

Faculty of Science and Technology
Department of Computer Science

Extending the Chrome browser

Adapting browser functionality to user needs and behavior

—
Adrian A. Skogvold
INF-3990 Master's Thesis in Computer Science - November 2015

ii

Abstract

What today’s browsers offer in customization, personalization and function-

ality can be improved. In this thesis a application, in the form of a chrome

extension that extends a web browser’s functionality, and that offers cus-

tomization and personalization has been designed and implemented. The

functions implemented in the extension simplifies the access and availability

of information to the user through user inputs and monitoring usage history.

The extension offers customization by allowing users to edit the visuals and

the amount if information provided.

This extension has been evaluated by a group of test users and the results

of this evaluation is presented through tables and discussion and shows a

diversity of improvement suggestions. Some suggestion was repeated by

several users, but most of the suggestions was unique. This indicates that

personalization and customization is an important part of an application.

The results of the evaluation also serve as an indication to the usability of

the functions in the extension and fulfillment of the goal in this thesis.

iii

iv

Acknowledgments

First I would like to give my thanks to my supervisors Professor Randi

Karlsen and Professor Anders Andersen for their guidance, good advice and

availability.

I would also like to show my appreciation to my fianc Stine E. Enge for

being supportive and keeping me motivated through the work on this thesis.

And finally I would like to thank the test users who took their time to

try out my application and evaluating it. They came up with a lot of good

ideas that turned out to be very valuable.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Approach . 2

1.4 Contribution . 3

1.5 Structure . 4

2 Background 5

2.1 Customization and Personalization 5

2.1.1 Customization . 5

2.1.2 Personalization . 5

2.2 Adaptive User Interfaces . 6

2.3 Human-computer interaction 7

2.4 Web browsers . 7

2.5 Chrome extensions . 8

2.6 Technologies . 9

2.6.1 XPath . 9

2.6.2 Regex . 10

2.6.3 jQuery . 10

2.6.4 JSON . 10

2.6.5 CSS . 11

2.7 Related work . 11

3 System design 13

3.1 Software design . 13

3.1.1 Sidebar . 13

3.1.2 Custom buttons . 13

3.1.3 Logs . 14

3.1.4 Pre-set buttons . 14

3.1.5 Notes . 15

3.1.6 Images . 15

vii

3.1.7 Settings . 15

3.2 Storage . 16

3.2.1 Evaluation storage options 17

3.3 Hardware adaptation . 18

4 Implementation 21

4.1 Architecture . 21

4.2 Extension permissions . 23

4.3 Logout button . 23

4.4 Add custom buttons . 25

4.5 Log . 27

4.6 Notes container . 29

4.7 Image container . 30

4.8 Hide buttons . 31

4.9 Background script . 32

4.10 Settings page . 33

4.11 Storage methods used . 35

4.12 Sequence diagrams . 39

4.13 The sidebar . 41

5 Evaluation 43

5.1 The user manual . 43

5.2 General info . 46

5.3 How useful do you think the logout button is 49

5.4 How useful do you think the Add buttons function is 49

5.5 How useful do you think the domain log is 50

5.6 How useful do you think the recent log is 50

5.7 How useful do you think the notes field is 50

5.8 How useful do you think the image function is 50

5.9 How would you rate the settings page 51

5.10 Do you think the settings page was easy to understand 51

5.11 Was there anything you were missing on the settings page . . 51

5.12 Overall, how difficult/easy to use did you find the application 52

viii

5.13 What did you find difficult/easy to use 53

5.14 Is there anything you liked about the application 54

5.15 Is there anything you did not like about the application . . . 55

5.16 Do you have any suggestions for improvements 56

5.17 Conclusions . 60

6 Known issues and future work 63

6.1 Issues . 63

6.1.1 Custom buttons have no text in them 63

6.1.2 Some pages have changed after installing the extension 63

6.1.3 The page action icon does not show up sometimes . . 63

6.1.4 Double clicking the page action icon makes the sidebar

not show . 64

6.1.5 The sidebar cannot be closed in fullscreen mode . . . 64

6.1.6 Some pages does not show up in the recent log or the

domain log . 64

6.1.7 Logout button not working on pages with menus . . . 64

6.1.8 The extension does not work properly on some sites . 65

6.2 Future work . 65

6.2.1 Image tags . 65

6.2.2 Notes . 65

6.2.3 Settings page . 65

6.2.4 Adaptive behavior . 66

6.2.5 Google translate . 66

7 Conclusion 67

A Code Snippets 71

B Evaluation form 73

ix

x

List of Figures

1 Chrome extension . 21

2 Architecture from a developers point of view 22

3 The logout button . 23

4 One added custom button . 25

5 The domain log and the recent log 27

6 Psuedocode for adding new entries to a log 28

7 The notes container filled with a dummy text 29

8 The image container . 30

9 Recent log is shown . 31

10 Recent log is hidden . 31

11 The settings page with the default values loaded 33

12 Unsaved option in the settings page 33

13 Sequence diagram for opening the sidebar 39

14 Sequence diagram for the logout button 40

15 Final version of the sidebar 41

xi

xii

List of Tables

1 Personalia questions . 47

2 The numbered answers in the evaluation 48

xiii

xiv

Introduction

1 Introduction

1.1 Motivation

Today there is a widespread use of the internet using web browsers. And

there exists a lot of web browsers that have a somewhat different design.

Users can also expand their browsers functionality through extensions. Still,

browsers and the functionality they offer is not sufficient.

Bookmarks is a common function embedded in web browsers, but after

some time the increasing number of bookmarks can be difficult to manage.

A user then needs to organize the bookmarks in several folders since there

is no automated function for this. An automated grouping function could

sort them based on context, such as where the bookmark was added, so that

similar pages go together.

There is a huge page diversity today. Web pages try to differentiate

themselves with a unique look at layout. Even pages that serve similar

purposes have common functionality hidden away in different locations to

separate themselves from the crowd, but might just end up confusing their

users. Because of this the users cannot recognize every page because they

are all different from each other. To improve user-friendliness considerably a

function that ignores the differences in layout of each page, could be useful.

This function would have to make a collection of similar functions across

several pages and present it in a similar manner regardless of the specific

page visited.

The browser history of today’s web browsers can be overwhelming. It is

a large list sorted by default in chronological order. Over time it becomes

quite large and full of duplicates. The problem with it can be that there is

too much information for the average user to look at. A very small part of the

users(0.1%) is actually using the browser history to access web pages [10] [4].

Creating something that should work the same way in different environ-

ments can be a challenge. It is a challenge because there are many factors

to take into account and many things that can react in unexpected ways.

Figuring out how to counteract these while interacting with the function-

1

Introduction

ality of a page to perform customized functions will require a lot of work

and attention to detail. Being able to predict the results of a function would

require knowledge that can only be obtained by testing and observing.If this

could be done successfully, it would create the feeling of learning something

new every day. An environment like this encourages testing stupid ideas as

knowledge would be gained from doing so. This knowledge can create new

ideas that might improve the application. ”The difference between screwing

around and science is writing it down.”1

1.2 Goal

The goal of this thesis is to design, implement and test an application that

explores personalization, customization and adaptation possibilities in a web

browser. This will include changes requested by the users in a settings menu

and what the application could adapt to, based on usage history collected

from the user. The base functions of the application will try to resolve issues

with current web browsers mentioned in the previous section.

To be able to collect usage history the application will need access to the

user’s web browser. In addition, it will have to store the information gained

from monitoring the user’s web browser. The application will implement

functions that use this information to offer solutions to some of the issues

mentioned in section 1.1. For the remainder of the issues the application

will have functions that require user interaction to provide solutions.

The application developed was tested among a small test group. The

evaluation filled out by the participants is discussed in the end of this thesis.

1.3 Approach

The application developed in this thesis is a chrome extension. The functions

implemented into it are all in some way available to the user in another

form. The main improvement provided by the extension is that it simplifies

the access of information and usage of the functions. Half of the functions

1http://www.goodreads.com/quotes/639268-the-difference-between-screwing-

around-and-science-is-writing-it

2

http://www.goodreads.com/quotes/639268-the-difference-between-screwing-around-and-science-is-writing-it
http://www.goodreads.com/quotes/639268-the-difference-between-screwing-around-and-science-is-writing-it

Introduction

are automatic in the sense that they need no user interaction to present

information or services to the user. The other half requires user interaction

to provide their service. These functions do supply a simplified way of

storing and presenting their information compared to the functionality they

are based upon. The functions implemented are discussed in more detail in

section 3.

The reason for the application developed in this thesis being a browser

extension is because they are attached to a web browser. Extensions can

then be allowed to monitor, collect and store the users usage history. The

application being an extension also makes it possible to implement functions

that directly influence the functionality of the browser Which is one of the

characteristics needed for the application to fulfill the goal of this thesis.

The alternative to creating an extension is to create a new browser, but

that would require a large amount of work that would not contribute to

solving the goal of this thesis.

The reason for developing the extension for the chrome browser is be-

cause of personal familiarity with that browser and because, as of September

2015, it is the most commonly used browser2.

1.4 Contribution

This work has explored the possibilities of personalization, customization

and adaptation in the chrome browser by creating an extension.

The contribution of this thesis is a chrome extension built on ideas to im-

prove the browsing experience. This is achieved by implementing functions

that adapts to the user’s needs and behavior either by automatic personal-

ization based on usage history or customization based on user interaction.

This thesis also contributes with a user study and an evaluation of the

extension developed in this thesis and the functions implemented into it.

2http://www.w3schools.com/browsers/browsers_stats.asp

3

http://www.w3schools.com/browsers/browsers_stats.asp

Introduction

1.5 Structure

The rest of this thesis is structured as follows. Some important background

information and technologies used is presented in chapter 2. The design

of the system is presented in chapter 3, followed by the implementation of

the system in chapter 4. The evaluation done by the test users and the

results of it is presented in chapter 5. Chapter 6 will go through some of the

known issues and future work with the extension. Chapter 7 contains the

conclusion. Code snippets can be found in appendix A and the evaluation

form in appendix B.

4

Background

2 Background

This chapter will present information that is relevant to the work done in

this thesis.

2.1 Customization and Personalization

Customization and personalization are two much related terms. The defi-

nitions for them can change depending on the context they are mentioned

in.

2.1.1 Customization

Customization in the context of computer applications is when the applica-

tion contains functions that allows a user to change the appearance of the

application. This includes colors, positioning and whether an element, for

instance a button or an image, is present (showed) in the application. One

of the main points of customization is to let the users take control over parts

of the application [9]. This allows them to better familiarize themselves with

the look and feel of it. Something as simple as changing the outline color

of the web browser can make a user feel like ”this is mine” or ”I made this

what it is”. This helps create loyalty to the application and make the user

prefer this application over similar applications in the future.

