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Abstract

To a matroidM with n edges, we associate the so-called facet ide@¥l) C
k([x1,...,X%], generated by monomials corresponding to basels!.ofWe
show that wherM is a graph, the Betti numbers related to Mggraded
minimal free resolution of# (M) are determined by the Betti numbers
related to the blocks oM. Similarly, we show that the higher weight
hierarchy ofM is determined by the weight hierarchies of the blocks, as
well. Drawing on these results, we show that wihris the cycle matroid

of a cactus graph, the Betti numbers determine the higheghweierarchy

— and vice versa. Finally, we demonstrate by way of countengles that
this fails to hold for outerplanar graphs in general.
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1 Introduction

By matroid we shall, throughout, be referring to a finite matroid. SoNet
(E(M),.#(M)) be a matroid, with edge set and set of independen&sts and
(M), respectively. We denote the set of basé&V). Whenevero C E(M),
then(o,{INo:1 € #(M)}) is of course itself a matroid. We shall denote this
matroid simply ar as well. In other words, when dealing with a subsdt @),
we shall throughout be consideringais a submatroid

Several of the invariants associated to a matroid are foonbet natural
generalizations of corresponding invariants for codesplgs or simplicial
complexes. It is natural to study the interplay between soeariants, and how
invariants of substructures determine the correspondivayiants of the “global”
structure. One such set of invariants is thgher weighthierarchy

di(M) =min{|t|: T C E(M),|T| —rk(T) =i},

where rK o) denotes denotes the rank®f (That is: the cardinality of its largest
independent subset.) Note thalufis the vectorial matroid derived from the parity
check matrix of a linear code, then the higher weight§laire equal to the higher
Hamming-weights of the code.

Another set of invariants is the so-called Betti numberspsehalgebraic
nature requires us to establish a certain terminology. &+ k|x1,...,Xn] be
the polynomial ring im variables over the fielet, and letm = (X1,X2,- -+ , Xn). A

complex

X:~-~<—Xj_1<m Xi<

overSis said to beaninimalwhenever ingg C mX;_4 for eachi.
A minimal (ungraded) free resolutioof an S moduleN, is a minimal left
complex

0 Fo v FL ¢+ 2 R
whereF, = S% for somef; € Np, and which is exact everywhere except fofi
whereFy/im ¢ = N.
If N is No- or Nj-graded, we may fornNg- or Ng-graded minimal free
resolutionsin which case

F=S-r)Pr@s(—rp)fzg...o9(—r)ku

for some integers;, or

F = @ S(_a)Bi.a,

n
aeNj
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respectively. In both of these latter cases we also regh@dbundary maps to
be degree-preserving. The global Betti numbfg#g of an ungraded resolution,
the No-graded Betti number§f; j}, and theNg-graded Betti number§; .} are

all invariants ofN, as any two (graded/ungraded) minimal free resolutions are
isomorphic. ChoosingN to be certainSmodules connected to the matradw
these Betti numbers become matroidal invariants as wellre4uently studied
example is whem is the so-callecstanley-Reisner ideal/yy C S, generated by
monomials corresponding to minimal non-faces (circuifshe matroid. In[[3],

by the first and third author, one clarifies the connectiomvben higher weights
and the Stanley-Reisner ideal.

Alternatively, one might study théacet ideal.# (M) of S generated by
monomials corresponding to basesMf This ideal is investigated in e.g./[2].
In this paper we shall be inspired by graphic matroids a¥¢ @nd ungraded)
minimal free resolutions of their facet ideals. Generalizthe concepts of-2
connectedand ablock familiar from the theory of graphs, we find that thig-
graded Betti numbers of a matroid are determined byNigraded Betti numbers
of each of its blocks. This is done in Sectldn 3, where we givererete and easy
method for computing the Betti numbers of any matroid givenBetti numbers
of each of its blocks.

A straightforward proof of the fact tha¥ (M) is actually the Stanley-Reisner
ideal of the Alexander dual of the matroid dualMfis found in Sectioql2, for the
benefit of the reader. As a result of this connection, miniraablutions of facet
ideals of matroids (from now ommatroidalfacet ideals) are particularly simple.

The Betti numbers of the facet ideal always give full infotima about the
face numbers of the dual matroM’, and therefore the first Hamming weight
d; of M’ (See Remark]2 below). From a coding-theoretical point oivyiis
is in itself a reason for being interested in Betti numbers ohatroidal facet
ideal; for wheneveM’ corresponds to linear dependence amongst columns of
a generator matrix for some code, the Betti numbers thusrdete the code’s
minimum distance.

