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Abstract

The Swift-Hohenberg equation is an evolution equation which can produce a
Pattern, or a pattern-like picture, to be more precise. For example, it could be
used to model some simple natural patterns, like stripes and rolls that one may
observe in a Rayleigh-Bénard convection experiment.

But for any pattern formation obtained by an evolution equation to look
ideal, we have to consider this equation analytically on the infinite domain. If
one wants to calculate and present the results numerically, the problem has to
be discretized, the number of steps turns out to be finite then, and at some point
the lateral boundaries appear. These boundaries cause a backward reflection
and destroy the pattern eventually.

The idea of using a Perfectly Matched Layer in order to obtain some reflec-
tionless boundaries was suggested. It should let us model the evolution of an
ideal, infinite domain pattern, on an actual finite domain. From a set of numer-
ical methods the most suitable ones will be chosen. The MATLAB environment
is used to write a code to visualise the results.

Any investigations that could concern the fact of applying a Perfectly Matched
Layer to an evolution Swift-Hohenberg equation seem to be absolutely new and
yet untouched. This Thesis might be considered as a first step, as an introduction
to the problem and its possible solutions.
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1 Introduction

In this Master’s Thesis we are going to face the problem of applying a rel-
atively new approach of setting something that is called a Perfectly Matched
Layer (PML) on the plane, and making it work for an evolution equation, such
as a one-dimensional Swift-Hohenberg equation [1].

The main goal behind this investigation is to get a possibility to set abso-
lutely reflectionless boundaries and be able to place them anywhere on the plane
when proceeding with the numerical calculations of an evolution equation. This
invention should let us obtain an exact picture of a ‘Pattern’ that could be born
by an evolution equation on the infinite domain, originally. The picture that
won’t be affected by any unwanted appearing instabilities, that are the subject
of unavoidable reflections and disturbances from near the boundaries, while the
boundaries are always present when solving a problem numerically.

In the very beginning there will be a short but inspiring (as it seems to me)
review given about where and how the problem that we are about to study could
be found or applied later on. Also we will be able to see how the things at first
sight absolutely different in their nature could be considered as one, could be seen
and studied as one, just due to the similar Pattern they might have. We will
travel a bit in time to discover how incredibly exciting the history of a scientific
‘underground’ could be [2, 3], and we will take a ride through the Space, to go
from the micro- to the macro-scales [4] and find out that it all looks the same
sometimes, depending on how exactly you are going to watch at it.

As the process of doing this is absolutely new to us, and no previous exam-
ples of applying a Perfectly Matched Layer to an n-dimensional Swift-Hohenberg
equation were found, we are going to do this step by step with a maximum pos-
sible thoroughness. There are few numerical and analytical methods to choose
from [5], and in the very beginning it turns to be not quite obvious which one
would strike out the best.

We will start with the decently simplified problem of considering a reduced
Schrödinger equation on the plane where a mentioned above Perfectly Matched
Layer has been applied. But first of all we will have to talk about the way we
actually can set this ‘magic’ Layer. After choosing the best combination of the
methods for our reduced problem we will move further to a one-dimensional case
of a Swift-Hohenberg equation. But there will be also something more to learn
about this evolution equation and its specifics [1]. And as a start-point here we
will make it work with Periodic Boundaries first, which is basically not a new
thing [6], but could be very useful in our future calculations.

The Fourier Transform [7] will be used as a tool to check the correctness
of obtained results at some point. As well as a tool that provides a better
understanding of the undergoing processes when running an evolution equation
with an initial function introduced by a randomly distributed low-amplitude
signal, such as a White Noise [8].

We will be confronted with few difficulties and some of them (the most im-
portant ones, of course) are going to be solved pretty unexpectedly and just
amazingly wonderful in the very end of the work. Actually, exactly this thing
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will let us finally introduce a solution for the setted goal and show the way how
a one-dimensional Swift-Hohenberg evolution equation could be run on the plane
with a Perfectly Matched Layer (PML).

This work itself seems to be nothing but an introduction or the first step going
into the investigation of a way to solve an evolution Swift-Hohenberg equation
using a Perfectly Matched Layer set on the plane. We take our chance to do it
as clearly for an understanding and as carefully about the calculations as it is
possible. Because, we do realize that it might be used later by someone else to
proceed on a further exploration, that is doubtlessly about to bring something
new, awfully lot interesting and even more exciting.

***

It’s funny and strange how hard it could be sometimes to start something. It
always happens to me that I have to wait for a special moment, for a strong
feeling about doing a thing. And what I’m waiting for at this moment I can
compare, or I can even call it, the inspiration. Maybe the last one is the most
right word for it. Inspiration.

What do we need to do, what should we look for to catch this feeling of
an infusion? Moreover, should we really try our best to find it, turning up the
heavy stones all around us, or dipping down to the very bottom of the unknown?
Maybe the right way is just to wait? And when it comes, you will see and sense
it clearly, you will understand that you are already there, you are inside the
process! Probably, it would be hard to say, how it has happened that you have
started something, but would it really be important? Now, when you have it as
a part of you, when you do it with all your heart.

We need to be involved! We need to believe that we want to do this one
thing in particular. Of course, there could be a lot of these things to do at the
same time, but this one, it should be special, the unique one. It’s not so easy
sometimes to manage to build this strange belief and interest, and it’s hard for
me to say why. Most likely, because of the laziness and small futile fears. At the
same time it’s the most important step if you want to do something truly nice.
I don’t believe that without being involved with all your mind, heart and soul
you can do a beautiful thing.

That what I was looking for all the time. And I call it the inspiration. From
one hand because it comes suddenly, this feeling that you can start with the
project, from the other hand, because almost every time it starts with an idea.
An idea that could come from some random observation, an idea that you can
catch from a song, or even feel in a friend’s warm embrace.

And just after you got it, everything starts to evolve. It doesn’t go really
fast, it never goes fast. But it’s everywhere around you, as well as it’s always
inside of you. It becomes so significant and so naturally simple at the same
time, and you feel it as something essential in a way. The right thing to do now,
probably, take your time and try to go until the very end, until the wonderful
moment when you will understand that it’s finished, that you have learned and
understood everything you headed for. Certainly, there would be so many things
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that you will discover on that way, and if you wish you can go for them as well,
but later. Don’t think they matter anyhow at this moment of approaching to the
end. And it seems to be an exciting adventure, a breathtaking trip. You don’t
really remember how it has started, you are not sure any more what was there
in the middle. You just know that you have enjoyed it and it was never in vain.

2 Patterns

I catch a snowflake, it lies quietly on my mitten and doesn’t seem to melt away
immediately, it is so easy to do here far up on the North. I have heard that every
snowflake has its own unique way of flying down from huge clouds sitting and
resting there high above our heads. It falls out of one of those clouds and let the
wind and the gravity take it all the way through the changing air pressure and
the gradient of the temperatures. Sometimes some sudden warm stream of the
air will take it a bit up again, but then the endless or the momentary flying or
falling (no, it is definitely the flight) will take its place again [4].

Suddenly, a snowflake will land here or there, right on the top of someone’s
hat or in the huge pile of the other snowflakes at the roadside [9]. They say, if
you take a look at the snowflake and examine it carefully it is possible to tell
quite accurate about the conditions it went through. In other words, you can
tell what was going on with this tiny snowflake there in the air, so high above
your head, until the moment you have found it, or it has found you. But the
important and exciting thing now, is that you get a chance to observe its magical
Pattern and learn maybe everything that has happened to it before it has landed
down on your mitten.

If you have knowledge enough and a guess about what tools you have to use,
and not the last, if you have a passion for it, then we can be sure that you will
go for a try and tell us everything you’ve got to learn about its breathtaking
adventures and nature.

It seems to me, that with the Thesis, or could be with almost any other work
that one is going to do, it happens in a very similar way. It usually takes some
time before you are done with a chosen project. It takes your attention, takes
your strength, it might take you through the different distant or nearby places,
real or imaginary ones, to show something. But after all, when looking on the
completed work, looking carefully through all its ‘chapters’, one clearly sees, as
in the story with a snowflake, how it was made. At least, this is how it should
be, I guess. Otherwise, it means something is lost, something is missing, and
probably, will stay misunderstood.

Maybe, if the work misses this part, eventually the result won’t be shown and
exposed the way it should or could be. Most likely, it would be possible to see
the idea behind a single taken ‘chapter’ or some randomly appeared definition
on one of the pages, but something essentially common like the properties of a
water molecule that lies in the origin of every snowflake and its Pattern formation
could stay unnoticed. Meanwhile, everything would make no sense without it.
So, let the story begin.
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***

I should probably start from the very beginning. How I came to the problem
this work devoted to? I was very curious at one point about studying Astro-
physics (and, I still feel a great interest and desire to do it). I remember, the
first time when I asked if I could write my Master’s Thesis on some problems
of Astrophysics, I was told “no”, but it wasn’t that sharp and cold rejection. I
could feel that there was something interesting and prepared behind this, and
it seemed that everything had been decided already, without my involvement.
But, actually, only for a good reason, because it was something I would like to
do, even without knowing about it myself. Patterns, that what it’s going to be
about.

Figure 1: Pattern on the peel of a Melon.

Sounds exciting, isn’t it? I have never been thinking a lot about Patterns
before, I have never heard that much as well1. I remember only once, the first

1Though, since I had learned the topic of my Master Thesis, I started to pay more attention
(not on purpose) to the patterns everywhere around us. Thus, this one (Fig. 1) I saw on the
background of a Web-browser. But actually, there were more ‘romantic’ natural examples I
had found. Unfortunately, they do always happen quite unpredictably and hard to be caught
in the way to be visually presented later. While, this one just looked bright enough and easy
to get. But my memory will stay full of those wonderful patterns I have seen by now and hope
to find more.
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time when I learned something about patterns and about their formation was
in a documentary2 from BBC [3]. And what I saw there was called a Stirred
Belousov-Zhabotinsky reaction. The experiment showed that if you put two
specific chemical solutions in one glass and mix them, then the substance will
start changing the color periodically. Switching from white (clear) to yellow and
back! All our class was shocked, and it was even more fantastic when we saw
another example of this experiment when you observed some circles appearing
on the surface of one substance, growing and interfering in time. This one was
called a Belousov-Zhabotinsky reaction in a Petri dish3.

After we had finished the documentary we ran to the Chemistry Department
with our professor and asked their students if they had known something about it
and if they could show us these reactions live. Of course, they knew. Moreover,
they agreed to make an experiment of a Stirred Belousov-Zhabotynsky reaction,
thus, in a few minutes we could see it with our own eyes.

But that was all! The glass with the chemical solution that changed its color
periodically and impressed faces of students, carefully keeping an eye on it. After
the experiment was over, honestly, I switched back to the Astrophysics really fast.
I mean, I am pretty sure that I forgot about this experiment the next day. But
it seems not forever. I was very surprised when in one of a Special Curriculum
courses (I should probably add, 3 years later), I stumble upon this experiment
again. I was reading through the book, I already knew that the subject for my
Thesis was “Patterns”, but hadn’t recalled something I knew from before, until
I really ran into it.

And that was a strange sudden happiness to understand that you are reading
about something you have heard before, furthermore something that you have
seen with your own eyes. Seems like you never know for sure, how the knowledge
or the experience you obtained before, could be used in the future. You can
not really predict what you will need later and what you can throw aside right
now, maybe the best way to do, is to perceive and try as many things as you are
interested in. Especially, if you have fair chances to do it.

I don’t know why, but the first time I recalled the BBC documentary I was
thinking about Belousov-Zhabotinsky stirred reaction (the one, when the solution
changes its color periodically) as if it was the reaction called “Turing’s reaction”.
Definitely, it was a mistake as I found later. Just because in the documentary
they were talking a lot about Alan Turing, his life and work4. My memory,
probably, played a trick on me and let me thinking that this pattern-forming
reaction bears the name of Turing.

However, it was correct in another way, because Turing’s mathematical model
was exactly the one needed to describe Belousov’s experiments. Unfortunately,
it happened that neither Turing, no Belousov knew about each other work and

2Actually, we had been shown this documentary during my studies back to Russia, on the
short course in Astrophysics that we had.

3There are plenty of video examples on both “stirred (oscillating)” and “in a Petri dish”
Belousov-Zhabotinsky reaction on the Web, so if you feel curious just take a look.

4I am going to speak more concrete about both: Turing’s theories and Belousov-Zhabotinsky
reactions – later on, in Chapter 3.2.

7



explorations, also both had quite a tragic destiny [3]. But I will tell about it
later (Chapter 3.2).

What I wanted to mention now, is that when I was reading the literature for
my Special Curriculum course I was really happy to feel I know something about
Turing from before, even though my ideas were wrong in a way. Nevertheless,
this funny feeling made me more curious about the whole project and even the
subject of studies. Maybe it gave me some confidence and pushed me forward.
Quite queer, how just the feeling of knowing something, ignites the interest to
go further and do more. And there I have started.

3 Examples of natural pattern systems

In this chapter I will give a short and simple description of few most known
and important natural pattern systems. Saying “natural” I mean pattern that
could be seen in real natural systems – deserts, stars, animal coats, fingerprints
– but also I mean patterns, that could be produced in laboratory (or even home)
experiments. I think it is the right thing to start with, just because it could be
useful and interesting to observe the picture or idea of how different patterns
can appear, how they look like and develop in time and space, what are the
similarities between patterns formed by various systems, and what are the most
studied or unknown aspects.

3.1 Convection (Rayleigh-Bénard)

Simply, convection is the overturning of a fluid that is heated from below. Imag-
ine the experiment where you have two horizontal plates, such that the bottom
plate is warm and the upper plate is cool. And between these two plates we
observe a layer of fluid, e.g. air or water (Fig. 2). This experiment is called
Rayleigh-Bénard convection.

Figure 2: System for the Rayleigh-Bénard convection experiment.

Heat at the bottom plate causes the fluid to expand, become less dense and more
buoyant and so to rise through the colder fluid above. As the fluid rises away
from the heat source, it cools, becoming denser than the fluid below, and so falls
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back down to the bottom under the influence of gravity. The cycle then repeats,
so the fluid is constantly overturning. The rising and falling fluid forms spatial
patterns, most commonly stripes or convection rolls5 (Fig. 3).

Figure 3: Possible patterns that can be observed in a Rayleigh-Bénard convection experiment,
depending on the system and fluid properties. Stripes (on the left) and Convection Rolls (on
the right) [10].

Though, more complicated patterns such as hexagons and squares are also
possible, depending on the details of the physical system and the fluid properties.
Convection is actually one of the most studied and known processes forming a
pattern, and the reason it has been studied so extensively is that convection
occurs naturally in the environment: in the Earth’s mantle, convection leads
to the movement of tectonic plates (’continental drift’); in the oceans it drives
circulations such as the Gulf Stream that keeps north-western Europe so much
warmer than its northern latitudes would suggest; in the atmosphere, convection
creates thunderclouds and in stars, such as the Sun convection transports energy
efficiently from the core where it is produced to the surface where it is released.

Another thing about the importance of convection is that the stripe pat-
terns (Fig. 3), we can observe during the experiment6, are very similar to the
other different natural patterns and usually have the same kind of dislocations
(when two stripes merge into one) which makes it very useful to work with, be-
cause once we find the solution (equations) to describe one of the patterns we
will get the answer for other systems as well.

I extremely like this idea, how two, three, four, even more naturally different
(as it seems) systems turn out to have a similar structure or behaviour, and
could be called identical in a way, moreover, could be described with the same
mathematical models. It brings this wonderful feeling about connection between
everything in the world.

5The characteristic roll size is about the depth d of the air.
6Probably, it would be nice to mention, how actually it is possible to observe the pattern

of convection. In the laboratory, it is usually visualised using the shadow-graph technique. In
this method, a light is shone down onto the convection cell, which must have a transparent top
plate and a reflective bottom plate. The warm rising fluid has a lower index of refraction that
the cold falling fluid, and so the light is focused towards the cold regions, which appear bright,
while the warmer regions remain dark. The pattern can be seen reflected off the bottom plate.
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Just to visualise this aspect and emphasise the fact more thoroughly, I would
like to make a comparison of patterns that belong to naturally different systems. I
guess, everyone is most likely familiar with these systems. But it could be exciting
and thoughtful enough if we pay our attention one more time to something like
this and maybe make some new conclusions or get any fresh ideas.

Figure 4: Starting from the left: sand ripples, zebra stripes, and on the last picture you can
see the image of the pattern obtained from convection in carbon dioxide under pressure [11].

Figure 5: On these pictures you can see hexagon patterns. Of course, everyone knows giraffe’s
coat with its gorgeous spots, but on the right you can see hexagons obtained in a kitchen
experiment as it claims in [12]. The experiment is about mixing some black pepper and oil
and frying it (actually, warming it up) on the pan. In the end one can obtain this interesting
hexagon pattern.

3.2 Reaction-diffusion systems

Remember, on the page 7, we have mentioned for a while about Turing’s
theories and Belousov-Zhabotinsky reactions. That is what you will find in
this Chapter! Turing’s models and Belousov-Zhabotinsky reactions are the
most representative cases of a reaction-diffusion system. Thus, it is time to talk
a little bit more about them. In my own opinion, these reactions and patterns
they create, are the most fantastic and amazing due to the way they appear and
proceed and also from the historical point of discovering and working on them.
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The best way to start is to start with Alan Turing, his insight and exper-
iments. During the World War II, Turing managed to crack the Nazis’ Enigma
Code, but it seems that his real destiny was in cracking another kind of code,
one that will help to understand how animals, human, everything in the nature
could develop from chemical substrates. Turing believed development could be
reduced to mathematical axioms and physical laws. In 1952, one of his articles
called “The Chemical Basis of Morphogenesis” was published [2], it described
the way in which non-uniformity (natural patterns such as stripes, spots and
spirals) may arise naturally out of homogeneous, uniform state. Though it was
a biological article, it made a great impact for understanding of nature, due to
the absolutely new way of thinking and seeing the possibility to create a simple
mathematical model which will describe pattern formation and evolution for life
forms. The most shocking thing is that it took 60 years afterwards to prove
(experimentally) his theory [13].

The central idea behind the theory is that two homogeneously distributed
substances within a certain space, one “locally activated” and the other capable
of “long-range inhibition”, can produce novel shapes and gradients. What is
special about such a model is that it can explain pattern formation without a
preformed pattern. That is, the reaction-diffusion model can explain how those
initial patterns form in the first place.

Turing’s model would describe perfectly what the Soviet scientist Boris Be-
lousov obtained in his experiments. Belousov studied the way how live organisms
can get energy from sugar. One day mixing some chemical solutions together
he noticed that one of the mixture changed its color from bright to dark. And
maybe that was all right, but the strange thing happened after, the same solu-
tions mixture, while being stirred, changed its color again, back to bright (Fig. 6).
That was something unexpected and certainly unpredictable for Belousov. The
system itself behaved as an oscillating system, but without any external influence
and seemed without any reason for this.

Figure 6: A stirred Belousov-Zhabotinsky reaction mixture showing changes in color over time.
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Belousov checked his experiment several times, and always there was the
same result – the mixture of several chemical solutions was changing its color in
oscillating way while being stirred. He wrote an article about it, but of course
without any mathematical model describing the process. It was where the tragic
thing had started, the scientific society didn’t take his article seriously, saying
that it’s simply impossible, what he observed, and that there should be a mistake
in his calculations or experiment. It was the time of the Cold War, the time of an
information blockade, and Belousov had no idea about the works of his English
“college” Alan Turing. Otherwise, using Turing’s theories (which described the
pattern formation) he would be able to prove that his observations were correct
and moreover study and explain them thoroughly.

After a rejection to publish his article and an accusation of being incompe-
tent, Belousov was so depressed, that he quit his scientific research work. Alan
Turing had even more tragic destiny, he was prosecuted for homosexuality, since
homosexual acts were a criminal offences those times. Somehow police learned
about it and instead of going to prison he chose a way of being undergone through
hormonal treatment designed to reduce libido7. Choosing treatment he had a
chance, of course, to keep working on his theory. However, one year later he
committed suicide with the cyanide poisoned apple.

I don’t know, nobody knows, how would the history go if two of these great
men would keep on their work and experiments. We usually regret about some-
thing and start to take it more seriously only when we lose it. We start to
create this horrible hypothesis called “what if”, but they don’t actually help a
lot, obviously, they do nothing at all! It seems we just appreciate this feeling
and condition of regretting. Sometimes it seems to me that everything goes the
best way it could go, it goes the right way, even if the road and events you face,
suddenly look strange or unknown. Who knows, maybe that was the only way
(though, long way) to find out the truth and to learn something new.

In the end of this chapter I just want to inspire you and myself with the
beautiful, wonderful pattern that could be obtained in Belousov-Zhabotinsky
reaction in a Petri dish. And which could be described by Turing’s theory.
There is a nice still (Fig. 7) from when running this experiment under the lab-
oratory conditions, but, of course, it is much more exciting to see it live8. At
the same time, I want to mention again and want us not forget, that the theory
and model of a pattern formation that Alan Turing had discovered you can see
everywhere in the nature! So maybe take a look again on some sand ripples or
zebra stripes (Fig. 4), as well as giraffe’s spots (Fig. 5).

7The treatment rendered Turing impotent and caused gynecomastia.
8I encourage you to go on the Web, and see this experiment and other reaction-

diffusion systems producing amazing patterns. There are some nice examples of Belousov-
Zhabotinsky reaction here: https://www.youtube.com/watch?v=3JAqrRnKFHo and https:

//www.youtube.com/watch?v=fzcISz-ZcRk
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Figure 7: A still of a pattern obtained from Belousov-Zhabotinsky reaction in a Petri dish.

3.3 Universe. Patterns on Huge Scales

Probably, there would be no practical use of this chapter, but I just really wanted
to show some more of wonderful pattern pictures and, honestly, to go a little bit
far beyond our usual understanding and expectations. Because, it seems pretty
astonishing to me when you first have got a chance to compare something going
from one place to another but staying mainly with the same scaling, and soon
you are travelling through time and space until you reach such huge scales which
are certainly hard to grasp and to believe in, but suddenly show you something
you have seen before. Guess human is quite curious about finding similarities in
everything.

It is still not clear how the existence of matter and light, together with the
equations that determine their behaviour, produce the extraordinary complexity
of the observed Universe. Instead of all matter in the Universe being clumped
together in a single black hole, or spread out in a featureless cloud, we see with
our telescopes a stunning variety of galaxies of different shapes and sizes. The
galaxies are not randomly distributed throughout the space like molecules in a
gas but are organized in clusters, the clusters are organized in super-clusters,
and these super-clusters themselves are organized in voids and walls.

It is known now that our Universe is everywhere expanding, with all faraway
galaxies moving away from each other and from the Earth. And according to the
Hubble law, the galaxies that are furtherest away moving the fastest. Hubble
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law looks very simple
ν = H0 · d, (1)

where ν is the so-called speed of a galaxy, H0 is a Hubble constant, and d is the
distance to a galaxy9. Another simple fact that the light from a galaxy that is
moving away from Earth is Doppler-shifted to a longer wavelength (becomes more
red) compared to the light coming from an identical but stationary galaxy, gives
a possibility to measure the extent to which known spectral lines are red-shifted.
Thus, astronomers can estimate the recessional speed ν of a galaxy and convert
this speed to a distance d by using Hubble law (1). After we have all the distances
to all observed galaxies, and we can actually observe all of them. Because as they
say, the Hubble Telescope can see up to the edge of the Universe! Thus, having
all these distances astronomers build a kind of a distribution map (Fig. 8) with
the Earth (or more correctly, the measuring device) in the middle.

Figure 8: A “slice” through the 3-dimensional distribution of galaxies. The observer on Earth
is located at the centre of the circle. The distance from the centre of the circle represents
the red-shift of the galaxy. The galaxies within 1 degree of the equator are plotted in this
diagram [14].

The pattern here won’t be a geometric structure (e.g. a lattice) but will
appear as statistical deviation from randomly and uniformly distributed points
that is somehow difficult for the human visual system to quantify. Perhaps
the closest earthly analogy would be a foam of bubbles in which the galaxies are
concentrated on the surfaces of the bubbles. The reason for this galactic structure

9I feel very glad to write for a while about Astrophysics again. Especially, because this
topic was part of my Bachelor’s Thesis [4].

14



is not known at this time but is presumably a consequence of the details of the
Big Bang (when matter first formed), the expansion of the Universe, the effects
of gravity, and the effects of the mysterious dark matter that makes up most
of the mass of the Universe but which has not yet been directly observed or
identified.

Another interesting example of a grand pattern formation is any spiral galaxy.
We can take the one called M74 (Fig. 9), located in the constellation Pisces. It
is at a distance of about 32 million light-years away from Earth. The galaxy
contains two clearly defined spiral arms and is therefore used as an archetypal
example of a Grand Design Spiral Galaxy.

Figure 9: Photograph of the M74 spiral galaxy, a gravitationally bound island of 100 billion
stars, approximately 100 000 light years wide, that lies about 32 000 000 light years from Earth
in the Pisces constellation.

Why galaxies evolve to form spiral arms is poorly understood and is an im-
portant open question in current astrophysical research. Some laboratory ex-
periments show that spiral formation is common for non-equilibrium media that
have a tendency to oscillate in time or that support wave propagation. Further,
experiments show that a tendency to form spirals is insensitive to details of the
medium supporting the spiral. So a galactic spiral may not be too surprising
since there are mechanisms in galaxies that can produce wave propagation [1].
For example, some researchers have proposed that the spiral arms are detonation
waves of star formation that propagate through the galaxy, somewhat analogous
to the excitation waves observed in the Belousov-Zhabotinsky reaction-diffusion
system (Fig. 7).