Evidence suggests that users spend more and more time customizing the

interface of their application and they do so with a great deal of involvement

[9]. To do so would require a reasonable amount of time, but the main

reasons for a user not wanting to customize an application is either because

of lack of time or that the application was too hard to modify [8].

2.1.2 Personalization

Personalization is defined as automatic adjustment, re-structuring, and the

presentation of tailored information content for individuals [3]. An appli-

cation cannot personalize itself to a user without any knowledge about the

5

Background

user’s preferences or behavior. So many of the problems concerning person-

alization involves how, when and what data to collect about a user.

• User profiling. Gathering information about the user to create a user

profile. This profile can contain behavioral patterns, demographic in-

formation, and the user’s interests. This method is commonly used in

online stores, where this information is used to predict what the user

might buy or be interested in next.

• Log analysis. By analyzing the log and calculating usage patterns,

the application can find the user’s preferences. Analyzing the log is

usually a part of creating a user profile.

• Web publishing. This involves the application or website having a

publishing mechanism to present some content to the user. The con-

tent presented can be data that was stored locally or received from a

third party.

For the rest of this thesis, personalization refers to when the application

automatically make changes to itself based on available information. When

customization is mentioned it refers to a change that is initiated by the

user [2].

2.2 Adaptive User Interfaces

Adaptive user interfaces is a term that is very relevant to the future work

of thesis

A user interface (UI) is a key component to software applications since it

connects the users to the functionality of the application. A ”One design fits

all” approach can in many situations lead to a diminished user experience

because such a UI is unable to accommodate for all the context variables in-

troduced through different use and users [1]. A well-designed UI will reduce

the need of training users to be able to operate the application efficiently.

Over time the users will get more experienced and to take advantage of this

the concept of an adaptive user interface (AUI) is introduced.

6

Background

”An AUI is formally defined as, a software artifact which can automat-

ically alter aspects of its functionality and/or interface and improves its

ability to interact with a user by construction a user model based on partial

experience with that user [7].”

2.3 Human-computer interaction

Human-computer interaction is a term closely related to user interfaces.

Oxford reference library defines Human-computer interaction (HCI) as:

”The study of people using computers: a mixture of engineering, design,

and behavioural science. HCI can be separated into four dimensions: the

task dimension, dealing with goals and purposes of the engineers, design-

ers, and the users of computers; the dialogue dimension, concerning how

the computer and user are intended to interact; the structural dimension,

dealing with specifics of the layout and the grouping of tasks; and the usabil-

ity dimension, dealing with the ways in which users and computer actually

interact. The human-computer interface is both the hardware and software

of the computer and includes elements such as the keyboard, mouse, screen,

graphical user interface, windows, drop-down menus, and other means of

accessing information3.”

2.4 Web browsers

This section describes customization and personalization options available

in today’s web browsers. Most of the options mentioned in this section

is available for all the other major web browsers(Firefox, Safari, Internet

Explorer, Opera), but this thesis focuses on the chrome web browser.

In web browsers, customization is facilitated by allowing the user to in-

stall themes that changes the color scheme and appearance of the browser4,

and installing extensions can modify and enhance the browsers functional-

ity5. All of these options can be viewed and edited in the browser’s own

3http://www.oxfordreference.com/view/10.1093/acref/9780199568758.001.

0001/acref-9780199568758-e-1225?rskey=sEoS2j&result=1222
4https://chrome.google.com/webstore/category/themes
5https://chrome.google.com/webstore/category/extensions

7

http://www.oxfordreference.com/view/10.1093/acref/9780199568758.001.0001/acref-9780199568758-e-1225?rskey=sEoS2j&result=1222
http://www.oxfordreference.com/view/10.1093/acref/9780199568758.001.0001/acref-9780199568758-e-1225?rskey=sEoS2j&result=1222
https://chrome.google.com/webstore/category/themes
https://chrome.google.com/webstore/category/extensions

Background

settings page.

The chrome browser also allows the user to create their own profile. This

is achieved by creating a new, or by using an existing, Google account to

sign in to the browser. Doing this will allow for the user to bring all the

settings, extensions, bookmarks, apps and themes to other devices using

the chrome browser. It also enables a few personalization options such as

omnibox(autocomplete suggestions for the address bar), saving usernames

and passwords for different sites and to automatically fill out forms6.

2.5 Chrome extensions

Chrome extensions are small software programs that are used to modify

and enhance the functionality of the chrome browser. They are written

using the common web languages consisting of HTML, JavaScript and CSS7.

Most chrome extensions have little to no UIs as many of them works in the

background and therefore have no need for user interaction to do their work.

The most common UI for an extension comes in the form of an icon on the

top right of the browser, either within the address bar (called page action) or

in the toolbar (called browser action). The page action icon is shown only on

pages chosen by the extension, and it usually means that the page has been

injected with a context script. The browser action icon is shown regardless

of what page is open in the browser, and is used when the application is

relevant to most pages.

A chrome extension consists of the following files [5].

• A manifest file: Every chrome extension have a file called ”mani-

fest.json”. The file contains information about the extension such as

the name and version of it, what icons and images it uses, the per-

missions for it and the scripts and their roles in the extension. As the

file extension suggest, the contents of the manifest file are written in

JSON format.

6https://www.google.com/chrome/browser/signin.html
7http://developer.chrome.com/extensions

8

https://www.google.com/chrome/browser/signin.html
http://developer.chrome.com/extensions

Background

• HTML files: Unless the extension is a theme for the browser, it will

consist of one or more HTML files. The main file is labeled under

background page in the manifest file. It will stay invisible in the back-

ground and respond if the page action or browser action is pressed.

There can also be other HTML files in the extension, they can be used

to open a pop-up when the browser action is pressed. The file will

usually show as a pop-up window, or the files can be used as a settings

page for the application.

• JavaScript files: These are optional to have in an extension since the

HTML files can contain scripts. If the extension shall interact with

web pages it will need one or more JavaScript files, mentioned under

content script in the manifest file, together with the URLs to the pages

it is to be injected into.

• Other files: These are other files the extension may use in some form

or another, most commonly image files to use as icons for the page or

browser action.

2.6 Technologies

This subsection will go through the different technologies used when devel-

oping the extension created in this thesis.

2.6.1 XPath

XPath is used to navigate through elements and attributes in an XML type

document. It is quite old, with its first appearance in 1999 and it became a

W3C recommendation the sixteenth of November the same year8.

XPath models a XML document as a tree of nodes. There are different

nodes, such as element nodes, attribute nodes and text nodes. XPath de-

fines a way of calculating a string value for the relative location of a node.

In the application a XPath string for the users profile icon on YouTube

8http://www.faa.gov/nextgen/programs/swim/documentation/media/compliancy/

Xpathv1.0.pdf

9

http://www.faa.gov/nextgen/programs/swim/documentation/media/compliancy/Xpathv1.0.pdf
http://www.faa.gov/nextgen/programs/swim/documentation/media/compliancy/Xpathv1.0.pdf

Background

looks like this: /html/body/div[2]/div/div[2]/div/div[2]/span[2]/button -

/span/span/span/span/img

2.6.2 Regex

Regex is a popular data cleaning method, and is based on the use of regular

expressions. It can be used to filter out irregular characters or remove all

uppercase letters. It can also detect more complex patterns in text. In the

application developed in this thesis, regex is used to locate values in CSS

text.9

2.6.3 jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things

like HTML document traversal and manipulation, event handling, anima-

tion and Ajax much simpler with an easy-to-use API that works across a

multitude of browsers. With a combination of versatility and extensibility,

jQuery has changed the way that millions of people write JavaScript.10

2.6.4 JSON

JSON stands for JavaScript Object Notation. It is a format used to create a

string representation of the common data structures, such as numbers, lists

and key value pairs. It is based on a subset of the JavaScript programming

language, hence the name11. JSON is language independent and code for

reading and writing it can be created in any programming language. While

JavaScript contains native support for JSON, other languages can use an

external JSON parser library or the developers can write their own parser

for it.

9http://en.wikipedia.org/wiki/Regular_expression
10http://jquery.com
11http://www.json.org/12

10

http://en.wikipedia.org/wiki/Regular_expression
http://jquery.com
http://www.json.org/

Background

2.6.5 CSS

Cascading Style Sheets (CSS) is a language designed for describing the ap-

pearance of documents written in a markup language such as HTML. It is

used to separate styling from functionality and it can be used by more than

one page. This way, the style of several pages can be edited without having

to change each page individually [11].

2.7 Related work

To my knowledge there has been no other work done that uses this many

different types of functionality. However there has been work done that bears

resemblance to some part of the functionality implemented to the extension

developed in this thesis.

An experiment has been done in 2001 studying the effectiveness of vi-

sually enhanced history browser mechanisms on web navigation [10]. There

were three different history mechanisms used in the study. First was the

browser history in the Netscape browser, which is very similar to the browser

history page in today’s browsers. The other two are called GlobalTree and

DomainTree. They are very similar to the recent log and the domain log

developed in this thesis. Although the DomainTree bears similarity to a

suggestion from one of the test users in this thesis to improve the recent log

and the domain log. This suggestion is discussed in depth in section 5.16.

11

Background

12

System design

3 System design

This chapter will go through the design of the extension developed in this

thesis.

3.1 Software design

3.1.1 Sidebar

The application is a chrome extension, this is because extensions are meant

to be small software programs that can enhance the functionality of the

browser. This fits with the goal of this thesis. The main user interface

consists of a sidebar that can be toggled on or off. The user will do this by

clicking a button inside the address bar to the right. The location of the

sidebar is located along the left side of the browser. In future versions of

the extension the location of the sidebar can be changed by the users using

the settings page. What options the users will have regarding moving the

location of the sidebar around is not set in stone and different options will

be evaluated when that time comes. The sidebar, when toggled on, will lie

on top of the web page,because pushing it away or rescaling it might ruin

the design of the web page and disrupt some of the existing functionality.

This is especially true for sites that change their layout based on the window

width, so pushing away other elements on a page and taking their place may

make the page think it has more space to work with than it actually has.

3.1.2 Custom buttons

For the functionality of the extension it has the ability to add a custom

button for all the elements on the web page. These will be stored by the

application and remembered for each web page. This will allow a user to

create bookmarks for a domain. An example of use for this functionality

is on pages like Facebook13 where it can be used to create a list of people

and pages you as a user would visit often when visiting that domain. Since

13www.facebook.com

13

System design

some buttons are url references it will be easy just to store the anchor target

of the button and it will either be remembered per domain and work like

bookmarks for each web page. If there is no href target to the button the

user wants to add to the sidebar, the application will calculate the the xpath

of the button and store that.

