicts 
progression and regression of urinary albumin excretion in the nondiabetic population? 
J.Am.Soc.Nephrol. 2/2007 2007;18(2):637-645. 

37. Pilz S, Rutters F, Nijpels G, et al. Insulin Sensitivity and Albuminuria: The RISC Study. Diabetes 
Care. June 1, 2014 2014;37(6):1597-1603. 

38. Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined Diet and 
Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at 
Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Ann 
Intern Med. Jul 14 2015. 

18 

 



39. Melsom T, Mathisen UD, Eilertsen BAW, et al. Physical Exercise, Fasting Glucose, and Renal 
Hyperfiltration in the General Population: The Renal Iohexol Clearance Survey in Tromsø 6 
(RENIS-T6). Clinical Journal of the American Society of Nephrology. 11/7/2012 
2012;7(11):1801-1810. 

40. De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R. Sodium/Glucose 
Cotransporter 2 Inhibitors and Prevention of Diabetic Nephropathy: Targeting the Renal 
Tubule in Diabetes. American Journal of Kidney Diseases. (0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
19 

 



Table 1. Baseline characteristics of participants by glycemic status 

Please see enclosed table 1 on separate page. 

 

Table 2. The association between glycemic variables and mGFR at follow-up analyzed by 
  multiple linear regression 

 
                Model 1   Model 2    Model 3  

 
(ml/min/     (ml/min/     (ml/min/    

  1.73 m2) 95 %   CI   1.73 m2) 95 %   CI   1.73 m2) 95 %   CI 
Baseline fasting glucose, per mmol/L 2.93 (1.27 - 4.60) 

 
3.71 (1.90 - 5.52) 

 
1.89 (0.36 - 3.41) 

Baseline Hba1c, per % unit 3.77 (1.51 - 6.02) 
 

3.78 (1.43 - 6.13) 
 

2.14 (0.36 - 3.92) 
PrediabetesRADA Rat baseline R,R yes/no 2.42 (0.94 - 3.90) 

 
2.57 (1.04 - 4.10) 

 
0.90 (-0.27 - 2.06) 

PrediabetesRIEC Rat baselineR, Ryes/no 3.36 (1.21 - 5.52) 
 

3.49 (1.28 - 5.71) 
 

2.24 (0.56 - 3.92) 
Mean fasting glucose*, per mmol/L 4.14 (2.34 - 5.94) 

 
5.24 (3.27 - 7.22) 

 
2.04 (0.53 - 3.56) 

Mean HbA1c†, per % unit 4.34 (1.76 - 6.91)   4.36 (1.66 - 7.01)   2.38 (0.34 - 4.43) 
 

Abbreviations: mGFR, measured GFR; ADA, American Diabetes Association, IEC, International Expert Committee of 2009. 
Model 1: Adjusted for baseline age, sex and baseline use of ACEi or Angiotensin receptor blocker (ARB). Model 2: As in 

 model 1 and adjusted for baseline BMI, daytime systolic aBP, smoking, fasting insulin, physical exercise and ACR. Model 3:  
As in model 2 and adjusted for basline GFR, change in fasting glucose and use of antihypertensive medication  

  including ACEi or ARB from baseline to follow-up. *Mean fasting glucose: (baseline FG + FG at follow up)/2.  Estimate 
 in model 3; not adjusted for change in FG. †Mean HbA1c: (baseline HbA1c + HbA1c at follow up)/2. Estimate in model 3;  

not adjusted for change in FG.  
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Table 3. Odds ratio (OR) for hyperfiltration and for mGFR < 60 ml/min/1.73 m2 at follow-up  
 analyzed by multiple logistic regression 

 
              Model 1 (N=1261)   Model 2 (N=1252)   Model 3 (N=1252)  

  OR 95 %   CI   OR 95 %   CI   OR 95 %   CI 
OR for hyperfiltration (N=126): 

              Baseline fasting glucose, per mmol/L 1.79 (1.19 - 2.70) 
 

1.88 (1.20 - 2.96) 
 

1.70 (0.98 - 2.96) 
Baseline Hba1c, per % unit 2.42 (1.33 - 4.40) 

 
2.27 (1.23 - 4.21) 

 
2.25 (1.14 - 4.39) 

PrediabetesRADA Rat baseline R,R yes/no 1.47 (1.01 - 2.15) 
 