It is wonderful in a way how fast we can jump back to the human scales from
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Huge Universe, just finding similarities in the observed pattern formation. The
last example that I would like to introduce in this chapter also seems to be a
connection between different scales. I think it has been mentioned already in the
very beginning. Our Sun, and it’s convection rolls.

Figure 10: Photograph of the Sun’s surface by Hubble Telescope, showing a complex time-
dependent granular structure.

Heat diffuses by collisions from the Sun’s small dense and extremely hot core
(20 million degrees Kelvin) out to about two-thirds of the radius of the Sun,
at which point the heat is transported to the cooler surface (about 6000 K) by
convective motion of the Sun’s plasma. The small bright dots (Fig. 10) are 1000
km-sized features are called “granules” and correspond to the top of convection
cells, the darker boundaries are where the cooler plasma descends back into the
interior10.

Similar phenomenon of stripped pattern formation due to the convection
is common to all of the gas giants (Jupiter, Saturn, Neptune, and Uranus).
By example of Jupiter, careful observation of the bands and of their dynamics
shows that they are highly turbulent time-dependent flows of the outer portion
of Jupiter’s atmosphere, with adjacent bands flowing in opposite directions with
respect to Jupiter’s axis of rotation.

The mechanisms that drive these non-equilibrium stripes and spots are not
hard to identify. Jupiter’s core is known to be hot and the transport of heat from

10 The only difference from the convection we observed in Chapter 3.1, is that the Sun’s
plasma is a highly conducting electrical medium and its motion is influenced by the Sun’s
magnetic field and the magnetic field in turn is modified by the motion of the plasma.

16



Figure 11: Jupiter by Hubble Telescope.

the core out through its atmosphere causes convection in the outermost layer,
just as in Rayleigh-Bénard convection we discussed in Chapter 3.1. However, the
convection is substantially modified by Jupiter’s rapid rotation around its axis,
about once every 10 hours. As warm and cold parcels of fluid rise and descend,
they are pushed to the side by large Coriolis forces and so follow a spiralling
path.

Hope these beautiful Patterns in the last three chapters and a magic idea of
of comparing different systems, finding similarities and feeling some prescribed
unique structure for everything, hope that it was inspiring and encouraging
enough to move further to the real problem of this Master’s Thesis, which I will
try to make more clear in the following chapters. And if the pattern suddenly
looks boring, or maybe even unknown, remember, it’s just the simplification, it is
just something to start with. But we shouldn’t forget, in no circumstances, where
all these patterns come from and how HUGE is the range of their application:
from a Petri dish to the galaxies in the Universe.

4 PML and the reduced Schrödinger equation

We always need to find some starting points, anything that will let us push
ourselves through all the unknown which will become clear and maybe even
trivial soon. Something that will give us a chance to come close enough to
the problem we are really interested in, and something that will later make us
ready to try to solve this problem without any useless fear, but just with the
pure curiosity and passion. It’s hard to say what you should actually do when
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the things you have to work with look completely unknown to you, and we
usually start with something simple but similar in a way, slowly clambering up.
This work is not an exception, especially because things I have to do: some of
calculations, programming (coding) and some of mathematical modelling – is
absolutely new to me. So for the beginning we use a simple reduced Schrödinger
equation, we consider it only in 1D, and we use MATLAB instead of the “normal”
programming environment (as Python or C ).

The main idea for this chapter is to write such a code in MATLAB that
will calculate and plot (animate) a moving wave packet, and before this moving
wave packet hits the boundary (and there is one, because we want to solve the
problem numerically) it should be maximum absorbed by the PML11. I had no
idea what PML was, before I started working on this problem, and that’s why
I keep on writing it as an abbreviation. It was very funny to hear and even use
it in discussions without really knowing what is it about. But it was all right,
since I understood somehow the effect that this strange PML produces, so I even
don’t know how long it took me (maybe month) before I really decided to learn
more about it. But here I decided first to make it clear about the “tools” we will
use and then tell how it was actually going.

4.1 What is PML (Perfectly Matched Layer)?

Yes, Perfectly Matched Layer, that is what the abbreviation stands for. But I
guess the name of these almost ‘magic tool’ doesn’t completely reflect all the
greatness of its idea and applicability. Basically, what PML is, turns to be some
kind of an artificial absorbing layer (or material if you want), at least it behaves
like it, or even better because the key property of a PML that distinguishes it
from an ordinary absorbing material is that it is designed so that waves incident
upon the PML from a non-PML medium do not reflect at the interface. This
property allows the PML to strongly absorb outgoing waves from the interior of
a computational region without reflecting them back into the interior [15].

Another thing that makes it more interesting and wonderful that it was de-
rived not so long time ago, by Berenger in 1994. Before that we have been using
so-called absorbing boundaries, or absorbing boundary conditions (ABCs) [16].
But there were several troubles about using them: the first one is that even if the
boundary condition sets the solution to zero (Dirichlet boundary cond.), anyway
we get some reflection from the boundary when the wave hits the edge; and sec-
ond is that ABCs work perfectly only in one dimension, where waves can only
propagate in two directions (±x). However, the main interest for numerical sim-
ulation lies in two and three dimensions, and in these cases the infinite number
of possible propagation directions makes the ABC problem much harder [17].

But what Berenger did, he changed the idea! Instead of looking for an ab-
sorbing boundary condition, he created an absorbing boundary layer. This layer
was kind of an artificial absorbing material that is placed adjacent to the edges

11And it will take us a lot of time to find a suitable numerical method to make it work with
even this simple model.
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of the grid, and what is more important it was completely independent of the
boundary condition. When a wave enters the absorbing layer, it is attenuated
by the absorption and decays exponentially; even if it reflects off the boundary,
the returning wave after one round trip through the absorbing layer is expo-
nentially tiny. The problem with this approach is that, whenever you have a
transition from one material to another, waves generally reflect, and the tran-
sition from non-absorbing to absorbing material is no exception – so, instead
of having reflections from the grid boundary, you now have reflections from the
absorber boundary. However, Berenger showed that a special absorbing medium
could be constructed so that waves do not reflect at the interface: a perfectly
matched layer, or PML. Although PML was originally derived for electromag-
netism (Maxwell’s equations), the same ideas are immediately applicable to other
wave equations.

Probably, aforesaid gives a nice picture about what PML is, but not about
how we actually apply it to the equation. I think I will not give any explanation
here about the way of setting up PML, because I believe it’s much more easier
to see and to learn by an example, and the next few chapters will give us such
chance. But if you want to read more thoroughly about it I found this article [17]
very helpful.

Maybe one more thing I want to mention, before we jump to the practical
part, are some of the limitations and failure cases for PML. First, and most
famously, PML is only reflectionless if you are solving the exact wave equations.
As soon as you discretize the problem (whether for finite difference or finite
elements), you are only solving an approximate wave equation and the analytical
perfection of PML is no longer valid12.

But even if we discretize the problem, PML is still the same absorbing ma-
terial: waves that propagate within it are still attenuated, even though they are
discrete waves. The boundary between the PML and the regular medium is no
longer reflectionless, but the reflections are small because the discretization is
(presumably) a good approximation for the exact wave equation. And we should
not forget that the key fact, that even without a PML, reflections can be made
arbitrarily small as long as the medium is slowly varying. Experience shows that
a simple quadratic or cubic turn-on of the PML absorption usually produces
negligible reflections for a PML layer of only half a wavelength or thinner. And,
of course, increasing the resolution also increases the effectiveness of the PML,
because it approaches the exact wave equation. I guess after this short observa-
tion we can finally start trying to solve our ‘first-step’ problem of adding PML
to the plane where a reduced Schrödinger equation is going to be solved.

4.2 Several attempts (that failed)

I have all my thoughts and reflections in a big A4 notebook. Everyday when I
was working on the problems: trying to make a code, figuring out the sense of

12Guess if I knew this aspect before I started to write my code it would help me a lot,
because I was looking in a way for this really perfectly matched layer, but of course this fight
with instabilities was worth it.
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parameters in the equation, fighting with forgotten sign when making calcula-
tions – I was writing it down in this A4 notebook, and sometimes there were not
only mathematical remarks but also some random ideas and thoughts coming
to my mind under the influence of something that had happened or without.
You could see the notes becoming really inspired after short talks I had with my
supervisor. And honestly, I really wanted to make this Thesis look like a book,
or maybe a pocket-book, or kind of a diary, whatever. I have been reading one
of the Castaneda’s volumes at that time, and all my notes were dated. I also felt
this interesting, important connection between the teacher and the student [18].

But anyhow, I guess writing Thesis in that way would be inappropriate, it
would just never be a Thesis then. Maybe something good and interesting, but
not a Thesis. However, I let myself do these short digressions through the whole
work. Seems it’s like those tiny reflections from the PML – they don’t really
matter if you don’t want them, and you can disregard them easily, but someone
probably will be interested in studying and taking them into consideration, and
even finding them useful13.

So, with an idea to write a MATLAB code that is supposed to solve a wave
equation (which is an evolution equation in time as well [19]) numerically using
one of the methods, and also make the problem reflectionless for the boundaries
by using PML – we start with the simple model, and as a ‘first step’ consider
the next reduced Schrödinger equation,

i
∂U

∂t
= −∂

2U

∂x2
. (2)

Just to remind about the “normal” Schrödinger equation, here it is

i~
∂

∂t
Ψ = −ĤΨ, (3)

where i is the imaginary unit, ~ is the Planck constant divided by 2π, Ψ is the
wave function of the quantum system, and Ĥ is the Hamiltonian operator (which
characterizes the total energy of any given wave function and takes different forms
depending on the situation). In our 1-dimensional case (2), it looks like ∂2/∂x2,
but originally for the non-relativistic Schrödinger equation for a single particle
moving in an electric field it will take next form

i~
∂

∂t
Ψ(r, t) =

[−~2
2µ
∇2 + V (r, t)

]
Ψ(r, t). (4)

So what we do, just get rid of the terms that we don’t really need for our
simple, kind of sketch system. Thus the particle’s ‘reduced mass’ µ and potential
energy V go away, and for the start we choose to have only one dimension along
x-axis, that’s how we end up with eq. (2). But of course we want the equation
stay time-dependent, which let our system to evolve with time, because any
mathematical model that describes pattern is an evolution equation itself. So,

13Maybe I should change the color or font for this digressions, I will see and try it later,
maybe.
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we tend to make a simple model in the beginning, but at the same moment we
try to build it as close in details as possible to the system we want to study later.

If we look for the solution of (2) it could be found in a form of a plane wave,

U(x, t) = Aei(kx−ωt), (5)

where k is a wave number

k =
2π

λ
=

2πν

vp
=
ω

vp
, (6)

with ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular
frequency of the wave, and vp is the phase velocity of the wave. If we try to plot
the real part of U(x, t), we will get the wave packet moving along the x-axis to
the right (k > 0) or to the left (k < 0). Wave packet looks like this “monster”
on (Fig. 12). I think it really does look like a friendly monster, especially when
you see it moving on the plane.

Figure 12: A wave packet corresponding to a particle located somewhere in the x region.

And to make it move on the plane we want to solve the equation numerically,
but we don’t really know which method should be used. Or maybe it’s just
me who had no idea which numerical method would be the most appropriate for
solving this problem, however, it took quite a long time to figure out. I am almost
sure that it was not so hard, and maybe even obvious from the very beginning
what direction we should go, but at the same time I believe in usefulness of a
studying based on making mistakes. So I took my time.

As soon as our purpose is to obtain the system with PML (Chapter 4.1) for
the reduced Schrödinger equation (2) we first of all have to expand the problem
to a complex plane, even before choosing any numerical method for calculation.
That’s actually how the PML works for this case – we need to expand our
‘real’ problem to the complex plane. But I guess I will use a separate chapter
(Chapter 4.3.1) for this, while in the present chapter, running few steps forward,
I will just tell which numerical methods has failed when solving the problem. It
won’t take long now, though it took really a lot of time for me to go through all
the crashes and instabilities.

The first numerical method that I used, was a Finite Difference Method.
Maybe it is the most common method to start with, and maybe usually it works,
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but not with this case. My slowness and uncertainty in coding took me almost
half of a month to see and believe that all attempts were in vain. Maybe not in
vain, but at least ineffective. Later with the help of my supervisor we managed
to show why it was really impossible to do it with this method (I omit the
explanation here). But I should say that using Finite Difference Method and
even all its possible forms led to instability of a system. Even if we saw the wave
packet almost perfectly vanishing when reaching the PML-point, it came back
soon in the form of jumping and dancing instability, like from nowhere. I guess I
was lost for a while, what are we going to do now? The method didn’t work out!
But I forget the most important thing, that it had really been only the method,
only one of plenty. And that’s how the true search of a method which would be
free of instabilities had began.

Next thing I was suggested to do, was to look through two examples (called
Etude 12.2, 12.4 ) in [1] and try to solve our problem using a similar method to
the one that was used there. Actually, it is based on Backward Euler Method,
but with some interesting and useful remark lying in calculating the Tridiagonal
Matrix, which looks like this,

M =



a1 b1
c1 a2 b2

c2 a3 b3

c3
. . . . . .
. . . . . . bn−1

cn−1 an


, (7)

for the right (spatial) part of (2), and later for the right (spatial) half of its
version extended to the complex plane, I mean after applying the PML. And if
for the solution without Perfectly Matched Layer it worked perfectly, just as
well as it did in the book [1] – exact and numerical solutions matched very well,
and numerical one decayed slowly with time, after reflection from the boundary;
while exact solution became zero on the boundary, according to the boundary
condition applied. But as soon as we added PML, and expanded the problem
to the complex plane enormous, frightening instabilities appeared when wave
packet reached the point of PML.

One of the ideas why this instability occurred, was the actual magnitude of
our Tridiagonal Matrix’s eigenvalues, because there were not meant to be bigger
than 1. But after we had expanded equation (2) to the complex plane adding
PML the elements of a Tridiagonal Matrix were not constant any more. When
the wave packet reached the point where PML starts all elements of a Tridiagonal
Matrix started to change, because since that moment wave packet began to move
along the curve prescribed by PML, and of course it was supposed to decay, but
seems that eigenvalues became bigger than 1 at some point and caused a really
terrible instability. Of course I tried to check what eigenvalues we had, but while
working on this problem, I realized one more important (as it seems to me) fact
(because I never got any answer on it). What I found was the example from the
book, on which our method was based, says that eigenvalues of a Tridiagonal
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Matrix have to be negative in order to give stable results. But eigenvalues of our
matrix were certainly positive. Thus, seems that this method was wrong from
the very beginning (or maybe my assumption is incorrect), but don’t think it
matters any more. After another half month of calculations and fighting with
MATLAB I ended up with choosing next approach to try to get stable solution
for the problem. And this time it will work out!

4.3 Applying PML to the reduced Schrödinger equation

4.3.1 Something that almost worked

After all the fails14, again we choose a new numerical method to solve a reduced
Schrödinger equation. This method is actually a combination of two different
approaches, and based on two main steps, which are quite simple in their essence:

1) We apply Finite Difference Method (FDM) to the spatial (right) part of
the eq. (2);

2) For the partial time derivative ∂t, on the left of the eq. (2), we apply one
of the implemented ODE-solvers (from MATLAB).

Maybe, there was a third step as well, which should sound like “and see how it
works!”, at least that what is written in my A4 notebook. But as I already told,
it worked out almost nicely. I say “almost”, because to run a few steps forward,
it’s actually not the final method that we are going to use, there will be one
brilliant and important addition or change in the approach but we, probably,
talk about it later (Chapter 4.3.2). As concerns this method, as I told before, it
worked almost nice, but there were some small reflections all the time, very tiny,
but still. That was the only reason to improve it.

Anyhow, I think it is worth to tell about the application of this method,
because it seems to be the first very big step in the right direction, which helped
to see what next step would be about! Of course, I was not moving smoothly
and easily trying to carry it out: I was fighting again with stupid mistakes in
calculation (like having the wrong sign somewhere for more then one week); I
was improving slowly my programming skills, one of my codes took more than
an hour to run and I was naive to believe that it’s the equation (not my coding)
that was so tough to solve, and got terrified with the idea what it would be like
later, with the bigger equations and more dimensions. There were lots of hard
work, disappointments and infusions, ups and downs, and definitely, I am sure,
it all went the way it should. So in the next few paragraphs I will try to show
step by step what we have got.

What we want to do, is to expand a reduced Schrödinger equation to the com-
plex plane and apply PML. First of all, let’s remind ourselves how our equation

14But I cannot say that these fails and bunch of mistakes I did, were useless or sad or maybe
stupid. Quite the contrary, it was probably the best way to learn and to understand how things
do actually work.
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looks like, here it is

i
∂U

∂t
= −∂

2U

∂x2
, (8)

and in my notes, at one moment, it suddenly changes to

i
∂U

∂t
= −1

2

∂2U

∂x2
. (9)

It is not a big deal, having a 1/2 constant factor, so we will just continue working
on this eq. (9) now. And the thing we start with, is moving from our real plane
to a complex plane:

x −→ z = x+ if(x), (10)

where f(x) will be a function that describes PML behaviour (Fig. 13). It exists
on the complex plane as you can see, and actually that’s the trick of applying
PML. It is some kind of an absorbing layer but it is on a complex plane.

Figure 13: PML on a complex plain. PML starts at points −a and a, and behaves according
to the function f(x), which is usually some parabolic function. In between points −a and a
there is no PML and z(x) = x.

Thereby, what we want to do, is to expand the problem we have to the
complex plane and make it go not along the x-axis only (as it was before), but
along complex z-axis which is defined by next values:

z =


a+ if(x), x > a

x, −a < x < a

−a+ if(x), x 6 −a
, (11)

where a and −a, are the points where PML starts. So you can see that in the
region where there is no PML z = x, and our system should behave as it did
before, but as soon as it reaches point a or −a, it doesn’t go along x-axis any
more, instead it goes along axis: z = a + if(x) or z = −a + if(x) (depending
on the direction) – thus, it will never reach the boundary (L or −L), and never
reflect back from it, if we choose function f(x) to be a PML which known to be
a reflectionless absorbing layer. In my first “experiments” I usually chose f(x)
as some parabolic curve like

f(x) = C(x− a)p, (12)
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where C is some constant (choose C = 1) and p is the power, I tried to make
it greater then 2 usually. I guess, it was made this way to obtain a smoothly
varying transition from environment without PML to the PML layer, to be sure
that z is a smooth curve. And actually that was still the way I applied it for the
method we are discussing now (based on FDM and built-in ODE-solver).

Next step of expanding to the complex plane is to define a new complex
function, let’s call it Φ

(
z(x), t

)
. Using this new function, we can write down an

equation analogous to (9), which will look like

i
∂Φ
(
z(x), t

)
∂t

= −1

2

∂2Φ
(
z(x), t

)
∂z2

. (13)

Then the most important thing to do comes out, we claim that along the
curve z(x),

Φ
(
z(x), t

)∣∣∣
z(x)

= ϕ(x, t). (14)

As I understand, this ‘trick’ is the one that let us combine U(x, t) function
from (9) with PML (11), which behaves according to f(x) (12). It let us find the
solution following the curve z(x). Thus, function ϕ(x, t) is actually the solution
we are looking for! That’s very important to understand. It contains everything,
and represents how the function (equation) we are interested in, goes along the
plane and gets absorbed by the PML when reaching special points (a and −a).
I would say we have come as close as never to the moment when we apply PML
to the system, in a fact, we just did it, there are only few more calculating steps
left to be figured out.

Using the condition from (14) we try to calculate all the derivatives for the
function ϕ(x, t), we are interested in, so as to create an equation for it, similar
to (9) and its expanded form (13). As it goes,

∂xϕ(x, t) = ∂x

(
Φ
(
z(x), t

)∣∣∣
z(x)

)
= z′∂zΦ

(
z(x), t

)
. (15)

If we try to find second derivative we will get

∂xxϕ(x, t) =∂x

(
z′∂zΦ

(
z(x), t

)∣∣∣
z(x)

)
=

= z′′∂zΦ
(
z(x), t

)
+ z′2∂zzΦ

(
z(x), t

)
.

(16)

From (15) we can find, that

∂zΦ
(
z(x), t

)
=

1

z′
∂xϕ(x, t), (17)

and if we insert it into the first term on the right hand-side of (16) we will get

∂xxϕ(x, t) =
z′′

z′
∂xϕ(x, t) + z′2∂zzΦ

(
z(x), t

)
. (18)
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From here we can express ∂zzΦ
(
z(x), t

)
, and insert it into (13) afterwards, taking

into account that nothing is changing for the time-dependence and everywhere
we will have

∂tΦ
(
z(x), t

)
= ∂tϕ(x, t). (19)

Thus, after substitution we will get

i∂tϕ(x, t) = − 1

2z′2

(
∂xxϕ(x, t)− z′′

z′
∂xϕ(x, t)

)
. (20)

As soon as we have chosen f(x) (12), we will know all the values of z(x) (11). It
means, we can easily calculate all the derivatives needed (z′ and z′′). As concerns
to the derivatives ∂xϕ(x, t) and ∂xxϕ(x, t) here comes the time to apply Finite
Difference Method and discretize our problem.

When discretizing we have to do next things: we choose our boundaries to
be L = N · dx and −L = L, where we set N - number of points we need for
calculation (but from −L to L it will take n = 2N + 1 points, because we have
to include 0 as well), and dx is a spatial step-size (dx � L). But as soon as
we want to have a PML that starts at some points −a and a, it is important
to be sure, that these two points are exactly on the grid, thus we just choose
their values to be something in between −L and L (0 < a < L), and the number
of points we want for calculation M < N , and then we set the spatial step as
dx = a/M . Now we can easily make a grid15 for x, evaluating it as

x =
2L

2N + 1
. (21)

After discretizing we have values

xj, j = 1, . . . , n. (22)

We do the same for the time to create a time-grid and obtain

tk, k = 1, . . . ,m, (23)

where m = T/dt is the number of time steps, T is the whole period of time (and
we start from 0, of course), dt is the size of a time-step. Now we are ready to
apply the Finite Difference Method [5] to the spatial derivatives ∂xϕ(x, t) and
∂xxϕ(x, t) (remember that we do it only for the spatial part of equation!), for the
single and double derivatives we get:

∂xϕ =
ϕj+1 − ϕj

dx
,

∂xxϕ =
ϕj+1 − 2ϕj + ϕj−1

dx2
.

(24)

If we insert it now into (20), and multiply by −i from both sides, we will have

∂tϕj =
i

2z′2

(
ϕj+1 − 2ϕj + ϕj−1

dx2
− z′′

z′
ϕj+1 − ϕj

dx

)
, (25)

15but in MATLAB I use command ’linspace(-L,L,n)’.
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and that is the way we use it in MATLAB code to get a numerical solution.
Of course, to make FDM work we need to know the boundary conditions: ϕj=1

and ϕj=n, which we intentionally set to zero, and we need to choose an initial
function at the moment of time t = 0. It is not hard to do, actually, we just
choose any function ϕ0 = ϕ(xj, 0), that could be a solution for eq. (25), and here
we have stopped on a mix of a plane wave (5) and Gaussian function , which
gives us next result:

ϕ0 = e−γ(x−x0)
P

eikx, (26)

where γ is an arbitrary constant which controls the width of the wave packet,
x0 defines the position (the center) of the wave packet on the x-axis, the greater
the power P the shaper is the slope (original Gaussian is parabolic, has P = 2).
Thus, after we have chosen our initial and boundary conditions

ϕ(x, 0) = ϕ0 = e−γ(x−x0)
P

eikx,

ϕ(−L, t) = ϕj=1 = 0,

ϕ(L, t) = ϕj=n = 0,

(27)

we can apply the FDM and calculate the right part of eq. (25). As concerns the
time derivative on the left hand-side, we use a built-in ODE-solver. I have chosen
the one called ’ode23t’ (“for moderately stiff problems if you need a solution
without numerical damping”) or ’ode23tb’ (“if using crude error tolerances to
solve stiff systems”) [20]. I found these two solvers to be the fastest and more
precise.

The program works quite fast and gives us result in less then 10 seconds, but
as I have already told, unfortunately with this method (even though it is very
nice) we get some reflection, and its amount was considered to be too huge for the
solution of our problem. You can see the plots on (Fig. 14) and observe how the
wave packet is moving with time, gets absorbed by the PML at point −a = −3,
but it’s not absolutely absorbed, and reflects back, and even reaches PML on the
other side at point a = 3 now, where after some time it gets totally absorbed.
But our purpose is exactly in getting reflectionless boundaries, or being more
correct, reflectionless PML layer. Thus, we are not completely satisfied with
this code and approach. Nevertheless, I think half of the work is already done,
regarding this exact problem, because the ‘trick’ we are about to use, to get rid
of reflections, is only a little change in the method we have just used.

4.3.2 Something that worked

We have seen that the Finite Difference Method has worked almost fine, but
still we have got some reflection from the PML (Fig. 14). Thus, we need to do
something about it, we cannot change the built-in ODE-solver, but we can find
another way, maybe a more precise way, of calculating numerically the spatial
derivatives. And I don’t really understand how the mind should work to find this
kind of answers, is it based on an experience or was it a spark of an inspiration.
Or maybe some things so obvious and clear to somebody could be absolutely
far beyond the understanding of another. And still it seems to be not so much
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Figure 14: A wave packet (blue solid line) formed by ϕ0 = e−2(x−0)2ei(−10)x and zero boundary
conditions, calculated through FDM, is moving along the x-axis. PML starts at a = 3 and
−a = −3, and the wave packet is moving to the left, because the wave number is negative,
k = −10. The absorption starts at −a, but since the numerical method doesn’t work perfectly
we get small but impermissible reflections. The red dashed line is the initial condition ϕ0,
which have been used to compare the correctness of obtained results.

about understanding, but about creating. However, these two terms as if they
are inseparable.

