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Abstract

Purpose

The purpose of this research is to apply machine learning techniques for predicting high
frequency financial time series. Experiments are conducted using several regressors which
are evaluated with respect to prediction quality and computation cost. The obtained results
are analysed in order to reveal parameter combination for particular regressor that yields
the best results according to chosen performance criteria.

Motivation

Machine learning is a rapidly evolving subfield of computer science. It has enormous
amount of applications. One of the application domains is financial data analysis. Machine
learning was usually applied for analysis and forecasting of daily financial time series. Avail-
ability of high frequency financial data became another challenge with its own specifics and
difficulties. Regressors, being a significant part of machine learning field, have been selected
as study subjects for this project.

Methods

An extensive quantified literature search is conducted in order to gain insight on financial
data analysis and prediction techniques with focus on machine learning approaches.

High frequency financial data from Oslo Stock Exchange is the main source of information
to work with.

Open-source machine learning library Scikit-learn, designed especially for Python pro-
gramming language, is used to perform all experiments on the given data set. A list of
regressor implementations is adopted in order to perform regression analysis and make pre-
dictions for particular values of the data set.

Results

The possible solution for prediction of price fluctuations based on the sliding window
approach is proposed in this paper.

The approach is tested in a series of experiments on four different regressors. The combi-
nation of parameters that yields the best results in terms of predefined performance criteria
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are chosen as optimal for each regressor. A comparative analysis of the regressors’ perfor-
mance is conducted.

The test results suggest that short-term prediction (approximately 1 minute ahead) is
more favourable for the given high frequency financial data.

Conclusion

All the tested regressors have demonstrated the best prediction quality on short periods
of time.

The multilayer perceptron regressor has demonstrated the best results in terms of both
error values and time expenses.

Possible improvements to prediction technique have been suggested.
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Chapter 1

Introduction

1.1 Background and motivation

Financial time series are a very valuable source of information for stock market trading.
Patterns hidden in the data may be used to predict the price fluctuations. That is why
nature and behaviour of real-world financial time series are of particular interest and under
continuous investigations for years.

Nowadays more and more data is available for analysis and inspection. Availability of
high frequency data increased the opportunities for new discoveries in the scope of machine
learning.

Statistical approaches and models traditionally applied for data analysis are no longer
in trend. Rapid growth of computational power and development of new machine learning
techniques make it possible to suggest new solutions for data analysis.

1.2 Goals

The main goal is to develop a solution that predicts price fluctuations using existing
resgressor implementations.

The other goal is to evaluate the regressors’ performance and reveal combinations of
their parameters that provide the best results according to the predetermined performance
criteria.

1.3 Report structure

The report structure is further described.

Chapter 2. Theoretical framework This chapter gives an overview about high frequency
trading and financial data analysis. Machine learning algorithms applied within this
research are described.
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Chapter 3. Literature review This chapter provides scientific insight into development
of financial data analysis and machine learning over time.

Chapter 4. Methods and materials This chapter provides specifications of tools that
are used for implementation and testing. Data description is also presented in the
chapter.

Chapter 5. Design of experiment This chapter provides description of the data prepa-
ration process and the testing procedure. Performance criteria for regressor evaluation
are also discussed.

Chapter 6. Implementation This chapter describes the implementation procedure in de-
tail.

Chapter 7. Experiment results This chapter describes the experiment results for each
regressor that is tested. Comparative analysis of the examined reressors is conducted
in this chapter and it is aimed to choose a regressor with a set of parameters that
provides the best results in terms of performance criteria.

Chapter 8. Discussion This chapter discusses experiment findings and issues encountered
while performing the experiments.

Chapter 9. Conclusions and future work This chapter summarizes the performed ex-
periments and discusses the contribution of this research. Possibilities for potential
improvements and future work are discussed in the end of the chapter.
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Chapter 2

Theoretical framework

2.1 High frequency trading (HFT)

High-frequency trading is one of the most favoured forms of algorithmic trading (AT)1

nowadays. Sufficient amount of literature is dedicated to high-frequency trading, though
there is no uniform definition of HFT. However, it may be commonly described by charac-
teristics [17, 34,66] presented in the list below:

1. Extremely high execution speeds (order of milliseconds, seconds)

2. Generation of immense amount of orders and their subsequent rapid cancellation

3. Short-term holding periods – from seconds to couple of minutes

4. Overnight positions are rarely carried (trading day is preferred to be closed in neutral
position)

5. Practice of co-location2, individual data feeds in order to minimize the access time

High-frequency trading employs various strategies. The most practical of them are listed
and described below [6,28,54]:

1. Market making – placing limit orders3 in a specific way to earn money from bid-ask
spread

2. Statistical arbitrage – getting profit from exploiting prices discrepancies and imbalance
of their correlations

1Algorithmic trading (AT) - trading system that operates computer programs built on mathematical
models and/or algorithms in order to carry out trading strategies. It is also known as algo-trading, automated
or black-box trading. [52]

2Co-location (colocation) - locating trading appliances in physical vicinity of exchange centers. [66]
3Limit order – an order to buy/sell at a price that does not exceed/fall behind a particular/special-

ized/predetermined price
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3. Spoofing – placing fake orders in order to influence prices and market

4. Quote stuffing – flooding the market via placing and removing great amount of orders
in order to slow down competitors actions

The influence of high-frequency trading and its strategies on market quality is an ongo-
ing research in financial industry. The following effects were discovered and investigated by
various researchers: increased liquidity4, narrowed bid-ask spreads5, price discovery (forma-
tion) [28], improved market efficiency and diminished transaction expenses [6, 17, 66]. Some
of the questions are still debatable such as whether HFT reduces [66] or increases [6] volatil-
ity6 It is also claimed that bigger firms have more advantages as they may use co-location
and other additional services.

High-frequency trading became of great use staring in 2000 with approximately 10% of
all transactions. Significant growth by 164% was reached within 2005-2009. In 2010 HFT
was accused of involvement in Flash Crash7. Other theories were discovered, but the true
reason of this dramatic for financial industry event still remains unclear. But that did not
affect its popularity and trading volumes continued to rise reaching roughly 70% in 2012.

2.2 Financial data analysis

Financial market is known to be intricate and complicated. In order to obtain the benefits,
market participants must be aware of all possible information relevant to the market and
its current situation. Continuous records of financial time series may be analysed to study
market quality and behaviour and thus be of great use to traders and investors. Potential
patterns hidden in the data may reveal early warning signals for such crucial events like flash
crashes, anticipate volatility intervals, price movements and so much more.

In the scope of prediction concerning market behaviour the efficient market hypothesis
(EMH) should be mentioned. It states that “all the available information is instantly pro-
cessed when it reaches the market and it is immediately reflected in a new value of the assets
traded” [54]. That is, there is no such approach that could “beat the market” and provide
any profit from existing data. The EMH has three forms that vary by amount and type of
available information: weak, semi-strong and strong. In this paper the weak form of the
efficient market hypothesis is tested, using past prices of particular time period.

The efficient market hypothesis is a controversial question as both its supporters and
opponents have empirical evidence of their respective correctness.

In spite of the EMH existence, financial data is a subject of numerous researches all over
the world.

4Liquidity - a property of an asset to be converted into money without dramatic changes in its price. [14]
5Bid-ask spread - the difference between best ask and best bid prices. It is also known as bid-offer or

buy-sell spread.
6Volatility - a measure of alteration within trading time series over a period of time. It is usually derived

from standard deviation of asset returns. [14]
7Flash Crash (May 6th, 2010) - U.S. stock market crash characterized by rapid decline and further

recovery of security prices within small time interval
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Fundamental and technical analysis are traditional approaches for financial data analysis.
The first one is based on investigation of company’s characteristics, financial statements (e.g.
assets, earnings, liabilities, etc.), factors that may affect its activity, history of its business
performance in order to improve decision making, estimate risks and company value, etc.
Aim of technical analysis is to predict price movements through examination of historical
data and advise future actions for stakeholders. It relies on statistical properties of the data,
technical indicators, analysis of chart patterns, etc.

2.3 Machine learning and data analysis

Machine learning is a subfield of artificial intelligence that supplies computers (machines)
with capacity to learn from training sets of information and then performing on new data
sets. It has numerous applications within the scope of data analysis, pattern and image
recognition and classification.

Historical reference

Technological progress and new techniques of artificial intelligence make learning process
faster and more efficient. Machine learning is practiced in everyday objectives and goals.

It emerged in the middle of the 20th century but began to prosper only around 1990s.
It is still evolving and provides more and more techniques that may be applied in various
fields of life.

2.3.1 Methods and algorithms

Artificial Neural Networks (ANNs)

Artificial neural networks are digital imitations of biological nervous system. This concept
resembles the way human brain treats and processes information.

The architecture of NNs includes input, output and one or more hidden layers. Every
layer is represented by several neurons (or nodes) that are linked to the neurons from preced-
ing layers. Each link has a particular weight associated with it. All neurons have activation
(or transfer) functions that define the output of every node for every layer by mapping the
weighted inputs. Activation functions presented below are commonly applied, especially in
feed-forward neural networks:

1. Logistic

f(x) =
1

1 + exp−ax
,

where a is a slope parameter

2. Hyperbolic tangent

f(x) = tanh(x)

5



Due to the nature of digital representation of ANNs (usually represented as matrices of
arbitrary sizes) it is possible to use parallel programming techniques to speed up the training
and classification processes. This is commonly achieved by using multithreading techniques
and technologies such as CUDA.

There is more information about artificial neural networks in chapter 3 Literature review.
Multilayer perceptron (MLP) is an example of a feed-forward neural network (figure8

2.1).
Its training procedure involves weights adjustment so the correct prediction can be made.

Backpropagation is the most popular technique and is further described. Each processing
element of the network is ”punished” for mismatches which is implemented via backward
propagation of the transfer function gradient through all the hidden layers to the very first.

All weights are updated to reduce cost function9 value. Mean squared error between
predicted and true outputs of the network is often chosen as a cost function.

(a) Two-layer perceptron (one hidden) (b) Three-layer perceptron (two hidden)

Figure 2.1: Multilayer perceptron architecture

In backpropagation, the cost function is usually minimized using the gradient descent
technique. It is based on following the direction along the negative gradient of the cost
function at current point. However, there are some drawbacks:

1. Local minima of the cost function may be mistakenly taken for a desired global mini-
mum and thus result in incorrect performance of the MLP

2. The computations involved require significant time expenses and may negatively affect
convergence speed of the MLP

Performance quality of the MLP is also dependent on its internal architecture. Partic-
ular amounts of nodes and layers, type of activation functions and their parameters may
significantly affect how well the MLP solves the given problem.

8Source: [80]
9Cost function - is a measure that specifies how distant current and optimal solutions are from each other.
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On the other side, the multilayer perceptron is able to recognize nonlinear models and is
capable of on-line (in real time) learning.

Support Vector Machines (SVM)

Support vector machines is an algorithm that searches for a hyperplane (or a set of those)
that provides the largest margin10 and separates the classes. A hyperplane with the largest
margin is known as the optimal separating hyperplane (OSH) [29,37].

In order to describe how the algorithm works, linearly separable two-class problem (fig-
ure11 2.2) is presented below. [80]

Let xi, i = 1, 2, . . . , N denote training feature vectors, which belong to either class w1 or
class w2. The goal so far is to construct the following hyperplane

g(x) = wx + b = 0, (2.1)

where x is a column feature vector, w is a weight vector (is responsible for the hyperplane
direction) and b is a threshold (specifies the exact position of the hyperplane in given space).
Distance from the origin to the hyperplane (along the normal vector w) is defined by b

||w|| .

Figure 2.2: Support vector machines: linearly separable two-class problem

10Margin - a distance from a hyperplane to the closest training data point of a class. [29]
11Source: http://mropengate.blogspot.no/2015/03/support-vector-machines-svm.html
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Vectors that directly lie on one of the hyperplanes

wx + b = ±1 (2.2)

are the closest to the decision hyperplane and are called support vectors (displayed as red
on the figure 2.2).

In order to guarantee the absence of the points inside the margin, that is 2
||w|| by definition,

the following must be true
wx + b ≥ 1, ∀x ∈ w1

wx + b ≤ −1, ∀x ∈ w2
(2.3)

The goal may now be posed as a nonlinear (quadratic) optimization problem

min J(w, b) =
||w||2

2
(2.4)

with linear inequality constraints derived from 2.3

yi(wxi + b) ≥ 1, i = 1, 2, . . . , N, (2.5)

where yi = 1, ∀xi ∈ w1 and yi = −1, ∀xi ∈ w2.
The solution of this problem is a weighted average of the training points [81]

w =
N∑
i=1

λiyixi (2.6)

subject to
N∑
i=1

λiyi = 0, (2.7)

where λi are the Lagrange multipliers of optimization problem formulated above.
The nonlinear problem requires the following hyperplane [68]

g(x) = wϕ(x) + b = 0, (2.8)

where ϕ(x) is a kernel function that maps the original feature vector to a higher dimensional
space, where the desired hyperplane may exist. This is also known as the ”kernel trick”.
The most commonly used kernels are [1]:

1. Linear K(xi,xj) = (xi · xj)

2. Polynomial K(xi,xj) = ((xi · xj) + r)d

3. Radial basis function K(xi,xj) = exp(−γ||xi − xj||2)

4. Sigmoid K(xi,xj) = tanh(γ(xi · xj) + r),

8



where (xi · xj) denotes dot product of vectors xi and xj, ||xi − xj||2 is a squared Euclidean
distance and parameter γ > 0.

Support vector machines have some advantageous properties [29,80,81] such as

1. Uniqueness of decision hyperplane, though same property for the Lagrange multipliers
is not quaranteed

2. Resistance to the overfitting12 problem

3. No local minima

4. Support of kernel trick - ensures cheaper computations of dot products in a feature
space and improves SVM performance in spaces with higher dimensionality

On the other side, several drawbacks are present in the algorithm such as high com-
putational and memory expenses, undefined selection procedure of kernel function and its
parameters. Improper choice of kernel parameters may cause overfitting. [68, 80]

Support vector machines is also discussed in chapter 3 Literature review.

Support Vector Regression (SVR)

Support vector regression is a modification of the SVM suggested to deal with regression
tasks. The difference between support vector classifier and regressor is in the decision func-
tion, which is binary in the first case and returns real values in the second, which allows to
solve prediction problems.

The optimization problem for the nonlinear case of SVR is formulated as described below
[73,80,85]:

min J(w, b, ε) =
||w||2

2
+ C

N∑
i=1

εi (2.9)

with the inequality constraints

yi − (w · xi)− b ≤ ε

(w · xi) + b− yi ≤ ε,
(2.10)

where xi is a training sample, yi is a class indicator, N is amount of data samples, dot product
(w ·xi)+ b defines prediction for particular sample xi, tube parameter ε is a threshold whose
range contains true predictions, ε ≥ 0; C is a penalty parameter which is paid if data samples
lie outside the tube, C ≥ 0.