Complementing the result obtained in Secfibn 3, we dematesin Sectioh 4
that the higher weights of a matroid are also determinedny easily computed
from, the higher weights of each of its blocks.

A natural and clearly related question is whether the Batithbers of a
matroidal facet ideal determine the higher weight hienarehthe matroid. As
can be seenin e.q./[3], this is not true in general. One conileelier imagine that
they do so for particularly well-behaved subclasses. lddas an application of
our main result, we show in Sectidh 5 that for graphic mas@tmming from
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cactus graphs, which are outerplanar, the higher weighttuley and the ordered
set ofNg-graded Betti numbers associated to the facet ideal do trditermine
each other.

In Sectiori_6, we demonstrate, by way of counterexamplesthisfails to be
the case for outerplanar graphs in general. This is an itidicaf how far the
Betti numbers are from determining the full weight hiergraingeneral.

2 The matroidal facet ideal

In this section we define the facet ideal of a simplicial cogpland identify
it as the Stanley-Reisner ideal of another simplicial cawrpt arising from the
original one through a sequence of duality operations., Tinisirn, implies that a
matroidal facet ideal has so callkdear resolution over any field.

Let k denote a field, and It andM be an (abstract) simplicial complex and
a matroid, respectively, both dn] = {1,...,n}. (Recall that every matroid is
also a simplicial complex.) Far C [n], let X" denote the square-free monomial
in k[xy,...,Xn] that contains the factog if and only ifi € 7. TheStanley-Reisner
ideal of A is the (square-free) monomial ideal

Ian=x':1¢h).

More particular to our studies shall be the following idealo treated in
e.g. [2]:

Definition 2.1. Thefacet idealof A, is
Z (D) = (x? : gis afacet ofp).

Note that both the Stanley-Reisner ideal and the facet ideakquare-free
and monomial, and that in the case of a matroid, the gensrafdhe facet ideal
correspond to bases of the matroid.

Definition 2.2. The Alexander dual\* of A, is
A ={Ten:1¢A},
while thedual matroid M of M is
BM)={B:BcBM),

wheref = [n] . B.



Proposition 1. Let M be a matroid, thet¥ (M) = _Z ).

Proof. By definition, we have

(M) = {B:B¢ _# (M)}, whichis equal to
= N {m:ue _g(M)}.

The Stanley-Reisner ideal f1')* then, is

Ly = xFipe 7(M)).

Note that B B
(xH:pe (M) C(xH:ueBM)),

for if e 7 (M), thenu c B for somef € #(M’), such that3 c [ and
xH C (xP).
Since clearly

(XHipe (M) D (xH:peBM)),

we thus have B

/(M’)* = <Xﬁ[.1€/(|\/|/>>
(xH:ueBM))
(x?:0¢e€ BM))
= Z(M).

U U

Lemma 2.1. The facet ideal of a matroid M has linear mininTdy-graded free
resolution. That is, a minimal free resolution of the form

0 S(—N)™eS(—(r+1)™ - S(—(r+1))" «0,
where r=rk(M) and | = |[E(M)| —rk(M).

Proof. This follows from [1, Theorem 4 and Proposition 7] in comkioa with
Propositior 1. O O

Remark.Let fi(A) denote the number of faces of dimensioof the simplicial
complexA. From [1, formula (1)] and J1, Theorem 4] it follows that thetB



numbers of the facet ideal of a matroM, in virtue of being the Stanley-
Reisner ideal ofM’)*, determine the face numbefg§M’) of the dual matroid
M’. Consequently, these Betti numbers deterndiji®1’) as well, since

(M) = min{|1|: T C E(M), |T| — ki (T) = 1} = min{i L <'I‘) }

In particular, whemM is the vectorial matroid derived from the parity check matri
of a linear codeC we thus see that the Betti numbers associatéd ttetermine
the minimum distance of the dual co@¢. Through Wei duality then, they also
give someinformation about the higher weights Gfitself — seel[7].