The idea of what we are doing now is next: we still apply built-in ODE-solver
from MATLAB, but instead of FDM we do Taylor Series (or Taylor’s Expan-
sion) for the spatial part. And one more thing, we do it for the complex func-
tion Φ

(
z(x), t

)
. Only after we Taylor-expand it we will go back (or more likely

forward) to our desired function ϕ(x, t). First of all, how does Taylor’s Expan-
sion look like? Basically, it is a representation of a function as an infinite sum of
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terms that are calculated from the values of the function’s derivatives at a single
point,

f(x) = f(a) +
f ′(a)

1!
(x− a)+

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . =

=
∞∑
n=0

f (n)(a)

n!
(x− a).

(28)

We use the same way of discretizing the problem as we did in previous Chap-
ter 4.3.1, but now we use it also for our complex function Φ

(
z(x), t

)
, which will

look like Φ(z(xj), t) = Φ(zj, t), I assume that time is also discretized (23), it is
just that we don’t do Taylor’s Expansion for the time part. Now if we Taylor-
expand the function Φ(zj, t) around the single point z0 we will get

Φ(zj, t) = Φ(z0, t) + Φ′(z0, t)(zj − z0) +
Φ′′(z0, t)

2
(zj − z0)2 + . . . . (29)

Or we can write it even simpler as

Φ(zj, t) = a0 + a1(zj − z0) + a2(zj − z0)2 + . . . , (30)

where ‘constants’ (actually they are not): a0, a1 and a2 – represent the spatial
derivative of Φ(z, t) divided by the factorial of its (derivative’s) power. And
actually, we can choose as many steps q in Taylor’s Expansion as we want,
depending on a precision we are interested in, for aq-coefficient we will have

aq =
Φ(q)(z, t)

q!
. (31)

We already know that if we follow the curve z(x), then according to (14) we
can come to the function ϕ(x, t). Considering this, let’s choose our z0 = zj and
expand those Φ(zj, t) using (29) and (30), that are numbered with j, j + 1 and
j − 1, what we get is

ϕj = Φ(zj, t)
∣∣∣
z(x)

= a0

ϕj+1 = Φ(zj+1, t)
∣∣∣
z(x)

= a0 + a1(zj+1 − zj) + a2(zj+1 − zj)2

ϕj−1 = Φ(zj−1, t)
∣∣∣
z(x)

= a0 + a1(zj−1 − zj) + a2(zj−1 − zj)2.

(32)

If we take now the double derivative ∂zzΦ(z, t) we will see, that according to our
expansion it is always

∂zzΦ(z, t) = 2a2, (33)

even when we have more terms (when q > 2), because all the other terms will go
to zero due to the differences (zj − zj) in the brackets. But let’s remember our
reduced Schrödinger equation (13), write it down again

i∂tΦ(z, t) = −1

2
∂zzΦ(z, t). (34)
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What we see on the right hand-side is exactly what we have just found, so we
can rewrite this equation using (33) and also (14), to get a very beautiful result

i∂tϕ(x, t) = −1

2
· 2a2w�

∂tϕ(x, t) = ia2.

(35)

And the most amazing fact is that from the system of equations (32) we can easily
define our coefficient a2 as a function of (zj, zj+1, zj−1, ϕj, ϕj+1, ϕj−1). Because
what we have in (32) is a system of 3 equations with 3 unknowns: a0, a1 and
a2 – which is obviously solvable.

In case if we want to add more terms, for better precision, say going to q = 4
our system will take the form

ϕj = a0

ϕj+1 = a0 + a1(zj+1 − zj) + a2(zj+1 − zj)2 + a3(zj+1 − zj)3 + a4(zj+1 − zj)4

ϕj−1 = a0 + a1(zj−1 − zj) + a2(zj−1 − zj)2 + a3(zj−1 − zj)3 + a4(zj−1 − zj)4

ϕj+2 = a0 + a1(zj+2 − zj) + a2(zj+2 − zj)2 + a3(zj+2 − zj)3 + a4(zj+2 − zj)4

ϕj−2 = a0 + a1(zj−2 − zj) + a2(zj−2 − zj)2 + a3(zj−2 − zj)3 + a4(zj−2 − zj)4.
(36)

Now it’s a system of 5 equations with 5 unknowns and it means that in this case
we can again express a2 through all the values of z and ϕ. But yet we will stop
on q = 2 and the nice equation (35) we have obtained. To express a2 = f(zj, ϕj)
I solved the system (32) in Mathematica, here is what we get

a2 = −−zjϕj−1 + zj+1ϕj−1 + zj−1ϕj − zj+1ϕj − zj−1ϕj+1 + zj−1ϕj+1

(zj−1 − zj)(zj−1 − zj+1)(zj − zj+1)
. (37)

And this ‘huge’ but so elegant expression we use on the right-hand of (35) instead
of using Finite Difference Method16 that we used before (Chapter 4.3.1). For the
left hand-side we still use the same built-in ODE-solver from MATLAB.

One more difference from the previous approach is another choice for the
PML behaviour. Remember, that the PML is defined by a function f(x), so this
time we go really “extreme”, but still very realistic and even more clear. We
choose our PML to look like a straight vertical line (Fig. 15). As soon as we have
it on a complex plane we set the complex part of z in the next form

if(x) = eiθ(x− a), (38)

where θ is the parameter we use to change the inclination of the PML, in order
to find the best one with less reflection, because even though it’s supposed to be
reflectionless, we have to keep in mind, and I have already mentioned it before (in
the end of Chapter 4.1), that since we have a numerical way of solving problem,
we will always get some small reflection, which can be reduced only by increasing
the precision of calculations.

16Actually, this expression (37) is also a form of a FDM. It’s just expended to a specific
complex plane according to the PML (11). I didn’t really get it from the very beginning, but
it becomes more obvious when we go further.
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Figure 15: PML which is presented through the function f(x) = −ieiθ(x − a), with θ = π/2.
As before, PML starts at the points −a and a. In between the points −a and a there is no
PML and z(x) = x.

After this ‘simplification’ we will have a new system of values for z(x), com-
paring to (11) with (12), now it will take a more pleasant form

z =


a+ eiθ(x− a), x > a

x, −a < x < a

−a+ eiθ(x+ a), x 6 −a.
(39)

And in my calculations I chose θ = π/2, that gives ei
π
2 = i. Then obviously,

z =


a+ i(x− a), x > a

x, −a < x < a

−a+ i(x+ a), x 6 −a,
(40)

which makes the PML look exactly like on a (Fig. 15). It could be quite sur-
prising, and probably one would expect a strong reflection from this kind of
a ‘vertical wall’. But in practice we see, that using this type of a PML plus
a method based on: Taylor’s Expansion for the right hand-side; and built-in
ODE-solver for the time derivative on the left hand-side of (34) – we get very
nice plots for the wave packet moving along the x-axis. Also it gets (at least
visually) totally absorbed by the PML at point a (or −a). That is exactly what
we were looking for.

The numerical solution for this problem is going to be a first attachment in the
Appendices section. I include it as a MATLAB code [A]. The only disadvantage
of the code [A], is that it takes 30-40 seconds (quite long time) to run. I found
out that almost all this time is actually taken by a built-in ODE-solver (when
calculating time derivative), thus, it means whether this is the way it works
(without haste) or it is my mistake in representing the data for the solver. I bet
on last one, of course. And I tried my best to fix it and put it in different way
in the code, but have not succeeded yet. Except taking too much time, I believe
that this code works perfectly and on (Fig. 16) you can see some freeze frames
of the wave packet travelling from x0 = 0 to the right (k is positive) PML’s
boundary which starts at a = 4.
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Figure 16: A wave packet (blue solid line) formed by ϕ0 = e−γ(x−x0)
P

eikx, with γ = 2, x0 = 0,
P = 2, k = 12, and boundary conditions: ϕj=1 = ϕ(−L, t), ϕj=n = ϕ(L, t) – set to zero.
We can see (reading from left to right and then down) how a wave packet moves to the right
(k = 12), in accordance with a reduced Schrödinger equation (34) applied. Later, when it
reaches PML of a form (Fig. 15), that starts at the point a = 4, it gets absorbed. The red
dashed line represents the exact initial function ϕ0 (we used it to check the numerical solution).
It is quite hard to notice any reflection on this scale, but on a bigger one, or when reducing
the number of steps in calculations, we can observe small reflection. Though, we assume it to
be negligible. The numerical approach used (code [A]) is based on Taylor’s Expansion for the
spatial derivative and a built-in ODE-solver for the time derivative of (34).
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On this, I guess, the description of applying PML to a reduced Schrödinger
equation could be finished. We see how it works and what it looks like (Fig. 16).
Hopefully, it gives us a good basis to move to the next more interesting, but of
course, more complicated problem to solve. And now, we will come closer to
the Patterns, because the equation we are going to observe is exactly the one
used to describe a Rayleigh-Bénard convection. But at the same time as we have
discussed in Chapter 3.1, because of the visual similarities you can apply it to
simulate something like Zebra stripes or Sand dunes (Fig. 4), if you want. And
that’s what makes it so amazing! Be ready for a Swift-Hohenberg equation.

5 The Swift-Hohenberg equation with Periodic

Boundaries

In this chapter and its sub-chapters we will go through the steps that has been
taken in order to calculate the result given by a one-dimensional Swift-Hohenberg
equation if we solve it numerically. We will set the Periodic Boundaries and make
everything behave as it runs on a circle, or a ring. Also there will be a White
noise introduced as an initial function instead of a usual Gaussian. And in the
very end we will find the Fourier Transform of our problem which will be not as
easy as it might sound.

It could be hardly seen here in the text, even between the hundreds of lines
of symbols how the time goes or how one place has been changed by another
and then by one more. Most likely it looks like it is supposed to look – like a
Thesis, a one-piece thing. And I hope it really does, otherwise it would be hard
to follow rambling thoughts and conclusions we have to make.

But it still seems strange to me how something you do, could last forever
being in the process, in the progress. Of course not forever, though at least
for really long periods, as one comes to realise sometimes. And while the time
passes by, this thing, that you do, will travel along with you. Through all the
different amazing places! It will be somewhere on a side, glowing and changing
its colors – blinking to you; or it could be just in front of your eyes all the time,
but then it’s hard in a way not to pay attention to it, and probably it will be
just a part of anything that occupies you at the moment, or more likely, it will
be this thing. And this time it won’t last for a long period. Perhaps, you will
try to concentrate on it. Seems, it won’t let you go until it’s solved in a right or
trouble way.

5.1 One-dimensional Swift-Hohenberg equation

It is worth starting with the basics, with something that will be a basis for you
later. Something that you can always return to, like a safe-point, when suddenly
things go wrong. So let’s take a look at the one-dimensional Swift-Hohenberg
equation. It is usually written in the next form:

∂tu(x, t) = (r − 1)u− 2∂2xu− ∂4xu−N(u), (41)
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it is an evolution equation for a single field u(x, t) in a one-dimensional domain
described by the coordinate x, where r represents a control parameter. What
does it mean and what do we want (or need) to control?

It comes, that when we proceed with an evolution equation we will have
something that develops in time, and in most of the cases it’s just some growth
of the field u(x, t) that is the function we are interested in. Usually there is some
critical value r = rc, that represents when the solution turns from a stable
one to unstable. But we will discuss and see it more clearly when we do a
Stability Analysis for the equation (Chapter 5.2). Also we are better to rewrite
the one-dimensional Swift-Hohenberg equation in a more compact form17, which,
as one could see, is much more easier to understand and comfortable to work
with:

∂tu(x, t) = ru− (∂2x + 1)2u−N(u). (42)

Here I must mention the importance of the last term N(u), which is a non-linear
term, and plays a role of a stability parameter. Though we will see it later, but
it happens that even if the control parameter r > rc causes an instability and a
never-ending growth of the function, this non-linear term N(u) could stop the
growth somehow18. Isn’t this magic? And to be honest, that’s exactly what
allows some certain or some unexpected pattern to be formed, if we talk about
the evolution equations.

Maybe it’s also worth mentioning, that the Swift-Hohenberg equation (42)
is the one that could be used to describe patterns appearing in such a process
as a Rayleigh-Bénard convection, that we have already slightly studied in the
Chapter 3.1. But let us not forget about all the connections and similarities found
between different patterns that belong to the absolutely different (at first sight)
natural systems. I wish we could keep it in mind, because in my opinion it’s one
of the things that makes all these equations and theories to have something so
huge and amazing behind, hidden in numbers and considerations.

5.2 Linear stability analysis (ordinary case)

I guess, the linear stability analysis is one of the first things to do when you
consider any evolution equation. Right now we are going to apply this procedure
to the Swift-Hohenberg equation (42). But let’s write it down one more time
choosing the non-linear term N(u) = u3 as our stability parameter,

∂tu(x, t) = (r − 1)u− 2∂2xu− ∂4xu− u3, (43)

∂tu(x, t) = ru− (∂2x + 1)2u− u3. (44)

17This form (42) and the previous one (41) were actually obtained by a reduction of a
more complicated form of the Swift-Hohnebrg equation, applying scaling and the substitution
of variables. We did it within the Special Curriculum course that concerned a Pattern
Formation.

18The non-linear term N(u) could be presented by a different non-linear function of u(x, t).
In our further calculations we will use N(u) = u3.
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To carry out the linear stability analysis [1] we denote the solution of u = 0 as a
base state ub and ask whether the difference or perturbation field

up(x, t) = u(x, t)− ub, (45)

between an arbitrary nearby solution u(x, t) and the base state will grow in
magnitude over time. The perturbation up evolves according to the evolution
equation

∂tup = N̂ [ub + up]− N̂ [ub], (46)

here N̂ is the non-linear operator that is defined according to the right side
of (43) and is the function of the field u:

N̂ [u] = (r − 1)u− 2∂2xu− ∂4xu− u3. (47)

But then we can use one feature of the perturbation field up. We claim that if it

is sufficiently small, then we can approximate N̂ [ub+up] in eq. (46) by linearizing
about ub. It means, that we are going to keep only the terms on the right-hand
side of the equation that involve a single factor of up or its spatial derivative.
So, keeping it in mind, we try to proceed with eq. (46) using the definition (47)
for the operator N̂ [u], what we will get is:

∂tup = (r − 1)(ub + up)− 2∂2x(ub + up)− ∂4x(ub + up) + (ub + up)
3−

− (r − 1)ub − 2∂2xub − ∂4xub + u3b =

= (r − 1)up − 2∂2xup − ∂4xup + 3upu
2
b .

(48)

So if we rewrite it taking up out of the brackets, we will get

∂tup = (r − 1− 2∂2x − ∂4x + 3u2b)up. (49)

But let us not forget that we specialize it to a particular base state which is
ub = 0, thus the term 3u2b in (49) will vanish,

∂tup = (r − 1− 2∂2x − ∂4x)up. (50)

Notice that the equation is linear in the field up (for example, multiplying up
by a constant factor leaves the equation unchanged). So what we have gotten is
a linear differential equation with constant coefficients, and the coefficients are
constant precisely, because the base state is stationary and uniform. To solve a
linear constant-coefficient ODE we can choose a particular solution to eq. (50)
that depends exponentially on time and exponentially on space

up(x, t) = Aeσteαx, (51)

Here the constant σ is called a growth rate, and both σ and the constant α are
possibly complex. As an analogy that was made for eqs. (41) and (42) we can
rewrite eq. (50) as

∂tup = rup − (∂2x + 1)2up. (52)
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Now, if we insert (51) into eq. (52) we will get next equation for the growth rate,

σ = r − (α2 + 1)2 (53)

The meaning of the constant α can be deduced by considering the boundary
conditions that apply to the field u and to the perturbation up [1]. The simplest
possible cases are the idealized geometries for which the lateral boundaries are
eliminated by using infinite or periodic boundaries. And here we are approaching
one of the cases that we will look at more carefully later and that is studied well
nowadays. I am talking about the case when the lateral boundaries are eliminated
by periodic boundaries. As concerns using infinite boundaries, it only makes
sense if we consider the problem analytically. On practice, when we have to use
numerical methods to find the result, there is no chance unfortunately to make
infinite calculations. Even though computer technologies has gone quite far.

But let’s return to the periodic boundaries that we want to use. In this case we
can assume that the system is finite but periodic with length L, i.e. the system
is topologically equivalent to a ring. A constant solution ub is automatically
periodic over any length but a perturbation up(x, t) is periodic with period L
only, one can write

up(x, t) = up(x+ L, t), (54)

for all times t and all positions x. At the same time if we insert (51) in a latter
equation we will see, that the eq. (51) will be periodic with period L if and only if

eαx = eα(x+L) for all x. (55)

And exactly from here we get a very important result, we find that it implies
that

eαL = 1 or αL = (2πi)m, (56)

for some integer m. And thus we find that α = iq for

q = m

(
2π

L

)
, m = 0, ±1, ±2, . . . (57)

Now we can conclude that the form of the mode (51) actually looks like

up(x, t) = Aeσteiqx, (58)

with q a real number. The spatial dependence of up is then periodic with wave
number q (alternatively, with wavelength λ = 2π/q). Substituting α = iq into
eq. (53), will give us

σ = r − (q2 − 1)2. (59)

This equation says us that a small-amplitude spatially periodic perturbation with
a wave number q (about the base solution ub = 0) will grow or decay exponen-
tially in time with a growth rate σq that depends on q. Let us examine more
carefully now what does exactly happens when we talk about the dependence of
a growth rate σq on a wave-number q. We want to determine when the maxi-
mum of the curve Reσq vs. q changes from a negative to positive value as the

36



parameter r is varied. Because it will indicate the onset of linear instability.
It is easy to see that the quantity (q2 − 1)2 is a non-negative one and vanishes
when q = 1, thus, the maximum for σq occurs when qmax = 1. And it happens
independently of r. The value of σq at its maximum is therefore

max
q

Reσq = r. (60)

Also, as one can see from eq. (58), the uniform base state ub = 0 will be linearly
stable if the exponential decays in the limit t → ∞, well, this condition is true
when

max
q

Reσq < 0, (61)

which means that the values of r should be negative if we look for the stable
solution. To analyse it one more time, what have we discovered? We have found
that the uniform state u = 0 will be linearly stable if the control parameter
in a Swift-Hohenberg equation r < 0 and it turns unstable when we let r > 0.
Therefore, we can write down a critical control parameter value for the linear
instability is rc = 0. Second thing, is the critical wave number qc at which the
curve Reσq first attains a positive value is qc = 1, since this is the location of the
maximum, independent of the value of r. But I believe it is much easier to see
and to analyse it with the figure. So, I will let myself steal one from [1], instead
of drawing it.

Figure 17: We see the plot based on the eq. (59) of the growth rate σq versus the wave number q
for the uniform base state u = 0 of the one-dimensional Swift-Hohenberg equation (41). Three
curves are shown for parameter values of respectively r = −0.2 (light gray), r = 0 (black), and
r = 0.2 (dark gray). These correspond to a stable, marginally unstable, and unstable
base state. The critical parameter value rc = 0 and the critical wave number qc = 1 are
identified from the r = 0 curve as where Reσq first becomes zero as r is varied. For r = 0.2
just positive, only a narrowband of Fourier modes centred on the critical wave number can
grow, predicting the appearance of a pattern with a characteristic length scale 2π

qc
.
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In the end of this chapter I just want to pay attention one more time on the
last sentence written in the caption for (Fig. 17). It says that for positive values of
the control parameter r > 0 there will be a narrowband of Fourier modes centred
on the critical wave number qc = 1. And those are the only Fourier modes that
will grow, moreover this process is actually predicts the appearance of a pattern
with a characteristic length scale 2π

qc
. We will see it as clear as it sounds in

the Chapter 5.4, where we will take a chance to find a Fourier transform for our
problem. Nevertheless, first we have to understand how a one-dimensional Swift-
Hohenberg equation could be solved (numerically) when the Periodic boundaries
are set.

5.3 Periodic Boundaries for the Swift-Hohenberg

Applying periodic boundaries to a one-dimensional Swift-Hohenberg equation is
not something new19. But we do it because it gives us nice possibilities for the
analysis of a problem as well as it is another good chance to check some parts of
the code we have for solving the equation.

Perhaps, here I have to start exactly with a code, to be more precise, with
the changes that have been made. These changes, they didn’t changed anything
crucially about the method we use, but they have definitely simplified the cal-
culations and at the same time they have brought a lot to the understanding
and to the analysing of a problem. I also think that we have done something
similar before, and I accept that it could be that I got or did something wrong
last time. But that’s how it goes, and maybe it is not so bad, even funny a bit,
to come back to a problem to return to a method that you considered wrong
some months ago (feels like going through the history somehow). But I would
claim it is all right when occurs on short periods of time only. Otherwise there
would be too much to redo.

In Chapter 4.2, or to be more exact on the page 22, we discussed the pos-
sibility of using a Tridiagonal Matrix for the right-hand side of the equation,
which was actually a finite difference to represent the second order derivative.
Most likely, there was some mistake in calculation (in my code) or maybe the
way I was applying the method was not very right. But I don’t think there is
any reason to dig deep now, I just decided to redo it again, because obviously
there was a point doing it.

In a certain sense it’s just a way of representing the data that we have, so it
shouldn’t really be a problem. But it might be a bit more difficult now, since the
equation we consider (43) has second order and fourth order derivatives, which
means that we will have more terms in a finite difference method and the matrix
will have more diagonals, at least five. Thus in the next few paragraphs I would

19Maybe, sometimes there is something that has been done many times before, done by the
others. But still it doesn’t mean it’s not of any use for you to repeat and to see how it goes,
especially when it comes to studies. It could be even better, if you try to do it yourself and
then compare the result. Because, it is almost always that there are dozens of ways to do
something, and it happens quite often that you cannot be sure which method will work the
best and which one will bring you success or trouble.
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like to go carefully through this, because the result that was obtained, did really
simplify a lot of things afterwards and looks nice.

We consider a one-dimensional Swift-Hohenberg equation, let’s write it down
one more time,

∂tu(x, t) = (r − 1)u− 2∂2xu− ∂4xu− u3. (62)

To represent its spatial derivatives on the right-hand side we use the same method
that has been successful for the Schrödinger equation (Chapter 4.3.2). We use
the Taylor Expansion (28), and this time we don’t need to apply PML, because
of the Periodic Boundaries, thus we don’t have to make any extension to
the complex plane. But I would still prefer to use function ϕ(x, t) in our notes
instead of u(x, t), so we just let u(x, t)→ ϕ(x, t) in eq. (62). To consider a fourth
order derivative with a finite difference method, we have to take at least 5 points
on the grid, thus applying the Taylor Expansion one can obtain next system of
equations

ϕj = a0

ϕj+1 = a0 + a1(xj+1 − xj) + a2(xj+1 − xj)2 + a3(xj+1 − xj)3 + a4(xj+1 − xj)4

ϕj−1 = a0 + a1(xj−1 − xj) + a2(xj−1 − xj)2 + a3(xj−1 − xj)3 + a4(xj−1 − xj)4

ϕj+2 = a0 + a1(xj+2 − xj) + a2(xj+2 − xj)2 + a3(xj+2 − xj)3 + a4(xj+2 − xj)4

ϕj−2 = a0 + a1(xj−2 − xj) + a2(xj−2 − xj)2 + a3(xj−2 − xj)3 + a4(xj−2 − xj)4.
(63)

Of course, to simplify it, first of all we have to rewrite all the terms such as
xj+1− xj = dx, and xj−2− xj = −2dx, and etc20. It is not hard to do manually,
but it will reduce the numerical calculations a lot21. So we rewrite the system
using this feature. Also I suggest starting to write it from the further left point
which is always xj−2 and moving to the right one xj+2.

ϕj−2 = a0 + a1(−2dx) + a2(−2dx)2 + a3(−2dx)3 + a4(−2dx)4.

ϕj−1 = a0 + a1(−dx) + a2(−dx)2 + a3(−dx)3 + a4(−dx)4

ϕj = a0

ϕj+1 = a0 + a1(dx) + a2(dx)2 + a3(dx)3 + a4(dx)4

ϕj+2 = a0 + a1(2dx) + a2(2dx)2 + a3(2dx)3 + a4(2dx)4

(64)

From this system we can get formulas to calculate all the ak-terms, but we do
need only a2 and a4. According to the Taylor Expansion (28), they represent
second and fourth order spatial derivatives of the functions ϕj that we need so
much for our Swift-Hohenberg equation (62). Actually, what we obtain when
we introduce coefficients a2 and a4 through the function ϕj = ϕ(xj, t) and dx is

20 Here dx is a spatial step that we set when discretizing the space. We set the desired
length L of the section and then choose the number of points n it should be split on, thus we
calculate dx = L/n. It helps us to obtain the grid presented by xj , where j = 1, 2, . . . , n.

21 By the way, that was something I forgot to do when building the matrix for the Schrödinger
equation. That’s why it took so long time for the code [A] to run. But I am happy to learn
on my own mistakes and to see how they come to be solved out in the end.
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called the finite difference. I have written a code [B] in MATLAB that solves a
system of equations such as (63). Thus, the terms could be calculated every then
and now, and later when it will come to the PML and the complex coefficients.
For example, the result for a2 will take form

a2 =

(
− 1

24
ϕj−2 +

2

3
ϕj−1 −

5

4
ϕj +

2

3
ϕj+1 −

1

24
ϕj+2

)
1

dx2
, (65)

and if we want to proceed to find the derivative itself, according to eq. (28) we
just have to multiply the result by 2! for the second order derivative and by 4! for
the fourth order. Relying on this conclusion and the eq. (65) we can introduce
the matrix which will let us to take the vector ϕj out of the brackets, while the
diagonals of the matrix are built from the coefficients standing in front of every
certain ϕj. But have to notice here, that it would be correct for all the points
xj except two first and two last points, since we want to set boundaries that are
periodic, the rule will look differently for those ‘special’ points. Anyway, for all
the others points we will have

∂2

∂x2
(ϕj) =

2!

dx2



... ... ...