12Overfitting - adaptation of the algorithm to particularities of the training data; results in low general-
ization performance on a new data set. [80]
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k Nearest Neighbours (kNN) Regression

The k nearest neighbours is a nonparametric method that has applications both in clas-
sification and regression problems.

Prediction is based on the true (target) outputs of k closest neighbours of particular
training data point. Neighbourhood is determined by Euclidean distance between the given
point and the rest of the points within the training set. The prediction is an average value
of the k outputs with the smallest distances to the certain point and is shown below

ŷi =
1

k

k∑
n=1

yn(i), (2.11)

where ŷi is the predicted output for the training data point xi; yn(i) is the true output of nth
nearest neighbour and k is the amount of neighbours.

Parameter k can be defined heuristically or via cross-validation technique (for more in-
formation see section 5.2 Performance criteria).

Generally, greater k implies smoother fit and smaller variance, but results in higher bias.
The inverse logic is true for small k. [7, 74]

kNN is capable of solving multi-output tasks. [4]

Decision Tree (DT) Regression

Decision tree is another nonparametric method applied for regression tasks. It implements
a hierarchical tree structure for constructing a model for prediction of a target variable ”by
learning simple decision rules inferred from the data features” [2].

Basic components are listed and described below:

1. Non-leaf nodes - depict tests on features

2. Branches – represent values for tested features

3. Leaf nodes (leaves) – hold predicted outcome value

The tree is constructed based on the training set. The topmost node is the root node.
Variable that leads to the greatest drop of the MSE13 is chosen with its split threshold.
Splitting procedure is continuously repeated until the MSE reaches the specified threshold. [7]

Deeper trees have more sophisticated decision rules but provide better model fitness. [7]
Some of the advantages of decision trees are stated below [2]:

1. Only little data preprocessing is required

2. Logarithmic prediction cost (in the amount of used data points)

3. The ability to solve multi-output problems

13MSE – mean squared error (for more information see section 5.2 Performance criteria).
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4. The ability to perform on both categorical and numerical data

On the other side, DT may produce biased trees, if there are dominating classes in the data
set, and suffer from overfitting.

2.3.2 Summary

This chapter introduced the reader to the concept of high frequency trading, its strate-
gies and potential effects on market. Importance of financial data analysis was discussed
alongside with the methods commonly applied for this purpose. Special attention was paid
to machine learning techniques such as artificial neural networks, support vector machines
and regression, decision trees and k nearest neighbour regressions. The principles behind
those techniques, their advantages and drawbacks were discussed in details.
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Chapter 3

Literature review

3.1 Literature sources and search criteria

The following digital libraries have been used as sources of information: Google Scholar1,
ACM2 (Association for Computing Machinery), IEEE3 (Institute of Electrical and Electron-
ics Engineers) Xplore, ScienceDirect4, SSRN5 (Social Science Research Network).

Several criteria were applied in order to find the most relevant articles and scientific
papers. Only papers written in English were considered. Furthermore, only the articles
published since 2000 were chosen.

3.2 Search methods and results

Primarily, all the sources were searched for articles that match the keywords and search
criteria mentioned above. The number of ”Found” papers stands for the quantity of articles
that satisfied these conditions. Then, the papers were sorted depending on their relevance
to the scope of this research. This number is denoted as ”Relevant”.

It should be mentioned that some articles can be found within several digital libraries at
once.

Results of the search are presented in the Table 3.1 below.
Some articles are not dedicated to analysis of financial data but to analysis of other

information, such as medical records [11, 21], information about water discharges [51], elec-
tricity prices and level of consumption/demand [25,47,60], amount of incoming requests to a
particular server, sales analysis [8] and so on. Some of these articles were not removed from
bibliography because they also describe relevant algorithms and methods for working with
time-series.

1https://scholar.google.com
2http://dl.acm.org
3http://ieeexplore.ieee.org
4http://www.sciencedirect.com
5http://papers.ssrn.com
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Keywords Source Found Relevant

financial + data + analysis
Google Scholar 28 1

ACM 37 4
IEEE 6 0

high + frequency +
+ financial + data

Google Scholar 62 6
ACM 12 1
IEEE 2 0

high + frequency + trading
Google Scholar 38 16

ACM 3 2
IEEE 2 1

machine + learning +
+ financial + time + series

Google Scholar 186 24
ACM 43 0
IEEE 36 3

ScienceDirect 6 2
SSRN 1 1

Google Scholar 27 6
machine + learning + ACM 35 0

+ time + series + forecasting IEEE 19 2
ScienceDirect 58 7

patterns + time + series

Google Scholar 14 2
ACM 27 6
IEEE 5 1

ScienceDirect 18 4

time + series + prediction
Google Scholar 1 0

ACM 36 12
IEEE 4 1

Total 706 102

Table 3.1: Literature search results

3.3 Related work

The following subsections present the findings about the fields relevant to time series
analysis with focus on financial data analysis and machine learning.

3.3.1 High-frequency trading (HFT)

Great interest to the high frequency trading appeared after the Flash Crash in May,
2010, when a sharp drop in security prices took place within very short interval of time.
The mention of this significant for the financial world event is usually present in most of the
papers that provide theoretical background of electronic and high frequency trading. Some
researches are dedicated to examination of the Flash Crash itself [31,33], its prerequisite and
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causes [34], and consequences for market [42]. These studies provoke relevant investigations
on whether it is appropriate to use such trading strategies. This issue is discussed by Gomber
et al. [34] who propose HFT supervision in order to reach trustful and healthy market
environment.

A number of articles analyze the impact of high frequency trading on market quality
which involves such concepts as liquidity, volatility and price development [13,17,18,34,66].

The topic remains extremely relevant up to the present day because the absolute majority
of modern traders employ various electronic trading strategies including HFT.

3.3.2 Financial data analysis

Historical reference

The financial market is a complex system. When computers became capable of recording
and storing tremendous amounts of data, the idea of its analysis appeared. Patterns and
regularities that may possibly hide within data, may provide particular profit for market
participants such as traders and investors, positively affect precision of investment deci-
sions [44]. Nowadays a lot of effort is put into researches that are dedicated to prediction or
estimation of price direction and turning points [29,37,39,45,89], motifs and patterns detec-
tion [59,62,63,75], volatility measuring, forecasting [15,55,56] and modeling [83], bankruptcy
disclosure, presence of anomalies in market behavior, etc.

Financial data may have various formats and origins depending on the financial asset
under consideration and the organization which assembles the data.

Thus, the methods of analysis may also vary depending on the subject data and the aims
of research.

Methods of analysis

Financial market analysis splits into two totally opposite paradigms: technical and fun-
damental.

Fundamental analysis examines economic factors (e.g. inflation, fluctuations in currency
exchange rate, economic growth/recession, etc. [29,54]) that impact the market “in order to
determine the intrinsic value of the market” [38].

It should be mentioned that no detailed information was detected concerning fundamental
analysis or its techniques in the scientific paper that were denoted as relevant to the current
research work.

The goal of technical analysis is to predict possible market behavior, such as price di-
rection, in the future (short or long term) based on past-periods price values and trading
volumes.

Technical analysis employs statistical and mathematical tools called technical indicators.
The latter include: on-balance volume (OBV), average directional index (ADX), Aroon
indicator, moving average convergence divergence (MACD), relative strength index (RSI),
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stochastic oscillator and much more. These indices are sometimes used as inputs to Support
Vector Machines [23,43,53].

Both technical and fundamental analysis conflict with Efficient Market Hypothesis (EMH)
which states that market behavior is random and cannot be predicted. For more details about
the EMH see chapter 2 Theoretical framework.

3.3.3 Machine learning

Machine learning offers a vast amount of approaches in solving data classification, pattern
recognition and forecasting problems. The following algorithms have been tested on time
series data during the past 15 years.

Artificial neural networks (ANNs or NNs) are usually referred to as the most
applicable machine learning techniques for time series prediction.

Several research projects point to the fact that quality of ANNs performance depends on

1. Network structure [84,90]

(a) Number of hidden layers [27, 39,70]

(b) Connections between input and output layers (feedback, feedforward or direct)
[27]

(c) Quality, quantity and accuracy of parameters estimation (learning rate, weights,
activation function, etc.) [39, 70,89,90]

2. Quality of input data [7, 84,87,90]

(a) Data preprocessing (normalization, log transformation, removing outliers, trends
and seasonality if any of these take place)

(b) Size of data set [89]

3. Input variables [39,44,84,90]

Each method has its strong sides and shortcomings which affect the researcher’s decision
whether or not to use the particular approach.

According to Tay and Cao [20,77–79] no prior assumptions about the data are required in
order for the ANNs to be universal function approximators. Also the model misspecification
problem affects ANNs to a smaller degree.

Neural networks are reported to be tolerant to data errors [90].
However, ANNs also possess a number of meaningful disadvantages such as

1. Existence of local minima [25,26,70,89]. There is a chance that network’s training algo-
rithm may reach local minima instead of global. There may also be various possibilities
of local minima that will imply different results even for the same set of parameters.

2. Low learning rate precision [70, 90]. There is no deterministic technique to define
parameters of the network that will provide the best performance.
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3. Overfitting [39,70,78].

4. Computational cost [25, 26, 70]. Learning algorithms based on the gradient descent
method (e.g. back propagation) may cause slow convergence during the network train-
ing.

5. Potentially poorer performance due to noise in the data [7, 20, 39, 40, 77–79], highly
multidimensional data and data in large amounts [7, 39,40].

Yu et al. [89] calls the neural networks “unstable learning methods” because even little
variations in the training set and/or parameters may result in significant alterations in
prediction accuracy.

Neural networks are currently represented in research papers in many various forms. In
some cases they are still used in their pure original form proposed by Rosenblatt [67] and
depending on the target problem yield good results. Modified and hybrid variations are used
for more complicated tasks. The goal is generally to solve the existing classification problem
and reach the best possible performance.

The short overview of artificial neural networks variations for time series forecasting that
were recently tested, compared or discussed by researches is presented further (for more
information on the methods see chapter 2 Theoretical framework) [87,90]:

1. Multilayer perceptron (MLP) [7, 87] (for more information see chapter 2 Theoretical
framework).

2. Recurrent Neural Network (RNN) overcomes performance of back propagation algo-
rithms due to internal memory that identifies temporal dependencies in the data [45].
Unique solution is not guaranteed as initial weights are randomly set [82].

3. Radial basis function (RBF) networks [7, 20]

4. Bayesian NN [7,87]

5. Neuron-fuzzy networks [48]

6. Generalized Regression Neural Network (GRNN) [7]

7. kNN (k Nearest Neighbor) regression [7, 74]

8. Regression tree [7]

9. Extreme Learning Machine (ELM) [70] surpasses issues induced by methods based on
gradient descent [25,70], produces high forecasting precision [70] and requires less time
for training than networks with back propagation [25,36].

Some of the methods listed above are also progenitors to further modified hybrid tech-
niques.
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Support Vector Machines (SVMs) are often compared with neural networks and
usually surpass them in some ways. SVMs also display overfitting problem but due to
Structural Risk Minimization6 (SRM) principle [12, 23, 37, 39, 51, 79] show more resistance
than ANNs who implement Empirical Risk Minimization7 (ERM) [20, 39]. Another issue
that SVMs share with NNs is estimation of parameters [20,51,68].

Unlike algorithms trained by back propagation, SVMs are more efficient in terms of speed
[78]. However, large amounts of data may require additional time for training procedure [82].

SVMs possess the following positive properties:

1. Guaranty of unique solution [20]

2. Good generalization performance [12,19,20,35,37] even in complex cases [82]

3. Curse of dimensionality is excelled [35]

In order to improve prediction accuracy and eliminate some of the existing shortcomings
SVMs undergo certain changes.

Support Vector Regression (SVR) was proposed to deal with regression problems [7, 53,
68,88]. For more details about SVR see chapter 2 Theoretical framework.

For non-stationary time series Dynamic SVM [19] and C-ascending SVM [77] were pro-
posed. Both employ less support vectors than the regular SVM and acquire increased gen-
eralization performance. Adaptive SVM was proven to possess the same properties [20] in
order to handle alterations in structure of financial data.

Nonlinearity of financial data inspired researchers for the Wavelet Kernel SVM [35]. Ex-
perimental outcomes display improvements regarding forecasting precision and generalization
performance.

3.3.4 Other techniques for time series analysis

Artificial intelligence approach offers other techniques for data analysis. The following
methods are also gaining popularity in analysis of financial time series

1. Genetic Algorithm (GA) [29,40,45]

2. Self-organizing Maps (SOM) [79]

3. Fuzzy Inference System (FIS) [47]

4. ANFIS (Adaptive Network-based FIS) [47,48]

Before machine learning became popular, the following statistical methods for time series
modelling and analysis were in use (the list also includes combined forms):

1. Auto Regressive Moving Average (ARMA) [47,49,90]

6Principle that focuses on minimizing the generalization error upper bound
7Principle that attempts to minimize the amount of missclassification-related errors
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2. Auto Regressive Integrated Moving Average (ARIMA or Box-Jenkins ARMA) [27,32,
70,82,89–91]

3. SARIMA (Seasonal ARIMA) [70]

4. Generalized Auto Regressive Conditional Heteroskedastic (GARCH) [47]

5. Random Walk (RW) [37]

6. Lest Squares Estimation (LSE or LS) [47]

Several researchers indicate that combination of methods from different research fields
may improve total performance and precision and may work better for particular problems
[10,27,76,79,87,89,91]. The following hybrid approaches were proposed and tested

1. SARIMA + SVR [70]

2. ICA (Independent Component Analysis) + SVR [53]

3. SOM + SVM [79]

4. ARIMA + ANN [91]

5. SARIMA + ANN [70]

6. FIS + LSE [47]

7. SOM + SVM [79]

8. LS + SVM [12,74,83,86]

9. ARMA + GRNN (Generalized RNN) [49]

For more information about methods and techniques mentioned in this subsection see
chapter 2 Theoretical framework.

3.4 State of the Art

This section aims to represent the most recent (within past 5 years) news about researches
and achievements in the field of machine learning techniques for financial data analysis and
prediction.

Over the years Internet and mobile technologies were gaining popularity and are now a
significant part of modern people’s lives. Taking that into consideration, researchers proposed
forecasting market behavior based on queries in search engines (e.g. Google) [30,58,64] and
digital libraries (e.g. Wikipedia) [58]. Other studies are dedicated to sentiment analysis that
involves investigation of news [50, 72], posts in social networks and blogs (e.g. Facebook,
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Twitter) [9, 16, 24, 65, 69, 71, 92]. The majority of researchers agree that the connection
between Internet activity and stock market is present.

The development of computing capabilities further enables studies of applying parallel
programming on Graphics Processing Units (GPU) for financial market analysis that results
in better performance with decreased computation cost and are energy efficient [22,46,61].