3.1.3 Logs

The application will also function as a log for the user, one for the domain

that will store the few last visited pages within a domain such as all pages

under vg.no or facebook.com. The number of pages stored in the domain

log is by default three, but it is changeable by the user. And another one

that will remember the last ten pages visited regardless of the domain. As

with the domain log, the number of pages saved is changeable by the user.

The idea is to add a new web page to the log using some of the existing

function such as page.onload. Some problems have been detected on some

domains such as YouTube14. Sometimes does not call the page.onload func-

tion between pages within the domain.

The domain log and the recent log are programmed so they have the

same functionality as each other, but the domain log is stored differently

per domain and the recent log is not. When the content script notices that

the browser has opened a new page, it will send that page to the background

script. The background script will check for duplicates and if it finds one

it will delete the duplicate. If it does not detect any duplicates it will

find the oldest entry in the log, delete it, and then add the new one. This

functionality is the same regardless whether it is the recent log or the domain

log the background script is dealing with.

3.1.4 Pre-set buttons

The application also tries to locate some existing buttons such, as a logout

button. Login however, might require the application to remember the login

credentials of the user. Chrome already has a way of storing usernames and

14www.youtube.com

14

www.youtube.com

System design

passwords for different websites that works quite well so if the login button is

to be done it would overlap with the login function in chrome. They probably

cannot work together since usernames and passwords stored by chrome are

not accessible by extensions. Because of this, the logout button is the only

one that has been implemented in the extension. There are other functions

that could have been included in the extension, such as next/previous article

function.The usability of it could have been great, but it would be difficult

to create this function since there is no common way of finding the next

article. Therefore the idea of a next/previous button was discarded in favor

of the logout button.

3.1.5 Notes

The application is able to save individual notes for each domain. These are

stored in the chrome extension localstorage. The idea is to allow the user to

save reminder notes on a domain, in a somewhat similar fashion as post-it

notes are used.

3.1.6 Images

On forums on the internet it is popular to use pictures as responses, however

keeping track of all the pictures can become tiresome unless they are stored

and sorted in a proper manner. The application will allow the user to

easily save pictures and gif animations to an easily accessible location in the

sidebar. Here the images could be added to the clipboard by the user and

pasted to where the user wishes.

For future work a solution would be found that allows the images to be

sorted and searched through using tags or another potential solution if one

is found.

3.1.7 Settings

Since some of the focus of this application is customization, the user should

be able to change the appearance of the application according to their wishes.

The goal was to explore as many options as possible, or at least figure out

15

System design

what keeps an option from being possible to implement. The first ones

to be implemented was the easiest options, such as changing the color of

the background of the sidebar, change the size of text, move the buttons

around, change the shape of the buttons, change the font of the text for one

or all the buttons. The more complex options are left for future work, and

include options such as changing the position and the size of the sidebar

and making the edges of the sidebar change to a more complex shape. This

would require the user to provide an image with transparent areas to be

used as the background of the sidebar.

3.2 Storage

In this chapter I am going to go through the 4 different methods of storing

data as a chrome extension and the pros and cons of using them in my

application. Then it will be explained what I choose and why.

• The first method of storing is the user’s hard drive. Apart from it

being hard to implement, it restricts the user to one computer since it

will not synchronize across computers. However, storage space should

not be an issue. There also seems to be an issue since chrome only

allows extensions to save files to the users chosen download folder. In

theory it should be possible to create a subfolder in the downloads

folder so that the files will be stored in a somewhat orderly fashion.

To use this, a chrome extension will need the downloads permission in

the manifest file. This allows an extension to access the user selected

download folder.15

• The second method is using chrome extension localstorage. This has

two available ways of storing, one is saving online on the users chrome

account. This allows for a maximum of 512 entries and 100 kb of

data. On older version of chrome it only allows for 1 update every

2 seconds, so it is not usable for something that needs a lot of rapid

updates. Since chrome version 40, the limit has been increased to

15http://developer.chrome.com/extensions/downloads

16

http://developer.chrome.com/extensions/downloads

System design

2 write operations per second and exceeding this limit will cause a

runtime error. The other part of localstorage stores on the user’s hard

drive and is by default set to a maximum of 5 mb of storage, but

the extension can be given the unlimited storage permission which

allows for virtually unlimited storage16. The localstorage stores items

in a key-value store where both the key and the value need to be

represented as a string type, so the JSON format can be used. The

functions for adding items to the chrome storage are asynchronous for

both local and online storage.

• The third method is using the HTML5 localstorage. This is, like the

chrome extension localstorage, by default set to a 5 mb limit per do-

main when using the chrome browser. The methods of accessing this

storage are synchronous and therefore easier to work with. Storing url

values in this could be favorable since 5 mb of storage would allow at

least 5 200 000 characters to be stored, assuming an average url length

of 70 characters would mean that the localstorage can store over 74

000 entries. The number would be less if the application is to store

additional information in each entry, but should still suffice for a lot

of users.

• The forth method is using the space available on Google drive. Google

drive gives away 15 Gb to each user for free, 30 Gb if the account

is through school or work17, this should allow for enough storage for

everything the application needs. The drawback with this is that the

application will need to get access to the users Google account.

3.2.1 Evaluation storage options

Storing on the user’s hard drive has the advantage that it allows for virtually

unlimited amount of storage and any format can be used. However it is

restricted to use only the downloads folder of the user’s choosing, and the

16http://developer.chrome.com/extensions/storage
17http://support.google.com/drive/answer/6558?hl=en

17

http://developer.chrome.com/extensions/storage
http://support.google.com/drive/answer/6558?hl=en

System design

user can then edit the content in the storage intentionally or unintentionally

which can have unknown reactions when the extension is trying to read it.

If the extension were to use the user’s available space on Google drive,

the extension would be able to use the same storage regardless of when

computer is used, as long as it is connected to the internet. The size of

the storage would not be a problem despite the fact that is rather small

compared to what could be available on the user’s hard drive. The con of

using Google drive as storage is that the user would have to have a Google

account and allow the extension to have access to it.

The HTML5 localstorage is fast and easy to use, the downside is that it

is too small to store anything else than text values. This will be a problem

when it comes to storing images in the extension.

The chrome extension localstorage will potentially have the same storage

size as saving on the user’s hard drive, but it is only accessible for the user

through the extension. Compared to the HTML5 localstorage, it should

allow for storing any type of data and not only text. ”User data can be

stored as objects (the localStorage API stores data in strings)”18 The con is

the big throughput limit on online storage, and that it is asynchronous.

Because of similarities in usage between chrome extension localstorage

and the HTML5 localstorage, the chrome extension localstorage has not been

used in the extension. This error was only noticed in late development and

it was then decided that it would cause any issues as long as the extension

would not be used over a large period of time so that the 5 mb limit would

be exceeded. In a future version of the extension all will be stored using

the local part of chrome extension localstorage. The only exception to this

would be the settings data, it will be evaluated if it is small enough to be

stored using chrome sync instead.

3.3 Hardware adaptation

This section will discuss the design decisions related to making the extension

adapt to different hardware devices.

18developer.chrome.com/extensions/storage

18

developer.chrome.com/extensions/storage

System design

• Chrome for android devices

Chrome for android in its current state does not support either apps or

extensions. Moreover, according to the chrome developer faq19 there

are no plans in the near future to add support for either apps or

extensions in chrome for andriod.

• Different screen resolution

Not all computers have the same screen resolution20. Because of this

the size of the sidebar should not be declared in amount of pixels, but

rather by a percentage of size of the browser window. This will allow

the sidebar to adapt to different screen resolutions.

For a future version of the extension, the user will be able to edit the

size of the sidebar.

19https://developer.chrome.com/multidevice/faq
20http://www.w3schools.com/browsers/browsers_display.asp

19

https://developer.chrome.com/multidevice/faq
http://www.w3schools.com/browsers/browsers_display.asp

System design

20

Implementation

4 Implementation

This chapter covers the implementation and the architecture of the extension

developed for this thesis.

4.1 Architecture

Figure 1: Chrome extension

21

Implementation

Figure 1 shows the extension as a extended part of the chrome browser

containing additional functionality.

Figure 2: Architecture from a developers point of view

Figure 2 shows the architecture of the extension from a developers point

of view. Here you can see where the different parts of the extension are lo-

cated and what parts of the extension communicates with each other through

chrome messages.

22

Implementation

4.2 Extension permissions

The extension developed in this thesis has cloned the permissions from the

adblock extension21. These permissions made it able to read and edit the

content of all visited web pages. This gives the content script full access the

document so that it can easily add new buttons, highlight areas and delete

elements from the visited page.

Only using the permissions from the adblock extension did not allow the

extension to store data. Because of this two new permissions was added to

the extension to allow experimentation with different storage options . They

are the ”storage” and ”unlimitedStorage” permissions.

The approach taken when adding permissions to the manifest file of the

extension has been to allow it to do more than it actually does. This is

because it allows for a smoother development with fewer issues related to

lack of permissions. From a developer’s point of view, too many permissions

is not an issue, but from a user’s point of view it can be. This is because

the user has little control over the extension when it is allowed access to

everything at all times. Because of this a future version of the extension will

remove all unused permissions and the less used permissions will be moved

to optional permissions. This will allow for the user to be more in control

and allow for the extension to explain why it needs the optional permissions

when it prompts the user for them22.

4.3 Logout button

Figure 3: The logout button

21http://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom?hl=en
22https://developer.chrome.com/extensions/permissions

23

Implementation

The first function implemented into the sidebar was a button that would

serve a similar purpose on as many sites as possible. It would not be adding

new functionality to the site but instead move existing one to a universal

location on the sidebar. There was a few functions that were considered to

be a pre-set button for the extension, but only one would be implemented

as a proof of concept.

The logout button was the first function to be implemented into the

sidebar. The reason for this are that it does not require the user to supply

any information to the application beforehand. In addition, some sites hide

the logout button from plain view so the user can experience difficulties

finding it. The logout button therefor seemed benefit the user if it was

easily accessible for users in a universal location for each website.

The way the logout button works is by parsing through the html docu-

ment of a site, searching through all its elements for something that hints

towards the element being the logout button. This is done by searching

through an elements innerHTML, id and value for names matching a com-

mon way of spelling logout such as ”log out”, ”logout”, ”log off”, ”logoff”,

”sign out” or ”sign off”. After finding this element the application simulates

mouseevent 1, which is a left mouse button click, on the element. Testing

this method has proven not to interfere or have any unexpected results com-

pared to if the application tried to initiate the logout by attempting to call

the event handler related to the button. Even though it has not been thor-

oughly tested, there has not been reported any false positives. There have

however been a few pages where the function did not find the logout button

when it should have. Usually when it is unable to find the logout button it

would be hidden in a drop-down menu so from the extensions point of view

the actual logout button does not exist until the drop-down menu has been

opened.