... ... ... ...

− 1
24

2
3
− 5

4
2
3
− 1

24

− 1
24

2
3
− 5

4
2
3
− 1

24

− 1
24

2
3
− 5

4
2
3
− 1

24

... ... ... ...
... ... ...


ϕj. (66)

Let us try to find the rule to set down the value for the ‘special’ points: x1, x2
and xn−1, xn – where n is the total number of points on the spatial grid. When
we want to apply the periodic boundaries one has to build kind of a circle on
the plane. According to the 4th order method we use, we need 4 neighbouring
points to evaluate the value at some point xj – two from the left (xj−2 and
xj−1) and two from the right (xj+1 and xj+2). But using periodic boundaries it
should be obvious that when we approach the points like xn−1 and xn we will
just use points from the very beginning x1 and x2 to set their values and operate
vice-versa afterwards when being on the other ‘end’ (Fig. 18).

Figure 18: Applying Periodic boundaries on the plane: to calculate the value of a function at
the point xn (for the fourth order accuracy) we use two points from the left xn−2 and xn−1,
but then to make the right boundary periodic ‘a ring has to be closed’, thus we use the two
first points x1 and x2.
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Thus, after some calculations we can add first two and last two rows to the
matrix (66), now it will look like

M2 =
1

dx2



−5
4

2
3
− 1

24
. . . . . . − 1

24
2
3

2
3

−5
4

2
3
− 1

24
. . . . . . − 1

24

− 1
24

2
3

−5
4

2
3
− 1

24

. . . . . . . . . . . . . . .

− 1
24

2
3

−5
4

2
3
− 1

24

. . . . . . . . . . . . . . .

− 1
24

2
3

−5
4

2
3
− 1

24

− 1
24

. . . . . . − 1
24

2
3

−5
4

2
3

2
3
− 1

24
. . . . . . − 1

24
2
3

−5
4



, (67)

where in the middle we will still have those unchanged diagonals like before.
Then we build the same kind of a matrix but for the 4th order derivative which
could be represented through the a4 coefficient as

∂4

∂x4
(ϕj) = 4! · a4, (68)

and the a4 coefficient has to be found from solving a system (64). The finite
difference rule22 for the a4 coefficient will look like

a4 =

(
1

24
ϕj−2 −

1

6
ϕj−1 +

1

4
ϕj −

1

6
ϕj+1

1

24
ϕj+2

)
1

dx4
. (69)

By the way I have checked, and the obtained results shown in eqs. (65) and (69)
do match with the results for the finite difference coefficients from [21]. But it
doesn’t mean in any way that we have made the code [B] for no actual reason.
It will be a lot of help for us, when later we will have to consider a problem with
PML. Where the extension to the complex plane will take place. Thus, nothing
is in vain.

Going back to the 4th order derivative, again we prefer to present the result
in the matrix form. In the same manner as we have done before for the second
derivative and a2, we proceed now for the 4th derivative which is calculated with

22According to my MATLAB code [B] that is made to solve such a system of equations
as (64).
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a 2nd order accuracy,

∂4

∂x4
(ϕj) =

4!

dx4



1
4
−1

6
1
24

. . . . . . 1
24
−1

6

−1
6

1
4
−1

6
1
24

. . . . . . 1
24

1
24
−1

6
1
4
−1

6
1
24

. . . . . . . . . . . . . . .

1
24
−1

6
1
4
−1

6
1
24

. . . . . . . . . . . . . . .

1
24
−1

6
1
4
−1

6
1
24

1
24

. . . . . . 1
24
−1

6
1
4
−1

6

−1
6

1
24

. . . . . . 1
24
−1

6
1
4



ϕj. (70)

Let’s call the matrix here M4, because it presents the coefficients that we need
to calculate the 4th derivative. But I put the factor 1/dx4 from (70) inside the
matrix M4, as we have already had 1/dx2 inside M2 in eq. (67). It is fair to do,
because what we try to represent by these matrices is a Finite Difference scheme
and without those denominators it would not be complete.

It seems, now we can continue and rewrite the eq. (62) using matrices M2

and M4 instead of ∂2/∂x2 and ∂4/∂x4. We shouldn’t forget that we let u(x, t)→
ϕ(x, t), after the discretization in space we will have ϕj = ϕ(xj, t). Of course, ϕj
could be taken out of the brackets,

∂tϕj = (r − 1)ϕj − 2(2! ·M2)ϕj − 4! ·M4ϕj − ϕ3
j =

= (r − 1)ϕj − (4M2 − 24M4)ϕj − ϕ3
j .

(71)

It is clear from the equation above that now we can consider the problem in even
a simpler form. First of all let’s recall that the last term ϕ3

j is a non-linear term
that we need to control the pattern evolution, so it is preferable to leave it as an
independent term that we can vary at any time. As concerns the other terms,
here we can just take the function ϕj out of brackets and introduce the matrix
called M instead,

M = (r − 1) · I− 2(2! ·M2)− 4! ·M4, (72)

where I is an Identity matrix. It has a main diagonal built of ‘ones’, while all
the other elements are zeros. The Identity matrix appears in (72) out from the
main rules about operations and calculations with matrices [22]. Having the
whole right-hand side (except for ϕ3

j) of (71) represented by the matrix M does
simplify the way it looks a lot and gives a clear understanding of what is going
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on when it comes that we have to run the ODE-solver. Therefore, using (72) we
can rewrite the eq. (71) in the next form

∂tϕj = Mϕj − ϕ3
j . (73)

It is pleasure to know and to write that this method, this way of writing deriva-
tives in the matrix form (actually, writing the whole right-hand side of the one-
dimensional Swift-Hohenberg equation in the matrix form), it has worked out
perfectly when solving the problem and using periodic boundaries. By the way,
we solve it in the same way as we have solved the Schrödinger equation in the
Chapter 4.3.1.

Equation (73) is a first order ordinary differential equation (ode) in time,
since we have substituted spatial derivatives with obtained matrices. Thus we
consider using a built-in ODE-solver23 from MATLAB to calculate the result.
And due to the fact that we have introduced matrix M simplifies it a lot24.
Finally, the right way of presenting the data for the built-in ODE-solver has
been found. It made me very happy, even though it took quite a long time to
come to the solution that works.

In the Appendices section I attach my MATLAB codes [C] that calculate
matrices M2 and M4 (second and fourth order derivatives) when the Periodic
Boundary condition is applied. Those codes [C] are the ‘functions’ that are
supposed to be used in the code [D] or in the code [E] that calculate the evolution
of a reduced Schrödinger equation (9) and a one-dimensional Swift-Hohenberg
equation (62) respectively.

As one can remember, when solving the Schrödinger equation (9), we used
a Gaussian function (26). For the one-dimensional Swift-Hohenberg equation we
can also use this one25, but it’s much better to use some function that has a small
amplitude variation, and also it would be quite interesting to use a randomly
distributed signal. Because what we expect from such an evolution equation as
the Swift-Hohenberg equation is, that it will let some certain Fourier modes to
grow in time. We have mentioned it in the Chapter 5.2, and in the caption under
the Fig. 17.

I am sure one would agree that it is much more interesting to see these Fourier
modes (the pattern eventually) appearing, arising from a randomly distributed
function, almost from chaos, almost from nothing (according to its tiny ampli-

23 As in the Chapter 4.3.1, we use the ODE-solver called ‘ode23tb’, which is good for solving
stiff problems [20].

24 Of course, I have run it for the reduced Schrödinger equation (9) as well. But this time
we have periodic boundaries instead of PML. It means that if we have a wave packet moving
to the right or to the left it is not going to disappear like it did when it was absorbed with a
PML, instead it will go through the periodic boundary and appear looking the same from the
other side of the plot. Because periodic boundaries make it look as if the wave packet would
run on a circle. Also it has to be mentioned that the Gaussian function tends to fade away
slowly while moving along the axis. The MATLAB code [D], helps to see it clearly if needed.

25 In this case we will only see the Gaussian fading away for r < 0 and becoming unstable for
r > 0, as in a case with a White noise the unstable mode could be controlled by the non-linear
term, for example N(u) = u3.
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tudes); but maybe from everything (considering it’s chaotic nature). For the role
of this function the White noise has been chosen.

Figure 19: White noise that is generated by the built-in function ‘wgn’, from MATLAB [20].

White noise is a random signal with a constant power spectral density [8].
In MATLAB one can easily generate a white Gaussian noise using the built-in
function called ‘wgn’ [20], thus we are not going to discuss it very thoroughly in
here. If you are interested you can check [8] for an overview. You can see how
the white noise performed by the MATLAB function looks like on the Fig. 19.
But we will continue with the one-dimensional Swift-Hohenberg equation now,
and let the White noise signal evolve, giving us a chance to check how it will
look like.

We expect to see some certain modes growing up. According to the linear
stability analysis we have done in Chapter 5.2, if we set the control parameter
r < 0, then everything should be stable. I can assure you, that it is true, all
the amplitudes of a signal they just dissolve in time. But the most interesting
thing is to see what happens when an instability comes around. As we already
know from before, the onset of instability is when we have r > 0. And that’s
what we could easily see letting the control parameter be positive (even slightly
larger than zero).

First of all, let’s do this experiment taking away a non-linear term from (73),
which is ϕ3

j . Thus the equation we consider will be

∂tϕj = Mϕj. (74)

In this case we have the instability coming around, and tiny amplitudes stay
without any control. They keep on increasing infinitely as it could be easily
seen (Fig. 20), and there is nothing to stop them.

From the other hand, we can leave a non-linear term ϕ3
j on its place. Then

we are back to the eq. (73) without any changes applied. Having this non-linear
term around, somehow we will be able to control this increasing instability and
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Figure 20: Unstable case of the evolution of a White noise when a one-dimensional Swift-
Hohenberg equation (74) without a non-linear term is applied. The control parameter is set
to be r = 0.2, slightly bigger then the critical value rc = 0. You can see on the sequence of
plots above (reading from left to right and then down) how: at first the randomly generated
signal (White noise) fades away (until the fifth plot), and then at some moment (the sixth
plot) expected instability appears and starts to grow infinitely.

a never-ending growth of the function ϕ(x, t). The result can be observed on the
next figure (Fig. 21).

It seems to me kind of magical! First of all, the fact that some similar struc-
tures (patterns) appear, arise from an absolutely randomly distributed medium
as a white noise26. The second thing that makes it just wonderful, is that we are
actually able to control the appearing instability using only a simple non-linear
term such as ϕ3. I would like to think it is really amazing and believe that

26 As it was mentioned before any low-amplitude function (field) could be used here. For
example, having a Gaussian function instead, one will still get the same kind of behaviour of
the field ϕ(x, t) and the plots (the pattern) will look very similar.
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Figure 21: Unstable case of the evolution of a White noise when a one-dimensional Swift-
Hohenberg equation (73) is applied. The control parameter is set to be r = 0.2, slightly bigger
then the critical value rc = 0. And the non-linear term is N(ϕ) = ϕ3. On the sequence of
plots above (reading from left to right and then down) you can see how: at first the randomly
generated signal (White noise) fades down, and then at some moment (the fifth plot) expected
instability appears and starts growing. But this time it is compensated by the non-linear term,
so it won’t increase infinitely. Instead it will stop after reaching some value and present us a
desirable pattern.

one can find a lot of inspiration or some kind of a source for different exciting
thoughts and ideas in it. Feels like this chapter has become long enough already,
so maybe it is the right moment now to switch to the next one.

5.4 Fourier transform of a Swift-Hohenberg equation

Sometimes it happens that we have to do things to prove we are right, or maybe
even to prove we are wrong. To prove this was right and that was wrong. Does
it come that we don’t have confidence enough or don’t believe ourselves? Or
maybe it says that you are not close yet to understand something, and you need
to look at it from the other side, or from the inside. It is actually very nice to
have such a possibility and not to be lazy to give it a chance. Especially, if you
are not in haste.

Remember, in Chapter 5.2, we made a linear stability analysis for a one-
dimensional Swift-Hohenberg equation and we have found that for r = 0.2 just
positive, only a narrowband of Fourier modes centred on the critical wave num-
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ber qc = 1 can grow. This process does predict the appearance of a pattern with
a characteristic length scale 2π

qc
. To be honest, when working on this Thesis, an

attempt to check how this works (Fourier transform), was taken only after we
had stumbled over some problem finding a solution of a Swift-Hohenberg equation
with PML settled on. But I think it is reasonable to go through it now, since we
have just discussed a Swift-Hohenberg equation with periodic boundaries. Also,
because until there everything will go smoothly in accordance with the theory
and our analytics (to run a few steps forward).

So, what it is the Fourier transform? And how it could help us understand
the process better? I really liked the simplicity of how it is described here [7], it
says – all waveforms, no matter what you observe in the Universe, are actually
just the sum of simple sinusoids of different frequencies. While the Fourier
transform decomposes a waveform – basically any real world waveform, into
sinusoids. That is, the Fourier transform gives us another way to represent a
waveform27. Also the comparison that Wikipedia makes sounds really nice, it
compares Fourier transform and the way it decomposes the function of time (a
signal) into the frequencies that make it up, with a music chord! As the latter
could be expressed as the amplitude (or loudness) of its constituent notes.

Thus, looking for the Fourier transform of a one-dimensional Swift-Hohenberg
equation we will find which amplitudes are presented as the main ones, and the
stability analysis predicts Fourier modes to grow around the critical wave number
qc = 1. To proceed with this a bit tricky thing I will go through the lecture notes
we were given additionally on the course ‘Mathematical Methods’ (at the UiT,
University of Tromsø). But I will briefly make a sketch here as well. So, let’s
start.

If we let {ur}nr=1 be a sequence of complex numbers. The discrete Fourier
transform of the sequence {u}nr=1 is another complex sequence {vs}ns=1. In MAT-
LAB28 this sequence is defined by

vs =
n∑
r=1

ure
−2πi (s−1)(r−1)

n , (75)

with the inverse as

ur =
1

n

n∑
s=1

vse
2πi

(s−1)(r−1)
n . (76)

If we go to the continuous variables, then the Fourier transform of a function
f(x) defined on R is

F (λ) =
1√
2π

∫ +∞

−∞
dx f(x)eiλx, (77)

27 This goes for TV signals, cell phone signals, the sound waves that travel when you speak.
In general, waveforms are not made up of a discrete number of frequencies, but rather a
continuous range of frequencies. The Fourier transform is the mathematical tool that shows
us how to deconstruct the waveform into its sinusoidal components.

28 There are several different conventions when it comes to defining the Fourier transform.
(75) and (76) is the default in MATLAB, in GSL – library that is used in the programming
language C.
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while its inverse is defined by

f(x) =
1√
2π

∫ +∞

−∞
dλF (λ)e−iλx. (78)

Our goal now is to find a way how to use (75) and (76) to calculate (77) and (78)
approximately.

Let us start by introducing the discretizations for the x-axis and λ-axis:

αj = (j − 1

2
)∆x, (79)

βl = (l − 1

2
)∆λ. (80)

Observe that,

αj+1 − αj = (j +
1

2
)∆x− (j − 1

2
)∆x = ∆x, (81)

βl+1 − βl = (l +
1

2
)∆λ− (l − 1

2
)∆λ = ∆λ. (82)

Using discretizations {αj} and {βl} we define the second pair of discretizations
of the x-axis and λ-axis:

xj =
1

2
(αj+1 + αj) = j ·∆x, (83)

λl =
1

2
(βl+1 + βl) = l ·∆λ. (84)

Using these descritizations and the midpoint rule for the integrals we have:

F (λ) =
1√
2π

+∞∑
j=−∞

∫ αj+1

αj

dx f(x)eiλx ≈

≈ ∆x√
2π

+∞∑
j=−∞

f(xj)e
iλxj ,

(85)

and in a similar way

f(x) ≈ ∆λ√
2π

+∞∑
l=−∞

F (λl)e
−iλlx. (86)

In order to implement (85) and (86) on a computer the infinite series must be
truncated. Thus, we say, if it is true that

Fl ≡ F (λl) ≈ 0 for |l| > N, (87)

then we have from (86)

f(x) ≈ ∆λ√
2π

N∑
l=−N

Fle
−iλlx. (88)
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This formula tells us that we have approximated f(x) with a function that is
periodic with a longest period equal to

Pmax =
2π

λ1
=

2π

∆λ
, (89)

and the shortest period

Pmin =
2π

λN
=

2π

N ·∆λ
. (90)

On the other hand, we want to approximate f(x) by its values on the grid {xj},
suggesting that fj ≡ f(xj). The shortest period that can be detected on the
grid {xj} is 2∆x. Thus, in order for the approximation (88) for f(x) to be well
presented by the grid-values fj we must have

2∆x 6 Pmin

⇓

∆x 6
π

N∆λ
.

(91)

On the other hand if eq. (88) is a good representation of f(x) we gain nothing
by making 2∆x smaller than Pmin. Thus, the optional choice is

∆x =
π

N∆λ
⇒ ∆x∆λ =

π

N
. (92)

We now truncate the sum from eq. (85) in the same way, using the same N as in
eq. (88). Evaluating F (λ) on the grid {λl} and f(x) on the grid {xj} and using
the found condition (92), one can get

Fl =
∆x√

2π

N∑
j=−N

fje
iπ jl
N , (93)

fj =
∆λ√

2π

N∑
l=−N

Fle
−iπ jl

N . (94)

Observe that for these two equations to be a good representation of the Fourier
transform (77) and the inverse transform (78) we must have

FN ≈ 0 and fN ≈ 0. (95)

Therefore, no accuracy is lost if we rather use the formulas:

Fl =
∆x√

2π

N−1∑
j=−N

fje
iπ jl
N , l = −N, . . . , N−1, (96)

fj =
∆λ√

2π

N−1∑
l=−N

Fle
−iπ jl

N , j = −N, . . . , N−1. (97)
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What we have to do now is to find the way how to transform these two equations
into (75) and (76), like they are defined in MATLAB. We first shift the indices

r = N + 1 + j, j = −N, . . . , N−1, (98)

s = N + 1 + l, l = −N, . . . , N−1. (99)

This will give us the formulas:

Fs−N−1 =
∆x√

2π

2N∑
r=1

fr−N−1 · eiπ
(r−N−1)(s−N−1)

N , (100)

fr−N−1 =
∆λ√

2π

2N∑
s=1

Fs−N−1 · e−iπ
(r−N−1)(s−N−1)

N . (101)

If we look at the power of the exponent in (100) and (101) more carefully, we
will find that it could be written in another way as,

eiπ
(r−N−1)(s−N−1)

N = e−iπ(r−1)e−iπ(s−1)eiπNeiπ
(r−1)(s−1)

N . (102)

Next, we introduce our discrete Fourier transform vs and ur through the scaling
from (79) and (80), this will give us

Fs−N−1 = αsvs, (103)

fr−N−1 = βrur. (104)

After substituting these two to eqs. (75) and (76) we will get

vs =
2N∑
r=1

ur
βr∆x

αs
√

2π
e−iπ(r−1)e−iπ(s−1)eiπNeiπ

(r−1)(s−1)
N , (105)

ur =
2N∑
s=1

vs
αs∆λ

βr
√

2π
eiπ(r−1)eiπ(s−1)e−iπNe−iπ

(r−1)(s−1)
N . (106)

Let’s choose

βr = β0e
iπ(r−1)e−iπN and αs = α0e

−iπ(s−1). (107)

This will simplify two previous equations which we can write now as

vs =
2N∑
r=1

ur
β0∆x

α0

√
2π
eiπ

(r−1)(s−1)
N , (108)

ur =
2N∑
s=1

vs
α0∆λ

β0
√

2π
e−iπ

(r−1)(s−1)
N . (109)
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Now we can ‘play’ a bit with constants, but don’t forget that what we are actually
trying to do is to make the last two equations look like (75) and (76), the default
Fourier transform and its inverse from MATLAB. Therefore, we choose:

β0∆x

α0

√
2π

= 1 ⇒ ∆x =
α0

√
2π

β0
,

α0∆λ

β0
√

2π
=

1

2N
⇒ ∆λ =

β0
√

2π

α0 · 2N
.

(110)

From here, by calculating ∆x∆λ we see that the condition (92) is already sat-
isfied. Thus, letting N = n/2 we will be able to get desired (75) and (76) from
eqs. (108) and (109). But let’s do one more thing. Since the condition (92) is
satisfied, that we see from (110). It means, that we can choose constants α0 and
β0 to be any numbers (but zero, of course). Let’s take it easy and just choose
β0 = 1, which will give us α0 = ∆x/

√
2π. Now, with this features on, we are

going to put obtained results from (110) and our chosen variables (107) to the
scaled equations (103) and (104). After some calculations are done we get next
formulas

vs =

√
2π

∆x
eiπ(s−1)Fs−N−1, s = 1, . . . , n = 2N, (111)

ur = eiπNe−iπ(r−1)fr−N−1, r = 1, . . . , n = 2N, (112)

and

Fl =
∆x√

2π
e−iπ(l+N)vl+N+1, l = −N, . . . , N−1, (113)

fj = eiπ(j+1)e−iπNuj+N+1, j = −N, . . . , N−1. (114)

Thus, we have found a connection between approximated continuous and discrete
Fourier transform – eqs. (111) and (113). As well as we have found this connec-
tion between their inverse transforms – eqs. (112) and (114). But how should
we use it now? Would be probably a logical thing to ask. Honestly, it took
me a while before I figured out the way of applying it to our problem, exactly,
to the problem of finding numerically a Fourier transform of a one-dimensional
Swift-Hohenberg equation with the initial signal in the form of a White noise.
We do it in MATLAB, of course.

To start with, we use the same code [E] as before to calculate the solution
of a Swift-Hohenberg equation. When it comes to find its Fourier transform we
proceed next way. We should understand, that the function ϕ(xj, t), we have
found, becomes an approximated continuous inverse transform fj(t), analogous
to the (97) or (101) after the shift of indices, only now it also evolves in time.
This gives us a possibility to find a discrete inverse Fourier transform ur from
the eq. (112). But then we make a trick! The one that took me a while to
understand.

Using MATLAB procedure that calculates Fourier transform [20], we can
find the discrete Fourier transform vr by applying to the already found function
ur which is the discrete inverse transform. I know there are too many similar
words in the last two sentences, maybe they need to be read few times before
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it becomes clear. Though, I can try to formulate it in another words: we have
to take our function ϕ(xj, t), call it approximately continuous inverse Fourier
transform, make a transformation to the discrete inverse Fourier transform ur,
then calculate a discrete Fourier transform vs (using MATLAB built-in function),
and the last step we find the approximated continuous Fourier transform Fl using
the relation (113).

When plotting results we also have to take into consideration that Fourier
transform has to be plotted along the frequency domain, which is a grid λl, to
refresh look at the eq. (84). We use the rule (92) to set the grid λl in the code [F].
Finally we can plot the Fourier transform F (λl) versus the frequencies λl. And
as one can see (Fig. 22) there is certainly a growth of Fourier modes centred on
the critical wave-number, which in our case corresponds to the frequency λ = 1
(I denote it with a green line on both Fig. 22 and Fig. 23). By the way, on
the Fig. 23 we find the zoomed still from the last frame of the sequence showed
before. It could be seen there that a narrowband of Fourier modes around the
critical frequency (wave-number) does actually grow.

Figure 22: Fourier transform of a one-dimensional Swift-Hohenberg equation (with a White
noise as an initial function), plotted along the frequency grid λl. We can see on the plots
(reading from left to right and then down) how the most furthermost from the critical wave-
number qc = 1 (the green line on the plots) Fourier modes decay first. And those, close to the
critical point, create a narrowband around it with the maximum in the middle. The control
parameter is r = 0.2 here, and the non-linear term, to stop the increasing instability, is chosen
as before to be ϕ3. The results are obtained using code [F] from Appendices section.
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Figure 23: This is a zoomed still from the last frame on the Fig. 22. Just to see a narrowband
of growing Fourier modes centred on the critical wave-number or frequency.

Sometimes we don’t have time enough to explore everything we consider
interesting. Or maybe just turn a bit different direction due to some of our
preferences, and other questions standing in front of us. But it is nice that we
are many, and if you look more carefully you will see that probably the problem
you are busy with has been solved by someone else before.

As I have told in the introduction to the Chapter 5.3, applying Periodic
Boundaries to the Swift-Hohenberg equation wasn’t something new. And I have
found some nice videos on YouTube about how this equation evolves in time and
space (on xy-plane). Probably it could be my next step if we were not busy with
applying PML. But I wish to share few frames from this videos just to show how
the appearing pattern obtained by solving the Swift-Hohenberg equation could
look like. Moreover, I have contacted the guy who made these films. And it
happened that they were a part of his Master’s Thesis and an article [6] some
years ago. It feels amazingly nice to find things like this.

6 Preparing the Swift-Hohenberg equation for

the plane with PML

When we first make a step in any direction. Do we really know where it will lead?
We probably have some expectations or some preferences but even these two are
subjects to change. It seems, there could be so many reasons for this transfor-
mation to happen. It could be something coming from the inside, as your own
wish and desire. But it could also appear as an external foreign interference.
There is a funny fact, because, in the first case it would probably look like an
open door, the one that you have been trying to find for so long, it might turn
into the river and let you float down or up the stream for some time. Nice. But
in the second case, it will arise like some kind of a wall, like an obstruction. It
won’t occur that you already know how to deal with this. It won’t occur that

53



⇓ ⇓

⇓ ⇓

Figure 24: Simulation of the formation and evolution of a hexagonal pattern (on the left) and
a roll pattern (on the right) by numerically solving the Swift-Hohenberg equation with Periodic
Boundaries set on. These films appear to be a result of a Master’s Thesis and an article from [6]
and could be found on YouTube at: (left) https://www.youtube.com/watch?v=tJpTkU3LQdk,
(right) https://www.youtube.com/watch?v=C0ZcQqN4rRY.

you can take it easy. And you should not! There is so much more there, even if
it says the way to go is blocked. Be sure, the path will clear up, it just needs a
bit more of your ideas and patience, or could be passion. I don’t think it ever
works for real without any passion.