3.5 Discussion

Despite the fact that there is a significant amount of guidelines for working with differ-
ent data formats in context of machine learning, designing a successful analysis/prediction
technique appears to be heuristic to a large degree and involves a lot of experimentation.
Optimal parameters for given machine learning approach are often obtained through a series
of tests.

It might be possible to draw inspiration from other fields where machine learning has been
applied with a great degree of success while designing new hybrid approaches for financial
data analysis (e.g. image processing, voice recognition).

It should be mentioned that some factors (political, social, environmental, etc.) that
affect market prices are not taken into consideration in many of the reviewed papers.

3.6 Conclusion

Conducting a quantified comprehensive comparison and distinguishing the best approach
for financial time series analysis is a rather complicated task due to a vast variety of input
data, different error estimation methods and problems being solved across different research
projects. However, artificial neural networks proved to be the most prevailing technique in
the prediction of the market behaviour.

Many factors may influence the results of prognosis. Some of them are linked to quality
and structure of input data. In case of financial market even small imprecision in forecast is
crucial and may result in significant financial losses. Thus, the phase of data preprocessing
should not be ignored.

Numerous tests display that modified methods are sometimes more efficient and precise.
Specific problems may require more complex methods such as designing hybrid algorithms.

Computing capabilities are evolving with great speed inspiring to produce more accurate
and robust techniques for data preprocessing and its further analysis.

It should be noted that traditional methods of time series analysis are still in use. In
time they were modified and coupled with machine learning techniques which resulted in
improvement of prediction quality.

Artificial intelligence techniques were also evolving and developing new features within
the last 15 years.
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3.7 Summary

This chapter presented an overview of accomplishments in the scope of machine learning
and artificial intelligence approaches applied for data analysis, in particular for financial
time series. A quantified literature search has been conducted in order to gain knowledge on
relevant topics.

Existing academic knowledge of high-frequency trading was briefly described. Further,
the concept of financial market analysis was depicted, followed by the description of its main
paradigms. Significant portion of the chapter was dedicated to the overview of the methods
for financial time series prediction that were applied and implemented within the last 15
years. Drawbacks and advantages of the algorithms, results of experiments were discussed
afterwards.
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Chapter 4

Methods and materials

4.1 Tools

Programming language Python1 (v.3.4.4) is chosen as a programming language due to
its simplicity, multifunctionality and applicability for artificial intelligence related task.

Integrated development environment (IDE) The choice of IDE2 falls on Eclipse3

(v.23.0.2). It is extended with PyDev4 (v.4.4.0) and Anaconda5 (v.2.3.0, 64-bit) modules
designed especially for Python language.

Machine learning and supporting libraries Python is extended with the list of scien-
tific libraries (all of them as a part of the Anaconda scientific package) described below:

1. NumPy6 (v.1.10.4) - scientific multidimensional (e.g. arrays, matrices) computations
and high-level mathematical functions

2. SciPy7 (v.0.17.0) - technical and scientific computations

3. Scikit-learn8 (v.0.17.1) - machine learning algorithms implementations, support of data
analysis

4. Matplotlib9 (v.1.5.1) - 2D plotting

1https://www.python.org/
2Integrated development environment (IDE) – is a software application supplied with a set of instruments

(such as source code editor, graphical debugger, build automation tools) for software development. Main
purpose is to increase programmer’s productivity.

3https://eclipse.org/
4http://www.pydev.org/
5https://www.continuum.io/
6http://www.numpy.org/
7https://www.scipy.org/
8http://scikit-learn.org/stable/
9http://matplotlib.org/
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5. Plotly10 (v.1.9.9) - on-line data visualization and analytics

4.2 Materials

4.2.1 Data description

High frequency financial time series were provided by associate professor Espen Sirnes,
University of Arctic, Tromsø, Norway.

The whole data set covers three-year interval (2006-2008) of trading activity on the Oslo
Stock Exchange (OSE) of three different companies: Birdstep Technology (BIRD), REC
Silicon (REC) and Statoil (STL).

Each year is presented in separate .csv file that contains the following information for
each company and year:

Column 1 Date/time (according to Microsoft Office Excel time convention, zero is 01.01.1900)

Column 2-6 The best ask prices11 (column 2 is the best, column 3 the second best, etc.)

Column 7-11 The best bid prices12 (column 7 is the best, column 8 the second best, etc.)

Column 12-16 Volumes13 corresponding to the best ask prices (column 12 is the best,
column 13 the second best etc.)

Column 17-21 Volumes corresponding to the best ask prices (column 17 is the best, column
18 the second best etc.)

Data within one day interval is presented in figure 4.1

4.2.2 Regressor implementations

The following regressor implementations from Scikit-learn have been used:

1. Decision tree regressor

2. k Nearest neighbours regressor

3. Multilayer perceptron regressor

4. Support vector regressor

10https://plot.ly/
11Best ask price - the lowest price that a seller will accept for a security. [14]
12Best bid price - the highest price that a buyer will pay for a security. [14]
13Volume - the number of traded stocks. [14]
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(a) Ask and bid prices

(b) Ask and bid volumes

Figure 4.1: One day of high frequency data from Bird 2006

4.3 Summary

This chapter presented the description of tools and materials that were used during this
research. The origin of the data was described. One day of high frequency data was depicted.
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Chapter 5

Design of experiment

5.1 Data preparation

All the experiments are held on one-year data for Birdstep Technology (file Bird_2006.csv).
Some experiments are conducted on Bird_2007.csv and Bird_2008.csv. For detailed data
description please see chapter 4 Methods and materials.

5.1.1 Data preprocessing

None of the data preprocessing techniques is applied. This decision is based on the idea
of on-line application of regressors. If a regressor is applied in real time, it is not preferable
and not always possible to preprocess the data due to the time cost which can make great
difference in the scope of high-frequency trading.

Moreover, some preprocessing techniques (e.g. scaling, normalization) require certain
knowledge (e.g. minimum and maximum values) about samples within data set in order
to perform the procedure. Such techniques may not be applied within on-line learning
procedures.

5.1.2 Data extraction

Only the information that will be used in testing is extracted from the original data file:
date, first ask price, first bid price and corresponding volumes for both prices.

The whole data set is split into training and testing subsets in various proportions. The
following proportions are chosen: 0.5/0.5, 0.6/0.4, 0.7/0.3, 0.8/0.2 and 0.9/0.1, where the
left hand digit represents the training set and the other one stands for the testing set.

Since some regressors (MLP and SVR) have more parameters to alter than the other (kNN
and DT) and require much longer time to test all the possible combinations of parameters.
Thus, not all the data proportions are tested for certain regressors.
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5.1.3 Sliding window

The sliding window approach is used in order to evaluate performance of different regres-
sors with respect to various parameter combinations.

The training set construction is based on in-windows win and out-windows wout that can
be described by the following formulas:

win(i) = [si, si+1, ..., si+(k−1)]

wout(i) = [si+k, si+k+1, ..., si+k+(m−1)]
(5.1)

where si is the i-th sample in the set, i ∈ [1, n − k −m]; k is width of in-window win; m is
width of out-window wout; n denotes total amount of samples in the data set.

Windows move iteratively with a single unit step until sample sn−k−m is reached (figure
5.1).

Figure 5.1: Sliding window approach

The initial window pair (200, 60) (corresponds to ≈ 25 min and ≈ 8-10 min in real time
respectively) is chosen arbitrarily. After a series of heuristic experiments, other window pair
sizes are chosen according to yielded results.

The following window size combinations are chosen for further testing: (20, 10), (40, 20),
(60, 60), (60, 200), (200, 60), (200, 200), where each pair is denoted as (win, wout).

Depending on the results, one may conclude if the given data and regressor combination
is more suitable for short- or long-term prediction.

5.1.4 Time performance

A timer is set for each of the regressor to measure its time expenses. Error computations
are not included in the resulting time interval (except for the decision tree case).
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5.2 Performance criteria

Error metrics Performance of the regression models is commonly characterized by metrics
listed below [3]:

1. Mean absolute error

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| (5.2)

2. Mean squared error

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)2 (5.3)

where ŷi is the predicted value for particular data sample xi; yi is the true value for xi; n is
the number of samples.

The metrics listed above usually belong to the interval [0, 1]. E.g. in our case, value 0.6
would mean that predicted value deviates from truth by 60% on average.

The smaller the error – the smaller the difference between the predicted and true output
values and the better the prediction is.

Cross-validation Another way to estimate generalization performance is to apply a cross-
validation technique. One of its variations is the k -fold cross validation.

The original data set must be divided into k equal subsets. One subset is used for testing
and the remaining k − 1 are used for training. The procedure is repeated until each of the
subsets is used for testing only once, that is k times in total. Averaged errors (MAE or
MSE) are used for the regressor’s evaluation.

The common choices are k = 5 and k = 10, but generally k is an arbitrary parameter. [57]

Computation time Time expenses are computed and recorded for every experiment.
Time cost is a valuable performance criteria. However in this research it is not of first
importance as opposed to prediction accuracy.

5.3 Details of testing procedure

5.3.1 Parameters to alter

The following parameters are altered across a series of experiments:

1. Data set proportion (defined in subsection 5.1.2)

2. Window size (defined in subsection 5.1.3)

3. Regressor parameters
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(a) DT

i. Tree depth

(b) kNN

i. Number of neighbours

ii. Weight function applied in prediction

A. Uniform - all points are considered equally weighted

B. Distance - point is weighted by inverse of its distance (points that are
closer to the query one, have greater impact)

(c) MLP

i. Number of hidden layers

ii. Number of nodes on each of the hidden layers

iii. Activation function for hidden layers

A. Logistic: f(x) = 1
1+exp−ax

B. Hyperbolic tangent (tanh): f(x) = tanh(x)

C. Rectified linear unit function (relu): f(x) = max(0, x)

iv. Weight optimization algorithm

A. Stochastic gradient descent1 (sgd)

B. Adaptive moment estimation 2 (adam)

v. Learning rate for weights updating

(d) SVR

i. Kernel

A. Linear

B. Polynomial (poly)

C. Radial basis function (rbf)

D. Sigmoid

ii. Tube parameter ε (epsilon)

iii. Penalty parameter C

5.3.2 Testing procedure overview

Testing procedure may be described by the following stages:

1. Initial heuristic testing of different combinations of window size pairs and parameter
values on a particular data set proportion in order to narrow down the interval of
parameter values for further testing

1Stochastic gradient descent is a stochastic optimization of gradient descent method, see subsection 3.3.3
for more information

2Adam - a stochastic gradient-based optimization algorithm, ”based on adaptive estimates of lower-order
moments” [41]
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2. Structured testing is conducted using the narrowed selection of parameter values for
all selected data proportions and window pair sizes

3. Find combination of data set proportion and regressor parameter values that yield the
smallest errors for each window (see 5.2 for more information about error metrics)

4. Apply cross-validation for those combinations to evaluate performance of the regressor

5.3.3 Testing procedure specifications

The following list describes specifics of the testing procedure:

1. Only the parameters listed in subsection 5.3.1 are varied during all experiments.

2. Window size pairs described in section 5.1 are varied in different combinations with
other parameters specified in subsection 5.3.1.

3. Error values are computed for each experiment and stored in the table.

4. Computation time is recorded and also considered for every experiment. However, time
is not an exclusion criteria for working with a certain data set or regressor. Time cost
for each experiment is stored in the same table as errors.

5. Combination of data set proportion and parameter value which yields the least errors
within each window pair is chosen for further evaluation. More than one option may
be chosen if the difference between their error values is considerably small.

6. Final estimation of the regressor is performed by cross-validation. This technique
does not require data proportion information and is applied to the whole data set for
validation process. Only the combination of window size and parameter is assessed
within cross-validation. Depending on averaged error values the decision about quality
of regressor’s performance is made. (For more information see the corresponding part
of section 5.2.)

5.3.4 Summary

This chapter described operations that were performed on given data in order to use it
for further experimentation with regressors. The sliding window approach was explained and
depicted. Performance criteria that were further used to evaluate performance quality of the
regressor were introduced. Possibilities of regressors’ parameter variations were reported in
details. Stages of testing procedure and its specifications were listed.
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Chapter 6

Implementation

The original data in Bird_2006.csv (see Appendix A) is stored in one cell per one row.
For the sake of convenience, information within each cell is split into separate columns (e.g.
bid price, ask price, bid volume, ask volume, etc.) so data would form a matrix.

The data set with split values is written into a new file with the same name Bird_2006.csv
(see Appendix A) and is used for further manipulations.

6.1 Implementation details

The whole implementation procedure is described below:

1. Selection of the values to work with: date, first ask price, first bid price and corre-
sponding volumes for both prices (implemented in select_column.py, Appendix B).

The values listed above are stored in columns in separate file which is used for further
manipulations (Appendix A).

2. Dividing the original data set into windows win and wout. The window size pairs and the
splitting procedure were described earlier in subsection 5.1.3 Sliding window. Window
generation is implemented in in_means_and_perc_changes.py, Appendix B.

3. Computations of mean values of in-window and out-window are conducted according
to the equations specified in 6.1. Implemented in in_means_and_perc_changes.py

and out_means.py respectively, Appendix B.

w̄in(i) =
1

k

k∑
q=1

sq(i)

w̄out(i) =
1

m

k+m∑
q=k

sq(i),

(6.1)
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where si is the i-th sample in the set; k - width of in-window win; m - width of out-
window wout.

The procedure is held for each window within each column of the data set for each in-
(win) and out- (wout) window.

The computed values for particular pairs (win, wout) are written and stored as a separate
.csv file in the corresponding folder.

The mean values are important as they are used to calculate patterns in the data. It
does not seem possible for the regressor to perform well on raw price values.

The price fluctuation interval is not known beforehand so it is more preferable to work
with relative values such as deviation from mean within the window.

Percent changes between price values are always able to show the exact amount of
changes within prices. It is decided to use percentage approach to denote the patterns.

4. Computation of percent changes between mean value of the in-window w̄in(i) and raw
values sj within that window is performed according to equations specified in 6.2:

X =
sj − w̄in(i)

w̄in(i)

∗ 100% (6.2)

where sj is the j-th sample in the in-window, j ∈ [1, k], w̄in(i) - mean value of the i-th
window from data set, i ∈ [1, n− k −m].

The computed values represent patterns mentioned in the item above and further
denoted as X.

The procedure is held for each in-window win for each column of data set.

5. The target value y is predicted by the regressor. y is a percent change between mean
values of in-window w̄in and mean of out-window w̄out (equation 6.3).

y =
w̄out − w̄in

w̄in

∗ 100% (6.3)

6. A set of pairs of percent changes and targets is split into training and testing sets.
Splitting of the data is implemented in file read_split_data.py (Appendix B).

The training/testing set size proportions were described earlier in subsection 5.1.2 Data
extraction.

7. Feeding training and testing data sets into regressors with different combinations of
parameters, as a result the predicted values are yielded (figure 6.1).

Implementation is represented in implementation.py (Appendix B).