There were two other functions that were considered alongside the lo-

gout button but were never implemented. One of these functions was show

next/next element. Pressing this button would open the next related article

or next related post on that website. This idea was discarded because there

was no common way of accessing the next post on a website. This would

24

Implementation

force the function to be made different for a lot of websites.

The other function that was considered to be implemented was a login

button. There is a lot of websites that allows users to log in, but to do so

require a username and a password. It would not be a hard task to store this

information, but having the user supply this information to the application

for each website when chrome itself already has this functionality23 seemed

to be redundant.

In a future version of the extension, the logout button would search

through the web page when the sidebar is opened. Moreover, if it cannot

find a logout button on the site, it will hide itself.

4.4 Add custom buttons

Figure 4: One added custom button

The add custom buttons function allows the user to take control and add as

many buttons to the sidebar as he/she pleases. From the implementation’s

point of view it has two sides, one for adding links/anchor elements, and a

second for adding other types of elements to use as buttons. The reason for

allowing the users to create buttons out of all elements is because they might

have been given a click event by a script after page load. The application can

struggle to detect whether the element in question is an actual button, image

or text element with a click event attached to it. Therefore the application

allows the user to decide what can and cannot be turned into a button on

the sidebar. This strengthens the user’s feel of control.

When the user clicks the ”add custom button” button, the application

23https://support.google.com/chrome/answer/95606

25

https://support.google.com/chrome/answer/95606

Implementation

creates a highlighter, which is a light blue transparent box with a less trans-

parent and darker blue outline. The highlighter listens to mouse movements

and changes its size depending on the size of the element the mouse is hov-

ering over.

This highlighter solves two important issues when creating buttons. The

first one being that it is a clear visual representation to the user of what

element on the page is being turned into a custom button. The other issue

that is solved is when the user clicks on an element to add it as a button the

highlighter denies the click event associated with the element to fire, this will

prevent the user from opening a link or submitting a form instead of adding

it as a button. The alternative to the highlighter would be attaching a click

event to every element on the page that would call back to the content script

when the element has been clicked. This method can potentially interfere

with the sites functionality, so adding the click event to the highlighter

removes the need to add a click event to all the elements on the page.

The highlighter keeps a reference to the element it is covering, so that

when it is clicked it can give the application a pointer to that element. The

application will then check if the element is a link or not. If it is a link

then it will add it to an internal list of custom links and send it to the

background page for it to be saved in the localstorage. After saving it will

create a button for the link and add it to the custom button container. If

the element is not a link the application will, using xpath, create a path to

its location on the page and send it to the background page for storage. The

application will then as it would have done if the element were a link, create

a button for it and add it to the custom button container.

To allow the user to delete the added custom buttons a function was

created that deletes all the custom buttons that has been added within that

domain.

26

Implementation

4.5 Log

Figure 5: The domain log and the recent log

Another function that has been added to the sidebar is the ability to save

the users most recent history in an easily accessible way without being a

copy of the browser history currently available in chrome. This function

was split into two parts. One logs the users history within a single domain

(called the domain log) and the other logs all the websites visited (called the

recent log). The maximum length is by default set to three for the domain

log and ten for the recent log. On the settings page the user can change the

maximum number of items in both the domain log and the recent log to a

number between zero and twenty.

A problems associated with logging the users history are when to save

a log entry. The most reasonable way to achieve this seems to be when

the page is loaded instead of saving a log entry when the sidebar is opened.

This is done in the extension by having a function that will fire when a

page is loaded. There are two ways of doing that, one is using the DOM-

27

Implementation

ContentLoaded event and the other is using the javascript load event. In

the context of the extension either of these would be fine since they should

both fire when a page has been loaded. The difference is that DOMCon-

tentLoaded will fire when HTML document has been loaded and that the

load event will wait until everything is fully loaded in the page24.

A known issue is that on some pages, especially ones that are for stream-

ing video content, such as youtube.com or twitch.tv, seem to not trigger

either of these functions. Because of this issue the two different methods

mentioned has been regularly swapped with each other to find out if one is

strictly better than the other when used in the extension. In the extension

that has been given to the test users the load event was used, but this might

change for a future version.

1 // Adding a new element to a log

2 recieve message(element) from content script

3 if log contains element:

4 remove(element) from log

5 add(element) to start of log

6 if length(log) > max log length:

7 remove(last) from log

Figure 6: Psuedocode for adding new entries to a log

The two logs in the application are not that different from each other

from a programming point of view. When a page is done loading the context

script reads the url on the page and the domain. Then it sends both the do-

main and the full url to the background page to be stored. The background

script will then go through both the previously stored logs and remove en-

tries that have the same url as the page it is about to store, then it adds it

to the list. The recent log will be stored under the key ”recentlog” and the

domain log will be stored using the domain provided by the content script

as a key. It will then count the number of elements in each log and if the

log is longer than the user specified maxlength of each log if that has been

set, if not it will use the default maxlength. If the background script finds

24https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded

28

https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded

Implementation

the log to be too long it will remove the oldest element in the log and count

again.

The log is loaded when the sidebar is opened for the first time on a

new page. To do this the content script sends 2 requests to the background

page, one requesting the recent log, and one requesting the domain log for

the current domain. The requests are asymmetric so logs will be filled once

the elements are received, which might be after the sidebar is opened if the

background page is slow to respond. Delays could happen, but will never

be so slow that it becomes an issue.

4.6 Notes container

Figure 7: The notes container filled with a dummy text

The point of the notes container is to allow the user to save a piece of text in

a simple, accessible manner. It is implemented as a text-area located inside

a container element. Attached to the text-area is an onFocusLoss event

handler. This handler will fire each time the text-area loses focus, such

as when the user clicks outside of the text-area after typing. The handler

will then send the text inside the text-area and the domain of the site the

browser is currently in to the background script. The extension will then

store the string in the localstorage using txt + domain as the key. The max

length of the text saved in the notes field that has been tested to work, is

a text consisting of 2000 words and 13472 characters. The max length of

29

Implementation

the string saved would theoretically be decided by the maximum available

memory on the device used.

4.7 Image container

Figure 8: The image container

The image container is there to allow the user to easily save an image without

having to think about where to save it to or what name to give it so that

it can be found later. This function holds many similarities with the add

custom buttons function. When the user clicks the add image button a

highlighter, such as the one in the add custom button function, will highlight

the element under the mouse pointer with a blue transparent box if the

element is of type ”IMG”. If the mouse is hovering over an image, but

the highlighter is not shown, it means that the image visible is attached

to a link or there is an invisible element on top of the image. When the

highlighters box has been clicked, the image url would be put in the added

images list in the context script. Then it would be sent to the background

script to be stored in the localstorage. The context script would then call

the LoadImages function. This fetches the stored images, resizes them to the

default small square of 50x50 pixels, and adds them to the image container.

To delete images from the image container the user need to hold down

the alt key and click on the image. The application will then iterate through

the images in the added images list and delete the image with the same url as

the image the user clicked from the list. Then it notifies the background page

of the change by sending it the updated list to be added to storage. Then

30

Implementation

the application will empty the image container and call the LoadImages

function to fill it again with the updated list of images.

The way images are deleted is easy and clean. Using it to delete the

created buttons in the add custom buttons function seemed natural instead

of having two different ways of deleting added elements in the sidebar. Due

to issues with the custom buttons being two different types of elements,

it was not working properly in time for the extension to be distributed to

the test users. To compromise the remove all added custom buttons was

created.

4.8 Hide buttons

Figure 9: Recent log is shown

Figure 10: Recent log is hidden

A user might not want all the info in the sidebar shown at all times, for this

the hide buttons was created. Their function is to hide a part of the sidebar if

the user wishes to. In the extension they are located to the right of a header

31

Implementation

and when clicked, they will hide the container under them. For example,

when the hide button located next to the recent log header is clicked, the

recent log will appear empty and the text inside the hide button will now

read ”show”. To now show the elements in the recent log the hide button

will need to be pressed again.

The extension does not remember if the user has hid parts of the sidebar

when opening a new page. This is something that will be added in a future

version.

4.9 Background script

At all times, when a browser window is open, the background page is run-

ning invisibly in the background. It only contains two lines, one for running

jQuery and one for the background script. The main function of this is to

enable the content script to store values across different pages in a localstor-

age that is only used by the extension. The background script first order of

business is to listen for click events on the page action icon of the extension,

and then notify the content script when it has been clicked (see appendix

A). Listening to messages from content scripts, and responding to them with

either a ”Stored” message or the value located in the localstorage under a

key provided by the content script, are the most important functions of the

background script. When receiving requests to add entries to the different

logs, it also makes sure to delete duplicates and that the logs does not exceed

the user specified maximum length.

Due to some conflicting sources during the development of the extension,

it was believed that the unlimited storage permission applied for the HTML5

localstorage. This turned out to be false25, so for a future version of the

extension the chrome localstorage would be used instead.

25http://developer.chrome.com/extensions/declare permissions

32

Implementation

4.10 Settings page

Figure 11: The settings page with the default values loaded

Figure 12: Unsaved option in the settings page

33

Implementation

The design of the settings page was originally intended to be scalable with

the number of settings options added to it, but for simplicity and because

the looks of the settings page was not a priority during the development of

the application, it was created as a 3x3 grid with white squares and a black

outline that scaled in size with the height and width of the page. In this

page it was easy to add settings options as they were made possible by the

application. When the application was to be sent out for testing, the few

empty fields were used to contain a small user manual to help the test users.

Options for changing the visuals of the application were the first to be

added. To make this possible the background page store the custom CSS of

the application in localstorage, so that it is ready to be sent to the context

script to be applied to the sidebar, or to the settings page to be edited. To

allow a custom CSS to be added to the sidebar without changing the visuals

of all the other elements on a page, the context script makes sure that all

elements added to it has an id that starts with ext. The rules in the custom

CSS can be made to only apply to elements with an id that starts with ext.

For example, the rules for buttons start with ”button[id∧ = ”ext”]”.

Once a change has been made to a field, bold red letters spelling ”Not

Saved” will appear to the right of the changed item (see figure 12). This is

to indicate what settings have not been saved in the application. The text

will then disappear when the user clicks the save settings button. To add the

changes to the CSS every settings field has a selector and an attribute value

attached to them. In addition they have a third value, called replacement,

which that is fetched from the field the user can change. For example, if the

user changes the button text color field to white the replacement value would

be set to ”FFFFFF”. These three values would be sent to a function that,

using regex, parses through the CSS and finds the rules to change. This is

done by using the selector and the attribute variables to find the relevant

value to replace the content of the replacement variable (see appendix A).