In this Chapter we are going to see the way of applying PML to a one-
dimensional Swift-Hohenberg equation. After we have figured out how it works
for the reduced Schrödinger equation (Chapter 4) and for the Swift-Hohenberg
equation with periodic boundaries (Chapter 5), that were both a simplification
and a nice basis for the real problem we have to solve, it should seem that there
are no obvious difficulties to overcome now. But it happened, there were some
and unfortunately they didn’t let us go as far as it had been planned and wished
in the very beginning, so long time ago though. But we didn’t give up and took
it with all the courage and excitement, while the time was running out. I will
try to go step by step to present the obtained results.
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6.1 Let’s make a new Matrix

Since we know (Chapter 5.3) that the matrix like (67) and (70) works fine as a
way to represent the second and fourth order spatial derivatives of some discrete
function ϕ(xj, t), we would like to use the same method of constructing our data.
But this time we have a distinct difference, we want to set up a PML (Perfectly
Matched Layer), to refresh it in the mind take a look through the Chapter 4.
This PML and an absence of periodic boundaries (that we don’t need and don’t
want any more) would certainly make the matrices look differently. Also we
should not forget that PML means that we will have to expand our problem
to the complex plane, but having a good example as one with a Schrödinger
equation, helps us to handle this.

I am far of being the best one when it comes to write a code, and honestly,
there were a lot of mistakes floating out almost every time I was about to solve
some problem numerically. So, it seemed reasonable to go through some inten-
tionally made ‘check points’ to know for sure, that at the first, second and third
stage there were no troubles.

Therefore, to reduce the problem we will start with the time independent
case. We let our function be only a function of x, thus ϕ(xj). We will try to
build a matrix that presents a first step of a one-dimensional Swift-Hohenberg
equation on the plane with PML set at the points −a and a. Afterwards we will
compare results with an exact solution, because it is not so hard to do for an
initial condition only. Exactly for this time independent case we will return to
the Gaussian function as an initial one. But we will come back to the White
noise signal when considering a time evolving process.

To start with, we need to discretize the problem correctly again. And in a sim-
ilar way as for the Schrödinger equation we demand that PML-points −a and a
were exactly on the grid. So, after giving some value a we are going to set a step
for the spatial grid as

dx =
a

M
, (115)

where a is a value of the point where we want to place our PML, and M is
a number of points we want to have on the grid line, starting from the origin
of the coordinates – zero, and until the PML. Now we have no doubts that
PML-points are exactly on the grid. Next, we choose some number N > M
to set the number of points on the grid from the origin of coordinates to the
lateral boundary L > a. Since we want to consider the problem from the left
boundary−L, passing through the left PML−a, to the right boundary L, passing
through the right PML a, we will have to pass the point of origin. Thus, the
whole number of points on the spatial grid will be

n = 2N + 1, (116)

and we can set the right lateral boundary as

L = N · dx. (117)

It seems everything is ready to create a spatial grid – commonly we choose a
discrete coordinate xj, which takes all the values from −L to L with the step dx.
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According to (115) we are quite sure that it passes through the PML-points −a
and a. But to introduce the PML one has to expand the problem to the complex
plane. Certainly, it will modify the spatial grid, we apply the same PML as in
eq. (39), for a visual refresh one can take a look at the Fig. 15. But I think we
better rewrite the PML condition again, just to have it within easy reach,

z =


a+ eiθ(x− a), x > a

x, −a < x < a

−a+ eiθ(x+ a), x 6 −a.
(118)

Again, we are interested in making our PML look as a straight vertical line, which
simplifies it even more, we choose θ = π/2 and the system above gets reduced to

z =


a+ i(x− a), x > a

x, −a < x < a

−a+ i(x+ a), x 6 −a.
(119)

If we try to visualise what actually happens, we could say that when the function
ϕ(zj) (yes, we can have it complex if we want) is considered on the region between
the PML-points (in between −a and a) it should behave as it did before and go
along the x-axis, but as soon as it occurs to be at the PML-point −a or a it
will start moving along the complex z-axis, which is calculated according (118)
or (119) if we have chosen θ = π/2. And here we expect it to decay rapidly with
no reflection back, that’s the idea of applying a PML.

We proceed with using the same method to introduce second and fourth spa-
tial derivatives through the a2 and a4 coefficients of the Taylor Expansion (63).
I think it is actually such a clear and beautiful way to go through this problem,
because once it has been done it could be applied again, even for the problem
with slightly different features. So the easiest way to rewrite the problem would
be just jump from the real grid xj to the new complex one with zj which we
discretize using eq. (118), thus we obtain

ϕj−2 = a0 + a1(zj−2 − zj) + a2(zj−2 − zj)2 + a3(zj−2 − zj)3 + a4(zj−2 − zj)4

ϕj−1 = a0 + a1(zj−1 − zj) + a2(zj−1 − zj)2 + a3(zj−1 − zj)3 + a4(zj−1 − zj)4

ϕj = a0

ϕj+1 = a0 + a1(zj+1 − zj) + a2(zj+1 − zj)2 + a3(zj+1 − zj)3 + a4(zj+1 − zj)4

ϕj+2 = a0 + a1(zj+2 − zj) + a2(zj+2 − zj)2 + a3(zj+2 − zj)3 + a4(zj+2 − zj)4.
(120)

It could seem familiar. . . Yes, it does look exactly like the system (36), but we
haven’t really used it last time, because we have been looking for the second
order derivative, so we could take another system (32) with a lower precision.
Nevertheless, even then I managed to use it in a very ineffective way, I didn’t
take care to simplify it, that’s why the code for the reduced Schrödinger equation
did run so slow (Chapter 4.3). Also because we didn’t try to represent the data
as a matrix before, instead I just gave it as it was to the ODE-solver with all
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its huge formulas, that the solver needed to go through again and again as it
was evaluating the problem in time. But here we are with our mistakes and our
understanding that almost always comes a bit later, and there is always this kind
of a mixed strange feeling when you find yourself being wrong but walking so
close to the truth all the time, and finally you can face it. It’s a nice feeling.

Let us see how we can simplify the problem. First of all, we know that on
the region between the PML, we have everything in the same way it was before.
Thus, in between the points −a and a we could write that the system will take
a form (63), and after simplification (64) which will lead consequently to the
same second and fourth derivatives represented through the coefficients a2 and
a4 ((65) and (69)). I would write them here again, then we don’t need to page
back all the time,

a2 =

(
− 1

24
ϕj−2 +

2

3
ϕj−1 −

5

4
ϕj +

2

3
ϕj+1 −

1

24
ϕj+2

)
1

dx2
, (121)

and

a4 =

(
1

24
ϕj−2 −

1

6
ϕj−1 +

1

4
ϕj −

1

6
ϕj+1

1

24
ϕj+2

)
1

dx4
. (122)

This let us to write the same lines in the matrices, that we are trying to create,
as in (67) and (70). But don’t forget, it is only for the elements lying in between
the PML.

When it comes to any of the points where PML starts, rules are changing,
and we have to apply a Taylor Expansion (120) for z from (119). Actually, if
we pay more attention we will see that the rules start changing a bit earlier.
Because when applying a Taylor Expansion to find the Finite Difference rule
using fourth order accuracy (to introduce coefficients a2 and a4), we need two
points from each side to calculate the value of the point in the middle.

It means, that when we want to know the solution for the point which is one
step away from PML (say xM−1) then we already need the value at the PML-
point xM = a and even the value of the next one which is inside PML xM+1. But
wait, it is not x any more! According to the PML that we have set (119) we enter
the complex plane now and the next point would be zM+1 = a+ i(xM+1 − a). I
think it could be much easier to see it on the sketch (Fig. 25), so I just attach it
below.

As it goes for the next point, which is exactly where the PML begins, we will
need two points from the left (xM−1 and xM−2) and two points from the inside
of our PML. A similar kind of a picture we have, when one wants to find the
solution for the second point inside the PML layer, which is zM+1, to calculate
it we will need next two points from PML (zM+2 and zM+3), the PML starting
point zM = xM , and one point from outside of the PML xM−1.

It is quite obvious, that these three points around the right PML boarder
a, and similar three points around the left one −a, are definitely very special
points! Because they are out of any rules. They are a combination of the points
from a region without PML and points from the inside of PML. So I suggest to
consider carefully, step by step, at least one point like this and write down the
solution. While the other similar points could be done analogically.
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Figure 25: On the sketch you can see the points (red dots) that we have to use in order to
calculate the value in the point xM−1 one step before the PML starts. According to the Taylor
Expansion (120), if we want to find its value we already have to use one point from inside of
the PML, which is zM+1 and could be calculated by (119).

Let’s choose the point we have already talked about, a point one step before
the right PML boarder xM−1 (Fig. 25), and write down the Taylor Expansion
for the function ϕ(xj) = ϕj around this point, we will have

ϕM−3 = a0 + a1(xM−3 − xM−1) + a2(xM−3 − xM−1)2 + a3(xM−3 − xM−1)3 + a4(xM−3 − xM−1)4

ϕM−2 = a0 + a1(xM−2 − xM−1) + a2(xM−2 − xM−1)2 + a3(xM−2 − xM−1)3 + a4(xM−2 − xM−1)4

ϕM−1 = a0

ϕM = a0 + a1(zM − xM−1) + a2(zM − xM−1)2 + a3(zM − xM−1)3 + a4(zM − xM−1)4

ϕM+1 = a0 + a1(zM+1 − xM−1) + a2(zM+1 − xM−1)2 + a3(zM+1 − xM−1)3 + a4(zM+1 − xM−1)4.
(123)

Before introducing the coefficients a2 and a4 we are able to simplify the problem,
in a similar way as we did when solving Swift-Hohenberg equation with Periodic
boundaries. Such terms as xM−3 − xM−1 and xM−3 − xM−2 are obviously equal
to −2dx and −dx. As concerns zM , it equals to xM = a, thus the difference
zM − xM−1 = dx. But the last equation is the most interesting one because here
we have zM+1, using (119) let’s calculate the term from the last equation from
the system,

zM+1 − xM−1 =
[
a+ i(xM+1 − a)

]
− xM−1 =

= xM − xM−1 + i(xM+1 − xM) =

= dx+ i(dx) = (i+ 1)dx.

(124)

Isn’t it fantastic?! Let’s rewrite our simplified system now, using obtained results,

ϕM−3 = a0 + a1(−2dx) + a2(−2dx)2 + a3(−2dx)3 + a4(−2dx)4

ϕM−2 = a0 + a1(−dx) + a2(−dx)2 + a3(−dx)3 + a4(−dx)4

ϕM−1 = a0

ϕM = a0 + a1(dx) + a2(dx)2 + a3(dx)3 + a4(dx)4

ϕM+1 = a0 + a1
(
(i+ 1)dx

)
+ a2

(
(i+ 1)dx

)2
+ a3

(
(i+ 1)dx

)3
+ a4

(
(i+ 1)dx

)4
.

(125)
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This system (125) is exactly the one we try to solve now to find desired coefficients
a2 and a4 at a certain step29, around the point xM−1. Let’s see what we have
for the coefficient a2 which represents the second order derivative, I calculate it
using the code [B] and get next result

a2 =

(( i

60
− 1

20

)
ϕM−3 +

( 7

10
− i

10

)
ϕM−2 +

( i
4
− 5

4

)
ϕM−1+

+
(1

2
− i

6

)
ϕM +

1

10
ϕM+1

)
1

dx2
.

(126)

Of course, it could be simplified even more, but it doesn’t really seem to be of
any use from the perspective of the numerical calculation. Thus we let ourselves
to leave it like this, and write the coefficient a4, which as one can find is

a4 =

(( 1

20
− i

60

)
ϕM−3 +

( i

10
− 1

5

)
ϕM−2 +

(1

4
− i

4

)
ϕM−1+

+
i

6
ϕM −

1

10
ϕM+1

)
1

dx4
.

(127)

In the same way as we did before (Chapter 5.3) the derivatives could be found
for this ‘special’ point now and the corresponding rows in the matrices could be
written. Though we should not forget that it was only one out of 6 ‘special’
points. But the rules for another 5 points could be found following the same
scheme. When this is done, we can go to the next step.

It is needed now to find the rule to evaluate the function inside the PML. But
it is not as difficult as it could seem. Using the same Taylor Expansion (120) we
calculate it for the PML which is the extension to the complex plane according
to the rule (119) we have set. Thus, it is obvious that the system (120) after the
simplification will turn into

ϕj−2 = a0 + a1(−2idx) + a2(−2idx)2 + a3(−2idx)3 + a4(−2idx)4

ϕj−1 = a0 + a1(−idx) + a2(−idx)2 + a3(−idx)3 + a4(−idx)4

ϕj = a0

ϕj+1 = a0 + a1(idx) + a2(idx)2 + a3(idx)3 + a4(idx)4

ϕj+2 = a0 + a1(2idx) + a2(2idx)2 + a3(2idx)3 + a4(2idx)4.

(128)

If one solves this system one will find that inside the PML coefficients a2PML

and a4PML
, that we need to calculate the derivatives, will be

a2PML
= −a2 and a4PML

= a4, (129)

where a2 and a4 are the PML-points from eqs. (121) and (122). Which is basically
means that the second derivative inside the PML changes its sign while the fourth
derivative stays unchanged

∂zz → −∂xx and ∂zzzz → ∂xxxx, (inside the PML). (130)

29 As before, I use my code [B] to solve such system of equations.
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It gives us a nice possibility to write the next corresponding rows in the matri-
ces M2 and M4. Those are the rows on the left from the point −a and on the
right from the point a where the PML starts. Let’s not forget that we already
have the values for the 6 ‘special’ points around the PML’s onsets.

We are almost done now, we have the values (121) and (122) to fill the middles
of the matrices’ diagonals where there is no PML and everything goes as it should
in ‘reality’. We also know the rule (129) which let us write down the rows on
the left and on the right sides where the PML is set. Then in the same way as it
shown through the example for one of the ‘special’ points, we can get equations
similar to the eqs. (126) and (127), and we will have the corresponding matrices’
diagonals filled with new elements. Last thing is left to do. We have to find the
values for the edge points.

In Chapter 5.3 we set Periodic boundaries, and there was one way of defining
the edge points. But now we wish to use only PML, so we keep on using a
Finite Difference Method to find the edge points. Since we have already found
the rule for defining derivatives (130) inside the PML we can simply use the
forward and backward finite difference [21] to find values for the 4 edge points
(two on the left-hand side and two on the right30). For example, the rules for
the coefficients a2|j=1 and a4|j=1 belong to the very first point, will look like

a2|j=1 = −
(

15

4
ϕ1 −

77

6
ϕ2 +

107

6
ϕ3 − 13ϕ4 +

61

12
ϕ5 −

5

6
ϕ6

)
1

2! · dx2
, (131)

and (using second order accuracy here)

a4|j=1 =
(

3ϕ1 − 14ϕ2 + 26ϕ3 − 24ϕ4 + 11ϕ5 − 2ϕ6

) 1

4! · dx4
. (132)

One can see that we have had to put minus sign to the equation for the a2|j=1

coefficient, and we have saved the sign for the a4|j=1, we do it according to the
found rule (129). Also, relying on the formula (31) that represents the relation
between coefficients aq and the derivative of a function we add factorials 2! and 4!
to these equations, because the numbers in the brackets from [21] are the one
to calculate the derivatives according to the Finite Difference method, not the
coefficients themselves from the Taylor Expansion.

Hope it wasn’t too rambling and puzzled, but now we have all the elements
we need to build the matrices M2 and M4 to find the spatial derivatives from a
one-dimensional Swift-Hohenberg equation (62). To create these matrices I have
written a MATLAB code [G], it took a while to make it work correctly and put
all the elements in the right rows and columns.

To check if the matrices are done correctly we take some simple initial func-
tion, the one that will let us calculate its derivatives analytically (to compare
with numerical solution later). Therefore, the Gaussian ‘bell’ was chosen,

ϕ0 = e−γ(z−z0)
2

, (133)

30When you do a Finite Difference for the edge points it is called forward (for the first point)
and backward (for the last point) Finite Difference [5, 21].
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where z is defined by (119), while γ and z0 are constant that could be varied.
Next step is to analytically calculate second and fourth order derivatives of this
function, one can easily find that

∂zzϕ0 = −2γ · ϕ0 + 4γ(z − z0)2 · ϕ0, (134)

and

∂zzzzϕ0 = 12γ2 · ϕ0 − 48γ3(z − z0)2 · ϕ0 + 16γ4(z − z0)4 · ϕ0. (135)

Now we can find an exact solution for the first step of a one-dimensional Swift-
Hohenberg equation, we would like to reduce our problem a bit more though, and
take away the non-linear term. we can do this, because what we truly trying to
do, is to check if the exact and numerical solution for the derivatives do match.
Thus, using (134) and (135) we calculate the function

ϕjexact
∣∣
t=0

= (r − 1)ϕ0j − 2 · ∂zzϕ0j − ∂zzzzϕ0j . (136)

And then, with the help of the matrices M2 and M4 that we have found, we solve
this problem numerically, with the method based on the Taylor Expansion and
the Finite Deference. The solution could be written as

ϕjnumer

∣∣
t=0

=
(

(r − 1) · I− 2 · 2! ·M2 − 4! ·M4

)
ϕ0j , (137)

where I, is the Identity matrix 31. We need it to proceed in a right way with
calculations when it comes to the matrices. When we have finally calculated our
exact (136) and numerical (137) solutions we can plot them together (Fig. 26).
Then we clearly see how both real and imaginary parts of the solution do match.
Moreover, on this figure it seems that they even match perfectly, but if we zoom
some places we will find that there is a tiny difference in results, but this error
occurs to be too negligible to worry about. It is also possible to check the matrices
directly comparing 2! ·M2 with the second order derivative (134) and 4! ·M2 with
the fourth (135). And of course it has been done as well32. I just save place here
not to overwhelm it with the figures.

Though, it could be interesting and important to look closer on the ‘special’
points and on the points at the edges. On the following Fig. 27 one can observe a
slight difference between the values for the 3 ‘special’ points around and exactly
at the right PML-point a. As we can see the matching is not perfect, though it
has been considered to be small enough to keep on this method. As concerns the
edge points, the error occurs to be very small there, so I don’t find it necessary
to insert an extra plot for it.

I think here we can stop, and if I didn’t know what is waiting us soon, I would
say with enough of confidence, that the matrices we have made are quite reliable

31It has been mentioned before (Chapter 5.3), the Identity matrix is a square matrix with
the main diagonal built out of 1 (ones), while all the other elements are 0 (zeros). It is needed
here to proceed in a proper way with the calculations [22]. In MATLAB one can call the
Identity matrix using a built-in function ‘eye(n)’ [20].

32 I leave the possibility of doing it again through the code [G] using ‘commented’ parts.
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Figure 26: The matching of the exact (136) and numerical (137) solutions for the first step
of a one-dimensional Swift-Hohenberg equation (62) with the initial function in the form of
a Gaussian (133). It is obvious that both real and imaginary parts match really well. Two
vertical red lines introduce the onset of a PML.

Figure 27: In a zoom from (Fig. 26), 3 ‘special’ points around the right PML-point a = 3. On
the top (blue line) is a real part of an exact solution (136) with its 3 ‘special’ points, below
(red line) is the real part of a numerical solution (137). We see that the result doesn’t match
perfectly but the error of O(3) was considered to be all right. Similar picture is observed if we
compare imaginary parts of the result, but even with a less error of O(4).

and could be used as an approximation for the second and fourth order derivatives
to calculate the functions that behave according to an evolution equation (such
as a one-dimensional Swift-Hohenberg or a one-dimensional reduced Schrödinger
equation) on the plane where a PML of the form (119) was applied. Nevertheless,
let’s go and see what happens on practice33.

33Writing this last paragraph, I still had no idea that the solution would be suddenly found.
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6.2 Linear stability analysis (with PML)

In Chapter 5.2 we have already done a linear stability analysis for a one-dimen-
sional Swift-Hohenberg equation with Periodic boundaries. We have talked about
the control parameter r and found its critical value rc = 0, which was kind of a
signal for us about the onset of an instability when r > rc. Also we discussed
the critical wave number qc = 1, and the growth rate σ (59), but I am going to
write the formula for it once again, then we don’t need to go back through the
pages. So, the growth rate could be calculated as

σ = r − (q − 1)2. (138)

But it was right only for that very case. What will happen now, when we
have the PML around? How will the relation between the growth rate and the
control parameter look like? Because this relation is definitely very important
to be found if we need to learn about the critical values. Let’s proceed with
the analysis in the same way as for a Swift-Hohenberg equation with Periodic
boundaries (Chapter 5.2), but pay attention at what we have to change now,
since there is a PML applied, and the problem is extended on the complex plane.

Remember in the previous Chapter 6.1 we found interesting transformation
of the second and fourth order derivatives (130), when we calculate them on
the region with or without PML? But to be honest we have got this rule in a
bit experimental way. Though, it could be easily obtained through the more
common consideration. We have already done something similar (Chapter 4.3.1)
while trying to find the second order spatial derivative, eqs. (14)–(16). We needed
this derivative to solve a reduced Schrödinger equation. But I should confess that
the calculation I made there was quite tricky. So I will take a chance to do it once
again in a more clear way and calculate both second and fourth order derivatives
needed to solve a Swift-Hohenberg equation (62).

To expand the problem to the complex plane, we start with the function
ϕ(x, t) and claim that along the curve z(x) (Fig. 25) defined by (119),

Φ
(
z(x), t

)∣∣
z(x)

= ϕ(x, t). (139)

The next step is to take a derivative of ϕ(x, t) once, this will immediately give
us

∂xϕ(x, t) = z′∂zΦ
(
z(x), t

)∣∣∣
z(x)

, (140)

but according to the eq. (119), z′ is nothing but z′ = i. Thus, we can write

∂xϕ(x, t) = i∂zΦ
(
z(x), t

)∣∣∣
z(x)

. (141)

Going further and calculating the second order derivative one gets

∂xxϕ(x, t) = i · z′∂zzΦ
(
z(x), t

)∣∣∣
z(x)

= −∂zzΦ
(
z(x), t

)∣∣∣
z(x)

. (142)
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Thus, when it comes to find fourth order derivative we repeat the procedure two
more times and get

∂xxxxϕ(x, t) = ∂zzzzΦ
(
z(x), t

)∣∣∣
z(x)

. (143)

That is it! We have got the same rule again for the ‘inside PML’ region,

∂xx → −∂zz,
∂xxxx → ∂zzzz.

(144)

But let’s return back to the stability analysis. Simply knowing now, that inside
the PML our second order derivative changes its sign, we can predict that the
stability analysis will look different for this term. While for the fourth order
derivative it will stay the same (144). When proceeding with the stability ana-
lysis inside the PML one can do it in two different ways. First, we choose
the mode (58) that represents the perturbation field up(x, t) to have complex
coordinates z(x) and look like

up(z, t) = Aeσteiqz. (145)

Inserting it into (50), one will get

σ = r − 1− 2(iq · i)2 − (iq · i)4 = r − 1− 2q2 − q4. (146)

The same result could be obtained if we use the rule (144), so just change the
sign of a second derivative in (58), then the equation will look like

∂tup(z, t) = (r − 1 + 2 · ∂zz − ∂zzzz)up(z, t), (147)

where up(z, t) is the one from eq. (145). After substitution one will get again

σ = r − 1 + 2(iq)2 − (iq)4 = r − 1− 2q2 − q4, (148)

which could be nicely transformed to

σ = r − (q2 + 1)2. (149)

The above equation is a new important relation between growth rate σ and
the control parameter r for a one-dimensional Swift-Hohenberg equation on the
region with PML (119). We observe that the sign in brackets of (149) has
changed, comparing to the result (138) for the region without PML. It certainly
means that the critical values for the control parameter and the wave number
will change as well. Let’s find them.

As before, the form of a mode (145) tells us that the problem is going to stay
stable, while

max
q

Reσq < 0. (150)

If we try to find the maximum real value of a growth rate σ dependent on the
wave number q, one can see that the second term on the right-hand side of (149)
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is always positive and couldn’t be turned to zero to let σ = r. But anyway, we
can find its minimal value which is 1, when qc = 0. It gives us

max
q

Reσq = r − 1. (151)

From here and the criteria of stability (150) we can find a critical value for the
control parameter,

rc = 1. (152)

It means that while r < 1 we have a stable solution for a one-dimensional Swift-
Hohenberg equation inside the PML, but as soon as r = rc = 1 it is the onset of
instability.

Recall, that the critical value of a control parameter for the region without
PML was rc = 0. One can conclude now, that to satisfy both regions – with and
without PML, we can simply choose r < 0 for the stability everywhere on the
plane, or choose 0 < r < 1 to get unstable solution on the region in the middle
(where there is no PML) and still have stability inside the PML. The last one is
what we actually prefer to have there, because we are interested in the pattern
appearing only inside the PML-free region in between −a and a points. To sum
it up, we have found the next critical values

rc = 0 and rcPML
= 1, (153)

qc = 1 and qcPML
= 0. (154)

Maybe it’s worth it to make a plot similar to Fig. 17 to analyse visually the
dependence of the growth rate σ on the wave number q (Fig. 28). I decided to
plot it for rc = 0.5, then we observe both – the stability of the modes inside
PML, and instability in the region without PML.