3 Blocks and Betti numbers

Since every graphic matroid is isomorphic to the cycle mdtwésome connected
graph, there is no real parallel for matroids to the notioa @fconnected graph.
In order to describe a property of matroids similar to thabeing 2-connected
(for graphs), one introduces the relatidoon E(M), wheree & f if eithere= f or
if there is some circuit containing bodand f. For a proof that this constitutes an
equivalence relation oB(M) see [6, Proposition 4.1.2]. The equivalence classes
of & are referred to as the (connected) componentslacksof M. Whenever
E(M) is either empty or itself a block is said to beconnected

Now letS= k[Xy,...,Xy|. f m<nandl is an ideal in

k[X1,...,Xm] = S,
we letSl denote th&S-ideal generated by the same generatolls adat is, if

I :<gl7"'7gk> CS’?

then
Sl={s101+ - +%0:S € S}.

Proposition 2. Let By, B, ..., B; be the blocks of a matroid M. Then
F (M) = (S7(B1)) (S7(Bp)) --- (S7 (By)).

Proof. Observe that both# (M) and (S#(B1))(SZ(By))---(S#(B)) are
square-free monomial ideals. Furthermore, the generatnglefining each of
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these ideals are both minimal with respect to cardinalityis well known that
every monomial ideal has anique minimal set of monomial generators; see
e.g.[4, p. 4, Lemmal.2].

Letx? be a generator fo# (M). In other words: Let be a basis foM. Then
o0 N B;j does not contain a circuit, and is thus independei ifNow assume that
Bi # 0NBj, and letec B; \ (0 NB;). Sinceo is a basisg Uewill contain a circuit.
Furthermore, sincB; is an equivalence class, this circuit will be containe@;in
In other words,o N B; is a basis foB;. Similarly, if B = o N B; then, since any
block with more than two elements must contain a circuit, weassarily have
that|B;| = 1 and thus thatr N B; is a basis foB;.

Sinceo = |t_, 0N B;, we conclude that

X0 — XU}:laﬂBi _ _ljxmBi c (S@(Bl)) (ng(Bz)) (S@(B[))

Conversely, lef]l_, x7 = x"i-17 be a generator foISZ (B1)) (S# (Bo)) -+ (SZ(By)).
ThenlJ!_, 1; contains some basis of M. Forifec E(M) ~ (U'_; 7)), theneu 1
contains a circuit for somie- which implies thaeu (}!_, 7i) contains this circuit
as well. Consequently,

XUt € (x9) € Z (M),
and this concludes our proof. O O

Proposition 2 is key to the proof of Theordm13.1, stated beloMe point
out that ifm<nandl C S = Kk|xg,...,Xn] is an ideal with minimal graded free
resolution

0 < Fo <2 F L R S 0,
whereF = @', S(-ri ), then

s As2q

0 +— S®gky +— S®gqF1 < Swgh +—— 0

is a minimal graded free resolution of tBemoduleSxg I, with the same grading
as the original one.
Proof of the following proposition is deferred until the emitthis section.

Theorem 3.1.Let M be a matroid, and let S k([xy, ..., Xgwy]- Let B, By, ..., B
be the blocks of M. For each<i <t, let

04 §(—r)"™" - §(—(ri+1)™ e+ 8= (ri+1))"" <o,
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be a (linear)Np-graded minimal free resolution of%(B;). If

I=l1+la+---+l,
r=ri+ro+---+ry,
and
B= >  NMuiNye-Nug
Ug +Up+---+U =l
then

0 S(—N)P e s(—(r+1) o s(—(r+1))P 0
is @ minimal free resolution of* (M).
We shall make use of the following shorthand:
k[X] :=k[X1,...,Xm],
k(Y] :=k[y1,...,Yn],
S:=k[X1,...,Xm,Y1,-- -, Yn|-

Note that if M is a k[X]-module andN is a k[Y]-module, thek-algebra
isomorphism
S= k{X] @y k[Y]

givesM @, N the structure of as-module through f ® g)(m&n) = fm® gn.
Lemma 3.2. Let M be ak[X]-module, and let N be &[Y]-module. Then
(S@Kx M) ®@s(S@iyN) =M @K N
as S-modules.
Proof.
(S@xx|M) @5 (S®ipy N) = M @y x) (k[X] @1 k[Y]) @5y N = M@ N.

U
U

Lemma 3.3. Under the same conditions as in Lemimad 3.2:
Torg (S®yx M, S®yy N) = M &g N,

and
TOI'iS(S(X)]k[)q M,S@]km N) =0
fori> 1.