1.42 (0.96 - 2.10) 
 

1.30 (0.84 - 2.00) 
PrediabetesRIEC Rat baselineR, Ryes/no 2.03 (1.27 - 3.25) 

 
1.95 (1.20 - 3.17) 

 
1.79 (1.03 - 3.12) 

OR for mGFR<60 ml/min/1.73 m2 (N=33): 
              Fasting glucose, per mmol/L 0.41 (0.17 - 0.98) 

 
0.46 (0.18 - 1.20) 

 
0.71 (0.22 - 2.29) 

Hba1c, per % unit 0.25 (0.09 - 0.75) 
 

0.24 (0.08 - 0.78) 
 

0.23 (0.06 - 0.92) 
PrediabetesRADA ,R yes/no 0.25 (0.10 - 0.60) 

 
0.29 (0.12 - 0.71) 

 
0.29 (0.10 - 0.79) 

PrediabetesRIEC , Ryes/no 0.39 (0.09 - 1.69)   0.50 (0.11 - 2.27)   0.53 (0.09 - 3.22) 
 

Abbreviations: mGFR, measured GFR; ADA, American Diabetes Association, IEC, International Expert Committee of 2009. 
Model 1: Adjusted for baseline age, sex, and use of ACEi or Angiotensin receptor blocker (ARB). Model 2: As in model 1 
and adjusted for baseline BMI, daytime systolic aBP, BMI, smoking, fasting insulin, physical exercise and ACR (9 missing 
 values in total). Model 3: As in model 2 and adjusted for hyperfiltration status or GFR at baseline, change in fasting  
glucose and use of anti-hypertensive medication including ACEi or ARB from baseline to follow-up.  
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Table 4. Odds ratios for high normal ACR* at follow-up analyzed by multiple logistic regression.  
 
  Model 1 (N=1261)   Model 2 (N=1256)   Model 3 (N=1252) 
OR for high normal ACR* (N=88) OR 95 %   CI   OR 95 %   CI   OR 95 %   CI 
Baseline fasting glucose, per mmol/L 1.91 (1.18 - 3.10) 

 
2.10 (1.20 - 3.54) 

 
2.20 (1.21 - 3.90) 

Baseline HbA1c, per % unit 0.88 (0.44 - 1.72) 
 

0.71 (0.36 - 1.43) 
 

0.66 (0.32 - 1.32) 

PrediabetesRADA Rat baseline R,R yes/no 1.39 (0.89 - 2.16) 
 

1.32 (0.84 - 2.09) 
 

1.24 (0.77 - 2.02) 

PrediabetesRIEC Rat baselineR,  Ryes/no 1.92 (1.11 - 3.32)   1.83 (1.04 - 3.22)   1.71 (0.93 - 3.16) 
 

Abbreviations: ACR, albumin-creatinin ratio. *ACR>1.1 mg/mmol (>10 mg/g). Model 1: Adjusted for baseline age, 
sex, and use of ACEi or Angiotensin receptor blocker (ARB). Model 2: As in model 1 and adjusted for baseline BMI, 
daytime systolic aBP, smoking, fasting insulin and physical exercise (5 missing values in total). Model 3: As in model 2  
and adjusted for ACR at baseline, and for change in fasting glucose and use of anti-hypertensive medication including  
ACEi or ARB from baseline to follow-up (9 missing values in total). 
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Titles and figure legends: 

Table 1. Baseline characteristics of participants by glycemic status 

Table 2. The association between glycemic variables and mGFR at follow-up analyzed by 

multiple linear regression 

Table 3. Odds ratio for hyperfiltration and for GFR < 60 ml/min/1.73 m2 at follow-up 

analyzed by multiple logistic regression 

Table 4. Odds ratios for high normal ACR* at follow-up analyzed by multiple logistic 

regression 

Figure 1. Inclusion of subjects in the Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-

T6) and the follow-up study (RENIS-FU) 

Figure 2. Frequency histogram of mGFR and log-transformed ACR at baseline, and of change 

in mGFR and ACR between baseline and follow-up. Change in mGFR: mGFR at follow-up – 

mGFR at baseline. Change in ACR: log-transformed ACR at follow-up – log-transformed 

ACR at baseline. 