6.3 Solving the evolution equations

It knocks you down for a while, when you make a step full of a certain confidence
and exciting expectations, but suddenly everything goes the way you wanted the
less. Moreover, it goes the way you cannot see and understand clearly, the way
you cannot explain mainly to yourself, and there is not a single bright idea to
light it up and look around. And it is such a revealing feeling if soon you get
a chance or a smart thought how to fix it, but it keeps on pushing on you and
promises to explode this tiny aching head and body, if the answer stays unknown,
every time when you return to the problem. Honestly, there is a miserable chance
that it will let you get rid of constant thoughts about it.

There is this slow bothering feeling that something stays undone. Does it
mean that you care? Could it be considered as a positive circumstance? Oh, it
is really hard to let it go. But it might be a very important and useful knowledge
and ability to know how to let it go. Most likely it does work only in the sense of
an ability but not a knowledge, because it asks for a different kind of treatment,
if it makes any sense.
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Figure 28: The growth rate σ vs the wave number q for the region without PML (red line (138))
and for the region where PML (119) is presented (blue line (149)). Control parameter r = 0.5,
and provides instability for the PML-free region around the critical wave-number qc = 1, while
the region with PML stays stable, but still has its maximum at the critical wave-number
qcPML = 0. Reducing control parameter r < 0 will make both lines slide down, and escaping
the instability. While setting the control parameter r > 1 will lead to the increasing instability,
consequently making both lines slide up.

It would be so easy to think that we are close as never to see how the White
noise (Fig. 19) or any other low-amplitude function will evolve according to
a one-dimensional Swift-Hohenberg equation (62) on the plane with a PML of
type (118). Maybe I expected some possibly appearing errors in my code, but
I definitely thought that they would be solvable. I mean, I hoped that if they
would appear I would be able to figure out the way to fix them. But at least at
that step it was hard to guess that everything could suddenly stop, or to be more
precise explode. It wasn’t one of the main steps as it seems to me, it took much
longer to understand how to apply the right method, how to set a PML, how
to create the ‘brilliant matrix’. It was more like “now let’s apply what we have
found” and move to the next, more exciting problem in two- or n-dimensions,
let’s play with parameters at least. No. Not this time.

In the following small sub-chapters I would present results that were obtained
for the reduced Schrödinger equation and a one-dimensional Swift-Hohenberg
equation solved on the plane with PML (119). First of all I wish I could show
something that worked nicely. I did it after I had tried the method for the
Swift-Hohenberg, but it made me feel better, it always does when you see that
something goes the way you wish.

6.3.1 PML and the Schrödinger, again

. . . but much better this time. Not even much better, but probably the way it
should be from the very beginning. We have already tried to run our reduced
Schrödinger equation on the plane with Periodic boundaries, I mentioned it be-
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fore (Chapter 5.3). I didn’t insert any figures there, but can do it now (Fig. 29).
Everything was working perfectly there, ‘perfectly’ means according to the ana-
lytics probably. But also, that test for a Swift-Hohenberg equation (Fig. 21) told
us that the method and the matrix did work fine. Then, in the very beginning
(Chapter 4.3) we have run this reduced Schrödinger equation on the plane with
a PML applied (Fig. 14). And even though the code [A] was a bit tough and ir-
rational, it gave correct results. After all, when I got some simplified formulas to
introduce the second order derivative through the matrix M2 which are discussed
thoroughly in the previous Chapter 6.1 and could be generated by the MATLAB
code [G], it was a real pleasure to see how it works for the Schrödinger equation.
Even though, or maybe ‘especially because’, I did it after a huge unexpected fail
with the Swift-Hohenberg.

Figure 29: Evolution of a Gaussian function ϕ = e−γ(x−x0)
2

eikx according to a reduced
Shcrödnger equation (9) on the plane where Periodic boundaries are applied. On the series
of plots one can see (from left to right and then down) how the wave-packet is moving to the
left (wave-number k = −10) and slowly dissolves, when it reaches the left boundary it appears
from the right-hand side as expected and keeps on moving with a continuous dissolution.

There was nothing so special to do when it came that we wanted to calcu-
late the reduced Schrödinger equation (9) on the plane with a PML (119). All
we needed was just to make a new discretizastion for z, then generate the ma-
trix M2 (code [G]) which represents the second order derivative and run a new
code [H], which is very similar to the previous one (code [A]) but much more
simplified and elegant, mainly due to a new representation of a matrix M2.
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It took less than 5 seconds when a beautiful wave-packet appeared and started
to move slowly (Fig. 30), like it has nothing to worry about. Like it was on
a walk, on one of those days when everything is so quiet and calm, and the
harmony swallows you, letting you slide on the ground without really looking
down at your feet – they don’t need your control, you can just play with you
thoughts and ideas now.

But at some magic point a it started to disappear. Like those kids running
through the platform 93

4
, ‘it was walking briskly to the barrier he was almost

there – and then, quite suddenly, he wasn’t anywhere’ [23]. But wasn’t that
what we were looking for? To see how it would disappear.

Figure 30: Evolution of a Gaussian function (155) according to a reduced Shcrödnger equa-
tion (9) on the plane where a PML (119) is applied. On the series of plots one can see (from
left to right and then down) how the wave-packet is moving to the right (wave-number k = 8),
at the point (a = 3) where the desired PML (green line) is set, it starts to disappear without
any visible reflection back to the PML-free region.
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The wave-packet on (Fig. 30) is formed by a Gaussian function,

ϕ(x, t) = e−γ(x−x0)
2

eikx, (155)

which moves according to a reduced Schrödinger equation (9) on the plane with
a PML set at the points −a and a (Fig. 30). This time it takes the MATLAB
code [H] to run really fast. And it is all due to the simplification of the data we
have done through the last chapters. Also there is no reflection observed. These
facts definitely let us make a reasonable conclusion, that at least the second order
spatial derivative on the plane with a PML like (119) could be introduced quite
accurately through the matrix M2 (code [G]).

As it comes, some instability appears in the case of a Swift-Hohenberg equa-
tion (next Chapter 6.3.2). Thus, being pretty much satisfied with a second order
derivative represented by the matrix M2, we suggest that the trouble comes from
a numerical approximation of a fourth order spatial derivative and the matrix M4.
There was actually a lot of time and strength spent to find the way to fix this
problem or at least to find the reason for it to happen. Let’s look one more time
at the beautiful wave-packet running through the ‘platform 93

4
’ (Fig. 30) and

turn the page to the ‘hopeless case’ [24].

6.3.2 The Swift-Hohenberg with PML, fails

. . . without any obvious reason every time we try to run the code [I], which is
basically nothing new but the composition of everything we have already found.
Again and again, day after day, we try to figure out the problem, we use all
known methods: check the eigenvalues of the matrices M2 and M4, change the
boundary conditions back to periodic and back again, we expend the possibility
of forms that the PML can take through varying θ from (118) and etc. But
nothing really helps34.

But anyway, I think that the results are worth to be introduced here, at least
because it really took us a very long time to work it out. All the time then, we
were sure that there was no known way for us to solve the problem. So it looked
like this.

We have a one-dimensional Swift-Hohenberg equation (62) on the plane with
the PML (119) at points −a and a, which looks like (Fig. 25). Using our MAT-
LAB code [G], we introduce the second and the fourth order spatial derivatives

34 It is like, you were standing outside on a fresh day, playing music on the street, there
were some people who started to gather around you, let’s assume because they were interested
in the sounds they heard. Interested in how the simplest chords and a confident strumming
on that funny ukulele were interacting with your voice that was reflecting from every cold
unassailable wall of huge buildings around. Time was passing by, the crowd was getting bigger
and bigger, maybe the whole town was there? And at the moment when everyone until the
last trouble kid was there, they were ready to. . . They probably had learned already almost
everything about you, while gathering and listening to the alluring sounds, and now they were
waiting only for the last very important song or a melody, or a chord. It should sound clearly
and leave a certain pattern of interest on their minds or it should sound quietly and slowly
fade away making them feel. But suddenly, the strings break down, all four of them! Four
string, you hadn’t even touch them. Let’s see how it could be. . . and try to find the reason.
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from a Swift-Hohenberg equation through the matrices M2 and M4 (Chapter 6.1).
Then we prepare the code [I] using all known data and choose a randomly
distributed White noise signal (Fig. 19) as an initial function. We run the
code (Fig. 31).

Figure 31: White noise (Fig. 19) that evolves according to the Swift-Hohenberg equation (62)
on the plane with the PML (119) at points −a and a, which looks like (Fig. 25). Control
parameter r = 0.5 that according to (153) leads to the instability on the PML-free region
(between the green lines) and to stable modes inside the PML. It is important to mention
that the PML-points a ≈ π here. One can see (reading from left to right and then down)
the evolution of the White noise, but also it becomes obvious that the function stays unstable
everywhere. Thus, the predicted result doesn’t appear to be true.

First time we have run the system with control parameter r = 0.5 (Fig. 31).
Looking for any kind of a hope, we would set the control parameter to r < 0
now. It should obviously give us stable results everywhere, it should make the
White noise signal vanish away slowly everywhere on the plane. Let’s see what
we actually get (Fig. 32).
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Figure 32: White noise (Fig. 19) that evolves according to the Swift-Hohenberg equation (62)
on the plane with the PML (119) at points −a and a, which looks like (Fig. 25). Control
parameter is set to be r < 0 here, that according to (153) promises us stability everywhere
on the plane. It is important to mention that the PML-points a ≈ π here (green lines denote
where the PML starts). One can see (reading from left to right and then down) the evolution
of the White noise, though it becomes obvious that the function doesn’t vanish away as it
should, quite the reverse it becomes unstable everywhere.

We have been working with these results (Fig. 31, Fig. 32) for some really
long time I would say. The sudden instability was considered as a contradiction
of our analytical results and numerical calculations. We tried to figure out where
it comes from and the fact that it worked perfectly for the reduced Schrödinger
equation made us believe that all the troubles are due to the fourth order deriva-
tive. Because in the reduced Schrödinger equation (9) we have only the second
spatial derivative and as it’s shown in the Chapter 6.3.1 there were no problem
in applying obtained PML.

We had gone deep into considerations of how the appeared failure could be
explained by any means of the theory. Meanwhile, everything needed was right
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on the surface. But it is often too hard to notice small things on the tip of
your nose and we keep on looking under a table or a bed. And it takes a lot
of time of course, no doubts that there are so many things to find there and
they could be useful or fun, but rarely they would solve your problem. Is it
that we just wait for the right moment when we can finally discover this small
simple “a” that is going to fix everything?

7 PML and the Swift-Hohenberg equation

Actually, I am very happy to have this chapter the way it looks now and not
the other. The most interesting fact here, is that when writing my Thesis, all
the way until the previous paragraph I had no idea that this current chapter will
take place. It could be probably seen pretty clear through the slightly pessimistic
moods and hopeless plots only one page back.

I decided not to change it, because it wasn’t something that had appeared just
for a while. Honestly, just a day ago or so it would be the end of the Thesis, with
the exception of few more chapters that should present our desperate attempts to
prove the appropriateness of these exploding figures as well as making ourselves
believing that this not comforting result can also take place.

It is even funny how suddenly and unexpectedly everything can change, how
a little thought, that comes just before you fall asleep could make things go so
differently in the morning. Now everything seems to be so obvious and clear,
there is a certain lack of understanding about how it could stay invisible from
you all the time. There is a pinch of a sadness that burns with regrets of how
everything could go if you had found it some months ago.

Of course, if this had appeared earlier in the research we made, “we could
then have pushed our investigations into new pristine territory. However, this
is not what occurred and we must accept to this”. Moreover, we should write
as much as possible about it now, because it can be the very last step for this
Thesis but the very first one for someone who will take a chance to investigate
it further on. Thus, I let myself to go back to the work and explain everything
step by step.

7.1 There are still some dissensions

If we page back to the Chapter 5.2 and read the caption (Fig. 17) in the very
end of it, in the very last sentence, we would find the remark that gave us a
chance to find the ‘mistake’ if it could be called this way. It says, that when
the stability analysis is done, we expect some set of Fourier modes close to the
critical wave-number qc = 1 to grow. It also means, that the pattern should
appear. More precisely, the growth of certain Fourier modes close to the critical
wave-number qc = 1 predicts the appearance of a pattern with a characteristic
length scale 2π/qc. Let’s read it one more time,

characteristic length scale for a pattern =
2π

qc
. (156)
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I could clearly remember that all the time I’d run the code [I], PML-points
−a and a were set to a = 3. I had chosen it once as well as the number of spatial
steps N and M to define the spatial-grid, and never bothered to change it. But
obviously, it means that the PML-free region, where we had expected to observe
a pattern formation had the length from −a to a, which is l = 6. It turns to
be less than the characteristic length scale for a pattern formation from (156),
because on the PML-free region according to the stability analysis qc = 1. So,
all we needed to do was just to expend the plane of the observations. It is truly
unbelievable how suddenly all of it could go so nicely, and just the way it has
been derived analytically.

So, to do what we have just found, one has to change the value of the PML-
point a in the code [I] for a bigger one. Once this is done, we can run the code
and enjoy a pattern-like picture and check everything predicted by the theory
while varying the control parameter r and turning the non-linear term on and off.
All the ‘beautiful’ results are shown in the next series of figures (Fig. 35 – 37),
but for a while we let them wait.

As it appears, after a more careful examination, it is not only a bigger value
of a PML-point that fixes everything, the spatial step dx does also play an
important role. It takes some time to check all the possible combinations, because
there are few terms we can change: the control parameter r, the spatial step dx
and the value of a PML-point a. Somehow, after several tries certain conclusions
could be made.

Figure 33: The result (last step) of running a Swift-Hohenberg equation (62) on the plane with a
PML (119), when a White noise signal (Fig. 19) is used as an initial function. Here the control
parameter is chosen to be r = −0.3. Thus, according to the theory (153), all the amplitudes
should fade away. Still we can see some disturbance on the right. As the experiment shows,
there is almost always some kind of a different disturbance near the PML-boarder (green lines)
or on the edges, when the control parameter −0.3 6 r 6 0, even if the PML-point is set a > 2π.

First of all, there is still something that ‘breaks’ results when we run the
system with a control parameter −0.3 < r < 0, (Fig. 33). According to the
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stability analysis (153), with r < 0 we should have all the amplitudes fading
away everywhere on the plane, somehow there is still something left all the
time (Fig. 33) unless we decrease the value of a control parameter even more.
Nevertheless, for all the other values of r it seems to work nice.

The second issue, is the value of a spatial step dx. It turns out that if dx is
really small, then we cannot save the situation even with a huge values of a. We
have already mentioned that it is possible to get correct results only if a > 2π,
thus I tried to find kind of a critical value for the spatial step dxc, when a = 2π.
It appears to be, that dxc ≈ 0.3 when the PML-point is set to a = 2π (Fig. 34).
The value is approximate because we examine a signal, the White noise, which is
always randomly distributed on the plane (Fig. 19). So, even with a prescribed
behaviour by a Swift-Hohenberg equation, no two experiments are alike.

Figure 34: Two different disturbances that appear when running a Swift-Hohenberg equa-
tion (62) on the plane with a PML (119), when a White noise signal (Fig. 19) is used as an
initial function. These disturbances appear as a mistake and a disagreement with a theory
when the spatial step is chosen to be dx . 0.3. Here the control parameter is set to r = −0.5.
According to the theory (153) and our careful examination, all the amplitudes usually fade
away for this value. But since we set dx = π/10 ≈ 0.3142, we can see that some disturbances
do arise. As our experiment shows, there is almost always some kind of a different disturbance
near the PML-boarder (green lines) or on the edges when the spatial step is set dx . 0.3.

Also when we increase the value of a PML-point, we see that the critical
value for the spatial step begins to decrease, but not that much. So still, for the
correct results it is preferably to use35 dx > 0.3 and a > 2π. Maybe it is useful
to make a little table to introduce what we have just discussed.

a < 2π results are unstable and incorrect (Fig. 31–32)
a = 2π set dx > 0.3 for the correct results (Fig. 34)
a > 2π dxc could be different now, and depends on a

set a > 2π and dx > 0.3 for the correct results (Fig. 35 – 37).

Now, after all the dissensions with the theory are up on the surface, we can use
parameters that will give us the most close to the truth (and to the theory)
solution of the problem. Since all these results are quite new for me, and have
appeared just some days ago, though the Thesis has to be finished very soon, I
don’t try now to explain them or to fix the problem and make it work perfectly

35It has to be mentioned, that in the code [I] we set the spatial step as dx = a/M , where
M is the number of points we want to have on the grid from the origin of coordinates to the
PML-point a. Thus, the value of the spatial step dx is always set by this fraction.
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in accordance with the analytics. But I would suggest it to be the next step in
any further investigations, if one is about to start them.

7.2 ‘Patterns’ do appear!

It seems to be the last chapter, that mostly will consists out of figures and
plots presenting the evolution of a White noise signal (Fig. 19) according to a
Swift-Hohenberg equation (62) on the plane where PML of type (119) has been
applied. I guess, I have written the above sentence so many times already, and
every time before it was just something incomplete, something that would need
an improvement or a reconsideration, but now it is more or less what we can call
the answer! Though, this kind of an answer that needs not to be kept untouched
but has to be developed and upgraded to the next level. I mean, that it has to
be developed, but not only around itself, working on this result could definitely
turn it into something else, into something even more exciting.

Using the matrices calculated in Chapter 6.1 and presented by the code [G],
using the right (suitable) configuration of parameters, which were discussed in
a previous Chapter 7.1, we can run the code [I] and get nice pictures. Also I
am not going to comment all the figures through the main text here, but rather
leave as much comments as possible in the caption for each. By the way, there
is going to be three of them, according to the possible three cases for the control
parameter (153) from the stability analysis (Chapter 6.2):

r < 0 ⇒ stability everywhere (all the amplitudes fade away),

0 < r < 1 ⇒ unstable on a PML-free region, stable inside PML,

r > 1 ⇒ unstable everywhere on the plane.

(157)

It was really a pleasure to see the pattern-like picture appearing in the middle
of the plots on the PML-free region, just as predicted by the theory (Fig. 35).
Or to see how the function inside the PML couldn’t calm down for r > 1, while
in the middle everything looked still (Fig. 37). At the same time, the case with
‘everywhere dissolution’ for r < 0 (Fig. 36) brought more problems that had
been expected and which still have to be studied more thoroughly. These were
the most interesting and exciting moments about running the prepared code and
examining the results. I hope, that the explanations below the figures are full
and valuable enough to tell as much as possible on the results obtained. From
here I let the figures ‘speak for themselves’.
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Figure 35: The first and the most ‘classical’ case (in our terms) that we would like to observe
after a long working process, and probably the most important one. When the control param-
eter lies between 0 < r < 1 which gives us an instability on the PML-free region (between
green lines) but let everything to fade away inside the PML (153), these conclusions are based
on the stability analysis we did before (Chapter 6.2). On the series of plots (reading from left
to right and then down) we see how the White noise signal (Fig. 19) evolves according to a
Swift-Hohenberg equation (62) on the plane with a PML (119) at points −a and a. The title
of every plot (if one zooms the page) claims that the PML-point is set a = 6π, the control
parameter r = 0.5, and the spatial step occurs to be dx ≈ 0.47124 (these parameters were
chosen in accordance with the remarks we made through the Chapter 7.1). Also the ‘endless’
growth of the instability is controlled by a non-linear term u3 from (62). Thus, we obtain
a really nice picture with a pattern-like formation in the middle, between the PML-starting
points.
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Figure 36: The second and, as could seem, the most boring case, with the value of a control
parameter r < 0 that has to provide stable solutions everywhere, that should make all the
amplitudes fade away slowly. But if we recall what is said in Chapter 7.1 and look once again
on the Fig. 33, we will understand that this case turns to be more or less tricky and incomplete.
The control parameter has to be chosen r < −0.3, if we want to get the correct, by all means,
results. On the series of plots (reading from left to right and then down) we see how the White
noise signal (Fig. 19) evolves according to a Swift-Hohenberg equation (62) on the plane with
a PML (119) at points −a and a. I have chosen different values for the PML-points here from
the previous case, now a = 8π, the spatial step occurs to be dx ≈ 0.50265, and the most
important is the value for the control parameter, which is set to be r = −0.5 (these parameters
were chosen in accordance with the remarks we made through the Chapter 7.1). Thus, when
the ‘special’ parameters are set we observe how all the low amplitudes of a White noise signal
dissolve in time and fade away.
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Figure 37: The third, the last, and the most exciting case, I would say. The control parameter
is set r > 1, which is greater then both critical values rc for the region with and without
PML (153). It should give us instability (but controlled by the non-linear term u3) on the
PML-free middle (between the green lines) and some kind of an instability inside the PML as
well (Chapter 6.2). And that’s is exactly what we see on the series of plots (reading from left to
right and then down). The White noise signal (Fig. 19) evolves according to a Swift-Hohenberg
equation (62) on the plane with a PML (119) at points −a and a. After some period of time
we see how a pattern-like picture sets up in the middle (PML-free), but inside the PML-region
nothing calms down, even if running the code for a really long time. The parameters chosen
here (as it could be seen from the title to every plot) are: PML starts at a = 8π, the control
parameter is r = 1.2, and the spatial step occurs to be dx ≈ 0.50265 (these parameters were
chosen in accordance with the remarks we made through the Chapter 7.1).
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8 Conclusion

I remember after a series of failures, while working on the very first problem
of my Thesis – a reduced Schrödinger equation on the plane with a Perfectly
Matched Layer (PML) set on; I was asked to do some other tasks, which were
definitely a bit aside from the main course of our investigations, though maybe
they were supposed to switch my attention for a moment. Back then, I could
not really guess if they would be of any help later, or might let me see some
similarities, or whatever else.

Of course, I did all the tasks, which took me about a week or so. But in the
very end, we were back to the point I had been stuck at before. I gave it a try
and asked, for what reason we had done all those complicated and tricky things,
if now we have returned to the same exact place in our research we did stand on
in the beginning. The answer was – ‘Oh! You know, before doing something you
have to talk to people about complex analysis and etc. It is just good to know the
history behind the question, to go through something tough before you can really
evaluate the usefulness and simplicity of the other methods’.

So, even if it seems to be only about getting the results, it is actually not. I
want to believe, that in its origin this work is actually more about the process: of
getting an experience, of exploring the inner and the outer places, of travelling
backward and forward, of dreaming and thinking – while building a personal
understanding of the whole thing.

From the first to the last chapter of this Thesis we were going through the
steps that let us in the very end, even though quite unexpectedly, to build a
system with a Perfectly Matched Layer (PML) of a special form that could be
described as a vertical reflectionless boundary on the plane.

Two evolution equations on this plane with PML have been considered. First,
a reduced Schrödinger equation with a Gaussian function as an initial signal,
which let us observe a wave-packet moving along the x-axis and being totally ab-
sorbed by the PML. Second, and the most interesting case, was a one-dimensional
Swift-Hohenberg equation with a randomly distributed White noise signal in the
role of an initial function. In our experiments with a Swift-Hohenberg equation
we could see how a randomly distributed signal would start fading away every-
where on the plane, but at some moment, depending on the chosen parameters,
it might suddenly grow and form a simple but nice kind of a pattern, or it could
continue on vanishing away.

There are lots of interesting, amazing, inspiring aspects appearing in the
Thesis that you can pay attention to. One of them, is the vertical boundaries
we have set with a PML, they are something like a wall on one’s way, though
turn out to be magically reflectionless, which let us observe Patterns, that the
evolution equation is supposed to produce, as they are. Another thing, is my
favourite, about how the evolution equation as a Swift-Hohenberg equation, with
its control parameter and non-linear stability terms, can make a similar Pattern
appear every time almost from nothing, from a randomly distributed signal, like
a White noise. It seems to have a lot in common with all those great unbelievable
things happening in the Universe, on the huge scales; or here around us, on the
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scales so much smaller. It makes me think about the chaos and the order around
and inside of us, or maybe around and inside of everything. It also brings us
back to those pictures of very similar Patterns found in absolutely different, as
we would think, natural systems.

We have studied and talked about plenty of analytical and numerical methods
in this work. Our exploration starts with the experiments and systems that
are a certain simplification of the real problem and the goal we set. Thus, a
reduced Schrödinger equation was studied first, it has only a second order spatial
derivative. Then, we took some time creating a method to calculate spatial
derivatives, using Taylor Expansion (along with a Finite Difference Method),
and based on building a matrix in MATLAB. We did it first of all for the system
with Periodic Boundaries, and only after we were satisfied with the results, we
moved further and implemented a Perfectly Matched Layer (PML).

The results that we have got for a one-dimensional Swift-Hohenberg equation,
when running it on the plane with a desired type of a Perfectly Matched Layer
(PML) set, and a randomly distributed White noise signal chosen as an initial
function, are assumed to be absolutely new, if we talk about the experiment and
its application. These results are meant to give us a possibility to observe a
pattern formation, produced by an evolution Swift-Hohenberg equation, the way
it should appear on the infinite domain originally, but using an actual finite one,
avoiding all the reflections that cause instabilities and destroy the real picture.

From the other hand, I can call results that were obtained some sort of ‘new’,
just because we have discovered and presented them the way they are, only in
the very end of the Thesis. It just happened that we got them, when already
being in the finish. Maybe, it makes it even more exciting, to have something
‘fresh’ half a step before the conclusion. Also it makes you feel as if the problem
was sort of ‘alive’. Because the question to study and the further steps to go are
lying right on the surface now, and they just wait for someone to keep on with
the investigations. Only expanding the problem to a two-dimensional (spatially)
case should already give us those wonderful pattern-like plots (as hexagons and
convection rolls). I would say, even if it feels for a moment that we have reached
the finish line, actually we have only clambered up the first step. It was a tough
adventure, nevertheless, now we know that this ‘step’ is stable enough to let us
proceed with developing our theory and push the investigations to the next level.