Proof. The first statement is immediate from Lemial3.2. For the skcon
statement, let

0 Po Py = R 0,

be a projectivek[X]-resolution ofM. SinceS is free as ak|[X]-module, the
following is a projectiveSresolution ofV @y x) S.

0 +—— Po®1k[x]s — P1®]k[x}8<_ cee 44— H®Ik[X]S +— 0.

Tensoring withS®y,yv) N, we obtain the following complex ove(M QK[x] S) ®s
(S®]k[y] N) :

0 «— (P®yx S ®s(S@iyN) +— (PLOKx) S) @s(S@y|N) «— -+

= (AeKx S) ®@s(SeyyN) «— 0.
According to Lemma_3]2, this complex is isomorphic to

0 +— P®xN +— Pi®rN < R®xN +—— 0,

which is a complex oveM @i N = (S@yx] M) ®s (S®yy)N). ButN is free as
ak-module, so this latter sequence is exact (except fé} iny N). O O

Next, let

F:0 < Fo« 2 F « 2 . 2 R 0
be a minimal free resolution of tf@moduleS&yx; M, and let

G0 GG P B e,

be a minimal free resolution @y y; N. Extending the functofe ®se) to the
translation category of complexes, as describedlin [5], tain a left complex
F @59 over (Segx) M) ® (S®y| N), for which, by definition:

(ﬁ ®Sg)i = @ Fu®sGy,

U+v=i

and whose boundary mags: (% ®s¥), — (F ®s¥), , are given by
0

di( Cl..lV ): (u®1g,)(Cw) + (=1)"(1r, ® Yv) (Cuv)-




Lemma 3.4. The left complex

0 +— (Fws¥), <& (Fos?), «2 ... & (F@s¥),  +— O

constitutes a minimal free resolution of the S-module
(S®KxM) ®s (S@y N).

Proof. By definition of the torsion functor, as given in e.dl. [5, p1},2ve have
Hi(F ®s9) = Tor, ((S®u<[x1 M) ® (S®yy, N)),

which in combination with Lemma&_3.3 implies that our reswmntis free.
Minimality follows from minimality of . and¥. O O

The aboveéKunneth type”result clearly extends, by way of induction, to any
finite number of modules (of the specified kind).

Corollary 1. In the above notation, let S k[X;;Xp;...; %], and, for each
1<i<t, let M; denote ak[X;]-module. If the S-modulec§,x; Mi has minimal
free resolution

0 < Fo < Fi1 i 0,
then the S-module
(S®Kkixy M1) ®s (S®1(x) M2) @5+ - @5 (S®1c[x) Mt)
has minimal free resolution
0 <« Po Py < Attty < 0,

where
A= @ <F1,u1 ®sku, ®s- - Vs Ft7ut> :

Up+Up+-- U =i

Lemma 3.5. Let | € k[X] and JC k[Y] be ideals. Then
(S®ux 1) ®s (S J) = (S1)(SJ)

as S-modules.
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Proof. In light of Lemma[3.2 it suffices to establigll) (SJ) = | @y J, which is
easily seen to be true. O O

We now have all we need to prove Theorleni 3.1.

of Theorenl 3]1The result now follows from combining Lemrha B.5 and Corol-
lary[d, together with our initial observation that

F (M) = (S7(B1))(S7(B2)) - (S7(B)).

U U

4 The higher weights

Let M be a matroid. In this section we shall draw on a result fromwa8]ch
implies that the higher weights of a matroid are determingdcértain non-
redundantsets of cycles. It shall follow immediately from this thaethigher
weights of the blocks determine those of the matroid itself.

Recall thatC(M) denotes the set of circuits bf.

Definition 4.1. A subsetz of C(M) is said to benon-redundantf for all u €

we have
U rcUr
TE(INH) TeX

Leto C E(M).

Definition 4.2. Thedegree of non-redundanof o, is

dego)=max{ne Npo:1; Cofor1<j<nand{ty,...,Tn} is non-redundart

Lemma4.1.

|o| —rk(o) =deq o).
Proof. This is [3, Proposition 1]. O O
Lemma 4.2.

di(o) =min{|T11U---UT|:jCcoforl<j<iand{ty,..., T} is non-redundart

Proof. Immediate from Lemm@a4l.1. 0 O
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Proposition 3. Let By, ..., B; be the blocks of M. With the conventiofn-d O, we

have t t
di(M) :min{ Z d; (Bj) : Z Kj :i}.
j=1 j

Proof. By induction on the numbet of blocks; the induction step being an
immediate consequence of Lemmal4.2. O O

5 Cactus graphs

This section concerns a class of graphs normally referre toactus graphs or
cacti. Applying the results obtained in Sectidn 3, we shoat fbr cactus graphs
with a known number of loops the set of higher weights and tder@d multiset

of Betti numbers determine each other. As we shall see latethis result does
not extend to the superclass of outerplanar graphs.