After the save settings button is pressed, the CSS is sent to the background

script to be saved in the localstorage. So the next time the context script

ask for the CSS to use the user edited CSS, it would be sent in response to

be used in the sidebar.

34

Implementation

Other than visuals, the settings page allows for the user to specify the

number of elements that are to be saved in each log. If the user wants to

have only the last three visited sites shown in the recent log, all they need

to do is to change the value for the field ”Max elements in Recent log” and

click save settings. This will send the value 3 to the background script to be

stored under the key ”recLogLength”, this will make the background script

use this value to determine the max number of elements allowed in the recent

log storage next time it is prompted to add a new one.

4.11 Storage methods used

This chapter will go through the method of storing used in the extension

developed in this thesis and the reasoning and technical details behind the

choices made.

• Using an online storage service such as Google drive26 or dropbox27

was discarded because it would require the user to have an account

on one of those sites, and provide their username and password to the

extension. Using the user’s hard drive by storing text files and images

in the user specified downloads folder was also discarded, because it

would allow the user to have full access to all stored text and settings

without going through the extension. For it to work it would have to

check for errors every time a value was loaded. Chrome online sync

storage was discarded because of the size restrictions, and that the user

would have to log in to chrome with a google account. The choice fell

on using the HTML5 localstorage in the extension but as mentioned

section 3.2.1, the decision was made based on incorrect information

that the unlimited storage permission would affect it. The only differ-

ence between chrome and HTML5 localstorage seemed to be that one

was accessed asynchronously and the other synchronous. Synchronous

was preferred, and HTML5 localstorage became the method chosen

for storage in the extension.

26https://drive.google.com/
27www.dropbox.com

35

Implementation

• When the content script is given the task of saving a button that is

not an anchor type element, it cannot send a reference of the button

it wants to save to the background page. The chrome message pass-

ing only supports sending string type messages and unlike a regular

JavaScript object, it cannot be turned into a JSON object as it con-

tains a circular reference28. Using XPath, an element’s location on

the page can be saved in string form as a path on the document tree

structure. This path can be sent as a chrome message to the back-

ground page to be stored. When the path is fetched from storage the

content script can locate the element, and simulate a mouse click to

make the onclick function or the click event handler associated with it

trigger. Another way of doing this would be to copy the onclick event

on the element, but detecting these events has proven unreliable and

no further attempts has been made to try and make it work.

• For anchor elements it is only necessary to save the href attribute of the

element to create a button in the sidebar with the same function. This

is because anchor elements only open a new page with the location

stored in the element, so there is no need to make it unnecessarily

complicated by making the page think the user clicked that link.

• For the three different buttons the sidebar saves, it has three different

ways of deciding what the text on the button shall be. The thing they

all have in common is that they only store at most 20 characters. This

is because some titles can contain entire sentences and trying to fit

all into a button would make it incredibly long or span multiple lines.

When creating custom anchor elements the content script takes the

innerHTML value of it, shortens it to a maximum of 20 characters

and then puts it into a JSON object along with the href value before

sending it to the background page. The same process will happen for

the custom buttons. The difference being that when they are loaded

into the sidebar, the content script will use the stored text only as

28A circular reference is an error that occurs when trying to stringify a object that
contains a pointer that ends up pointing at itself.

36

Implementation

a backup if it is unable to find any text in the target button. The

idea behind this was that if the layout on the page changed and the

stored path lead to a different element than the one it was intended

for, the text on the button would imply that so the user can check if

the target button had changed text or that the custom button were

indeed pointing to the wrong element. When a new page is opened

the content script will attempt to save it as an entry in both of the

logs. To find the button text for these it takes the title of the page and

stores it alongside the url of the entry. This was also intended to be

the way the content script used to find the button text when creating

custom anchor elements, but there seemed to be no way of getting to

the title of a page without opening the link. Doing so would prompt

the content script to add new log entries and cause the user to notice

that a new page had been opened and then closed again. Finding the

title of a link, to use as button text, is put on hold until an easier and

less disruptive way of doing so is found.

37

Implementation

38

Implementation

4.12 Sequence diagrams

Figure 13: Sequence diagram for opening the sidebar
39

Implementation

Figure 13 shows a sequence diagram of the communication occurring when

opening the sidebar. The main point is that the user clicks the button to

enable the sidebar. The event is then passed on to the context script that

will start to fetch the stored links, images and notes. Since the context

script does not directly have access to the applications localstorage, the

communication needs to go through the background script. All the fetch

requests are asynchronous, so the context script will send them all, show the

sidebar and then add the responses to the sidebar when they are received.

Figure 14: Sequence diagram for the logout button

40

Implementation

When the user clicks the logout button the content script will fetch all

elements on the page, and search through them. First it will search through

all the div elements to see if they have any element id, name or innerhtml

matching known ways of spelling logout, either in English or Norwegian. If

it finds a matching element a click event will be simulated on the element.

If it does not find a matching element it will do the same matching with all

input elements, if it does not find a matching element there either it ill do

the same matching for anchor elements. If no matching element is found,

the extension will do nothing.

4.13 The sidebar

Figure 15: Final version of the sidebar

Figure 15 shows how the final version of the sidebar looks like in four different

color options. The sidebar in the figure has no added custom buttons. If

one were to be added it would lie under the three buttons at the top and

right above the header spelling ”Domain Log”. It would look the same as all

the other buttons a in the sidebar but would contain a different text. Both

the domain log and the recent log contain two different entries each and the

notes field contains the text ”Test text”. Lastly the image container has one

image stored and displayed in the bottom of the sidebar.

41

Implementation

42

Evaluation

5 Evaluation

An evaluation of the extension developed in this thesis has been completed

by a group of nine selected test users. This section contains the information

about the evaluation. A user manual was written and distributed to the test

users to get them started with the testing of the extension. The manual can

be found in section 5.1. The evaluation form distributed to and filled out

by the test users after testing the extension can be found in appendix B.

The evaluation form contains a few questions that required the test users to

answer on a scale from one to five. The answers to these questions have been

put in table 2. Info about the test users and other info about the evaluation

can be found in section 5.2. Each section from 5.3 to 5.16 cover the answers

given by the test users to the questions in the evaluation form. At the end

of this chapter you find section 5.17, which contains the conclusion to the

users evaluation.

5.1 The user manual

This is the user manual that was given to the test users.

• The sidebar:

After you have installed the extension you will notice a small icon to

the right in the address-bar. Clicking it will open the sidebar. The

sidebar will not stay open when you open a new page.

• Logout button:

To the top left in the sidebar you will find the logout button. Clicking

it will, if possible, cause you to log out of the page you are visiting.

• Add custom button:

The button with the text ”Click to add button” is to add your own

buttons to the sidebar. After it is clicked you will notice a blue square

following your mouse pointer. Clicking this square will create a new

button that when clicked will do the same as the element the blue

43

Evaluation

square was covering, and will also have the same text as it. If what

you clicked had no text inside it then the button will show up as an

empty button. If it had a image inside the button will attempt to use

that images as well, but this function is not yet perfected.

To cancel adding a button, just click on the ”Click on a button or click

here to cancel” button.

To delete the button you have added click the ”Remove all custom

buttons” button. This will remove all the custom buttons that are

shown in the sidebar. It is not possible to only remove one custom

button at this time.

The button you created will only show within the same domain you

added it in, so the buttons you created on facebook.com will not be

shown if you are visiting vg.no.

• Domain log:

Under the title Domain Log you will find links to the pages you last

visited the previous time you were in that domain. So for example, if

you are on vg.no you might find links to the articles you visited the

last time you were there. The default number of items show in the

domain log is 3, this can be changed on the settings page.

There are some pages that the application have trouble saving in

the domain log, these are usually pages that have something to do

with video and streaming. Some of those pages are: facebook.com,

youtube.com and twitch.tv.

• Recent log:

Under the title Recent Log you will find links to all the pages you have

recently visited. Its function is to work as a smaller but more accessible

version of your browser history. The default number of items shown

in the recent log is 10, this can be changed on the settings page.

As with the domain log, this also has problems saving some pages.

These pages are the same ones as the domain log would have trouble

44

Evaluation

with.

• Notes container:

Under the title Notes you will find a textbox, here you can write some

notes, like reminder notes. Clicking outside of the textbox will save

the notes you have written. However if you close the browser or click

the reload page button directly after writing something in textbox,

what you wrote will not be saved.

Notes are saved within a domain. That means that the notes you

wrote on facebook.com would not show if you go on vg.no.

• Image container:

On the bottom of the sidebar you will find a title called ”Images”. To

the right of it there is a button with the text ”Click to add Image”.

After clicking this you will notice a blue square when the mouse is

hovering over an image. If you then click on it the image under it will

be saved in the sidebar. If a blue square is not shown when hovering

over a image then there is an invisible element covering the image,

most likely a link. Clicking will then not save the image, but instead

open the link attached to it.

All the images you have saved will be shown on the bottom of the

sidebar. To fit as many as possible in an orderly fashion, the images

are all scaled to the same square size when shown in the sidebar. To

show the full image just right-click and select ”Open image in a new

tab” or your language equivalent.

Deleting a saved image is as simple as holding down the alt key on the

keyboard and clicking on the image you want to delete.

All the images you have saved will be available in the sidebar regardless

of what page you were on when you added the image.

• The hide buttons:

On the sidebar there are four buttons with the text ”Hide”. Clicking

one of these buttons will hide the elements directly below it. So clicking

45

Evaluation

the hide button next to the recent log title will hide the links in the

recent log, clicking the hide button next to the notes title will hide the

textbox below it, and so on. Clicking the button again will show the

elements it hid.

• Settings page:

The easiest way of getting to the settings page is to right-click on the

icon to the right in the address-bar and then clicking on ”Options”, or

your language equivalent, as shown in the figure:

To the bottom right of the settings page you can find an explanation

of how the it works.

5.2 General info

The test users that participated in this evaluation are identified as U1, U2,

U3 and so on until U9. Direct quotes from the test users are written in this

format: ”quote from test user.” The quotes from the test users are for the

most part identical to the answer they gave in the evaluation form apart

from fixing some spelling errors. Answers written in another language than

english are translated in a way that attempts to retain its meaning.