The following Scikit-learn implementations are used:

(a) Regressors (see section 2.3)
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i. sklearn.neural_network.MLPRegressor

ii. sklearn.svm.SVR

iii. sklearn.neighbors.KNeighborsRegressor

iv. sklearn.tree.DecisionTreeRegressor

(b) Error metrics (see section 5.2 Performance criteria)

i. sklearn.metrics.mean_squared_error

ii. sklearn.metrics.mean_absolute_error

Alterations of regressors’ parameters are conducted according to subsection 5.3.1 Pa-
rameters to alter.

8. Error calculation for revealing the best parameters combinations (implementation.py,
Appendix B)

9. Applying cross-validation technique for the sets of parameters that provided best re-
sults (validation on one-year data: cross_validation.py, two-year data:
cross_validation_2_years.py, three-year data: cross_validation_3_years.py,
Appendix B).

The only best option is chosen according to the results of cross-validation.

Figure 6.1: Feeding regressor with the data
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6.1.1 Summary

The details of the test implementation were explained and supported with mathematical
formulas and other relevant details. All steps of the implementation procedure were described
and followed by references to the source code files.
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Chapter 7

Experiment results

7.1 Decision tree regressor

The reference depth value interval is discovered in a series of heuristic experiments on
data proportion 0.7/0.3 with windows (40,20) and (200,60) for a set of tree depth values
d = 3, 5, 10, 100. The results are presented in the table 7.1.

Tree depth d MAE MSE Time expenses t, sec
3 0.674 1.475 0.181
5 0.618 1.221 0.317
10 0.652 1.354 0.528
100 0.764 1.572 1.516

(a) Results for window pair (40, 20)

Tree depth d MAE MSE Time expenses t, sec
3 1.335 4.496 1.579
5 1.233 4.161 2.554
10 1.341 4.71 4.646
100 1.439 4.892 8.784

(b) Results for window pair (200, 60)

Table 7.1: Decision tree regressor. Results of heuristic experiments on data proportion
0.7/0.3

For convenience of comparison, the results are presented on the bar charts (figure 7.1).
According to the test results (table 7.1), deeper trees require more time to operate.

Visual presentation is available for window pairs (40, 20) and (200, 60) (figure 7.2), but the
statement appears to be true for all window pairs.

The tree depth between 3 and 10 yields acceptable error values (table 7.1). Thus, further
tests are held for all windows and data proportions for tree depths within the interval d =
[3, 10].
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(a) Results for window pair (40,20)

(b) Results for window pair (200,60)

Figure 7.1: Decision tree regressor. Results of heuristic experiments on data proportion
0.7/0.3

(a) Results for window pair (40,20) (b) Results for window pair (200,60)

Figure 7.2: Decision tree regressor. Time expenses of heuristic experiments on data propor-
tion 0.7/0.3

In order to reach better precision of the tree depth estimation, it is decided to test the val-
ues of the depths parameter within interval that provided good results: d = 3, 4, 5, 6, 8 and 10.
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The best results within each window pair (win, wout) are depicted in the table 7.2.

Error values for each window pair are visualized in the figure 7.3.

Data proportion Window pair Tree depth MAE MSE Time, sec
0.5/0.5 (20,10) 4 0.342 0.45 0.062
0.9/0.1 (60,60) 4 0.888 1.749 0.597
0.9/0.1 (60,200) 4 1.479 4.142 0.66
0.9/0.1 (200,60) 4 0.906 1.777 2.875
0.9/0.1 (200,200) 4 1.466 4.243 3.256
0.5/0.5 (40,20) 6 0.503 0.904 0.244

Table 7.2: Decision tree regressor. The best results of experiments for each window pair

Figure 7.3: Decision tree regressor. The least error values achieved during experiments for
each window pair

Table 7.2 and figure 7.3 demonstrate that window pairs, where win is insignificantly
greater than wout, provide better results.

See full experiment results in the file DT.xlsx, Appendix C.

Experiments are also performed on other one-year data sets (Bird_2007 and Bird_2008).
Results are mostly identical to those of data set Bird_2006. However, time expenses vary
more often than error values due to different sizes of data sets (Bird_2006 - 98 056 samples,
Bird_2007 - 84 963 samples, Bird_2008 - 39 548 samples).

Only combinations that yields appropriate error values (that is, within interval [0,1]) are
further estimated by k-fold cross-validation. Combinations and corresponding results are
presented in the table 7.3.
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Window pair (win, wout) Tree depth d MAEaver MSEaver

(20,10) 4 0.294 0.317
(40,20) 6 0.425 0.595

(a) Results for k = 5

Window pair (win, wout) Tree depth d MAEaver MSEaver

(20,10) 4 0.292 0.316
(40,20) 6 0.422 0.588

(b) Results for k = 10

Table 7.3: Decision tree regressor. Values of averaged error values for k-fold cross-validation

Since results for k = 5 and k = 10 are insignificantly different (by order of 0.001), the
rest of the regressors are only tested by 10-fold cross-validation.

Since cross-validation shows similar results for different k (for corresponding parameter
combinations), the estimation of the model may be reliable.

The least error values are reached for the tree depth d = 4, thus according to section 5.2
Performance criteria, it is the optimal parameter for decision tree regressor.

An interesting observation can be made based on the results of the k-fold cross-validation:
latest error values (two latest for k = 5, three latest for k = 10) are higher than the others.
The results are depicted on the figure 7.4.

(a) Results for k = 5
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Figure 7.4 (continued)

(b) Results for k = 10

Figure 7.4: Decision tree regressor. Iterative error values of k-fold cross-validation for best
parameter combination - window pair (20, 10), tree depth d = 4

It can be speculated that data samples within those subsets possess valuable patterns
and/or properties of given data set.

Cross-validation is also performed on 2-year and 3-year data files (Bird_2006+Bird_2007

and Bird_2006+Bird_2007+Bird_2008). Larger data sets provides error values smaller by
order of 0.001 and 0.01 for MAE and MSE respectively.

It can be concluded that larger training data sets for tree regressors can improve results
by a small degree. For visual representations see figure 7.5.

(a) Error values for window pair (20, 10)
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Figure 7.5 (continued)

(b) Error values for window pair (40, 20)

Figure 7.5: Decision tree regressor. Results of k -fold cross-validation for the best window
pair, k = 10

For the results of k -fold cross-validation for the best window pair, k = 5 see file
cross_validation_DT (1-3 years).xlsx, Appendix C.

Summary The following observations are made after a series of experiments on decision
tree regressor on available data:

1. Increased tree depth leads to increased execution time (table 7.1 and figure 7.2)

2. Larger window sizes need more time for processing (table 7.1)

3. Tree regressors are more suitable for short-term prediction according to tests conducted
on high-frequency stock data 7.3)

4. Larger training data set may provide minor prediction improvements (7.5)

7.2 Multilayer perceptron regressor

MLP regressor has quite a number of parameters that may be altered in different combi-
nations with each other (subsection 5.3.1). In order to limit the number of possible parameter
combinations, an attempt to discover optimal settings for different data shapes (window sizes
and training/testing data set proportions) is made.

The first series of experiments is conducted for all combinations within parameters listed
below:

1. Data proportions (training/testing): 0.5/0.5, 0.7/0.3 and 0.9/0.1

2. Window size pairs (win, wout): (40, 20) and (200, 60)
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3. Hidden layers structure: (100, )1, (100, 100)2 and (100, 100, 100)3

4. Activation function: logistic

5. Weight optimization algorithm: sgd

6. Learning rate: 0.001

The three latter parameters are also changeable, but remained fixed for this series of
experiment. The goal is to determine the optimal window size pair.

Data proportion Hidden layers structure MAE MSE Time, sec

0.5/0.5
(100,) 0.48 0.805 7.437

(100,100) 0.488 0.842 25.097
(100,100,100) 0.491 0.866 67.147

0.7/0.3
(100,) 0.61 1.196 9.720

(100,100) 0.619 1.272 28.553
(100,100,100) 0.629 1.327 80.931

0.9/0.1
(100,) 0.485 0.602 12.148

(100,100) 0.489 0.609 37.957
(100,100,100) 0.493 0.614 66.079

(a) Results for window pair (40, 20)

Data proportion Hidden layers structure MAE MSE Time, sec

0.5/0.5
(100,) 0.922 2.204 31.038

(100,100) 0.915 2.223 31.777
(100,100,100) 0.923 2.275 38.848

0.7/0.3
(100,) 1.125 3.177 37.421

(100,100) 1.137 3.251 35.447
(100,100,100) 1.16 3.37 52.270

0.9/0.1
(100,) 1.043 2.077 165.485

(100,100) 1.089 2.188 223.827
(100,100,100) 1.145 2.402 269.129

(b) Results for window pair (200, 60)

Table 7.4: Multilayer perceptron regressor. Results for the first series of experiments for fixed
parameters: logistic activation function with sgd weight optimization algorithm, learning rate
0.001

Experiments are conducted on one-year data sets Bird_2006, Bird_2007 and Bird_2008

and yield similar results with only difference in performance time, which resembles behaviour

1One hidden layer with 100 neurons
2Two hidden layers with 100 neurons on each
3Three hidden layers with 100 neurons on each
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of the DT regressor (see section 7.1). Further experiments are conducted on the data set
Bird_2006.

All the test results for the MLP regressor are stored in tables (see file MLP.xlsx, Appendix
C for more information).

According to the test results (table 7.4) the following observations are made:

1. The smallest errors are reached on data set proportions 0.5/0.5 and 0.9/0.1.

2. Increased number of hidden layers leads to higher error values (by order of 0.01) and
time expenses (approximately proportional to number of layers).

3. Increased training set requires more time to operate.

4. Window pair of smaller sizes yields approximately twice better results.

Hence, only small window sizes are used for further manipulations. Choice of data pro-
portions is narrowed down to 0.5/0.5 and 0.9/0.1 (table 7.4).

The impact of the learning rate on performance quality is studied on window pair (40, 20)
with data proportion 0.5/0.5 for all possible combinations of parameters:

1. Hidden layers structure: (100, ), (100, 100) and (100, 100, 100)

2. Activation function: logistic, tanh, relu

3. Weight optimization algorithm: sgd, adam

4. Learning rate: 0.1, 0.001, 0.0001

Smaller rate requires more time for regressor to be trained, while greater rate require less
time. Similar behaviour is observed within all experiments.

Variations of the learning rate affect error values by order of 0.001 and 0.01 (see MLP.xlsx,
Appendix C). It is decided to proceed with the learning rate 0.001, defined as default in
Scikit-learn MLP implementation.

It is observed that greater number of hidden layers in the regressor’s structure results in
greater error values similar to results in table 7.4. Only the structure with one hidden layer
is further studied.

The goal of the next series of experiments is to reveal the best combinations of activation
function and weight optimization algorithm. The results are presented in the table 7.5.

The smallest error values are reached for logistic activation function. It must be noted
though, that sgd optimization algorithm requires more time, but is not always more precise
than adam (table 7.5).
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Activation function Weight optimization algorithm MAE MSE Time, sec

Logistic
sgd 0.48 0.805 7.437

adam 0.479 0.788 2.035

Tanh
sgd 0.488 0.833 5.835

adam 0.497 0.817 3.394

Relu
sgd 0.486 0.77 2.756

adam 0.501 0.795 3.27

(a) Results for data proportion 0.5/0.5

Activation function Weight optimization algorithm MAE MSE Time, sec

Logistic
sgd 0.485 0.602 12.148

adam 0.487 0.613 4.348

Tanh
sgd 0.505 0.641 17.862

adam 0.521 0.670 9.508

Relu
sgd 0.507 0.633 7.297

adam 0.511 0.642 5.157

(b) Results for data proportion 0.9/0.1

Table 7.5: Multilayer perceptron regressor. Results for window pair (40, 20) with fixed
parameters: learning rate 0.001, one hidden layer with 100 nodes: (100, )

Based on the results of the previous experiments, further tests are held for a limited
choice of parameters:

1. Data proportion: 0.5/0.5 and 0.9/0.1

2. Hidden layers structure: one layer

3. Activation function: logistic

4. Weight optimization algorithm: sgd, adam

5. Learning rate: 0.001

Two more window size pairs are studied with all possible combinations of parameters
determined above: (20, 10) and (60, 60).

According to the table 7.6, the best results are reached for window pair (20, 10). Further
experiments are only performed on this pair.

The number of neurons in the hidden layer is varied to see if there is a possibility of
improvement within this particular parameter (table 7.7).

Increasing the number of nodes up to 500 negatively affects the results, but results for 200
nodes are slightly better than those for default 100 nodes. It is also observed that the layers
with more neurons require more time to operate. See table 7.7 for more detailed information
about the experiment results.
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Data proportion Weight optimization algorithm MAE MSE Time, sec

0.5/0.5
sgd 0.331 0.45 6.573

adam 0.324 0.435 1.684

0.9/0.1
sgd 0.322 0.342 10.421

adam 0.322 0.343 2.313

(a) Results for window pair (20, 10)

Data proportion Weight optimization algorithm MAE MSE Time, sec

0.5/0.5
sgd 0.48 0.805 7.437

adam 0.488 0.842 25.097

0.9/0.1
sgd 0.61 1.196 9.720

adam 0.619 1.272 28.553

(b) Results for window pair (40, 20)

Data proportion Weight optimization algorithm MAE MSE Time, sec

0.5/0.5
sgd 0.866 2.126 12.034

adam 0.872 2.14 4.373

0.9/0.1
sgd 0.85 1.578 14.728

adam 0.864 1.598 5.032

(c) Results for window pair (60, 60)

Table 7.6: Multilayer perceptron regressor. Results for different small size windows with
fixed parameters: logistic activation function, learning rate 0.001, one hidden layer with 100
nodes: (100, )

Since changes in error values are insignificant in real world, hidden layer with 100 neurons
may be considered an optimal parameter for particular data set (Bird_2006). Precision of
nodes quantity may be improved via more thorough experiments.
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Optimization algorithm Number of neurons MAE MSE Time, sec

sgd

50 0.331 0.463 4.606
100 0.331 0.45 6.573
200 0.329 0.438 12.203
500 0.342 0.438 26.763

adam

50 0.327 0.443 1.445
100 0.324 0.435 1.684
200 0.32 0.432 2.43
500 0.338 0.426 6.038

(a) Results for data proportion 0.5/0.5

Optimization algorithm Number of neurons MAE MSE Time, sec

sgd

50 0.32 0.342 7.512
100 0.322 0.342 10.421
200 0.319 0.34 16.052
500 0.323 0.341 34.177

adam

50 0.32 0.436 3.049
100 0.322 0.344 2.313
200 0.322 0.344 3.896
500 0.355 0.353 6.951

(b) Results for data proportion 0.9/0.1

Table 7.7: Multilayer perceptron regressor. Results window pair (20, 10) with fixed param-
eters: logistic activation function, learning rate 0.001, one hidden layer
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The following combinations of parameters that yield the best results within all the ex-
periments are further evaluated by k-fold cross-validation:

1. Window pair (20, 10), one hidden layer (100, ), logistic activation function, sgd weight
optimization algorithm, learning rate 0.001

2. Window pair (20, 10), one hidden layer (100, ), logistic activation function, adam weight
optimization algorithm, learning rate 0.001

Optimization algorithm MAE MSE
sgd 0.274 0.311

adam 0.276 0.311

(a) Results for k = 5

Optimization algorithm MAE MSE
sgd 0.273 0.311

adam 0.275 0.31

(b) Results for k = 10

Table 7.8: Multilayer perceptron regressor. Results of k-fold cross validation for the best
paramter combinations: window pair (20, 10), logistic activation function, one hidden layer
(100, ), learning rate 0.001

Cross-validation tests demonstrate better results than the experiments described earlier.
Both sets of parameters that are evaluated, may be considered as optimal for particular data
set. However, time expenses for sgd and adam differ depending on the training/testing data
set proportion and window sizes (tables 7.5, 7.6 and 7.7).