Definition 5.1. A cactus graph is a finite, connected graph with the prop&st t
each block is either a cycle or a single edge.

Or equivalently: A finite, connected graph with the propehsgt no pair of
distinct cycles share an edge. Whené&¥eCo, ..., C; denote the cycles of a cactus
graph, we let; denote the length ;. We assume that; <np <--- <n.

A couple of initial observations: First, since the facetadef a graphic
matroid hagdinear Np-graded minimal free resolution over any field, the ungraded
and No-graded minimal free resolutions of (M(G)) have the same Betti
numbers. We shall therefore consider only ungraded minfneal resolutions
throughout this section.

Secondly, observe that@y is a cycle of lengtim, andE is a graph containing
only one edge (possibly a loop), théﬁ(M(Cm)) has minimal (ungraded) free
resolution

0 gn S {Lp pA— |

while # (M(E)) has minimal free resolution

0 S« 0.

In combination with Theorerm 3.1 it follows that the minimadéé resolution of
Z (M(Cn)) is equal to the minimal free resolution &f (M(CnUE)). This, in
turn, implies that ifG is a cactus graph whose cycles &gC,,...,C, then
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the minimal free resolution of? (M(G)) is equal to the minimal free resolution
of Z(M(CLUCU---UG)). In other words: the one-edge blocks have no
impact upon the Betti numbers of a cactus graph. This fadt etantually, in
combination with Theorerin 3.1, enable us to demonstratefdihat cactus graph
G, the global Betti numbers of a minimal free resolution®{M(G)) determine
the higher weightqd;} of M(G). Note that the converse of this is rather trivial
since for cactus graphs we have

i
di= ) nj,
i ,-Zl j

which implies that the higher weights determine the lengthsy, ..., n; of the
cycles ofG — and therefore also the global Betti numbergb(fM (G)) (according
to the above remarks).

Note also that, withEg| = n, theS-ideal.# (M(G)) has a naturalNj-grading
— and thus also aNg-graded minimal free resolution

0 Fo Fy - A 0,
whereR = @acn S(—a)A=. In that case, we clearly have

1, if oisabasis oM(G)

BQO - .
0, elsewise,

which implies that théj-graded Betti numbers @ny graphdeterminenot only

the higher weights, but the matrdidi(G) in its entirety.
We now return to the ungraded case.

Theorem 5.1. Let G be a cactus graph containing>t 1 cycles G,Cy,...,C,
with G of length i, and let S= k|xq, .. .,X‘EG|]. Let g; denote the i-th elementary
symmetrical polynomial in thein.. ., ng, that is:

oo=1
Or=nNg+N2+---+Tk

0j = Nk

g - Nk
1<k <ko <. <kj<t

|
O't:nlnz...nt_
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Then the facet ideal of M5) has ungraded minimal free resolution

0 « L SLE: Sk 0,

=3 (i)

Proof. Clearly, any block ofM(G) is either a single edge or a circuit. By the
above comments then, the minimal free resolutionZofM(G)) is equal to the
minimal free resolution oj?(M(ClLJCzU - UQ)). From Theorem 3]1 then, we
see thatZ (M(G)) has minimal free resolution

where

0 « L SLE: Sk 0,
where
B = (Mnv=2) ). (1)
| {ZC{1727Z.7t}Z|Z—i} VQ ! vl;lz '

This implies that for each—i < j <t, every possible monomig-1)t- M, Nk« + N
with 1 <k; <kp <--- <kj <tis asummand of; considered as a monomial in
ni,no,---,ny and furthermore, that all these monomials occur the same numbe
of times as summands. We infer that

|

=S (-Dlc_joj,
,-; jOt-

for somec_j € N.
In order to determine;_j, first observe that the number BfC {1,2,...,t}
with |Z| =i is (). For each such, the number of monomials in

VI;L(nV Y vl;lz A

of degreet — j is (; ;). Since the number of terms iat_; is ("

i), we conclude

that the coefficient o _j in B is (—1)1(%@ = (-DI(Z)). O O

Theorem 5.2. The higher weight hierarchyd;} associated to the cycle matroid
of a loop-free cactus graph G is determined by the Betti nusniethe ungraded
minimal free resolution of the facet ided (M(G)) of G.
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Proof. Recall that, by assumption, we hamg < n; <--- < n;. The identity
d = Z'j:l nj, valid for cactus graphs, clearly implies that the length#y, ...,
determine the higher weights. It will therefore suffice tawhthat the Betti
numbers determine the multisgt; }.