In the very beginning, almost everything was absolutely unknown to me, and
of course, the goal we set for the Thesis at first, is still so far from the ‘step’
we are safely sitting on now. Although, I think that setting the expectations
somewhere to a further place, than the one you can actually reach, is not a bad
practice, especially if you kind of know it from the moment you have started,
or maybe, get some understanding while working on the problem. If you do the
thing carefully, trying not to miss any part that could be important and making
the issues clear first of all for yourself, then almost always, it takes at least double
time. But hopefully, it is the way it should be, only being on this road you might
have a chance to get some important answers, it is more about the process, as I
have told already. Process of learning, exploring, thinking and dreaming.
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***

So, is it the end? You catch a snowflake and learn something from it just before
it melts away, or you get some magical feeling watching its amazing pattern for
those few seconds that it rests on your mitten. You will never forget the chance
that you got and everything that happened. But then, there is always something
next to do.

It is incredibly wonderful how the things you start, your ‘projects’, so different
in their nature, would intertwine from time to time, while you keep on doing
both. How the memories and ideas from one of them would affect the results of
another, and how the inspiration for the first appears while working hard on the
second. But of course, numbering here makes no sense, as well as the number of
these ‘projects’. It is all about getting something done and learning new things
along with getting the problems solved. Because they have to be, or because you
want them to be solved. Quite often these two aspect do also appear to be one.
Meanwhile, having fun is not the last thing here. One has to enjoy the process
otherwise, it won’t give you the real true outcome.

I bet, we never know for sure when exactly something will strike out and we
will get this beautiful or inspiring ‘answer’. Maybe, one day after two weeks of
hard working on a Thesis, ‘hiding’ on the farm not far from Oslo, you will find
a caravan standing next to the place where you currently live, and you will go
there and spend the night doing a sudden music recording,

About Sun = https://soundcloud.com/andrew-antrushin/about-sun (158)

Being so not sure how it happens, I obviously have a strong feeling as if it
was all about the same. The patterns and the equations, the patterns and the
songs. Your projects and your dreams. The way how one turns to be the other
equally. The moment when something appears out of nothing, or a second when
everything fades away for a while.

It all turns to be a part of a ‘bigger’, but gracefully bears its own face and
ignites this pleasant understanding, that you do something you belong to. And
it helps a lot. It is needed.

This way we are able to find and to see the amazing connections: while
being impressed by a snowflake that landed on your mitten, or thrilled by a
spiral galaxy, that could be actually observed even situating millions of light
years away from us. And then the moment comes, when patterns appear from
equations, when equations become a song (158), when everything suddenly goes
the way it has been always going, but now, after getting rid of some disturbing
reflections, you just see it more clearly.
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Appendices

A The Schrödinger equation with PML (my first try)

1 % F i r s t attempt o f making a Gaussian func t i on evo lve
2 % accord ing to a reduced Schrodinger equat ion on the plane with PML.
3 % The code i s qu i t e tough , mainly due to us ing the matrix
4 % f o r the ODE−s o l v e r from the func t i on odePML .m which i s not s i m p l i f i e d
5

6 c l e a r a l l ; c l c ;
7 t i c ; % Star t t imer
8

9 % d e f i n e the s p a t i a l g r i d
10 M = 100 ; % number o f po in t s at (−a , a )
11 N = 200 ; % number o f po in t s at (−L , L)
12 a = 4 ; % the value o f PML−po int
13 dx = a/M; %d e f i n e the s tep ( to make sure that a PML−po int i s on the g r id )
14 L = N∗dx ; % the value o f the po int where the l a t e r a l boundary i s s i t u a t e d
15 n = 2∗N+1; % the whloe number o f g r id po in t s from ’−L ’ to ’L ’
16 x = l i n s p a c e (−L , L , n) ; % d e f i n e x−g r id
17

18 % d i s c r e t i z e z in accordance with chosen PML
19 % z = a + i f ( x ) = a + exp ( i ∗ t e t t a ) (x−a )
20 ar = N+1 + M; % number o f the r i gh PML−po int
21 a l = N+1 − M; % number o f the l e f t PML−po int
22 aR = x ( ar ) ; % value o f the r i g h t PML−po int
23 aL = x ( a l ) ; % value o f the l e f t PML−po int
24

25 theta = pi /2 ; % s e t i n c l i n e ’ theta ’
26 z ( 1 : a l ) = aL + exp (1 j ∗ theta ) ∗( x ( 1 : a l ) − aL) ; % l e f t PML
27 z ( a l +1: ar−1) = x ( a l +1: ar−1) ; % middle without PML
28 z ( ar : n ) = aR + exp (1 j ∗ theta ) ∗( x ( ar : n ) − aR) ; % r i g h t PML
29

30 % d e f i n e time−g r id
31 dt = 0 . 0 3 ;
32 T = 3 ;
33 m = T/dt ;
34 t = l i n s p a c e (0 ,T,m) ;
35

36 % generate a Gaussian func t i on
37 % phi = exp(−gamma∗( x − x0 −/+ C∗ t ) ˆP) ∗exp (1 j ∗K∗x ) ;
38 % parameters
39 C = 1 ;
40 gamma = 0 . 8 ; % sma l l e r gamma −> wider wavepacket ! ! !
41 K = −6; % b igge r wave number more waves in a wavepacket ! ! ! and guess i t

a l s o moves f a s t e r
42 P = 2 ; % should be even ! ! !
43 x0 = −1;
44 % i n i t i a l f unc t i on
45 phi0 = exp(−gamma∗( x − x0 ) . ˆP) .∗ exp (1 j ∗K.∗ x ) ;
46 phi0 (1 ) = 0 ;
47 phi0 (n) = 0 ;
48
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49 % f i n i t e d i f f e r e n c e ( from expansion ) to in t roduce second order d e r i v a t i v e
50 num dxx = ze ro s (1 , n ) ;
51 f o r i = 2 : n−1
52 num dxx ( i ) = −2∗(−z ( i ) ∗phi0 ( i −1) + z ( i +1)∗phi0 ( i −1) + . . .
53 z ( i −1)∗phi0 ( i ) − z ( i +1)∗phi0 ( i ) − z ( i −1)∗phi0 ( i +1) + . . .
54 z ( i ) ∗phi0 ( i +1) ) / ( ( z ( i −1) − z ( i ) ) ∗( z ( i −1) − z ( i +1) ) ∗( z ( i ) − z ( i

+1) ) ) ;
55 end
56

57 % c r e a t e a func t i on f o r the ode−s o l v e r and c a l c u l a t e the r e s u l t
58 f = @( tt , phi ) odePML( tt , phi , n , z ) ;
59 [ tt , Phi ] = ode23tb ( f , t , phi0 ) ;
60

61 toc ; % Stop timer
62

63 % plo t the r e s u l t s
64 f i g u r e (1 )
65 f o r k = 1 :m
66 drawnow ;
67 p lo t (x , r e a l ( Phi (k , : ) ) ) ;%, x , 1 , ’ g ’ , x , −1, ’ g ’ ) ;
68 ymin = −T;
69 ymax = −ymin ;
70 a x i s ([−L L ymin ymax ] ) ;
71 t i t l e ( ’ WavePacket moving with the PML’ ) ;
72 l i n e ( [ a , a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
73 l i n e ([−a,−a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
74 x l a b e l ( ’ x ’ ) ;
75 y l a b e l ( ’ \Phi ( x ) ’ ) ;
76 S1=s p r i n t f ( ’ t = %.2 f ’ , k ) ;
77 t ex t (L/1 . 8 , ymax/1 . 8 , S1 ) ;
78 end

A.1 Function ‘odePML.m’ for the main code [A]

1 f unc t i on dPhidt = odePML(˜ , phi , n , z )
2

3 dPhidt = ze ro s (n , 1 ) ;
4 a2 = ze ro s (n , 1 ) ;
5

6 f o r i = 3 : n−2
7 a2 ( i ) = ( phi ( i −2)∗( z ( i −1)∗z ( i +1) − 2∗ z ( i ) ∗z ( i +1) − 2∗ z ( i ) ∗z ( i +2) − . . .
8 2∗ z ( i ) ∗z ( i −1) + z ( i −1)∗z ( i +2) + z ( i +1)∗z ( i +2) + 3∗ z ( i ) ˆ2) ) / ( ( z ( i )

− . . .
9 z ( i −2) ) ∗( z ( i −1) − z ( i −2) ) ∗( z ( i −2) − z ( i +1) ) ∗( z ( i −2) − z ( i +2) ) ) − . . .

10 ( phi ( i −1)∗( z ( i −2)∗z ( i +1) − 2∗ z ( i ) ∗z ( i +1) − 2∗ z ( i ) ∗z ( i +2) − . . .
11 2∗ z ( i ) ∗z ( i −2) + z ( i −2)∗z ( i +2) + z ( i +1)∗z ( i +2) + 3∗ z ( i ) ˆ2) ) / ( ( z ( i )

− . . .
12 z ( i −1) ) ∗( z ( i −1) − z ( i −2) ) ∗( z ( i −1) − z ( i +1) ) ∗( z ( i −1) − z ( i +2) ) ) − . . .
13 ( phi ( i +1)∗( z ( i −1)∗z ( i −2) − 2∗ z ( i ) ∗z ( i −2) − 2∗ z ( i ) ∗z ( i +2) − . . .
14 2∗ z ( i ) ∗z ( i −1) + z ( i −1)∗z ( i +2) + z ( i −2)∗z ( i +2) + 3∗ z ( i ) ˆ2) ) / ( ( z ( i )

− . . .
15 z ( i +1) ) ∗( z ( i −1) − z ( i +1) ) ∗( z ( i −2) − z ( i +1) ) ∗( z ( i +1) − z ( i +2) ) ) + . . .
16 ( phi ( i +2)∗( z ( i −1)∗z ( i −2) − 2∗ z ( i ) ∗z ( i −2) − 2∗ z ( i ) ∗z ( i +1) − . . .
17 2∗ z ( i ) ∗z ( i −1) + z ( i −1)∗z ( i +1) + z ( i −2)∗z ( i +1) + 3∗ z ( i ) ˆ2) ) / ( ( z ( i )

− . . .
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18 z ( i +2) ) ∗( z ( i −1) − z ( i +2) ) ∗( z ( i −2) − z ( i +2) ) ∗( z ( i +1) − z ( i +2) ) ) + . . .
19 ( phi ( i ) ∗( z ( i −1)∗z ( i −2) − 3∗ z ( i ) ∗z ( i −2) − 3∗ z ( i ) ∗z ( i +1) − . . .
20 3∗ z ( i ) ∗z ( i +2) − 3∗ z ( i ) ∗z ( i −1) + z ( i −1)∗z ( i +1) + z ( i −1)∗z ( i +2) + . . .
21 z ( i −2)∗z ( i +1) + z ( i −2)∗z ( i +2) + z ( i +1)∗z ( i +2) + 6∗ z ( i ) ˆ2) ) / ( ( z ( i )

− . . .
22 z ( i −1) ) ∗( z ( i ) − z ( i −2) ) ∗( z ( i ) − z ( i +1) ) ∗( z ( i ) − z ( i +2) ) ) ;
23

24 dPhidt ( i ) = 1 j ∗a2 ( i ) ;
25 end
26 end
27

28 % i t wasn ’ t the very f i r s t p r e s e n ta t i o n f o r the complex c o e f f i c i e n t s
29 % that I have used . I t was even more compl icated be f o r e . But s t i l l
30 % t h i s p r e s e n ta t i o n i s very overwhelming in comparison with the e l e gan t
31 % matr i ce s we w i l l get l a t e r . And i t i s only c a l c u l a t i o n s f o r the second
32 % order de r i v a t i v e , can imagine how huge the formula f o r the four th
33 % order d e r i v a t i v e w i l l be .

B Solve a system of equations

1 % Solve s a system o f equat ions obtained from Taylor ’ s Expansions
2 % and f i n d s the F i n i t e D i f f e r e n c e r u l e
3 c l e a r a l l ; c l c ;
4 % s e t the v a r i a b l e s
5 syms phi im2 phi im p h i i p h i i p p h i i p 2 z im2 z im z i z i p z i p 2 dx

r e a l
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 % s e t the terms o f the equat ion
8 a = (−1 j ∗2∗dx ) ;
9 b = (−1 j ∗dx ) ;

10 c = 0 ;
11 d = (1 j ∗dx ) ;
12 e = ((1 j +1)∗dx ) ;
13

14 % c r e a t e a matrix with these terms accord ing to Taylor ’ s Expansion
15 M = [ 1 ( a ) ( a ) ˆ2 ( a ) ˆ3 ( a ) ˆ4
16 1 (b) (b) ˆ2 (b) ˆ3 (b) ˆ4
17 1 ( c ) ( c ) ˆ2 ( c ) ˆ3 ( c ) ˆ4
18 1 (d) (d) ˆ2 (d) ˆ3 (d) ˆ4
19 1 ( e ) ( e ) ˆ2 ( e ) ˆ3 ( e ) ˆ 4 ] ;
20

21 % c r e a t e the vector , the func t i on ” p h i i ”
22 B = [ phi im2 phi im p h i i p h i i p p h i i p 2 ] ’ ;
23

24 % f i n d the s o l u t i o n f o r a l l a−c o e f f i c i e n t s that r e p r e s e n t d i f f e r e n t
25 % order s p a t i a l d e r i v a t i v e s o f the func t i on ” p h i i ”
26 a = M\B;
27

28 % f i n d a2 and a4 c o e f f i c i e n t s , to c a l c u l a t e the second and the four th
29 % order d e r i v a t i v e s o f the func t i on ” phi ( x i , t ) ”
30 a2 = c o l l e c t ( a (3 ) , phi im2 ) ;
31 a2 = c o l l e c t ( a2 , phi im ) ;
32 a2 = c o l l e c t ( a2 , p h i i p 2 ) ;
33 a2 = c o l l e c t ( a2 , p h i i p ) ;
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34 a2 = c o l l e c t ( a2 , p h i i ) ;
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 a2 = char ( a2 ) ;
37 a2 = s t r r e p ( a2 , ’ im2 ’ , ’ ( i −2) ’ ) ;
38 a2 = s t r r e p ( a2 , ’ im ’ , ’ ( i −1) ’ ) ;
39 a2 = s t r r e p ( a2 , ’ i p 2 ’ , ’ ( i +2) ’ ) ;
40 a2 = s t r r e p ( a2 , ’ i p ’ , ’ ( i +1) ’ ) ;
41 a2 = s t r r e p ( a2 , ’ i ’ , ’ ( i ) ’ )
42 %%%%%%%%%%%%%
43 a4 = c o l l e c t ( a (5 ) , phi im2 ) ;
44 a4 = c o l l e c t ( a4 , phi im ) ;
45 a4 = c o l l e c t ( a4 , p h i i p 2 ) ;
46 a4 = c o l l e c t ( a4 , p h i i p ) ;
47 a4 = c o l l e c t ( a4 , p h i i ) ;
48

49 a4 = char ( a4 ) ;
50 a4 = s t r r e p ( a4 , ’ im2 ’ , ’ ( i −2) ’ ) ;
51 a4 = s t r r e p ( a4 , ’ im ’ , ’ ( i −1) ’ ) ;
52 a4 = s t r r e p ( a4 , ’ i p 2 ’ , ’ ( i +2) ’ ) ;
53 a4 = s t r r e p ( a4 , ’ i p ’ , ’ ( i +1) ’ ) ;
54 a4 = s t r r e p ( a4 , ’ i ’ , ’ ( i ) ’ )

C Matrices when Periodic boundaries are applied

C.1 Matrix to calculate a second order derivative

1 % c a l c u l a t e s the matrix M2 which i s a f i n i t e d i f f e r e n c e method f o r the
2 % second order d e r i v a t i v e . M2 i s a square matrix o f the s i z e (n+1, n+1) ,
3 % where n+1 i s the t o t a l number o f g r id po in t s i n c l u d i n g zero .
4 f unc t i on M2 pbc = Matrix M2 pbc (dx , n)
5

6 s = 1/dx ˆ2 ;
7 M2 pbc = ze ro s (n+1,n+1) ;
8

9 f o r i = 1 : n
10 M2 pbc ( i , i ) = −5/4∗ s ;
11 M2 pbc ( i , i +1) = 2/3∗ s ;
12 M2 pbc ( i , i +2) = −1/24∗ s ;
13 M2 pbc ( i +1, i ) = 2/3∗ s ;
14 M2 pbc ( i +2, i ) = −1/24∗ s ;
15 end
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17

18 % at the po int x 1
19 M2 pbc (1 , n) = −1/24∗ s ;
20 M2 pbc (1 , n+1) = 2/3∗ s ;
21 M2 pbc (1 , 1 ) = −5/4∗ s ;
22 M2 pbc (1 , 2 ) = 2/3∗ s ;
23 M2 pbc (1 , 3 ) = −1/24∗ s ;
24 % at the po int x 2
25 M2 pbc (2 , n+1) = −1/24∗ s ;
26 M2 pbc (2 , 1 ) = 2/3∗ s ;
27 M2 pbc (2 , 2 ) = −5/4∗ s ;
28 M2 pbc (2 , 3 ) = 2/3∗ s ;
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29 M2 pbc (2 , 4 ) = −1/24∗ s ;
30

31 % at the po int x (n+1)
32 M2 pbc (n+1,n−1) = −1/24∗ s ;
33 M2 pbc (n+1,n) = 2/3∗ s ;
34 M2 pbc (n+1,n+1) = −5/4∗ s ;
35 M2 pbc (n+1 ,1) = 2/3∗ s ;
36 M2 pbc (n+1 ,2) = −1/24∗ s ;
37 % at the po int x n
38 M2 pbc (n , n−2) = −1/24∗ s ;
39 M2 pbc (n , n−1) = 2/3∗ s ;
40 M2 pbc (n , n) = −5/4∗ s ;
41 M2 pbc (n , n+1) = 2/3∗ s ;
42 M2 pbc (n , 1 ) = −1/24∗ s ;
43

44

45 M2 pbc = M2 pbc ( 1 : n+1 ,1:n+1) ;
46 end

C.2 Matrix to calculate a fourth order derivative

1 % c a l c u l a t e s the matrix M4 which i s a f i n i t e d i f f e r e n c e method f o r the
2 % four th order s p a t i a l d e r i v a t i v e .
3 % M4 i s a square matrix o f the s i z e (n+1, n+1) ,
4 % where n+1 i s the t o t a l number o f g r id po in t s i n c l u d i n g zero .
5 f unc t i on M4 pbc = Matrix M4 pbc (dx , n)
6

7 s = 1/dx ˆ4 ;
8 M4 pbc = ze ro s (n+1,n+1) ;
9

10 f o r i = 1 : n
11 M4 pbc ( i , i ) = 1/4∗ s ;
12 M4 pbc ( i , i +1) = −1/6∗ s ;
13 M4 pbc ( i , i +2) = 1/24∗ s ;
14 M4 pbc ( i +1, i ) = −1/6∗ s ;
15 M4 pbc ( i +2, i ) = 1/24∗ s ;
16 end
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % at the po int x 1
20 M4 pbc (1 , n) = 1/24∗ s ;
21 M4 pbc (1 , n+1) = −1/6∗ s ;
22 M4 pbc (1 , 1 ) = 1/4∗ s ;
23 M4 pbc (1 , 2 ) = −1/6∗ s ;
24 M4 pbc (1 , 3 ) = 1/24∗ s ;
25 % at the po int x 2
26 M4 pbc (2 , n+1) = 1/24∗ s ;
27 M4 pbc (2 , 1 ) = −1/6∗ s ;
28 M4 pbc (2 , 2 ) = 1/4∗ s ;
29 M4 pbc (2 , 3 ) = −1/6∗ s ;
30 M4 pbc (2 , 4 ) = 1/24∗ s ;
31

32 % at the po int x (n+1)
33 M4 pbc (n+1,n−1) = 1/24∗ s ;
34 M4 pbc (n+1,n) = −1/6∗ s ;
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35 M4 pbc (n+1,n+1) = 1/4∗ s ;
36 M4 pbc (n+1 ,1) = −1/6∗ s ;
37 M4 pbc (n+1 ,2) = 1/24∗ s ;
38 % at the po int x n
39 M4 pbc (n , n−2) = 1/24∗ s ;
40 M4 pbc (n , n−1) = −1/6∗ s ;
41 M4 pbc (n , n) = 1/4∗ s ;
42 M4 pbc (n , n+1) = −1/6∗ s ;
43 M4 pbc (n , 1 ) = 1/24∗ s ;
44

45

46 M4 pbc = M4 pbc ( 1 : n+1 ,1:n+1) ;
47 end

D The Schrödinger equation with Periodic boundaries

1 % Calcu la te a one−dimens iona l reduced Schrodinger equat ion
2 % on the plane with Pe r i od i c Boundaries .
3 % Some kind o f a Gaussian func t i on i s used as an i n i t i a l f unc t i on .
4 c l e a r a l l ; c l c ;
5

6 t i c % s t a r t t imer
7

8 L = pi ∗2 ;
9 n = 100 ;

10 dx = L/n ;
11 x = −L : dx : L ;
12

13 % generate Gaussian func t i on
14 gamma = 2 ; K = −10; x0 = L/2 ;
15 Gauss = exp(−gamma∗(x−x0 ) . ˆ 2 ) .∗ exp (1 j ∗K∗x ) ;
16

17 % generate matrix M2 that r e p r e s e n t the F i n i t e D i f f e r e n c e
18 % c o e f f i c i e n t s f o r a second d e r i v a t i v e o f the func t i on ” phi (x , t ) ”
19 M2 pb = Matrix M2 pbc (dx , 2∗n) ;
20

21 % s e t the func t i on that r e p r e s e n t s the r ight−hand s i d e o f the
22 % reduced Schrodinger equat ion
23 Schr = @( t , u ) 1 j ∗M2 pb∗u ;
24

25 % s e t the i n t i a l f unc t i on to a chosen Gaussian
26 % and f i n d the s o l u t i o n o f an ord inary d i f f e r e n t i a l equat ion
27 phi0 = Gauss ;
28 [ t , phi ] = ode23tb ( Schr , [ 0 2 ] , phi0 ) ;
29

30 % plo t the r e s u l t
31 f i g u r e (1 )
32 m = length ( t ) ;
33 f o r k = 1 : 5 :m
34 drawnow
35 p lo t (x , r e a l ( phi (k , : ) ) )
36 xmin = −L ; xmax = L ; ymin = −2; ymax = 2 ;
37 a x i s ( [ xmin xmax ymin ymax ] )
38 t ex t (6∗xmax/7 , 3∗ymax/4 , s p r i n t f ( ’ t = %.2 f ’ , k ) )
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39 g r id on
40 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ \phi (x , t ) ’ )
41 end
42

43 toc % stop t imer

E The Swift-Hohenberg equation with Periodic bound-

aries

1 % Calcu la te a one−dimens iona l Swift−Hohenberg equat ion on the plane with
2 % Per i od i c Boundaries . White no i s e i s used as an i n i t i a l f unc t i on
3 c l e a r a l l ; c l c ;
4

5 t i c % s t a r t t imer
6

7 L = 10 ;
8 n = 100 ;
9 dx = L/n ;

10 x = −L : dx : L ;
11

12 % generate White no i s e
13 Wnoise = wgn( l ength ( x ) , 1 , 0 ) ;
14

15 % generate matr i ce s M2 and M4 that r e p r e s e n t the F i n i t e D i f f e r e n c e
16 % c o e f f i c i e n t s f o r second and four th d e r i v a t i v e s
17 % of the func t i on ” phi (x , t ) ”
18 M2 pb = Matrix M2 pbc (dx , 2∗n) ;
19 M4 pb = Matrix M4 pbc (dx , 2∗n) ;
20

21 % s e t M as a matrix that p r e s en t s the whole r i g h t s i d e
22 % of the one−dimens iona l Swift−Hohenberg equat ion .
23 r = 0 . 2 ; % c o n t r o l parameter
24 M = ( r−1)∗ eye (2∗n+1) − 2∗2∗M2 pb − 24∗M4 pb ;
25

26 % s e t the func t i on that r e p r e s e n t s the r ight−hand s i d e o f the
27 % Swift−Hohenberg equat ion
28 SwHoh pb = @( t , u) M∗u − u . ˆ 3 ;
29

30 % s e t the i n t i a l f unc t i on as a White no i s e s i g n a l
31 % and f i n d the s o l u t i o n o f an ord inary d i f f e r e n t i a l equat ion
32 phi0 = Wnoise ;
33 [ t , phi ] = ode23tb (SwHoh pb , [ 0 5 0 ] , phi0 ) ;
34

35 % plo t the r e s u l t
36 f i g u r e (1 )
37 m = length ( t ) ;
38 f o r k = 1 :m
39 drawnow
40 p lo t (x , r e a l ( phi (k , : ) ) )
41 xmin = −L ; xmax = L ; ymin = −5; ymax = 5 ;
42 a x i s ( [ xmin xmax ymin ymax ] )
43 t ex t (6∗xmax/7 , 3∗ymax/4 , s p r i n t f ( ’ t = %.2 f ’ , k ) )
44 g r id on
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45 % t i t l e ( [ ’ e vo lu t i on o f a white no i s e under the Swift−Hohenberg , with
r = ’ , num2str ( r ) ] )

46 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ \phi (x , t ) ’ )
47 end
48

49 toc % stop t imer

F The Fourier transform of a Swift-Hohenberg equation

with Periodic Boundaries

1 % Cal cu l a t e s Four i e r trans form o f a one−dimens iona l Swift−Hohenberg
2 % equat ion on the plane with Pe r i od i c Boundaries . White no i s e i s used
3 % as an i n i t i a l f unc t i on .
4 c l e a r a l l ; c l c ; c l f ;
5