46

Evaluation

1. Age 2. Gender 3. Occupation or line of study

U1 23 Female Student - Psychology

U2 16 Male Student - Electro

U3 22 Male Student - Economy and administration

U4 23 Male Student - Accounting

U5 47 Female Occupation - Teacher

U6 18 Male Student - General studies

U7 25 Male Student - Business

U8 22 Female Student - Law

U9 25 Male Student - Computer science

Table 1: Personalia questions

Table 1 contains a summary of personalia information provided by the

test users in the evaluation. The first row contains the questions asked,

sorted in the order they appear in the evaluation form (see section B). They

also have the same number as they have in the evaluation form. In the

second row you can see the answers from U1, in the third you can see the

answers from U2 and so on until the answers from U9 in the tenth row.

47

Evaluation

Questions U1 U2 U3 U4 U5 U6 U7 U8 U9 Avg

4. How useful do you
think the logout button
is?

4 4 3 1 4 3 4 3 5 3,4

5. How useful do you
think the Add buttons
function is?

5 4 5 3 4 4 3 4 4 4

6. How useful do you
think the domain log is?

3 4 4 1 4 2 5 5 2 3,3

7. How useful do you
think the recent log is?

4 4 2 1 3 3 4 5 4 3,3

8. How useful do you
think the notes field is?

4 5 2 3 4 3 3 2 4 3,3

9. How useful do you
think the image func-
tion is?

5 3 4 3 5 3 2 3 4 3,5

10. How would you rate
the settings page?

4 3 4 3 4 2 4 4 5 3,67

13. Overall, how diffi-
cult/easy to use did you
find the application?

2 2 2 1 3 2 1 2 1 1,8

Table 2: The numbered answers in the evaluation

Table 2 contains the questions in the evaluation that the test users would

answer with a score from 1 to 5 and what the test users answered to them.

The first column contains the questions asked, sorted in the order they

appear in the evaluation form. They also have the same number as they

have in the evaluation form. In the second column you can see the answers

from U1, in the third you can see the answers from U2 and so on until the

answers from U9 in the tenth column. The eleventh column contains the

average score for the question asked in the same row. So the number in

the eleventh column, second row contains the average score for the question

asked in the first column, second row and so on until the ninth row.

48

Evaluation

5.3 How useful do you think the logout button is

The answers here are mostly positive except for U4 who gave the logout

button the lowest score possible. On the other side of the spectrum U9 gave

it the highest score possible. The average score of this question is 3,4. The

conclusion from this result is that according to the test users the logout

button is the third most useful function in the sidebar. However the logout

button is only mentioned two times in later questions, and both times were

bug related issues with it (see section 5.15).

This button was intended as a proof of concept, but the group seem to

think it was useful. This fact opens up for putting more work into perfecting

it, by fixing the issues mentioned by the test users, and creating more buttons

of this concept. Future work could start with functions such as login and

next page/article as mentioned earlier in this thesis.

5.4 How useful do you think the Add buttons function is

The add buttons function received an average score of 4, which is the highest

of all the functions in the sidebar. This response was surprising because this

function has the most issues associated with it of all the functions in the

sidebar. It was also suspected that because the users did not have the option

to only remove one custom button, instead of having to remove all of them,

would have a negative impact on the score of this function. The lack of

ability to remove a single button added is mentioned as a suggestion for

improvement by U1 and U8.

The add custom buttons function is based on improving the bookmarks

function without making it redundant. Because this is a function present in

all major web browsers, it is safe to assume that the test users are familiar

with it. U1, U3 and U5 has mentioned in their answers that they found

a use for the add custom buttons function in a way that works very well

in combination with the bookmarks function. This is reflected in the score

that these three test user gave this function (scores: 5, 5, 4).

Based on the answers to this question the add custom buttons function

is found useful by the test users and should therefore stay in the sidebar in

49

Evaluation

a future version of the extension.

5.5 How useful do you think the domain log is

The domain log shares the lowest average score (3,3) with the recent log and

the notes field. The domain log also has the most varying score of all the

functions, with scores ranging from really low (scores: 1, 2, 2) to really high

(scores: 5, 5). These results indicate that the opinion on the domain log is

split between being either the worst function in the extension or the best.

5.6 How useful do you think the recent log is

The recent log shares the same average score (3,3) as the domain log, but

it has a more balanced distribution of scores consisting mostly of 4 and

3. The reason behind this plane distribution of scores could be because

browsers already have similar functionality with the browser history, and

other functions based on it such as the back button. The test users therefore

know what to expect from the recent log and how to use it.

5.7 How useful do you think the notes field is

The notes field shares the same average score (3,3) with the domain log and

the recent log. The reason behind this low score is uncertain, since it is only

mentioned in later answers by U1 who suggested an improvement to it (see

section 5.16) and by U2 who mentioned the notes function being the thing

he liked the most about the extension (see section 5.14).

5.8 How useful do you think the image function is

The image function received the second highest average score (3,5) of the

functions in the sidebar. Of the test users, U1 and U5 gave the image

function the highest score possible (score: 5), and only U7 gave it a score

below 3. U7 also provide a reason why he gave the image function a low

score in his answer to question 16 (see section 5.14).

50

Evaluation

5.9 How would you rate the settings page

The reason behind asking the test users to rate the settings page is to find

out if they liked it despite the low number of adjustable settings. With an

average score of 3,67 and five test users giving it a rating of 4, it is safe

to assume that the test users like the settings page. The settings page is

discussed more in the next two sections.

5.10 Do you think the settings page was easy to understand

The reasoning behind this question in the evaluation was to find out if the

design behind the settings page is user friendly enough that little, or no

misunderstandings would happen when using it. This seems to be the case

as all nine of the test users mentioned in some way or another that the

settings page was easy to understand.

In addition to saying that the settings page was easy to understand U7

said ”The layout of the settings is easy to understand, might be more clear

if it was below each other.” as a suggestion to improve the layout of the

settings page. This suggestion is similar to one of the design alternatives to

the settings page mentioned in section ??.

U1 and U9 gave an explanation as to why the settings page was easy to

understand. U1 said ”It was very easy since the change that I made showed

up immediately after, and I could see what I changed.” and U9 said ”Not

hard at all, very concise description of all options.”

5.11 Was there anything you were missing on the settings

page

The idea behind this question was to find out if there were any options that

were dearly missed on the settings page. To this U5, U6 and U8 answered

that there was nothing that they were missing on the settings page, and U4

left the question unanswered.

Only U2 and U7 mentioned missing the ability to change the placement

of the sidebar, but later when asked about suggestions for improvements

51

Evaluation

to the extension U1, U2, U7, U8 and U9 had suggestions that involved the

location and size of the sidebar. These options are discussed in section 5.16.

U1 had a few suggestions. She wrote ”Maybe there could be more op-

tions? So I could decide if the notes should be for a domain or a specific

page or make some buttons different from others.” All of these suggestions

are doable and the test user also mentioned them in the suggestions for

improvements question in section 5.16. They will be discussed there.

U3 said ”Text font?” This is easily doable and would use the same

functions as the options changing the color of the text on buttons. The

difficult part would be finding a good solution for the user to view and

select the available fonts, as the collection of fonts supported by chrome is

quite large29.

U9 answered ”The possibility to set the amount of time the sidebar should

use to fade in/out.” During testing, this test user said that he was unable

to open the sidebar. It turned out that the test user was double clicking the

page action icon which caused the sidebar to open and close itself without

giving any visual signs to the user that it had done so. Adding this suggestion

to the settings page would not solve the issue, but it would provide a useful

option to users wishing a quicker response when clicking the page action

icon. This issue is discussed further in section 6.1.4.

5.12 Overall, how difficult/easy to use did you find the ap-

plication

The average score on this question is 1,8 so according to these results the

extension is quite easy to use. The test users were to answer this question

on a scale from 1 to 5 where 1 would mean that the user had next to no

difficulty in using the extension and 5 would mean that the user found it

very difficult to use. The highest answer to this question was from U5 who

answered 3. This answer being higher than the others could be explained

by the test user’s age or that she is less experienced in using web browsers

than the other test users.

29https://www.google.com/fonts

52

https://www.google.com/fonts

Evaluation

5.13 What did you find difficult/easy to use

This question was added to the evaluation to find out if there is a piece of

the extension that the test users found particularly difficult to use and to

find out if there was a part of it that they found easy to use.

U2, U6, U7 and U9 did not mention anything that they found difficult

to use.

U1 did not get the logout button to work on the uit-mail page. The issue

here is that the logout button does not exist in the html document until the

menu on the site is opened. This is discussed in more detail in section 6.1.7.

U4 and U7 both said that reading the user manual made the extension

easy to understand, but U4 found the add custom button function a little

confusing. He said ”when I first tried it the add a new button function was a

little confusing, since i didn’t know how it would work, or what i was going to

use it for.” Other mentions about the add buttons function were mentioned

by U1. She said ”It was easy to add buttons or cancel them, but i would like

to be able to delete only one button at a time, not all of them. ”

U1 also said ”I can not make buttons if the link is to the far left, since

the sidebar is in the way.” This could be solved by allowing the user to

move the sidebar to the right side of the browser without having to go to

the settings page and do it.

U3 said ”Difficult to remove when in fullscreen”. Here the user refers to

the issue discussed in section 6.1.5.

U8 mentions a noticeable issue that the sidebar does not work at all on

the site lovdata30. She said ”The application was difficult to use on the site:

lovdata.no. The add button and the domain log does not work consistently

on the site. The domain log and the add buttons disappears when you refresh

the site.” The cause of this issue is unknown, and it only occurs on U8’s

computer. The severity of this issue is quite large as U8 mentions that the

site lovdata is where the extension would be most useful for her (see section

5.14).

Only two users (U4 and U5) mentioned difficulties that are not related

30www.lovdata.no

53

www.lovdata.no

Evaluation

to lack of functionality or bugs. U4 found the add custom function a little

confusing, although he answered that the extension was very easy to use

in question 13(see table 2). The test user who found the extension most

difficult is U5. She answered ”Needed some help/explanation, but when I

got it it was easy.” Here the test user is referring to taking contact with me

because of difficulties understanding what the functions in the sidebar was

supposed to do, even after reading the user manual.

5.14 Is there anything you liked about the application

The idea behind this question is to identify the parts of the extension that

the test users liked the most and allow for them to explain why if they

wished to.

The functions the test users liked the most is the add custom buttons

function, as it is mentioned by four test users (U1, U3, U5 and U9). The add

custom buttons function is intended to work as bookmarks inside a domain.

By the answers from the test users it seems like the intended way also is

the way they were using it. U1 saying ”And that I could save my favourite

recipies on a blog aboute food. Then I could have a shortcut to the blog on

the toolbar with bookmarks for easy access to new entries and use the sidebar

to find my favourites.”. U3 saying ”Finding the series you watch the most

on a streaming site.” and U5 saying ”I could add a button within FB and

go directly to that page.”