 Figure 3. The association between baseline fasting glucose (FG) and change in mGFR per 

year (ml/min/year). The marginal effect of FG on annual change in mGFR, adjusted for sex 

and baseline age, mGFR, use of ACEi or angiotensin receptor blocker (ARB), daytime 

ambulatory BP, BMI, smoking, fasting insulin, physical exercise, albumin-creatinine ratio and 

for change in FG and use of anti-hypertensive medication including ACEi or ARB from 

baseline to follow-up. Horizontal lines are 95% confidence interval. 

 

Supplemental titles and figure legends 

Supplemental Table 1. Baseline characteristics of persons included in the follow-up study 

and those lost to follow-up. 

Supplemental Table 2. The association between glycemic variables and absolute mGFR (not 

indexed by BSA) at follow-up analyzed by multiple linear regression. 
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Supplemental Table 3. Associations between glycemic variables and annual change in mGFR 

analyzed by multiple linear regression. 

Supplemental Figure 1. The associations between a) baseline fasting glucose and mGFR at 

follow-up and b) baseline HbA1c and mGFR at follow-up, by multiple fractional 

polynomials. Adjusted for sex and baseline age, use of ACEi or angiotensin receptor blocker 

(ARB), daytime ambulatory BP, BMI, smoking, fasting insulin, physical exercise, albumin-

creatinine ratio, mGFR and for change in fasting glucose and use of anti-hypertensive 

medication including ACEi or ARB from baseline to follow-up. 
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Table 1. Baseline characteristics of participants by glycemic status 

          PrediabetesRADA PrediabetesRIEC Total 
 

Normoglycemia  PrediabetesRADAnotIECR  PrediabetesRIECR  P value* 
  No (N= 666) Yes (N=595) No (N=1092) Yes (N=169) (N=1261) 

 
(N= 666) (N=426) (N= 169)   

Age (y) 57.5 ± 3.9 58.5 ± 3.8 57.8 ± 3.9 58.9 ± 3.6 57.9 ± 3.9 
 

57.5 ± 3.9 58.3 ± 3.9 58.9 ± 3.6 < 0.001 

Male (%) 42 58 47 64 50 
 

42 55 64 < 0.001 

Body mass index (kg/mP

2
P) 26.3 ± 3.6 27.8 ± 3.7 26.7 ± 3.7 28.6 ± 3.7 27.0 ± 3.7 

 
26.3 ± 3.6 27.5 ± 3.7 28.6 ± 3.7 < 0.001 

Obese (%) 14 26 18 33 20 
 

14 23 33 < 0.001 

Current smoking (%) 18 20 19 22 19 
 

18 19 22 0.3 

Daytime systolic aBP (mmHg) 128.7 ± 13.3 130.7 ± 12.6 129.5 ± 13.1 130.8 ± 12.7 129.7 ± 13.0 
 

128.7 ± 13.3 130.7 ± 12.6 130.8 ± 12.7 0.06 

Daytime diastolic aBP (mmHg) 81.5 ± 8.8 82.6 ± 8.7 82.0 ± 8.6 82.1 ± 9.5 82.0 ± 8.7 
 

81.5 ± 8.8 82.8 ± 8.3 82.1 ± 9.5 0.4 

Night-time systolic aBP (mmHg) 109.7 ± 12.8 111.3 ± 11.1 110.2 ± 12.1 112.2 ± 11.9 110.5 ± 12.1 
 

109.7 ± 12.8 111.0 ± 10.8 112.2 ± 11.9 0.02 

Night-time diastolic aBP (mmHg) 65.7 ± 8.7 67.0 ± 8.2 66.2 ± 8.4 66.9 ± 9.2 66.3 ± 8.5 
 

65.7 ± 8.7 67.0 ± 7.8 66.9 ± 9.2 0.1 

ACEi or ARB use (%) 8 11 9 12 10 
 

8 11 12 0.07 

Fasting glucose (mmol/L)  5.1 (4.9-5.3) 5.6 (5.3-5.9) 5.2 (5.0-5.5) 5.9 (5.4-6.2) 5.3 (5.0-5.6) 
 

5.1 (4.9-5.3) 5.6 (5.2-5.8) 5.9 (5.4-6.2) < 0.001 

Hemoglobin A1c level (% unit) 5.4 (5.2-5.5) 5.7 (5.6-5.9) 5.5 (5.3-5.7) 6.0 (5.7-6.1) 5.5 (5.3-5.7) 
 