Another observation can be made based on the results of the cross-validation: latest
error values are higher than the others. The results are depicted on the figure 7.6. It can be
speculated that these data subsets are more representative than other.

(a) Results for k = 5
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Figure 7.6 (continued)

(b) Results for k = 10

Figure 7.6: Multilayer perceptron regressor. Iterative error values of k-fold cross-validation
for best parameter combination - window pair (20, 10), one hidden layer (100, ), logistic
activation function, sgd weight optimization algorithm, learning rate 0.001

Cross-validation technique is held for data sets combined of two and three one-year data
sets. According to the results (file cross_validation_MLP (1-3 years).xlsx), larger data
set may improve results for sgd algorithm. But the data set size must be chosen carefully:
error values for three-year data set demonstrates higher error values than those for one-year.
Overfitting may be one of the reasons for such behaviour.

For adam algorithm the best results are reached on the one-year data set.

Summary The following observations are made for the MLP regressor based on a series
of experiments:

1. Wider windows require more time to operate (table 7.4).

2. MLP regressor is more suitable for short-term prediction (tables 7.4 and 7.6).

3. Optimal learning rate with respect to error values and time expenses is 0.001 (file
MLP.xlsx, Appendix C).

4. Larger training data sets require more time for processing, but may show minor pre-
diction quality improvements (tables 7.4 and 7.5).
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5. Greater number of hidden layers does not provide better results and requires more time
to process (table 7.4).

6. Smaller error values are achieved for logistic activation function, however time expenses
are not the lowest (table 7.5, file MLP.xlsx, Appendix C.

7.3 k Nearest neighbour regressor

The first series of experiments is aimed to discover the most suitable window size pairs
and proportion on training data set. Combinations of the following parameters are used
(table 7.9):

1. Data set proportions (training/testing): 0.5/0.5, 0.7/0.3 and 0.9/0.1

2. Window size pairs (win, wout): (40, 20) and (200, 60)

3. Amount of neighbours: 5, 10 and 50

4. Weight functions used for prediction: uniform and distance

Several observations are made based on test results (table 7.9):

1. The best results are achieved for smaller window pair, that is (40, 20), on 0.5 and 0.9
proportions of the training set.

2. Error values that are reached with uniform weight function for all window pairs are
slightly better (by order of 0.001) than those of distance function.

3. Greater number of neighbours results in growth of time expenses (figure 7.8), however
error values are smaller.

It is decided to investigate smaller window sizes (20, 10), (40, 20) and (60, 60) with a
greater number of neighbours (100, 250 and 500) on 0.9 proportion of the training set.

Results for uniform weight function are presented in the table 7.10). Results for distance
weight function are presented in the file kNN.xlsx, Appendix C.

The lowest error values are reached for 50 nearest neighbours. Precision of neighbour
quantity may be obtained via further experiments around 50 neighbours (figure 7.7 and table
7.10).

As observed earlier (table 7.9), increased number of nearest neighbours leads to higher
time expenses for all window size pairs (figure 7.8).

Window pair with the smallest sizes again showed the best results, in terms of both error
values and time cost (table 7.10).
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Data proportion Weight function Number of neighbours MAE MSE Time, sec

0.5/0.5

uniform
5 0.607 1.031 14.664
10 0.584 1.011 17.331
50 0.574 1.088 23.327

distance
5 0.617 1.045 14.058
10 0.598 1.024 17.071
50 0.591 1.093 24.218

0.7/0.3

uniform
5 0.72 1.459 12.978
10 0.712 1.472 14.241
50 0.724 1.633 19.519

distance
5 0.722 1.462 12.437
10 0.715 1.461 13.894
50 0.729 1.622 19.074

0.9/0.1

uniform
5 0.602 0.872 5.144
10 0.578 0.82 6.076
50 0.559 0.758 8.352

distance
5 0.61 0.879 5.612
10 0.591 0.835 6.597
50 0.57 0.775 8.384

(a) Results for window pair (40, 20)

Data proportion Weight function Number of neighbours MAE MSE Time, sec

0.5/0.5

uniform
5 1.282 3.73 131.064
10 1.241 3.547 143.863
50 1.154 3.321 163.642

distance
5 1.282 3.731 114.89
10 1.242 3.549 144.09
50 1.154 3.305 150.5

0.7/0.3

uniform
5 1.516 5.047 80.198
10 1.475 4.857 82.596
50 1.405 4.747 101.002

distance
5 1.516 5.048 97.899
10 1.476 4.858 102.019
50 1.403 4.718 114.258

0.9/0.1

uniform
5 1.18 2.806 45.628
10 1.13 2.591 53.96
50 1.013 2.092 61.483

distance
5 1.180 2.807 53.203
10 1.131 2.596 54.329
50 1.015 2.096 60.769

(b) Results for window pair (200, 60)

Table 7.9: k Nearest neighbour regressor. Results for the first series of experiments
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Window pair Number of neighbours MAE MSE Time, sec

(20, 10)

10 0.394 0.396 1.158
50 0.379 0.405 1.868
100 0.381 0.412 2.293
250 0.39 0.435 3.505
500 0.395 0.455 4.662

(40, 20)

10 0.578 0.82 6.076
50 0.559 0.758 8.352
100 0.56 0.76 8.6
250 0.568 0.783 13.008
500 0.579 0.816 15.296

(60, 60)

10 0.961 1.969 10.646
50 0.895 1.728 16.914
100 0.9 1.755 18.999
250 0.908 1.814 24.938
500 0.91 1.846 25.887

Table 7.10: k Nearest neighbour regressor. Results for the experiments on smaller window
pairs, data proportion 0.9/0.1, uniform weight function

(a) Mean absolute error
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Figure 7.7 (continued)

(b) Mean squared error

Figure 7.7: k Nearest neighbour regressor. Error values for window pair (40, 20), data
proportion 0.9/0.1, uniform weight function

The following parameters may be considered as optimal for particular data set with
respect to high frequency trading: small width for both in- and out- windows (such as
(20, 10), training set consisting of 90% of the whole data set, uniform weight function and
approximately 50 nearest neighbours.

The cross-validation technique is applied to estimate performance of the best combination
of parameters (table 7.11).

(a) Time expenses for window pair (40, 20) (b) Time expenses for window pair (200, 60)

Figure 7.8: k Nearest neighbour regressor. Time expenses for different amount of nearest
neighbours
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Data set MAE MSE
Bird_2006 0.322 0.361

Bird_2006+Bird_2007 0.316 0.334
Bird_2006+Bird_2007+Bird_2008 0.312 0.317

(a) k = 5

Data set MAE MSE
Bird_2006 0.321 0.36

Bird_2006+Bird_2007 0.316 0.332
Bird_2006+Bird_2007+Bird_2008 0.314 0.319

(b) k = 10

Table 7.11: k Nearest neighbour regressor. Results of k-fold cross-validation for single and
combined data sets.

According to cross-validation results (table 7.11), performance of the kNN regressor may
be improved by a small order by increasing the size of training set.

Error values within iterations of cross-validation show similar behaviour as for DT and
MLP regressors: latter values are higher than previous (figure 7.9). It may be suspected that
price patterns which are closer to the end of the year possess valuable information about
data structure.

(a) Results for k = 5
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Figure 7.9 (continued)

(b) Results for k = 10

Figure 7.9: k Nearest neighbour regressor. Iterative error values of k-fold cross-validation
for best parameter combination - window pair (20, 10), 50 neighbours and uniform weight
function

Detailed information about test results is in the file kNN.xslx, Appendix C.

Summary Several important observations about the k-nearest neighbour regressor are
listed below:

1. kNN is more efficient while making predictions on small window sizes. In other words,
it appears to be more suitable for high frequency data analysis (tables 7.9, 7.10).

2. Greater amount of nearest neighbours does not necessarily imply better results, how-
ever require more time for regressor to operate (tables 7.9, 7.10, figures 7.7 and 7.8).

3. Size and composition of the training set are important as may either improve the
performance or cause overfitting (tables 7.9 and 7.11).

7.4 Support vector regression

Computational complexity of SVR is of order n2, where n - total amount of samples in
the data set, and is due to dot products involved in kernel functions. Thus, the regressor
may be efficient in terms of error values, but not time.
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The first series of experiments is conducted to observe behaviour of the regressor on
windows of different sizes - (40, 20) and (200, 60). Because of computational complexity
only data proportion 0.5/0.5 was tested. Default4 values are used for penalty and tube
parameters: C = 1 and ε = 0.1 (see section 5.3.1 for more information).

Experiments are performed on three data sets: Bird_2006, Bird_2007 and Bird_2008

(see Appendix A). The results are nearly identical except for time expenses that can be
explained by different amount of samples within each data set. Results for Bird_2006 are
displayed in the table 7.12.

All the test results are presented in the file SVR.xlsx, Appendix C.

Kernel MAE MSE Time, sec
linear 0.469 0.747 104.091

poly, degree 2 0.982 12.166 50.996
poly, degree 3 0.982 12.166 47.291
poly, degree 4 0.982 12.166 48.657

rbf 0.556 1.246 39.785
sigmoid 0.822 2.004 32.382

(a) Results for window pair (40, 20)

Kernel MAE MSE Time, sec
linear 0.865 2.101 1 145.661

poly, degree 2 4.414 249.029 307.122
poly, degree 3 4.414 249.029 296.486
poly, degree 4 4.414 249.029 307.413

rbf 1.356 5.297 276.542
sigmoid 1.771 8.163 171.909

(b) Results for window pair (200, 60)

Table 7.12: Support vector regression. Results for data proportion 0.5/0.5 with fixed pa-
rameters: C = 1, ε = 0.1

Experiments on smaller window display better results (table 7.12). It is decided to work
with smaller windows, that is (20, 10), (40, 20) and (60, 60).

The least error values are observed for linear kernel, however time expenses are high.
Further experiments are held on both linear and rbf kernels for training set proportions 0.5,
0.7 and 0.9 (table 7.13).

The smallest error values are provided by the linear kernel for the smallest window pair
(20, 10). Between the two options of the training set proportion - 0.5 and 0.9 - the first one
is chosen as it requires less time to operate.

A series of experiments is conducted on the window pair (20, 10) for training set of 0.5
using linear kernel. Parameters C and ε are altered to seek for a possibility of performance
improvement. The following results were obtained:

4Default values are the values suggested in Scikit-learn implementation documentation.
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Kernel Data proportion MAE MSE Time, sec

linear
0.5/0.5 0.323 0.417 33.404
0.7/0.3 0.397 0.597 51.32
0.9/0.1 0.326 0.34 148.9

rbf
0.5/0.5 0.373 0.597 21.024
0.7/0.3 0.463 0.891 33.429
0.9/0.1 0.343 0.351 51.061

(a) Results for window pair (20, 10)

Kernel Data proportion MAE MSE Time, sec

linear
0.5/0.5 0.469 0.747 104.091
0.7/0.3 0.582 1.092 173.886
0.9/0.1 0.484 0.602 450.654

rbf
0.5/0.5 0.556 1.246 39.785
0.7/0.3 0.718 1.925 63.063
0.9/0.1 0.533 0.533 95.64

(b) Results for window pair (40, 20)

Kernel Data proportion MAE MSE Time, sec

linear
0.5/0.5 0.861 2.088 155.672
0.7/0.3 1.084 3.117 282.735
0.9/0.1 0.842 1.558 802.038

rbf
0.5/0.5 0.968 2.845 77.121
0.7/0.3 1.241 4.304 114.503
0.9/0.1 0.904 1.833 167.415

(c) Results for window pair (60, 60)

Table 7.13: Support vector regression. Results for different data proportions with fixed
parameters: C = 1, ε = 0.1

Penalty parameter C Tube parameter ε MAE MSE Time, sec
1 0.1 0.323 0.417 33.404
1 0.01 0.31 0.413 92.752
1 0.001 0.308 0.414 601.378

0.5 0.1 0.323 0.417 21.216

Table 7.14: Support vector regression. Results for the experiments on smaller window pairs,
data proportion 0.9/0.1

The penalty parameter C does not significantly affect performance quality, however re-
duces time expenses.

The tube parameter ε improves regressor’s performance by a small order of 0.01, however
time expenses grows significantly.
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It may be concluded that default parameters of penalty and tube parameters (C = 1 and
ε = 0.1 respectively) are the most suitable for particular data set.

Cross-validation is applied for window pair (20, 10), linear kernel with default parameter
values C = 1 and ε = 0.1 (table 7.15). Only one-year data set is used for cross-validation
because of computational complexity.

Amount of folds MAE MSE
k=5 0.278 0.304
k=10 0.278 0.303

Table 7.15: Support vector regression. Results of k-fold cross-validation for one-year data
set

Error values within iterations of cross-validation show similar behaviour as for DT, MLP
and kNN regressors: latter values are higher than previous (figure 7.10). Presence of valuable
information and price patterns around end of the year may be assumed according to the
results of cross-validation.

(a) Results for k = 5
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Figure 7.10 (continued)

(b) Results for k = 10

Figure 7.10: Support vector regression. Iterative error values of k-fold cross-validation for
best parameter combination - window pair (20, 10), linear kernel, C = 1, ε = 0.1

Summary The following observations are made about support vector regression:

1. SVR predicts better on small window sizes. It appears to be more suitable for high
frequency data analysis (table 7.12).

2. Size and composition of the training set are of great importance as may either improve
the performance or lead to overfitting (table 7.12).

3. The penalty parameter C does not affect the performance quality in terms of error
values but reduces time expenses by several seconds (table 7.14).

4. The tube parameter ε improves the performance in terms of error values by a small
order, however time expenses significantly increases (table 7.14).

5. Polynomial kernels (examined degrees: 2, 3 and 4) produce the highest error values
and are time demanding (table 7.12.