The domain log is not mentioned directly and the recent log is only

mentioned by name once by U9, but answers similar to what U7 answered

”I like the ability to go back a few pages in one single click.” is interpreted

to mean both the recent log and the domain log. So including this, the

recent log is mentioned three times (by U1, U7 and U9) and the domain log

twice (by U1 and U7). What the test users liked was the ability to jump

back a few pages without having to click several times on the back button

or finding the page they are looking for in the browser history.

U1 and U6 mentioned the image function. U6 simply said ”The picture

saver” and U1 said that it was ”very easy to share a picture via instant

54

Evaluation

messages or to post f.ex. on facebook.”

When asked about how useful the notes field is, only U2 gave it the

highest score possible (score: 5). To describe why, he wrote ”I can finally

write down were i stopped watching a youtube video.” Due to the wording

of this answer it sounds like the notes field is a solution to an issue that has

been bothering the test user for some time.

5.15 Is there anything you did not like about the application

The idea behind this question was to find out what parts, in specific, the

test users did not like about the extension. The answers are diverse as no

two test users mention a similar issue.

U1 did not like that she was unable to ”have pictures as buttons, and

then see a miniature picture in the sidebar.”.

The log out button did not work properly on facebook for U2 as he ”had

to press multiple times to log out from some sites(Facebook).”.

U3 did not like that he had to close the sidebar before entering fullscreen.

U4 found the extension ”Very clunky/manual to use”.

U5 is uncertain in what she did not like in the extension as she answered

”Don’t know really. Must use it for more than two days to tell.”

U6 simply answered ”no, but it looked ugly.”

U7 said ”The image function has no worth for me. Maybe its useful

if you are creative and like saving a lot of images about things you could

make.”

U8 has issues using the application at the same time as the functions on

a website because ”A part of the page disappears behind the application.”

The function that got the lowest score in usefulness from U9 was the

domain log (score: 2, see table 2). He misunderstood how the domain

log works as his answer here is ”The domain log. All links (as far as I

found) do appear in the recent history, so the domain log is redundant”

This misunderstanding could either be that the domain log is not properly

explained in the user manual, or that the test user did not open a large

enough number of sites during testing that the recent log and the domain

55

Evaluation

log never contained different entries.

5.16 Do you have any suggestions for improvements

This question was added to the evaluation because it will be useful for the

future work of the extension to know what the test users would like to change

in the extension, either by changing, removing or adding functionality to it.

This section will go through all of the suggestions from the test users first

sorted by the amount of users who suggested it and then by user number

(U1, U2, U3 and so on). The only test user who did not have any suggestions

for improvement was U5.

• – ”In addition it would be nice if the sidebar ”integrated” with the

site, so it does not cover the left side.” Suggested by U1

– ”I would like if you could add a setting so the sidebar dosn’t cover

the left side of page your on.” Suggested by U2

– ”The ability to resize the bar and changing it to the other side.”

Suggested by U7

– ”Make the application so it does not hide parts of the page.” Sug-

gested by U8

– ”There should also be a possibility to adjust the sidebar width and

height.” Suggested by U9

These suggestions are grouped because they all mention the size or

location of the sidebar. The suggestions by U2, U7 and U9 could be

implemented by adding options to the settings page that allowed the

user to change the size and location of the sidebar. The only thing the

user would change would be the x and y coordinates (called the top

and left attributes in html) of the sidebar to change the location, and

the width and height percentages (so that the sidebar would adapt to

the user changing the size of the browser window) to change the size

of the sidebar.

The suggestion by U1 was attempted in the early stages of develop-

ment, but was scrapped because it involved moving all the elements

56

Evaluation

on the website, an action that should be avoided if possible because it

could interfere with the website’s functionality.

Adding a function that allows the user to move the sidebar to the

opposite side of the window without having to enter the settings page,

would be the easiest way of appeasing the suggestion by U8.

• – ”being able to delete one button.” Suggested by U1

– ”It would be nice if you can remove specific added buttons.” Sug-

gested by U8

Allowing the user to delete only one of the added custom buttons in the

sidebar at a time has been the intention from the start. Due to issues

related with custom buttons being two different types of elements with

different content made it difficult to create a reliable function that

would delete only the button the user chose. A last minute workaround

function that deleted all the added custom buttons was made to allow

for some way to delete added buttons in the extension that was sent to

the test users. A future version of the extension should have a method

of deleting the added custom buttons similar to the way saved images

are deleted in the extension.

• – ”Prettier design.” Suggested by U6

– ”Some web-designer should look at the design.” Suggested by U9

These two suggestions both involve the visual design of the extension.

U6 mentioned several times in the evaluation that the design of the

extension looked ugly (in questions 14, 16 and 17). There is no denying

that the sidebar with its default visuals is not pretty. Other than the

options that the user get on the settings page, there has been barely

any focus on making the sidebar and the settings page look appealing.

For a future version of the extension there is definitely work needed

to make the default design of both the sidebar and the settings page

better looking.

• ”different styles for different buttons.” Suggested by U1

57

Evaluation

This could be done by giving the elements in the sidebar a more diverse

standard id. All the elements in the sidebar already have a id that

starts with ”ext”, so for the buttons in the domain log they can have

”extdom” as id. Then the settings page could be altered so the user

can change the CSS for all the buttons that has an id that starts with

”extdom.”

• ”notes for a specific page.” Suggested by U1

The reason for notes being connected to a domain rather than each

specific web page was because there are a lot of pages that include

variables in their URL’s. These variables can change between each

visit so for a user it would seem as the extension sometimes remembers

the notes and sometimes not. So for a compromise, the notes could

allow for the users to create tabs for notes within a domain or just in

general. Selecting between the note’s tabs could be through a drop

down box to allow for a large number of tabs.

• ”One log for different domains and one for sites in the domain.” Sug-

gested by U1

This suggestion would make the difference between the recent log and

the domain log clearer. It would also give the user a better overview

of the recent browsing history. This is an idea that should be experi-

mented with in future work of the extension.

• ”I would also like to be able to save gifs.” Suggested by U1

The extension is already able to save gifs. The only requirement is that

the web page the gif is found on has put the gif in an IMG element.

Some pages are known to display gifs in VIDEO tags so the users are

able to pause them when played. It should be possible to save such

gifs if the source location of the gif is accessible by the extension.

• ”Fullscreen issue.” Suggested by U3

The issue U3 is referring to here is mentioned in section 5.13 and the

issue is discussed in section 6.1.5.

58

Evaluation

• ”Need to refresh the page after opening it through Google.” Suggested

by U3

The issue U3 is referring to here happens when the user is doing a web

search through Google31 and opening a web page through one of the

search results. This issue is discussed in more detail in section 6.1.3

• ”If it remembered what domains you like to use it in, it could automat-

ically open on those domains, instead of having to open it manually

every time” Suggested by U4

This suggestion describes a functionality that allows the extension to,

over time, adapt to a user’s behavior. This functionality is discussed

more in future work (see section 6.2.4).

• ”The recent log I feel is not very necessary because you have that option

in the recent tabs menu, which is equally accessible to the sidebar log.”

Suggested by U4

Here U4 refers to the recently closed tabs menu. In the chrome web

browser this is located in the tool menu and it contains a list of the

recently closed tabs. It differs from the recent log in the extension in

how new items are added to the list. The recently closed tabs menu

only adds a new item to its list when a tab is closed. The recent log

adds a new item to its list whenever a new page is loaded. If a user

only uses one tab when browsing the web, the recently closed tabs

menu will only contain the page that was open the last time the user

closed the web browser. In the same situation, the recent log will show

the last 10 web pages that the user opened.

U4 must either have misunderstood how the recent log works, or how

the recently closed tabs work. This misunderstanding could be the

reason as to why U4 gave the recent log (and the domain log) a score

of 1 in the evaluation form.

• ” I feel like the hide buttons are not very useful, you could program

31www.google.com

59

www.google.com

Evaluation

the button into the text, or have a button named ”recent log” and have

hide/show programmed into it.” Suggested by U4

The suggestion from U4 here is to make the functionality of the hide

button execute when the header next to it is clicked, or to move the

text from the header into the hide button. This suggestion would

make the sidebar use the space it has more efficiently. For a future

version of the extension the functionality of the hide buttons would

be implemented into the headers, with a small visual indication (such

as an arrow pointing up or down next to the header) as to whether

clicking it would hide or show the elements in the container below.

5.17 Conclusions

Based on the results of this evaluation it is concluded that different users

have different needs. No one function in the extension received a score

higher than 3 from all test users, and similarly no one function received a

score lower than 3 from all test users. This indicates that a potential feature

for the extension should be to allow the user to decide what functionality

the sidebar should contain.

The users who gave the lowest scores in usefulness are U4 and U6 (see

table 2). The similarities between them is that they both mention that

they did not like the design of the extension. By their answers, making

the extension more pleasant to look at would improve the usefulness of the

extension without making changes to the functionality. U9 also mention

the design of the extension, but the scores he gave are higher than both

on almost every function. This could be explained by U9’s background,

which is from computer science and therefore has a much bigger focus on

functionality rather than visuals.

If a test user misunderstands what a function is supposed to do he is very

likely to give it a lower score than the other test users. This is shown by

U4 having misunderstood the differences between what the recent log does

and the recent tabs menu, and by U9 having misunderstood the difference

between the domain log and the recent log. The conclusion here is that

60

Evaluation

functions must be clear in what they do and in how they differ from each

other. In this case the suggestion from U1 (discussed in section 5.16) would

be something to consider as it would make the differences between the recent

and the domain log clearer for the users.

The amount of customization options is insufficient for the majority of

users. Five of the test users could think of options that they though were

missing on the settings page. However four of the test users suggested op-

tions that can be added to the settings page by reusing existing functionality

already implemented in the settings page.

Out of nine test users, seven of them found at least one function in the

extension that they found very useful and none of the functions received a

average score below 3. This proves that all of the functions in the sidebar

are useful, but there is room for improvement. The test users have given a

lot of good suggestions that are going to be valuable during the development

of a future version of the extension.

61

Evaluation

62

Known issues and future work

6 Known issues and future work

This section will go through some of the known issues in the application and

the future work for the extension.

6.1 Issues

6.1.1 Custom buttons have no text in them

The create custom button function allows the user to turn almost everything

into a button, and there is a lot of empty elements on a page, so if the user

creates a button for an empty element the button itself is going to be empty.

This can also happen if the user clicks on a another element than the one

intended. Such as when trying to make a button of a text link and the user

clicks between the letters the application might think that the user intended

to click on the element behind the link.

6.1.2 Some pages have changed after installing the extension

The CSS of the extension is applied to most elements that has an id that

starts with ”ext” so this might apply to some other elements on a page.