5.4 (5.2-5.5) 5.7 (5.5-5.8) 6.0 (5.7-6.1) < 0.001 

Triglycerides (mmol/L) 1.0 (0.7-1.3) 1.1 (0.8-1.5) 1.0 (0.7-1.4) 1.2 (0.8-1.7) 1.0 (0.7-1.4) 
 

1.0 (0.7-1.3) 1.1 (0.8-1.5) 1.2 (0.8-1.7) < 0.001 

HDL-Cholesterol (mmol/L) 1.60 ± 0.43 1.49 ± 0.40 1.56 ± 0.42 1.44 ± 0.38 1.55 ± 0.42 
 

1.60 ± 0.43 1.51 ± 0.40 1.44 ± 0.38 < 0.001 

Albumin-creatinine ratio (mg/mmol)  0.20 (0.10-0.52) 0.23 (0.10-0.53) 0.21 (0.10-0.52) 0.25 (0.10-0.54) 0.22 (0.10-0.52) 
 

0.20 (0.10-0.52) 0.21 (0.10-0.51) 0.25 (0.10-0.54) 0.3 

Leisure time physical exercise (%) 49 41 47 36 45 
 

49 44 36 0.002 

Fasting insulin (μU/ml) 7.5 (5.3-10.4) 9.4 (6.7-13.7) 8.0 (5.9-11.3) 10.1 (7.0-15.7) 8.3 (6.1-12.0) 
 

7.5 (5.3-10.4) 9.2 (6.7-13.1) 10.1 (7.0-15.7) < 0.001 

mGFR† (ml/min/1.73m²) 89.9 ± 14.3 92.9 ± 13.9 90.9 ± 14.1 93.9 ± 14.4 91.3 ± 14.2 
 

89.9 ± 14.3 92.5 ± 13.8 93.9 ± 14.4 0.001 

eGFRcre‡ (ml/min/1.73m²) 94.9 ± 9.6 94.7 ± 9.1 94.8 ± 9.3 94.7 ± 9.7 94.8 ± 9.3 
 

94.9 ± 9.6 94.6 ± 8.8 94.7 ± 9.7 0.8 

eGFRcys‡P

 
P(ml/min/1.73m²) 106.0 ± 12.3 105.5 ± 11.8 105.8 ± 12.0 105.2±  12.9 105.8 ± 12.1 

 
106.0 ± 12.3 105.6 ± 11.4 105.2±  12.9 0.5 

eGFRcrecys‡ (ml/min/1.73m²) 103.4 ± 11.5 102.8 ± 10.7 103.2 ± 11.1 102.8 ± 12.0 103.1 ± 11.2 
 

103.4 ± 11.5 102.8 ± 10.2 102.8 ± 12.0 0.6 
 
 
 
 

 



Abbreviations: aBP, ambulatory blood pressure; ARB, angiotensin receptor blocker; GFR, glomerular filtration rate. Data are as means (SD) or medians (interquartile range), in case of  

skewed data distribution. There were thirteen missing values for aBP, for daytime systolic aBP these were replaced with office systolic BP.  
  PrediabetesRADAR; fasting glucose (FG) 5.6-6.9 mmol/L and/or HbA1c 5.7-6.4%; according to American Diabetes Association.P

27 
PPrediabetesRIECR; FG 6.1-6-9 mmol/L and/or HbA1c 6.0-6.4%;  

according to the international expert committee of 2009.P

26 
P PrediabetesRADAnotIECR; prediabetesRADAR, but not including prediabetesRIECR (FG 5.6-6.0 mmol/L and/or HbA1c 5.7-5.9%). 

  Normoglycemia; FG<5.6 mmol/L and/or HbA1c < 5.7%. *P-value for linear trend across the groups; normoglycemia, PrediabetesRADAnotIECR and PrediabetesRIECR . 
   †GFR measured by single-sample iohexol clearance. ‡GFR estimated by the CKD-EPI equation based on creatinine, cystatin C or both.P

15 
   Conversion factors for units: Serum LDL-and HDL-cholesterol in mmol/L to mg/dL, /0.0259; serum triglycerides mmol/Lto mg/dL, /88.5; serum glucose mmol/l to mg/dL, /0.0555, 

 urine albumin-creatinine ratio mg/mmol to mg/g, /0.113. 
        



 



 

 

 

Figure 2 
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Supplemental Figure S1 a) and b) 
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