7.5 Comparative analysis

Comparative analysis of four examined regressors is presented in this section. The goal
is to reveal the most suitable regressor for high frequency data analysis.
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Combinations of parameters that yields the best results for each regressor are listed below:

Decision tree: tree depth d = 4

Multilayer perceptron: one hidden layer with 100 neurons (100, ), logistic activation func-
tion, sgd and adam weight optimization algorithms, learning rate µ = 0.001

k Nearest neighbour: uniform weight function, 50 nearest neighbours

Support vector regression: linear kernel, penalty parameter C = 1, tube parameter ε =
0.1

Cross-validation demonstrated that all four regressors may reach better results with al-
ready determined parameters via better choice of the training set. Certain price patterns
captured in the training set invokes performance improvements. Size of the training set also
matters. It may either contain valuable price patterns and develop the performance quality
or imply overfitting and worse results.

The results of k-fold cross validations for the best options within each regressor are
presented in the table below.

Regressor Parameter combination MAE MSE
DT d = 4 0.292 0.316

MLP (100, ), logistic, sgd, µ = 0.001 0.273 0.311
MLP (100, ), logistic, adam, µ = 0.001 0.275 0.31
kNN uniform, 50 neighbours 0.321 0.36
SVR linear, C = 1, ε = 0.1 0.278 0.303

Table 7.16: Results of k-fold cross-validation for all examined regressors, k = 10

All the results in table 7.16 are reached within window pair (20, 10), which is the smallest
of examined.

True and predicted values for all studied regressors are depicted in the figure 7.11. Plot-
ting interval is 500 windows, that is ≈ 5− 8 minutes.
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(a) Decision tree (DT) regressor

(b) Multilayer perceptron (MLP) regressor, sgd weight optimization algorithm

61



Figure 7.11 (continued)

(c) Multilayer perceptron (MLP) regressor, adam weight optimization algorithm

(d) k Nearest neighbour regressor
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Figure 7.11 (continued)

(e) Support vector regression

Figure 7.11: True and predicted values for the examined regressors

As one may observe (table 7.16), the smallest error values are achieved by the MLP
regressor.

Another performance criteria that is evaluated is time expenses. It should be noted that
window pair (20, 10), which yielded the least error values, is aimed for prediction of prices
≈ 0.6− 1 minute in advance.

Not all the regressors may be applied to solve forecasting problem for given time inter-
val. Training of SVR requires notably more time due to computational complexity which
questions its suitability for real time trading applications with on-line learning.

However, if assigned problem allows higher error rate, rbf kernel may be used. Its error
values is higher by order of 0.01, but time expenses are several times smaller.

The rest of the regressors demonstrates adequate time costs.

Time expenses for all four regressors are depicted in the figure 7.12.

All the examined regressors demonstrate reliability around 70%. Time expenses and
implementation complexity may be the key criteria.

Since SVR is already excluded by time criteria, the rest of the regressors are considered
in terms of complexity. DT and kNN have small amount of parameters that may be varied.
On the other side, even precision of order 0.01 may be useful with respect to trading activity
and thus MLP may be a better option.

Most of MLP’s default parameters fit the assigned task very well. Within this research
it was proven (see experiment results in the section 7.2) that default values for learning rate

63



Figure 7.12: Time expenses for the examined regressors on training/testing set proportion
0.5/0.5

µ and structure of hidden layers coincide with the best options (at least for particular data
set and in terms of high frequency data analysis).

Moreover, Scikit-learn implementation documentation [5] suggests to scale down the input
within interval [0,1] for better results. It should be noted that the results were obtained from
raw data, without any preprocessing.

According to results obtained within this research project, MLP regressor appears to be
the most suitable solution for predicting short-term price fluctuations on stock market.

7.6 Summary

Four types of regressors were examined in this chapter: decision tree, multilayer percep-
tron, k nearest neighbour and support vector regression.

The main goal of all the experiments was to define a combination of regressor’s parameters
that yields the smallest error values and time expenses. Scikit-learn offers greater choice of
parameters. Only the principal parameters were examined (see section 5.3.1).

Results of all the experiments were recorded in separate .csv files (see Appendix C)
and thoroughly analysed. This chapter includes results that may be important for choosing
the most fitting regressor for high frequency financial data analysis. Regressor analysis was
based on performance criteria (see subsection 5.2).

MLP regressor demonstrated the best results in short-term prediction with respect to
time expenses and prediction accuracy.
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Chapter 8

Discussion

8.1 Findings from experiments

Results of experiments demonstrated that the best results were obtained for windows
with the smallest width. This suggests short-term forecasting for high frequency financial
data.

Certain regressor parameters imply better results in terms of error values, however re-
quiring more time to operate. It must be decided whether it is more important to have
higher precision of predicted values or lower time expenses. The latter question is of great
importance with respect to high frequency trading.

8.2 Data related issues

Data preprocessing As it was mentioned before, all experiments were held on raw data.
It is a known fact that raw data may contain noise, outliers, anomalies and other forms of
disturbance. Data preprocessing may solve some of these problems.

The choice of the preprocessing technique must take into consideration whether the data
analysis is going to be applied in real time or not. Preprocessing procedures with significant
time expenses may not be the best solution for on-line learning.

Regressor type also matters. Particular regressor may prefer certain preprocessing tech-
nique to another or even a combination of those. However, some approaches require minimal
or no preprocessing in order to function properly.

Choice of the training set The results of cross-validation demonstrated that subsets con-
taining year-end data samples possess either valuable patterns of price movements important
for learning/training or patterns that were not previously observed.

Statistical analysis may be applied to choose the training set that contains the most
representative data samples.

The size of the training data set affects time expenses required for learning: greater
data set requires more time to be processed. If the training set was chosen properly and
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contains the most representative data samples and is small enough, time expenses for learning
procedure will be minimal (for given regressor). This may be beneficial for an on-line learning
application.

8.3 Issues concerning regressors

Parameters Each regressor has its own set of parameters. The only known way to choose
the best parameters for particular problem is via experiments. This is a very time consuming
task, especially if the data set is significantly large.

Such problems as overfitting, existence of local minima, vulnerability to noisy data and
many others (see chapters 2 and 3) are still valid for regressors. More careful/accurate choice
of training set, data preprocessing and regressor parameters may help to avoid some of the
problems but there is still no universal solution.

Not all regressors provide the only solution for particular regression task. Results may
vary every time the regressor is launched.

66



Chapter 9

Conclusions and future work

9.1 Conclusions

The motivation behind the research was to apply machine learning techniques for pre-
diction of high frequency financial time series.

The goal was to experiment with open-source regressor implementations and reveal the
most suitable for given data set.

In this paper, possible solution for price fluctuations prediction was proposed. This ap-
proach was tested on four regressors of different nature: decision tree, multilayer perceptron,
k nearest neighbours and support vector. Experimental sessions revealed combinations of
parameters for regressors that resulted in the best results in terms of predefined performance
criteria for each regressor.

Comparative analysis of examined regressors helped to identify the best regressor with a
set of corresponding parameters. Multilayer perceptron regressor demonstrated good perfor-
mance and was chosen as the best. However, other regressors did not fall back dramatically
and should still be considered as potential candidates.

Experiments and analysis provided valuable information about the most suitable predic-
tion intervals. It was discovered that predictions for short time intervals (that is approxi-
mately 1 minute) provide better results. In other words, short-term forecasting using the
proposed regressors may be more precise.

Variation of parameters during experimentation helped to understand the degree of their
impact on performance of particular regressors. This knowledge can be used in further
researches regarding analysis of high frequency financial data.

9.2 Future work

Data quality As was previously discussed (see chapter 8) introducing data preprocessing
may positively affect the results. However, some regressors (such as MLP) are sensitive to
particular preprocessing techniques.
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Validation techniques Two metrics were applied for regression model validation (mean
squared error and mean absolute error 5.2) but it is an ambiguous question which one reflects
performance quality of regressor the best.

Applying other model estimation techniques may improve overview of particular regressor
and display undiscovered benefits or drawbacks.

Possible directions for future work are further described.

1. It should be mentioned that within this research only historical data was considered as
a source of information. None of the external factors (e.g. political, economical, etc.)
were taken into consideration.

Query analysis, preceding the regression modelling, may collect information about
trends in financial market. This information may be used to assign corresponding
weights to feature vectors that are used as input to the regressor. It may be possible to
achieve better results with more complex composite prediction techniques that consist
of several modules and/or layers instead of one regressor.

2. This research was aimed to predict rate of ask price fluctuations based on ask prices.
The same procedure may be held for bid prices or volumes. This experiment may
display if other patterns (bid price or volumes) can contribute to prediction quality.

3. Using a combination of ask and bid prices to predict (as well as volume data) the price
movement may reveal hidden correlations and provide better results.

4. Only price values were used as the initial data source. Analysis may also be based on
other values such as technical indicators or statistical measures.

5. Some of the examined regressors (such as MLP and kNN) support multiple output.
In other words, more than one item may be predicted at once. It may be possible to
predict values other than ask price movement.

6. Significant amount of scientific papers support the idea of combining approaches. One
of the options is to integrate statistical modelling and machine learning techniques.
Another is to combine several machine learning algorithms. Both approaches may be
tested and evaluated.

7. Preliminary analysis of the data set may be used for choosing proper parameters for
the regressor.

8. Using GPU-accelerated algorithms is a possibility to decrease time expenses for those
regressors that provide good results but have high computational cost (such as SVR).

9. It maybe possible to create a self-trained system that would adjust itself based on
on-line data stream from the stock market.
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Appendix A

List of data files

The following data files were used for experimenting within the research:

1. Bird_2006.csv - raw data

2. Bird_2006.csv - split values

3. Bird_2006.csv - selected columns

4. Bird_2007.csv - raw data

5. Bird_2008.csv - raw data

Data files can be accessed at https://dl.dropboxusercontent.com/u/29418662/thesis_
appendices.zip.
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Appendix B

List of source code files

Files with Python implementations are listed below:

1. split_file.py

2. select_column.py

3. in_means_and_perc_changes.py

4. out_means.py

5. out_perc_changes.py

6. read_split_data.py

7. regressors.py

8. implementation.py

9. cross_validation.py

10. cross_validation_2_files.py

11. cross_validation_3_files.py

The source code is further presented and is also accessible at https://dl.dropboxusercontent.
com/u/29418662/thesis_appendices.zip.
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The source code for split_file.py:

import csv

import os

p = "D:\\thesis_data\\Raw\\"

pOut = "D:\\thesis_data\\Split\\"

files = os.listdir(path=p)

def splitData(filename):

# open file to write split data

with open(pOut + filename, ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvreader = csv.reader(open(p+filename, "rt"))

while True:

row = next(csvreader, 0)

if row != 0:

# split the row and write it down

splitrow = row[0].split(’;’)

csvwriter.writerow(splitrow)

else:

break

for filename in files:

splitData(filename)
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The source code for select_column.py:

import csv

# extracts 5 columns (date, ask, bid, ask volume, bid volume) from split data

file and writes it down in a new file

def select_column(path_in, path_out, files_list, columns):

for i in range(0,len(files_list)):

with open(path_out + files_list[i], ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvreader = csv.reader(open(path_in+files_list[i], "rt"))

while True:

row = next(csvreader, 0)

if row != 0:

importdata = []

importdata_temp = []

for j in range(0,len(columns)):

importdata_temp.append(row[columns[j]])

importdata.extend(importdata_temp)

csvwriter.writerow(importdata)

else:

break

path_in = "D:\\thesis_data\\Split\\"

path_out = "D:\\thesis_data\\Selected 5 columns\\"

files_list = [’Bird_2006.csv’,’Bird_2007.csv’,’Bird_2008.csv’]

columns = [0,1,6,11,16]

select_column(path_in, path_out, files_list, columns)
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The source code for in_means_and_perc_changes.py:

import csv

import numpy as np

# calculates average value

def find_mean(arr):

return np.average(arr, axis=0)

# calculates amount of rows in a file

def rows_amount(filename):

with open(filename) as f:

for i, line in enumerate(f, 1):

pass

return i

# calculates amount of columns in a file

def cols_amount(filename):

with open(filename) as f:

csvreader = csv.reader(open(filename, "rt"))

num_cols = len(next(csvreader, 0))

return num_cols

# calculates change between two values in percent

def percent_change(old,new): # old = average

return np.divide((new - old), old)*100.00

# calculates mean of each window

# calculates percent change between each value of the window and its mean

def means_and_perc_ch(path_in, path_out, files_list, in_wind_width):

# array of rows

data_file = []

for i in range(0,len(files_list)):

total_rows = rows_amount(path_in+files_list[i])

total_cols = cols_amount(path_in+files_list[i])

# reading the file

with open(path_in+files_list[i], "rt") as f:

csvreader = csv.reader(f)

for row in csvreader:

data_file.append(row)

means = [] # contains mean for each window

perc_changes = [] # contains percent changes for each value in window
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# calculate means and percent changes

for i in range(0,total_rows-in_wind_width-1):

# array is one window

array = np.zeros((in_wind_width,total_cols-1))

for j in range(0,in_wind_width):

for k in range(1,total_cols):

# write columns to array

array[j,k-1] = data_file[j+i][k]

means_arr = find_mean(array)

means.append(means_arr)

perc_changes_arr = percent_change(means_arr, array)

perc_changes.append(perc_changes_arr)

# write results to file

for i in range(0,len(files_list)):

# write means

print(’writing file ’ + files_list[i])

with open(path_out + ’mean_’ + ’in_’ + str(in_wind_width) + ’_’ +

files_list[i], ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for j in range(0,len(means)):

csvwriter.writerow(means[j])

print(’done ’ + files_list[i])

# write percent changes

print(’writing file ’ + files_list[i] + ’ 2’)

with open(path_out + ’perc_’ + ’in_’ + str(in_wind_width) + ’_’ +

files_list[i], ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for k in range(0,len(perc_changes)):

for l in range(0,in_wind_width):
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csvwriter.writerow(perc_changes[k][l])

print(’done ’ + files_list[i] + ’ 2’)

path_in = "D:\\thesis_data\\Selected 5 columns\\"

path_out = "D:\\thesis_data\\Means and Percent changes (in)\\"

files_list = [’Bird_2006.csv’,’Bird_2007.csv’,’Bird_2008.csv’]

in_wind_width = 200

means_and_perc_ch(path_in, path_out, files_list, in_wind_width)
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The source code for out_means.py:

import csv

import numpy as np

from in_means_and_perc_changes import rows_amount, cols_amount, find_mean,

percent_change

def means_out(path_in, path_out, files_list, in_wind_width, out_wind_width):

# array of rows

data_file = []

for i in range(0,len(files_list)):

total_rows = rows_amount(path_in+files_list[i])

total_cols = cols_amount(path_in+files_list[i])

# reading the file

with open(path_in+files_list[i], "rt") as f:

csvreader = csv.reader(f)

for row in csvreader:

data_file.append(row)

out_means = [] # contains mean for each out_window

for i in range(0,total_rows-in_wind_width-out_wind_width-1):

out_array = np.zeros((out_wind_width,total_cols-1))

for j in range(0,out_wind_width):

for k in range(1,total_cols):

#write cols to array

out_array[j,k-1] = data_file[j+i+in_wind_width][k]

# finds percent change between original data (in out_window) and its mean

out_means_arr = find_means(out_array)

out_means.append(out_means_arr)