6 t i c % s t a r t t imer
7

8 L = pi ∗4 ;
9 n = 400 ;

10 dx = L/n ;
11 x = −L : dx : L ;
12

13 % gene ra t e s a Gaussian func t i on
14 gamma = 2 ;
15 x0 = 0 ;
16 Gauss = exp(−gamma∗( x − x0 ) . ˆ 2 ) ;
17

18 % gene ra t e s a White no i s e s i g n a l
19 Wnoise = wgn( l ength ( x ) , 1 , 0 ) ;
20

21 % generate matr i ce s M2 and M4 that r e p r e s e n t the F i n i t e D i f f e r e n c e
22 % c o e f f i c i e n t s f o r second and four th d e r i v a t i v e s o f f unc t i on ” phi (x , t ) ”
23 M2 pb = Matrix M2 pbc (dx , 2∗n) ;
24 M4 pb = Matrix M4 pbc (dx , 2∗n) ;
25

26 % s e t M as a matrix that p r e s en t s the whole r i g h t s i d e
27 % of a one−dimens iona l Swift−Hohenberg equat ion .
28 r = 0 . 2 ; % c o n t r o l parameter
29 M = ( r−1)∗ eye (2∗n+1) − 2∗2∗M2 pb − 24∗M4 pb ;
30

31 % s e t the func t i on that r e p r e s e n t s the r ight−hand s i d e o f the
32 % Swift−Hohenberg equat ion
33 SwHoh pb = @( t , u) M∗u − u . ˆ 3 ;
34

35 % s e t the i n i t i a l f unc t i on as a White no i s e s i g n a l or a Gaussian func t i on
36 phi0 = Wnoise ; % enable to choose White no i s e as an i n t i a l f unc t i on
37 % phi0 = Gauss ; % enable to choose Gaussian func t i on as an i n t i a l one
38

39 % and f i n d the s o l u t i o n o f an ord inary d i f f e r e n t i a l equat ion
40 [ t , phi ] = ode23tb (SwHoh pb , [ 0 5 0 ] , phi0 ) ;
41

42 % s e t func t i on f f o r the Four i e r trans form
43 f = phi ;
44 r = 1 : 1 : 2∗ n ; % new gr id
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45 m = length ( t ) ;
46 u = ze ro s (m,2∗n) ; v = ze ro s (m,2∗n) ; Fl = ze ro s (m,2∗n+1) ;
47 f o r k = 1 :m
48 % f i r s t we c a l c u l a t e the i n v e r s e Four i e r trans form through the
49 % obtained formula
50 u(k , 1 : 2 ∗ n) = exp (1 j ∗ pi ∗n) ∗exp(−1 j ∗ pi ∗( r−1) ) .∗ f (k , 1 : 2 ∗ n) ;
51 % then we c a l c u l a t e the Four i e r trans form o f the i n v e r s e us ing
52 % MATLAB func t i on
53 v (k , 1 : 2 ∗ n) = f f t (u(k , 1 : 2 ∗ n) ,2∗n) ;
54 % f i n d through the obtained formula the approximated cont inuous
55 % Four ie r trans form
56 Fl (k , 1 : 2 ∗ n) = dx∗ s q r t (1/(2∗ pi ) ) ∗exp(−1 j ∗ pi ∗( r−1) ) .∗ v (k , 1 : 2 ∗ n) ;
57 end
58

59 % we a l s o s e t the g r id f o r the f requency domain ’ lambda ’
60 l = −n : 1 : n ;
61 dl = pi /(n∗dx ) ;
62 l g r i d = ze ro s (1 ,2∗n+1) ;
63 f o r i = 1 :2∗n+1
64 l g r i d ( i ) = l ( i ) ∗ dl ;
65 end
66

67 % p l o t t i n g r e s u l t s
68 f i g u r e (1 )
69 f o r k = 1 :m
70 drawnow
71 p lo t ( l g r i d , r e a l ( Fl (k , : ) ) )
72 g r id on
73 xmin = 0 ; xmax = max( l g r i d ) /8 ;
74 ymin = −2; ymax = 3 ;
75 l i n e ( [ 1 1 ] , [ ymin ymax ] , ’ Color ’ , ’ g ’ , ’ LineWidth ’ , 1 . 5 )
76 a x i s ( [ xmin xmax ymin ymax ] )
77 % t i t l e ( [ ’ e vo lu t i on o f a f o u r i e r trans form o f a white no i s e accord ing

to the Swift−Hohenberg , with r = ’ , num2str ( r ) ] )
78 x l a b e l ( ’ \ lambda ’ ) ; y l a b e l ( ’F(\ lambda , t ) ’ )
79 t ex t (6∗xmax/7 , 3∗ymax/4 , s p r i n t f ( ’ t = %.2 f ’ , k ) )
80 end
81

82 toc % stop t imer

G Matrices when PML is applied

G.1 Matrix to calculate a second order derivative

1 % c a l c u l a t e s the matrix M2 which i s a f i n i t e d i f f e r e n c e method f o r the
2 % second order d e r i v a t i v e when PML i s app l i ed .
3 f unc t i on M2 = Matrix M2 pml (dx , n , al , ar )
4

5 % you can use these commented l i n e s below to check
6 % i f the approximation f o r the d e r i v a t i v e i s c o r r e c t
7 % you have to d i s a b l e a ’ funct ion ’ mode and run the code ,
8 % then observe the matrix
9 % dx = 1 ;

10 % n = 15 ;
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11 % a l = 5 ;
12 % ar = 11 ;
13

14 s = 1/dx ˆ2 ;
15 M2 = ze ro s (n , n) ;
16

17 % values i n s i d e the PML from the l e f t
18 f o r i = 1 : a l
19 M2( i , i ) = 5/4∗ s ;
20 M2( i , i +1) = −2/3∗ s ;
21 M2( i , i +2) = 1/24∗ s ;
22 M2( i +1, i ) = −2/3∗ s ;
23 M2( i +2, i ) = 1/24∗ s ;
24 end
25 % values in the middle , where the re i s no PML
26 f o r i = a l : ar
27 M2( i , i ) = −5/4∗ s ;
28 M2( i , i +1) = 2/3∗ s ;
29 M2( i , i +2) = −1/24∗ s ;
30 M2( i +1, i ) = 2/3∗ s ;
31 M2( i +2, i ) = −1/24∗ s ;
32 end
33 % values i n s i d e the PML from the r i g h t
34 f o r i = ar : n−2
35 M2( i , i ) = 5/4∗ s ;
36 M2( i , i +1) = −2/3∗ s ;
37 M2( i , i +2) = 1/24∗ s ;
38 M2( i +1, i ) = −2/3∗ s ;
39 M2( i +2, i ) = 1/24∗ s ;
40 end
41 % values f o r 4 edge po in t s
42 % f o r x 1
43 M2(1 ,1 ) = −15/8∗ s ;
44 M2(1 ,2 ) = 77/12∗ s ;
45 M2(1 ,3 ) = −107/12∗ s ;
46 M2(1 ,4 ) = 13/2∗ s ;
47 M2(1 ,5 ) = −61/24∗ s ;
48 M2(1 ,6 ) = 5/12∗ s ;
49 % f o r x 2
50 M2(2 ,1 ) = 0 ;
51 M2(2 ,2 ) = −15/8∗ s ;
52 M2(2 ,3 ) = 77/12∗ s ;
53 M2(2 ,4 ) = −107/12∗ s ;
54 M2(2 ,5 ) = 13/2∗ s ;
55 M2(2 ,6 ) = −61/24∗ s ;
56 M2(2 ,7 ) = 5/12∗ s ;
57 % f o r x {n−1}
58 M2(n−1,n−1) = −15/8∗ s ;
59 M2(n−1,n−2) = 77/12∗ s ;
60 M2(n−1,n−3) = −107/12∗ s ;
61 M2(n−1,n−4) = 13/2∗ s ;
62 M2(n−1,n−5) = −61/24∗ s ;
63 M2(n−1,n−6) = 5/12∗ s ;
64 % f o r x {n}
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65 M2(n , n) = −15/8∗ s ;
66 M2(n , n−1) = 77/12∗ s ;
67 M2(n , n−2) = −107/12∗ s ;
68 M2(n , n−3) = 13/2∗ s ;
69 M2(n , n−4) = −61/24∗ s ;
70 M2(n , n−5) = 5/12∗ s ;
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 % values f o r 6 s p e c i a l po in t s
73 % a 2 at the po int x { al−1}
74 M2( al −1, al −1) = (1 j /4 + 5/4) ∗ s ;
75 M2( al −1, a l ) = (− 1 j /6 − 1/2) ∗ s ;
76 M2( al −1, a l +1) = −1/10∗ s ;
77 M2( al −1, al −2) = (− 1 j /10 − 7/10) ∗ s ;
78 M2( al −1, al −3) = (1 j /60 + 1/20) ∗ s ;
79 % a 2 at the po int x { a l }
80 M2( al , a l ) = ((9∗1 j ) /4) ∗ s ;
81 M2( al , a l +1) = (8/5 − (6∗1 j ) /5) ∗ s ;
82 M2( al , a l +2) = ((3∗1 j ) /40 − 11/40) ∗ s ;
83 M2( al , a l −1) = (− (6∗1 j ) /5 − 8/5) ∗ s ;
84 M2( al , a l −2) = ((3∗1 j ) /40 + 11/40) ∗ s ;
85 % a 2 at the po int x { a l +1}
86 M2( a l +1, a l +1) = (1 j /4 − 5/4) ∗ s ;
87 M2( a l +1, a l +2) = (7/10 − 1 j /10) ∗ s ;
88 M2( a l +1, a l +3) = (1 j /60 − 1/20) ∗ s ;
89 M2( a l +1, a l ) = (1/2 − 1 j /6) ∗ s ;
90 M2( a l +1, al −1) = 1/10∗ s ;
91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
92 % a 2 at the po int x {ar−1}
93 M2( ar−1,ar−3) = (1 j /60 − 1/20) ∗ s ;
94 M2( ar−1,ar−2) = (7/10 − 1 j /10) ∗ s ;
95 M2( ar−1,ar−1) = (1 j /4 − 5/4) ∗ s ;
96 M2( ar−1, ar ) = (1/2 − 1 j /6) ∗ s ;
97 M2( ar−1, ar+1) = 1/10∗ s ;
98 % a 2 at the po int x { ar }
99 M2( ar , ar ) = ((9∗1 j ) /4) ∗ s ;

100 M2( ar , ar+1) = (− (6∗1 j ) /5 − 8/5) ∗ s ;
101 M2( ar , ar+2) = ((3∗1 j ) /40 + 11/40) ∗ s ;
102 M2( ar , ar−1) = (8/5 − (6∗1 j ) /5) ∗ s ;
103 M2( ar , ar−2) = ((3∗1 j ) /40 − 11/40) ∗ s ;
104 % a 2 at the po int x { ar+1}
105 M2( ar +1, ar+1) = (1 j /4 + 5/4) ∗ s ;
106 M2( ar +1, ar+2) = (− 1 j /10 − 7/10) ∗ s ;
107 M2( ar +1, ar+3) = (1 j /60 + 1/20) ∗ s ;
108 M2( ar +1, ar ) = (− 1 j /6 − 1/2) ∗ s ;
109 M2( ar +1,ar−1) = −1/10∗ s ;
110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 end

G.2 Matrix to calculate a fourth order derivative

1 % c a l c u l a t e s the matrix M4 which i s a f i n i t e d i f f e r e n c e method f o r the
2 % four th order d e r i v a t i v e when PML i s app l i ed .
3 f unc t i on M4 = Matrix M4 pml (dx , n , al , ar )
4

5 % you can use these commented l i n e s below to check
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6 % i f the approximation f o r the d e r i v a t i v e i s c o r r e c t
7 % you have to d i s a b l e a ’ funct ion ’ mode and run the code ,
8 % then observe the matrix
9 % dx = 1 ;

10 % n = 15 ;
11 % a l = 5 ;
12 % ar = 11 ;
13

14 s = 1/dx ˆ4 ;
15 M4 = ze ro s (n , n) ;
16

17 % values f o r the whole r eg i on from l e f t to r ight , because the r u l e s tays
18 % the same whether PML i s app l i ed or not
19 f o r i = 1 : n−2
20 M4( i , i ) = 1/4∗ s ;
21 M4( i , i +1) = −1/6∗ s ;
22 M4( i , i +2) = 1/24∗ s ;
23 M4( i +1, i ) = −1/6∗ s ;
24 M4( i +2, i ) = 1/24∗ s ;
25 end
26 % values f o r 4 edge po in t s
27 % f o r x 1
28 M4(1 ,1 ) = 3/24∗ s ;
29 M4(1 ,2 ) = −14/24∗ s ;
30 M4(1 ,3 ) = 26/24∗ s ;
31 M4(1 ,4 ) = −24/24∗ s ;
32 M4(1 ,5 ) = 11/24∗ s ;
33 M4(1 ,6 ) = −2/24∗ s ;
34 % f o r x 2
35 M4(2 ,1 ) = 0 ;
36 M4(2 ,2 ) = 3/24∗ s ;
37 M4(2 ,3 ) = −14/24∗ s ;
38 M4(2 ,4 ) = 26/24∗ s ;
39 M4(2 ,5 ) = −24/24∗ s ;
40 M4(2 ,6 ) = 11/24∗ s ;
41 M4(2 ,7 ) = −2/24∗ s ;
42 % f o r x {n−1}
43 M4(n−1,n−1) = 3/24∗ s ;
44 M4(n−1,n−2) = −14/24∗ s ;
45 M4(n−1,n−3) = 26/24∗ s ;
46 M4(n−1,n−4) = −24/24∗ s ;
47 M4(n−1,n−5) = 11/24∗ s ;
48 M4(n−1,n−6) = −2/24∗ s ;
49 % f o r x {n}
50 M4(n , n) = 3/24∗ s ;
51 M4(n , n−1) = −14/24∗ s ;
52 M4(n , n−2) = 26/24∗ s ;
53 M4(n , n−3) = −24/24∗ s ;
54 M4(n , n−4) = 11/24∗ s ;
55 M4(n , n−5) = −2/24∗ s ;
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 % values f o r 6 s p e c i a l po in t s
58 % a 4 at the po int x { al−1}
59 M4( al −1, al −1) = (1 j /4 + 1/4) ∗ s ;
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60 M4( al −1, a l ) = (−1 j /6) ∗ s ;
61 M4( al −1, a l +1) = −1/10∗ s ;
62 M4( al −1, al −2) = (− 1 j /10 − 1/5) ∗ s ;
63 M4( al −1, al −3) = (1 j /60 + 1/20) ∗ s ;
64 % a 4 at the poimt x { a l }
65 M4( al , a l ) = −1/4∗ s ;
66 M4( al , a l +1) = ((3∗1 j ) /10 + 1/10) ∗ s ;
67 M4( al , a l +2) = (1/40 − (3∗1 j ) /40) ∗ s ;
68 M4( al , a l −1) = (1/10 − (3∗1 j ) /10) ∗ s ;
69 M4( al , a l −2) = ((3∗1 j ) /40 + 1/40) ∗ s ;
70 % a 4 at the po int x { a l +1}
71 M4( a l +1, a l +1) = (1/4 − 1 j /4) ∗ s ;
72 M4( a l +1, a l +2) = (1 j /10 − 1/5) ∗ s ;
73 M4( a l +1, a l +3) = (1/20 − 1 j /60) ∗ s ;
74 M4( a l +1, a l ) = (1 j /6) ∗ s ;
75 M4( a l +1, al −1) = −1/10∗ s ;
76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 % a 4 at the po int x {ar−1}
78 M4( ar−1,ar−1) = (1/4 − 1 j /4) ∗ s ;
79 M4( ar−1, ar ) = (1 j /6) ∗ s ;
80 M4( ar−1, ar+1) = −1/10∗ s ;
81 M4( ar−1,ar−2) = (1 j /10 − 1/5) ∗ s ;
82 M4( ar−1,ar−3) = (1/20 − 1 j /60) ∗ s ;
83 % a 4 at the po int x { ar }
84 M4( ar , ar ) = −1/4∗ s ;
85 M4( ar , ar+1) = (1/10 − (3∗1 j ) /10) ∗ s ;
86 M4( ar , ar+2) = ((3∗1 j ) /40 + 1/40) ∗ s ;
87 M4( ar , ar−1) = ((3∗1 j ) /10 + 1/10) ∗ s ;
88 M4( ar , ar−2) = (1/40 − (3∗1 j ) /40) ∗ s ;
89 % a 4 at the po int x { ar+1}
90 M4( ar +1, ar+1) = (1 j /4 + 1/4) ∗ s ;
91 M4( ar +1, ar+2) = (− 1 j /10 − 1/5) ∗ s ;
92 M4( ar +1, ar+3) = (1 j /60 + 1/20) ∗ s ;
93 M4( ar +1, ar ) = −1 j /6∗ s ;
94 M4( ar +1,ar−1) = −1/10∗ s ;
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 end

H The Schrödinger equation with PML

1 % Cal cu l a t e s a reduced Schrodinger equat ion on the plane with PML.
2 % A Gaussian func t i on i s chosen as an i n i t i a l one
3 c l e a r a l l ; c l c ; c l f ;
4

5 t i c % s t a r t t imer
6

7 % d e f i n e the g r id
8 M = 60 ; % number o f g r id s t ep s from ’0 ’ to PML−po int ’ a ’
9 a = 3 ; % the value o f PML−po int

10 dx = a/M; %d e f i n e the s tep ( to make sure that a PML−po int i s on the g r id )
11 N = 100 ; % number o f po in t s from ’0 ’ to the l a t e r a l boundary
12 L = dx∗N; % the value o f the po int where the l a t e r a l boundary i s s i t u a t e d
13 x = −L : dx : L ; % d e f i n e x−g r id
14 n = 2∗N + 1 ; % the whloe number o f g r id po in t s from ’−L ’ to ’L ’
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15

16 % d i s c r e t i z e z in accordance with a chosen PML
17 % z = a + i f ( x ) = a + exp ( i ∗ t e t t a ) (x−a )
18 ar = N+1 + M; % number o f the r i g h t PML−po int
19 a l = N+1 − M; % number o f the l e f t PML−po int
20

21 aR = x ( ar ) ; % value o f the r i g h t PML−po int
22 aL = x ( a l ) ; % value o f the l e f t PML−po int
23

24 theta = pi /2 ; % s e t i n c l i n e ’ theta ’
25

26 z ( 1 : a l ) = aL + exp (1 j ∗ theta ) ∗( x ( 1 : a l ) − aL) ; % l e f t PML
27 z ( a l +1: ar−1) = x ( a l +1: ar−1) ; % middle without PML
28 z ( ar : n ) = aR + exp (1 j ∗ theta ) ∗( x ( ar : n ) − aR) ; % r i g h t PML
29

30 % generate the i n i t i a l Gaussian func t i on
31 gamma = 1 ;
32 K = 8 ;
33 z0 = 0 ;
34 x0 = 0 ;
35 Gauss = exp(−gamma∗( x − x0 ) . ˆ 2 ) .∗ exp (1 j ∗K∗x ) ;
36

37 % generate matrix M2 that r e p r e s e n t the F i n i t e D i f f e r e n c e
38 % c o e f f i c i e n t s f o r the second order d e r i v a t i v e
39 M2 = Matrix M2 pml (dx , n , al , ar ) ;
40

41 % s e t the func t i on that r e p r e s e n t s the r ight−hand s i d e o f the
42 % reduced Schrodinger equat ion
43 Schr = @( t , u ) 1 j /2∗2∗M2∗u ;
44

45 % s e t the i n i t i a l f unc t i on as a Gaussian func t i on
46 % and f i n d the s o l u t i o n o f an ord inary d i f f e r e n t i a l equat ion
47 phi0 = Gauss ;
48 [ t , phi ] = ode23tb ( Schr , [ 0 1 ] , phi0 ) ;
49

50 % plo t the r e s u l t
51 f i g u r e (1 )
52 m = length ( t ) ;
53 f o r k = 1 :m
54 drawnow
55 p lo t (x , r e a l ( phi (k , : ) ) )
56 xmin = −L ; xmax = L ; ymin = −2; ymax = 2 ;
57 a x i s ( [ xmin xmax ymin ymax ] )
58 t ex t (6∗xmax/7 , 3∗ymax/4 , s p r i n t f ( ’ t = %.2 f ’ , k ) )
59 l i n e ( [ a , a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
60 l i n e ([−a,−a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
61 g r id on
62 % t i t l e ( [ ’ e vo lu t i on o f a white no i s e under the Swift−Hohenberg , with

r = ’ , num2str ( r ) ] )
63 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ \phi (x , t ) ’ )
64 end
65

66 toc % stop t imer
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I The Swift-Hohenberg equation with PML

1 % Cal cu l a t e s a one−dimens iona l Swift−Hohenberg equat ion on the plane
2 % with PML. A White no i s e s i g n a l i s chosen as an i n i t i a l f unc t i on
3 c l e a r a l l ; c l c ; c l f ;
4

5 t i c % s t a r t t imer
6

7 r = −0.5; % c o n t r o l parameter
8 % d e f i n e the g r id
9 M = 50 ; % number o f g r id s t ep s from ’0 ’ to PML−po int ’ a ’

10 a = 6∗ pi ; % the value o f PML−po int
11 dx = a/M; %d e f i n e the s tep ( to make sure that a PML−po int i s on the g r id )
12 N = 100 ; % number o f po in t s from ’0 ’ to the l a t e r a l boundary
13 L = dx∗N; % the value o f the po int where the l a t e r a l boundary i s s i t u a t e d
14 x = −L : dx : L ; % d e f i n e x−g r id
15 n = 2∗N + 1 ; % the whole number o f g r id po in t s from ’−L ’ to ’L ’
16

17 % d i s c r e t i z e z in accordance with a chosen PML
18 % z = a + i f ( x ) = a + exp ( i ∗ t e t t a ) (x−a )
19 ar = N+1 + M; % number o f the r i g h t PML−po int
20 a l = N+1 − M; % number o f the l e f t PML−po int
21

22 aR = x ( ar ) ; % value o f the r i g h t PML−po int
23 aL = x ( a l ) ; % value o f the l e f t PML−po int
24

25 theta = pi /2 ; % s e t i n c l i n e ’ theta ’
26

27 z ( 1 : a l ) = aL + exp (1 j ∗ theta ) ∗( x ( 1 : a l ) − aL) ; % l e f t PML
28 z ( a l +1: ar−1) = x ( a l +1: ar−1) ; % middle without PML
29 z ( ar : n ) = aR + exp (1 j ∗ theta ) ∗( x ( ar : n ) − aR) ; % r i g h t PML
30

31 % generate White no i s e
32 Wnoise = wgn( l ength ( x ) , 1 , 0 ) ;
33

34 % generate White no i s e that i s chopped be f o r e the PML s t a r t s
35 chop = −5; % the p o s i t i v e va lue w i l l chop i t a b i t a f t e r the PML
36 Wnoise ch = ze ro s (1 , n ) ;
37 Wnoise ch ( al−chop : ar+chop ) = Wnoise ( al−chop : ar+chop ) ;
38

39 % generate matr i ce s M2 and M4 that r e p r e s e n t the F i n i t e D i f f e r e n c e
40 % c o e f f i c i e n t s f o r the second and four th d e r i v a t i v e s
41 % of the func t i on ” phi (x , t ) ”
42 M2 pml = Matrix M2 pml (dx , n , al , ar ) ;
43 M4 pml = Matrix M4 pml (dx , n , al , ar ) ;
44

45 % s e t M as a matrix that p r e s en t s the whole r i g h t s i d e
46 % of the one−dimens iona l Swift−Hohenberg equat ion .
47 M = ( r−1)∗ eye (n) − 2∗2∗M2 pml − 24∗M4 pml ;
48

49 % s e t the func t i on that r e p r e s e n t s the r ight−hand s i d e o f the
50 % Swift−Hohenberg equat ion
51 SwHoh pml = @( t , u ) M∗u − u . ˆ 3 ;
52
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53 % s e t the i n i t i a l f unc t i on as a White no i s e s i g n a l ( or i t s chopped
54 % ve r s i on ) and f i n d the s o l u t i o n o f an ord inary d i f f e r e n t i a l equat ion
55 phi0 = Wnoise ;
56 [ t , phi ] = ode23tb (SwHoh pml , [ 0 100 ] , phi0 ) ;
57

58 % plo t the r e s u l t
59 f i g u r e (1 )
60 m = length ( t ) ;
61 f o r k = 1 :m
62 drawnow
63 p lo t (x , r e a l ( phi (k , : ) ) )
64 xmin = −L ; xmax = L ; ymin = −5; ymax = 5 ;
65 a x i s ( [ xmin xmax ymin ymax ] )
66 t ex t (6∗xmax/7 , 3∗ymax/4 , s p r i n t f ( ’ t = %.2 f ’ , k ) )
67 l i n e ( [ a , a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
68 l i n e ([−a,−a ] , [ ymin , ymax ] , ’ Color ’ , ’ g ’ ) ;
69 g r id on
70 t i t l e ( [ ’ Evolut ion o f a White Noise accord ing to the Swift−Hohenberg

equat ion ’ . . .
71 ’ \ newl ineContro l Parameter r = ’ , num2str ( r ) , ’ , PML s t a r t s at −

a and a = ’ , num2str ( a/ p i ) , ’ \ pi ’ . . .
72 ’ , dx = ’ , num2str ( dx ) ] )
73 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ \phi (x , t ) ’ )
74 end
75

76 toc % stop t imer
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