They way to solve this would be to have a longer startid than ”ext”. This

issue has only happened on one site32 so far.

6.1.3 The page action icon does not show up sometimes

This sometimes happens if the user types a url into the addressbar manually

or after opening a link on the result page of a web search. The underlying

cause of this issue is unknown and it is uncertain if it has something to do

with the way the extension detects that a new page has been opened. The

frequency of this issue also seems to vary between computers following no

noticeable pattern.

32dl.acm.org

63

Known issues and future work

6.1.4 Double clicking the page action icon makes the sidebar not

show

This happens because when the user clicks the page action icon the sidebar

starts to fade in over the course of half a second. So if the user clicks the

icon again fast enough the sidebar will start to fade out again before it has

even started to show itself. So for the user it will look like the sidebar never

started to appear at all. This could be fixed by adding a timer to the event

listener so that the sidebar cannot be closed before it has completely shown

itself.

6.1.5 The sidebar cannot be closed in fullscreen mode

This issue happens when the sidebar is open and then entering fullscreen

mode on the browser either through pressing the f11 key or opening a video

in fullscreen. This happens because the only way to close the sidebar is

to click the page action icon, and when fullscreen is enabled this button is

hidden. The way to fix this would be to create a button in the sidebar that

closes it or to allow the users to choose a hotkey for closing and opening it

on the settings page.

6.1.6 Some pages does not show up in the recent log or the do-

main log

It is a known issue is that on some pages, especially ones that are used

for streaming video content, such as youtube.com or twitch.tv seem to not

trigger the events that the extension use to notice when a new page has been

opened. This is likely to remain an issue until a reliable method of noticing

the opening of a page has been found.

6.1.7 Logout button not working on pages with menus

The logout function is unable to detect the logout button on most pages that

use a drop down menu. This is because the logout button simply does not

exist in the html document until the menu is opened. To fix this issue the

64

Known issues and future work

extension would need a reliable way of opening the menu before attempting

to locate the logout button.

6.1.8 The extension does not work properly on some sites

This is an issue that was noticed by one of the test users (U8). The sidebar

simply refuses to work properly in the domain lovdata.no, but only on U8s

personal computer. Due to being unable to recreate this issue without using

U8s computer, no solution has been found.

6.2 Future work

This section contains ideas for future work on the extension developed in

this thesis.

6.2.1 Image tags

A future version of the extension would allow the user to add tags to a saved

image. This would allow for functionality that can search through the saved

images based on a input string from the user and present the images with

tags that match the input string. This would make it much easier to locate

an individual image as the collection of images grows large.

6.2.2 Notes

An improvement to the notes field would be to allow the users to search

through all of their saved notes and find the page that the notes were saved

from. This would make the notes field work as tagging service for web

pages. So for example if the user added the word ”news” in the notes field

on different news sites. Then the user could search for the tag ”news” and

receive a list of pages that contains the word news in the notes field.

6.2.3 Settings page

Future work for the settings page would include changing the layout into one

that would scale with the number of options added. The test users suggested

65

Known issues and future work

a few options that could be added to the settings page, but adding them

would exceed the space currently available in the 3x3 grid layout on the

settings page. The most logical solution would be to put the options into

rows. So when adding one new option to the settings page would only require

adding one new row to the settings page. If the current layout would be kept

then adding one more option to the settings page would require the layout

from changing from a 3x3 grid to a 4x3 grid. This would make the settings

page to create two empty squares, or new options would have to be added

in groups of three at a time.

6.2.4 Adaptive behavior

The future work for the extension, in the context of adaptive behavior, would

be to make the extension able to detect patterns in the users behavior. This

would involve detecting what pages the user prefers to open the sidebar and

then open it automatically on those pages. Moreover, the extension could

take notice if the user tends to only use one of the functions in the sidebar

when visiting a specific page, and the automatically hide the other functions.

These changes would make the extension have the characteristics of an

adaptive user interface.

6.2.5 Google translate

Chrome has a translate function. It works by asking what languages the

user understands and when a web page written in a language that the user

does not understand a toolbox will appear asking if the user would like the

page to be translated. An improvement to this functionality would be to

allow the user to translate a web page to whatever language on request. It is

not certain if this is possible using the existing translate functionality within

chrome or if the extension would need to use other solutions, such as the

google translate api33.

33https://cloud.google.com/translate/

66

https://cloud.google.com/translate/

Conclusion

7 Conclusion

In this thesis an extension that explore the customization, personalization

and adaptation possibilities in the chrome web browser, while simplifying

the users access to information, has been developed and evaluated.

This thesis states that the functionality of todays web browsers offer is

not sufficient and can be improved. To attempt prove this the extension

implements functions that improves the existing functionality available in

the chrome web browser. These functions include adding custom buttons

within domains, easy access to the web pages most recently visited (globally

and per domain) and a simplified method of storing and accessing stored

images. Moreover, this thesis presents an evaluation whose results indicate

the usability of the functions implemented in the extension.

The goal of this thesis was to design, implement and test an application

that explores personalization, customization and adaptation possibilities in a

web browser. The result of the evaluation confirms that this goal is achieved

to some degree. As the settings page of the extension was rated highly by

the test users (avg score: 3,67) and only one of the test users suggested a

customization option that can not be implemented by reusing the existing

functionality on the settings page. Future work on this extension have the

potential of notably increasing the web browsers capability to adapt to a

user.

67

Conclusion

68

References

References

[1] Akiki, P. A., Bandara, A. K. & Yu. Y., 2014. Adaptive Model-Driven

User Interface Development Systems. ACM Comput. Surv. 47, 1, Article

9 (May 2014), 33 pages.

[2] Eirinaki, M., Vazirgiannis, M., 2003. Web mining for web personaliza-

tion. ACM Trans. Internet Technol. 3, 1 (February 2003), 1-27.

[3] Gao, M., Liu, K., & Wu, Z., 2010. Personalisation in web computing

and informatics: Theories, techniques, applications, and future research.

Information Systems Frontiers 12, 607629.

[4] GVUs WWW Surveying Team. GVUs 10th WWW User Survey, 1998.

[5] Google inc., Chrome Extensions Developer Overview (Accessed Septem-

ber 10, 2015) URL:https://developer.chrome.com/extensions/

overview

[6] Google inc., Chrome Extensions Developer Storage (Accessed September

10, 2015) URL:https://developer.chrome.com/extensions/storage

[7] Jason, B., Calitz, A., & Greyling, J., 2010. The evaluation of an adap-

tive user interface model. In Proceedings of the 2010 Annual Research

Conference of the South African Institute of Computer Scientists and

Information Technologists (SAICSIT ’10). ACM, New York, NY, USA,

132-143.

[8] Mackay, W. E., 1991. Triggers and barriers to customizing software. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI ’91), Scott P. Robertson, Gary M. Olson, and Judith S.

Olson (Eds.). ACM, New York, NY, USA, 153-160.

[9] Marathe , S., & Sundar, S. S., 2011. What drives customization?: con-

trol or identity?. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’11). ACM, New York, NY, USA,

781-790.

69

https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/storage

Conclusion

[10] Nadeem, T., Killam, B., 2001. ”A study of three browser history mech-

anisms for Web navigation,” in Information Visualisation, Proceedings.

Fifth International Conference on , vol., no., pp.13-21.

[11] York, R., & Pouncey, I. 2011. Beginning CSS : Cascading Style Sheets

for Web Design (3rd Edition). Hoboken, NJ, USA: Wrox. Retrieved from

http://www.ebrary.com

70

http://www.ebrary.com

Appendices

A Code Snippets

1 // Change one attribute of the css using regex

2 function changeCSStext(selector , attribute , replacement){

3 var searchtext = csstext;

4 // split css text into two parts , before the value of the

attribute to change and after

5 var block1 = searchtext.search(selector);

6 var block2 = searchtext.substring(block1).search(attribute);

7 var block22 = searchtext.substring(block1+block2).search (/:

/) + 2;

8 var block3 = searchtext.substring(block1+block2+block22).

search (/;/);

9

10 var replacementCSSstart = searchtext.substring(0, block1+

block2+block22);

11 var replacementCSSend = searchtext.substring(block1+block2+

block22+block3);

12 // put the css back together

13 csstext = replacementCSSstart + replacement +

replacementCSSend;

14 // update the page css so the changes are shown in the

preview elements

15 var style = document.getElementById("extCSS");

16 style.parentNode.removeChild(style);

17 $("head").append(csstext);

18 }

1 // Page Action listener

2 chrome.pageAction.onClicked.addListener(function(tab) {

3 chrome.tabs.getSelected(null , function(tab) {

4 chrome.tabs.sendRequest(

5 tab.id ,

6 {callFunction: "toggleSidebar"},

7 function(response) {

8 console.log(response);

9 }

10);

11 });

12 });

71

Appendices

72

Evaluation form

B Evaluation form

73

Evaluation form

74

Evaluation form

75

Evaluation form

76

	Introduction
	Motivation
	Goal
	Approach
	Contribution
	Structure

	Background
	Customization and Personalization
	Customization
	Personalization

	Adaptive User Interfaces
	Human-computer interaction
	Web browsers
	Chrome extensions
	Technologies
	XPath
	Regex
	jQuery
	JSON
	CSS

	Related work

	System design
	Software design
	Sidebar
	Custom buttons
	Logs
	Pre-set buttons
	Notes
	Images
	Settings

	Storage
	Evaluation storage options

	Hardware adaptation

	Implementation
	Architecture
	Extension permissions
	Logout button
	Add custom buttons
	Log
	Notes container
	Image container
	Hide buttons
	Background script
	Settings page
	Storage methods used
	Sequence diagrams
	The sidebar

	Evaluation
	The user manual
	General info
	How useful do you think the logout button is
	How useful do you think the Add buttons function is
	How useful do you think the domain log is
	How useful do you think the recent log is
	How useful do you think the notes field is
	How useful do you think the image function is
	How would you rate the settings page
	Do you think the settings page was easy to understand
	Was there anything you were missing on the settings page
	Overall, how difficult/easy to use did you find the application
	What did you find difficult/easy to use
	Is there anything you liked about the application
	Is there anything you did not like about the application
	Do you have any suggestions for improvements
	Conclusions

	Known issues and future work
	Issues
	Custom buttons have no text in them
	Some pages have changed after installing the extension
	The page action icon does not show up sometimes
	Double clicking the page action icon makes the sidebar not show
	The sidebar cannot be closed in fullscreen mode
	Some pages does not show up in the recent log or the domain log
	Logout button not working on pages with menus
	The extension does not work properly on some sites

	Future work
	Image tags
	Notes
	Settings page
	Adaptive behavior
	Google translate

	Conclusion
	Code Snippets
	Evaluation form