# write results to file

for i in range(0,len(files_list)):

# write means

print(’writing file ’ + files_list[i])

with open(path_out + ’mean_’ + ’in_’ + str(in_wind_width) + ’_’ + ’out_’

+ str(out_wind_width) + ’_’ + files_list[i], ’w’, newline=’’) as

csvfile:
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csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for j in range(0,len(out_means)):

csvwriter.writerow(out_means[j])

print(’done ’ + files_list[i])

path_in = "D:\\thesis_data\\Selected 5 columns\\"

path_out = "D:\\thesis_data\\Means (out)\\"

files_list = [’Bird_2006.csv’,’Bird_2007.csv’,’Bird_2008.csv’]

in_wind_width = 200

out_wind_width = 60

means_out(path_in, path_out, files_list, in_wind_width, out_wind_width)
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The source code for out_perc_changes.py:

import csv

import numpy as np

from in_means_and_perc_changes import rows_amount, cols_amount, find_mean,

percent_change

def perc_ch_out(path_in_1, path_in_2, path_out, files_pairs):

for i in range(0,len(files_pairs)):

total_rows_in = rows_amount(path_in_1+files_pairs[i][0])

total_rows_out = rows_amount(path_in_2+files_pairs[i][1])

means_in = []

means_out = []

out_perc_changes = []

# reading the file means_in, means_out

with open(path_in_1+files_pairs[i][0], "rt") as f:

csvreader = csv.reader(f)

for row in csvreader:

means_in.append(np.asarray(row).astype(np.float))

with open(path_in_2+files_pairs[i][1], "rt") as f:

csvreader = csv.reader(f)

for row in csvreader:

means_out.append(np.asarray(row).astype(np.float))

for j in range(0,total_rows_out):

perc_changes_arr = percent_change(means_in[j], means_out[j])

out_perc_changes.append(perc_changes_arr)

# write results to file

# write perc changes for out window

print(’writing file ’, files_pairs[i])

with open(path_out + ’perc_’ + files_pairs[i][1], ’w’, newline=’’) as

csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)
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for j in range(0,len(out_perc_changes)):

csvwriter.writerow(out_perc_changes[j])

print(’done ’, files_pairs[i])

path_in_1 = "D:\\thesis_data\\Means and Percent changes (in)\\"

path_in_2 = "D:\\thesis_data\\Means (out)\\"

path_out = "D:\\thesis_data\\Percent changes (out)\\"

files_pairs = [[’mean_in_200_Bird_2006.csv’,’mean_in_200_out_60_Bird_2006.csv’],

[’mean_in_200_Bird_2007.csv’,’mean_in_200_out_60_Bird_2007.csv’],

[’mean_in_200_Bird_2008.csv’,’mean_in_200_out_60_Bird_2008.csv’]]

perc_ch_out(path_in_1, path_in_2, path_out, files_pairs)
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The source code for read_split_data.py:

import csv

import numpy as np

def rows_amount(filename):

with open(filename) as f:

for i, line in enumerate(f, 1):

pass

return i

def read_data(pathfile_in, filename_in, pathfile_out, filename_out,

in_wind_width, col_number):

X = []

y = [] # only bid column

# count rows

total_rows = rows_amount(pathfile_in + filename_in)

total_rows_Y = rows_amount(pathfile_out + filename_out)

n_windows = total_rows_Y

X = np.zeros((n_windows, in_wind_width))

with open(pathfile_in+filename_in, "rt") as f:

csvreader = csv.reader(f)

for i in range (0, n_windows):

for j in range (0, in_wind_width):

row_index = i*in_wind_width + j

row = next(csvreader)

# parametrize number of column if needed

X[i,j] = float(row[col_number])

with open(pathfile_out+filename_out, "rt") as f:

csvreader = csv.reader(f)

for row in csvreader:

y.append(float(row[col_number]))

return X, np.asarray(y)

def split_data(X, y, tr_percent):

length_tr = int(np.floor(tr_percent*(X.shape[0])))

X_tr = np.zeros((length_tr,X.shape[1]))

y_tr = np.zeros((length_tr,1))
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for i in range(0,length_tr):

for j in range(0,X.shape[1]):

X_tr[i,j] = X[i][j]

y_tr[i] = y[i]

length_test = int(np.floor((1-tr_percent)*(X.shape[0])))

X_test = np.zeros((length_test,X.shape[1]))

y_test = np.zeros((length_test,1))

for i in range(0,length_test):

for j in range(0,X.shape[1]):

X_test[i,j] = X[i+length_tr][j]

y_test[i] = y[i+length_tr]

y_tr = y_tr.ravel()

y_test = y_test.ravel()

return X_tr, y_tr, X_test, y_test, length_test
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The source code for regressors.py:

from sklearn.neural_network.multilayer_perceptron import MLPRegressor

from sklearn.svm import SVR

from sklearn import neighbors

from sklearn.tree import DecisionTreeRegressor

def MLPRegr(X_tr, y_tr, X_test, hidden_layers, learn_rate, activ_func, algorthm,

n_iter):

regr = MLPRegressor(hidden_layer_sizes=hidden_layers, activation=activ_func,

algorithm=algorthm, learning_rate_init=learn_rate, max_iter=n_iter)

# fit the model

regr.fit(X_tr, y_tr)

# predict

y_pred = regr.predict(X_test)

return y_pred

def SVRegr(X_tr, y_tr, X_test, kernl, eps, Cc):

regr = SVR(kernel=kernl, epsilon=eps, C=Cc)

# fit the model

regr.fit(X_tr, y_tr)

# predict

y_pred = regr.predict(X_test)

return y_pred

def kNNRegr(X_tr, y_tr, X_test, neighhbors, weight_type):

regr = neighbors.KNeighborsRegressor(neighhbors, weights=weight_type)

# fit the model

regr.fit(X_tr, y_tr)

# predict

y_pred = regr.predict(X_test)

return y_pred

def DTRegr(X_tr, y_tr, X_test, depth):

regr = DecisionTreeRegressor(max_depth=depth)

# fit the model

regr.fit(X_tr, y_tr)

# predict

y_pred = regr.predict(X_test)

return y_pred
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The source code for implementation.py:

from read_split_data import read_data, split_data

from regressors import MLPRegr, SVRegr, kNNRegr, DTRegr

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

import csv

import time

import numpy as np

pairs_list = [

["D:\\thesis_data\\Means and Percent changes (in)\\",

"perc_in_20_Bird_2006.csv",

"D:\\thesis_data\\Percent changes (out)\\",

"perc_mean_in_20_out_10_Bird_2006.csv",

20,

0],

["D:\\thesis_data\\Means and Percent changes (in)\\",

"perc_in_20_Bird_2007.csv",

"D:\\thesis_data\\Percent changes (out)\\",

"perc_mean_in_20_out_10_Bird_2007.csv",

20,

0],

["D:\\thesis_data\\Means and Percent changes (in)\\",

"perc_in_20_Bird_2008.csv",

"D:\\thesis_data\\Percent changes (out)\\",

"perc_mean_in_20_out_10_Bird_2008.csv",

20,

0],

]

path_txt = "D:\\thesis_data\\Results\\"

data_proportion = 0.5

# parameters for regressors

MLP_hidden_layers = (500,)

MLP_learn_rate = 0.001

MLP_act_func = ’logistic’

MLP_alg = ’adam’

MLP_iterations = 10000

SVR_kernel = ’linear’

SVR_epsilon = 0.001

SVR_C = 0.5
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kNN_neighhbors = 5

kNN_weights_type = ’uniform’

DT_depth = 4

for pair in pairs_list:

# read data

X, y = read_data(pair[0], pair[1], pair[2], pair[3], pair[4], pair[5])

# split data into training and testing sets

X_tr, y_tr, X_test, y_test, length_test = split_data(X, y, data_proportion)

#1 MLP regressor

start_time = time.perf_counter()

y_pred = MLPRegr(X_tr, y_tr, X_test, MLP_hidden_layers, MLP_learn_rate,

MLP_act_func, MLP_alg, MLP_iterations)

y_test = np.nan_to_num(y_test)

y_pred = np.nan_to_num(y_pred)

end_time = time.perf_counter()

MAE = mean_absolute_error(y_test, y_pred)

MSE = mean_squared_error(y_test, y_pred)

# write down the results

with open(path_txt + ’MLP_res_’ + ’set_’ + str(data_proportion) + ’_’ +

’hidden_’ + str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg +

’_’ + ’rate_’ + str(MLP_learn_rate) + ’_’ + pair[3] , ’w’, newline=’’) as

csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

with open(path_txt + ’MLP_err_’ + ’set_’ + str(data_proportion) + ’_’ +

’hidden_’ + str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg +

’_’ + ’rate_’ + str(MLP_learn_rate) + ’_’ + pair[3] , ’w’, newline=’’) as

csvfile:
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csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’number of hidden layers’, MLP_hidden_layers])

csvwriter.writerow([’learning rate’, MLP_learn_rate])

csvwriter.writerow([’activation function’, MLP_act_func])

csvwriter.writerow([’algorithm’, MLP_alg])

csvwriter.writerow([’execution time (sec)’, end_time-start_time])

print(’done with MLP’)

#2 Support vector regressor

start_time = time.perf_counter()

y_pred = SVRegr(X_tr, y_tr, X_test, SVR_kernel, SVR_epsilon, SVR_C)

end_time = time.perf_counter()

MAE = mean_absolute_error(y_test, y_pred)

MSE = mean_squared_error(y_test, y_pred)

# write down the results

with open(path_txt + ’SVR_res_’ + ’set_’ + str(data_proportion) + ’_’ +

SVR_kernel + ’_eps_’ + str(SVR_epsilon) + ’_C_’ + str(SVR_C) + ’_’ +

pair[3] , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

with open(path_txt + ’SVR_err_’ + ’set_’ + str(data_proportion) + ’_’ +

SVR_kernel + ’_eps_’ + str(SVR_epsilon) + ’_C_’ + str(SVR_C) + ’_’ +

pair[3] , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])
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csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’kernel’, SVR_kernel])

csvwriter.writerow([’epsilon’, SVR_epsilon])

csvwriter.writerow([’C’, SVR_C])

csvwriter.writerow([’execution time (sec)’, end_time-start_time])

print(’done with SVR’)

#3 k-Nearest neighbours regressor

start_time = time.perf_counter()

y_pred = kNNRegr(X_tr, y_tr, X_test, kNN_neighhbors, kNN_weights_type)

end_time = time.perf_counter()

MAE = mean_absolute_error(y_test, y_pred)

MSE = mean_squared_error(y_test, y_pred)

# write down the results

with open(path_txt + ’kNN_res_’ + ’set_’ + str(data_proportion) + ’_neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + pair[3] , ’w’,

newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

with open(path_txt + ’kNN_err_’ + ’set_’ + str(data_proportion) + ’_’ +

’_neigh_’ + str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + pair[3]

, ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’number of neighbors’, kNN_neighhbors])

csvwriter.writerow([’weights’, kNN_weights_type])

csvwriter.writerow([’execution time (sec)’, end_time-start_time])

print(’done with kNN’)
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#4 Decision tree regressor

start_time = time.perf_counter()

y_pred = DTRegr(X_tr, y_tr, X_test, DT_depth)

MAE = mean_absolute_error(y_test, y_pred)

MSE = mean_squared_error(y_test, y_pred)

end_time = time.perf_counter()

# write down the results

with open(path_txt + ’DT_res_’ + ’set_’ + str(data_proportion) + ’_depth_’ +

str(DT_depth) + ’_’ + pair[3] , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

with open(path_txt + ’DT_err_’ + ’set_’ + str(data_proportion) + ’_depth_’ +

str(DT_depth) + ’_’ + pair[3] , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’DT_depth’, DT_depth])

csvwriter.writerow([’execution time (sec)’, end_time-start_time])

print(’done with DT’)

print(’-----------------’)
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The source code for cross_validation.py:

from read_split_data import read_data

from regressors import MLPRegr, SVRegr, kNNRegr, DTRegr

import numpy as np

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

import csv

pairs_list = [

["D:\\thesis_data\\Means and Percent changes (in)\\",

"perc_in_20_Bird_2006.csv",

"D:\\thesis_data\\Percent changes (out)\\",

"perc_mean_in_20_out_10_Bird_2006.csv",

20,

0]

]

path_out = "D:\\thesis_data\\Cross-validation\\"

short_name = "iw_20_ow_10_Bird_2006.csv"

q = 5 # number of subsets for cross-validation

# regressors’ parameters

DT_depth = 6

MLP_hidden_layers = (100,)

MLP_learn_rate = 0.001

MLP_act_func = ’logistic’

MLP_alg = ’sgd’

MLP_iterations = 10000

kNN_neighhbors = 50

kNN_weights_type = ’uniform’

SVR_kernel = ’linear’

SVR_epsilon = 0.1

SVR_C = 1

for pair in pairs_list:

X, y = read_data(pair[0], pair[1], pair[2], pair[3], pair[4], pair[5])

subset_size = X.shape[0]//q

X_arr = []

y_arr = []
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y_pred_arr = []

y_pred_internal_arr = []

MAE = []

MSE = []

MAE_internal = []

MSE_internal = []

# splitting data into q subsets

for i in range(0,q):

X_temp = np.zeros((subset_size,X.shape[1]))

for j in range(0,subset_size):

for k in range(0,X.shape[1]):

X_temp[j,k] = X[i*subset_size+j,k]

X_arr.append(X_temp)

y_temp = np.zeros((subset_size,1)).ravel()

for j in range(0,subset_size):

y_temp[j] = y[i*subset_size+j]

y_arr.append(y_temp)

# regressor

for i in range(0,q):

arr_x_toconcat = []

arr_y_toconcat = []

for j in range(0,q):

if i!=j:

arr_x_toconcat.append(X_arr[j])

arr_y_toconcat.append(y_arr[j])

X_tr = np.concatenate(arr_x_toconcat)

y_tr = np.concatenate(arr_y_toconcat)

X_test = X_arr[i]

y_test = y_arr[i]

#y_pred = DTRegr(X_tr, y_tr, X_test, DT_depth) # on q subset

#y_pred_internal = DTRegr(X_tr, y_tr, X_tr, DT_depth) # on q-1 subsets
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#y_pred = MLPRegr(X_tr, y_tr, X_test, MLP_hidden_layers, MLP_learn_rate,

MLP_act_func, MLP_alg, MLP_iterations) # on q subset

#y_pred_internal = MLPRegr(X_tr, y_tr, X_tr, MLP_hidden_layers,

MLP_learn_rate, MLP_act_func, MLP_alg, MLP_iterations) # on q-1 subsets

#y_pred = kNNRegr(X_tr, y_tr, X_test, kNN_neighhbors, kNN_weights_type)