It is immediately clear froni{1) that the numteof cycles ofG is determined
by the Betti numbers, seeing as it is equal to the length ofntir@mal free
resolution. Furthermore, we notice that for eackhe coefficient ofo;_; in [
is (—1)". In particular we haves; = By, which implies that (knowing all th@s)

the equation
= <ﬁ' 2 1)J<i—j)a”>

enables us to obtain the remainiag recursively.
Now, the fact that the polynomial

Xt . O-lxt—l + O-th—z et (_l>to-t

has the unique multiset of roofs,n,, ..., ny} implies that ifH is a cactus graph
containing cycles of lengtin, my, ..., mg, and if the Betti numbers dfl are equal
to those ofG, then certainlys =t and

{ng,ng,...,ne} = {mg,mp, ..., m}
as multisets, which was what we needed to prove. O O

Note that ifG contains loops we no longer have that the nuntlzércycles in
G is equal to the number of non-zero Betti numbers, and theeapmof fails in
that case. If, on the other hand, the numbbefloops isknown then

B=B1==B-141=0,

and the proof goes through unchanged.

Remark.The cycle matroid of a single cycle of lengths of course the uniform
matroidU (n— 1,n) where a set of bases consists of all edge subsets of catginali
n— 1. For a cactus graph withcycles of lengths, - -- ,n; we see that there are
niny - - - Ny spanning trees each consisting of (the set correspondimg-td. edges
from each cycle, and in addition all edges not contained yncgcle. The edges
not contained in any cycle have no significance for the gl&mdti numberss;,

so for simplicity we disregard them. Hence we may view thdeeyatroid of the
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cactus graph as the multi-uniform matrdid= U ((ny — 1,n1),---, (N — 1,ny)),
whose ground set is

([ x {1}) U (Ing] < {2}) U~~~ U ([ x {t})

and whose independent sets are all the sets of the form

(Iny x {1}) U (Iny x {2}) U--- U (In x {t}),

wherel, denotes a subset pf] whose cardinality is less than or equal(ip—1).
The looked-for Betti numbers of this matroidal facet ideahan principle be
found by using Hochster’s formula (which is valid over anydig):

Bi,a = ﬁ|0|—i—1(V0)7

whereV is the Alexander dual of the matroid dualldf

We do not rule out that applying Hochster’s formula in sucheg wight give
an alternative proof of Theorem 5.1, but so far we have not ladée to perform
the necessary calculations.

6 Counterexamples for outerplanar graphs

As mentioned in the introduction, cactus graphs are speaostances of
outerplanargraphs:

Definition 6.1. A finite graph is said to beuterplanarif it has an embedding in
the plane in which every vertex lies on the boundary of theofatce.

In this section we present counterexamples showing thatofaerplanar
graphs in general, the Betti numbers may fail to determimehtigher weights
—and vice versa. Note that these counterexamples are thHieshumes possible

(in terms of number of edges).
.\j

First, consider

and
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The ordered set of Betti numbers related to these graphsjanea¢ent since both
facet ideals hav&lp-graded minimal free resolution

0 «— 3(_9)393 i S(—10)1459 « 8(_11)2187 «

— §(—12)1092  §(—13)%%8  §(-14)% + 0.
Their respective weight hierarchies, however {@g,8,11, 14} and{3,6,9,11 14},
which shows how the Betti numbers may fail to determine tiglaéii weight hier-

archy. In both cased; = 2 for the dual matroid — see Remark 2.
Next, consider

and
The graphic matroids related to these two outerplanar grdyalve equivalent
weight hierarchies, namely3,6,9}. However, theNp-graded minimal free
resolutions

0+ §—6)* 572 5-8)0«g5-980

and
0+ S(—6)3 « §(—7)8  5—8)%+ g—-9)1° 0

of .#7 (M(G3)) and.Z (M(Gy)), respectively, show that the higher weights fail to
determine the Betti numbers for this particular pair.
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