#y_pred_internal = kNNRegr(X_tr, y_tr, X_tr, kNN_neighhbors,

kNN_weights_type)

y_pred = SVRegr(X_tr, y_tr, X_test, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_internal = SVRegr(X_tr, y_tr, X_tr, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_arr.append(y_pred)

y_pred_internal_arr.append(y_pred_internal)

MAE.append(mean_absolute_error(y_test, y_pred))

MAE_internal.append(mean_absolute_error(y_test,

y_pred_internal[:len(y_test)]))

MSE.append(mean_squared_error(y_test, y_pred))

MSE_internal.append(mean_squared_error(y_test,

y_pred_internal[:len(y_test)]))

with open(path_out + ’SVR_internal_’ + ’q_’ + str(q) + ’_’ + SVR_kernel +

’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_internal_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name , ’w’,

newline=’’) as csvfile:

# with open(path_out + ’MLP_internal_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ +

’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’) as

csvfile:

# with open(path_out + ’DT_internal_’ + ’q_’ + str(q) + ’_’ + ’depth_’ +

str(DT_depth) + ’_’ + short_name , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred_internal[i],y_test[i]])

with open(path_out + ’SVR_single_’ + ’q_’ + str(q) + ’_’ + SVR_kernel + ’_C_’

+ str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name , ’w’,
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newline=’’) as csvfile:

#with open(path_out + ’kNN_single_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name, ’w’,

newline=’’) as csvfile:

#with open(path_out + ’MLP_single_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ +

’rate_’ + str(MLP_learn_rate) + ’_’ + short_name, ’w’, newline=’’) as

csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

mean_MAE = np.mean(MAE)

mean_MAE_internal = np.mean(MAE_internal)

mean_MSE = np.mean(MSE)

mean_MSE_internal = np.mean(MSE_internal)

with open(path_out + ’SVR_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

SVR_kernel + ’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ +

short_name , ’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’neigh_’ + str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ +

short_name , ’w’, newline=’’) as csvfile:

#with open(path_out + ’MLP_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’hidden_’ + str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg +

’_’ + ’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’)

as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’averaged MAE’, mean_MAE])

csvwriter.writerow([’ ’])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’averaged MSE’, mean_MSE])

print(’done’)
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The source code for cross_validation_2_files.py:

from read_split_data import read_data

from regressors import MLPRegr, SVRegr, kNNRegr, DTRegr

import numpy as np

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

import csv

pathfile_in = "D:\\thesis_data\\Means and Percent changes (in)\\"

short_name = "iw_20_ow_10_Bird_2006-2007.csv"

filename_in_1 = "perc_in_20_Bird_2006.csv"

filename_in_2 = "perc_in_20_Bird_2007.csv"

pathfile_out = "D:\\thesis_data\\Percent changes (out)\\"

filename_out_1 = "perc_mean_in_20_out_10_Bird_2006.csv"

filename_out_2 = "perc_mean_in_20_out_10_Bird_2007.csv"

path_out = "D:\\thesis_data\\Cross-validation\\"

in_wind_width = 20

column_number = 0

# regressors parameters

DT_depth = 6

SVR_kernel = ’linear’

SVR_epsilon = 0.1

SVR_C = 1

kNN_neighhbors = 50

kNN_weights_type = ’uniform’

MLP_hidden_layers = (100,)

MLP_learn_rate = 0.001

MLP_act_func = ’logistic’

MLP_alg = ’sgd’

MLP_iterations = 10000

q = 10 # number of subsets for cross validation

# get data from one year data set

X_1, y_1 = read_data(pathfile_in, filename_in_1, pathfile_out, filename_out_1,
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in_wind_width, column_number)

# get data from another year data set

X_2, y_2 = read_data(pathfile_in, filename_in_2, pathfile_out, filename_out_2,

in_wind_width, column_number)

# combine two one-year data sets

X = np.concatenate((X_1, X_2), axis=0)

y = np.concatenate((y_1, y_2), axis=0)

subset_size = X.shape[0]//q

X_arr = []

y_arr = []

y_pred_arr = []

y_pred_internal_arr = []

MAE = []

MSE = []

MAE_internal = []

MSE_internal = []

# splitting data into q subsets

for i in range(0,q):

X_temp = np.zeros((subset_size,X.shape[1]))

for j in range(0,subset_size):

for k in range(0,X.shape[1]):

X_temp[j,k] = X[i*subset_size+j,k]

X_arr.append(X_temp)

y_temp = np.zeros((subset_size,1)).ravel()

for j in range(0,subset_size):

y_temp[j] = y[i*subset_size+j]

y_arr.append(y_temp)

# regressor

for i in range(0,q):

arr_x_toconcat = []

arr_y_toconcat = []
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for j in range(0,q):

if i!=j:

arr_x_toconcat.append(X_arr[j])

arr_y_toconcat.append(y_arr[j])

X_tr = np.concatenate(arr_x_toconcat)

y_tr = np.concatenate(arr_y_toconcat)

X_test = X_arr[i]

y_test = y_arr[i]

#y_pred = DTRegr(X_tr, y_tr, X_test, DT_depth) # on q subset

#y_pred_internal = DTRegr(X_tr, y_tr, X_tr, DT_depth) # on q-1 subsets

#y_pred = MLPRegr(X_tr, y_tr, X_test, MLP_hidden_layers, MLP_learn_rate,

MLP_act_func, MLP_alg, MLP_iterations) # on q subset

#y_pred_internal = MLPRegr(X_tr, y_tr, X_tr, MLP_hidden_layers,

MLP_learn_rate, MLP_act_func, MLP_alg, MLP_iterations) # on q-1 subsets

#y_pred = kNNRegr(X_tr, y_tr, X_test, kNN_neighhbors, kNN_weights_type)

#y_pred_internal = kNNRegr(X_tr, y_tr, X_tr, kNN_neighhbors, kNN_weights_type)

y_pred = SVRegr(X_tr, y_tr, X_test, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_internal = SVRegr(X_tr, y_tr, X_tr, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_arr.append(y_pred)

y_pred_internal_arr.append(y_pred_internal)

MAE.append(mean_absolute_error(y_test, y_pred))

MAE_internal.append(mean_absolute_error(y_test,

y_pred_internal[:len(y_test)]))

MSE.append(mean_squared_error(y_test, y_pred))

MSE_internal.append(mean_squared_error(y_test, y_pred_internal[:len(y_test)]))

with open(path_out + ’SVR_internal_’ + ’q_’ + str(q) + ’_’ + SVR_kernel +

’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name , ’w’,

newline=’’) as csvfile:

#with open(path_out + ’kNN_internal_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name , ’w’,

newline=’’) as csvfile:

#with open(path_out + ’DT_internal_’ + ’q_’ + str(q) + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’MLP_internal_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ +

’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’) as
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csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred_internal[i],y_test[i]])

#with open(path_out + ’DT_single_’ + ’q_’ + str(q) + ’_’ + short_name , ’w’,

newline=’’) as csvfile:

#with open(path_out + ’MLP_single_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ + ’rate_’ +

str(MLP_learn_rate) + ’_’ + short_name, ’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_single_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name, ’w’,

newline=’’) as csvfile:

with open(path_out + ’SVR_single_’ + ’q_’ + str(q) + ’_’ + SVR_kernel + ’_C_’ +

str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name , ’w’, newline=’’)

as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

mean_MAE = np.mean(MAE)

mean_MAE_internal = np.mean(MAE_internal)

mean_MSE = np.mean(MSE)

mean_MSE_internal = np.mean(MSE_internal)

#with open(path_out + ’DT_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

short_name , ’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’neigh_’ + str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’MLP_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’hidden_’ + str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’

+ ’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’) as

csvfile:

with open(path_out + ’SVR_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

SVR_kernel + ’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ +
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short_name , ’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’averaged MAE’, mean_MAE])

csvwriter.writerow([’ ’])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’averaged MSE’, mean_MSE])

print(’done’)
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The source code for cross_validation_3_files.py:

from read_split_data import read_data

from regressors import MLPRegr, SVRegr, kNNRegr, DTRegr

import numpy as np

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

import csv

pathfile_in = "D:\\thesis_data\\Means and Percent changes (in)\\"

short_name = "iw_20_ow_10_Bird_2006-2008.csv"

filename_in_1 = "perc_in_20_Bird_2006.csv"

filename_in_2 = "perc_in_20_Bird_2007.csv"

filename_in_3 = "perc_in_20_Bird_2008.csv"

pathfile_out = "D:\\thesis_data\\Percent changes (out)\\"

filename_out_1 = "perc_mean_in_20_out_10_Bird_2006.csv"

filename_out_2 = "perc_mean_in_20_out_10_Bird_2007.csv"

filename_out_3 = "perc_mean_in_20_out_10_Bird_2008.csv"

path_out = "D:\\thesis_data\\Cross-validation\\"

in_wind_width = 20

column_number = 0

DT_depth = 6

kNN_neighhbors = 50

kNN_weights_type = ’uniform’

MLP_hidden_layers = (100,)

MLP_learn_rate = 0.001

MLP_act_func = ’logistic’

MLP_alg = ’sgd’

MLP_iterations = 10000

SVR_kernel = ’linear’

SVR_epsilon = 0.1

SVR_C = 1

q = 10 # number of subsets for cross validation

# get data from one year data set
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X_1, y_1 = read_data(pathfile_in, filename_in_1, pathfile_out, filename_out_1,

in_wind_width, column_number)

# get data from another year data set

X_2, y_2 = read_data(pathfile_in, filename_in_2, pathfile_out, filename_out_2,

in_wind_width, column_number)

# get data from one more year data set

X_3, y_3 = read_data(pathfile_in, filename_in_3, pathfile_out, filename_out_3,

in_wind_width, column_number)

# combine three one-year data sets

X = np.concatenate((X_1, X_2, X_3), axis=0)

y = np.concatenate((y_1, y_2, y_3), axis=0)

subset_size = X.shape[0]//q

X_arr = []

y_arr = []

y_pred_arr = []

y_pred_internal_arr = []

MAE = []

MSE = []

MAE_internal = []

MSE_internal = []

# splitting data into q subsets

for i in range(0,q):

X_temp = np.zeros((subset_size,X.shape[1]))

for j in range(0,subset_size):

for k in range(0,X.shape[1]):

X_temp[j,k] = X[i*subset_size+j,k]

X_arr.append(X_temp)

y_temp = np.zeros((subset_size,1)).ravel()

for j in range(0,subset_size):

y_temp[j] = y[i*subset_size+j]

y_arr.append(y_temp)
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# regressor

for i in range(0,q):

arr_x_toconcat = []

arr_y_toconcat = []

for j in range(0,q):

if i!=j:

arr_x_toconcat.append(X_arr[j])

arr_y_toconcat.append(y_arr[j])

X_tr = np.concatenate(arr_x_toconcat)

y_tr = np.concatenate(arr_y_toconcat)

X_test = X_arr[i]

y_test = y_arr[i]

#y_pred = DTRegr(X_tr, y_tr, X_test, DT_depth) # on q subset

#y_pred_internal = DTRegr(X_tr, y_tr, X_tr, DT_depth) # on q-1 subsets

#y_pred = kNNRegr(X_tr, y_tr, X_test, kNN_neighhbors, kNN_weights_type)

#y_pred_internal = kNNRegr(X_tr, y_tr, X_tr, kNN_neighhbors, kNN_weights_type)

y_pred = SVRegr(X_tr, y_tr, X_test, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_internal = SVRegr(X_tr, y_tr, X_tr, SVR_kernel, SVR_epsilon, SVR_C)

y_pred_arr.append(y_pred)

y_pred_internal_arr.append(y_pred_internal)

MAE.append(mean_absolute_error(y_test, y_pred))

MAE_internal.append(mean_absolute_error(y_test,

y_pred_internal[:len(y_test)]))

MSE.append(mean_squared_error(y_test, y_pred))

MSE_internal.append(mean_squared_error(y_test, y_pred_internal[:len(y_test)]))

#with open(path_out + ’kNN_internal_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name , ’w’,

newline=’’) as csvfile:

#with open(path_out + ’DT_internal_’ + ’q_’ + str(q) + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’MLP_internal_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ +

’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’) as

csvfile:

with open(path_out + ’SVR_internal_’ + ’q_’ + str(q) + ’_’ + SVR_kernel +

’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name ,
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’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred_internal[i],y_test[i]])

#with open(path_out + ’DT_single_’ + ’q_’ + str(q) + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_single_’ + ’q_’ + str(q) + ’_’ + ’neigh_’ +

str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name, ’w’,

newline=’’) as csvfile:

#with open(path_out + ’MLP_single_’ + ’q_’ + str(q) + ’_’ + ’hidden_’ +

str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’ +

’rate_’ + str(MLP_learn_rate) + ’_’ + short_name, ’w’, newline=’’) as

csvfile:

with open(path_out + ’SVR_single_’ + ’q_’ + str(q) + ’_’ + SVR_kernel +

’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

for i in range(0,len(y_pred)):

csvwriter.writerow([y_pred[i],y_test[i]])

mean_MAE = np.mean(MAE)

mean_MAE_internal = np.mean(MAE_internal)

mean_MSE = np.mean(MSE)

mean_MSE_internal = np.mean(MSE_internal)

#with open(path_out + ’DT_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

short_name , ’w’, newline=’’) as csvfile:

with open(path_out + ’SVR_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

SVR_kernel + ’_C_’ + str(SVR_C) + ’_eps_’ + str(SVR_epsilon) + ’_’ +

short_name , ’w’, newline=’’) as csvfile:

#with open(path_out + ’kNN_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’neigh_’ + str(kNN_neighhbors) + ’_’ + kNN_weights_type + ’_’ + short_name ,

’w’, newline=’’) as csvfile:

#with open(path_out + ’MLP_cross_validation_err_’ + ’q_’ + str(q) + ’_’ +

’hidden_’ + str(MLP_hidden_layers) + ’_’ + MLP_act_func + ’_’ + MLP_alg + ’_’
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+ ’rate_’ + str(MLP_learn_rate) + ’_’ + short_name , ’w’, newline=’’) as

csvfile:

csvwriter = csv.writer(csvfile, delimiter=csv.excel.delimiter,

quotechar=csv.excel.quotechar,

quoting=csv.excel.quoting)

csvwriter.writerow([’MAE’, MAE])

csvwriter.writerow([’averaged MAE’, mean_MAE])

csvwriter.writerow([’ ’])

csvwriter.writerow([’MSE’, MSE])

csvwriter.writerow([’averaged MSE’, mean_MSE])

print(’done’)
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Appendix C

List of files containing experiment
results

Files that contain tables with experiment results for all tested regressors:

1. DT.xlsx

2. MLP.xlsx

3. kNN.xlsx

4. SVR.xlsx

5. cross_validation_DT (1-3 years).xlsx

6. cross_validation_MLP (1-3 years).xlsx

7. cross_validation_kNN (1-3 years).xlsx

8. cross_validation_SVR (1 year).xlsx

Files listed above can be accessed at https://dl.dropboxusercontent.com/u/29418662/
thesis_appendices.zip.
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