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Abstract

Studying how light interacts with materials has become important for many technologi-
cal applications from optical communication to developing of new materials. Therefore sci-
entists have always tried to improve their understanding of these effects. The primary goal
has always been to microscopically describe the pertinent processes. This paper provides a
brief introduction into the interactions of atoms with laser fields. Precisely this interaction,
photoelectric effect and the blackbody radiation were those findings which started off the
development of quantum mechanics. This theory allowed better description of atoms and it
will be used in this work to handle the problem we are confronting. We will consider two
of the simplest potentials and let the atom interact with a strong laser pulse in these poten-
tials. From this interaction the so called resonant states will arise. The goal of this thesis
is to investigate to what extent and in what meaning these resonant states form a complete
set of functions and consequently can be used for expansion of atomic states of physical

importance.






Sammendrag

A observere hvordan lys samhandler med materialer har blitt viktig for mange tekno-
logiske anvendelser fra optisk kommunikasjon til utvikling av nye materialer. Forskere har
derfor prgvd & forbedre deres forstaelse av disse effektene. Hovedmalet har alltid vert a
beskrive de relevante prosessene pa en mikroskopisk mate. Hensikten med denne master-
oppgaven er a tilby en Kkort innledning til samspill mellom atomer og laserfelt. Det var
akkurat funnene som denne interakjsonen, fotoelektrisk effekt og svart legeme radiasjon
som satt utviklingen av kvantemekanikk i gang. Denne toerien tillot en bedre beskrivning
av atomer og kommer til & bli brukt i denne oppgaven til & handtere problemet vart. Vi
skal anta to av de enkleste potensialene og la atomen samhandle med sterk laser pavirkning
sammed med disse potensialene. Som lgsning til denne interaksjonen, skal de sékalte reso-
nante tilstandene oppsta. Hensikten med denne oppgaven er a undersgke pa hvilken mate
danner disse resonante tilstandene et komplett funksjonssett og dermed kan de brukes til a

ekspandere atomiske tilstander av fysisk betydning.
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1 Introduction

Thanks to the modern laser technology, the electric field of the laser radiation can be signif-
icantly stronger than fields inside the atom. For a long time, the description of laser-matter
interactions was identical with the usual framework of perturbation analysis. After the devel-
opment of quantum mechanics, this description was replaced from microscopic theory in terms
of oscillating dipoles to quantum mechanical systems which is still the most frequently used
description.

The qualitative change of physical situation in the last decades has brought a development
of intense pulsed lasers as a light source as a new tool to investigate these interactions much
deeper. The most detailed investigations of these processes focus on atoms which are the ba-
sic essentials of matter. The radiation involved in these processes is fundamentally light, that
means a radiation whose wavelength is in the range from few decades of micrometers to few
micrometers. In our computation, this electric field will be represented by the time dependent
function £(t).

The quantum mechanical picture tells us, many times in a quizzacious way, that depending
on the energy of the system, the atom can in one of infinite number of states represented math-
ematically as the eigenstates of the Hamiltonian H of the system. In quantum mechanics, the
description of how the quantum state changes with time is reached by the Schrédinger equa-
tion. It was formulated in late 1925, and published in 1926, by the Austrian physicist Erwin
Schrodinger.

The time dependent Schrodinger equation has the form
iho,W(Z,t) = HU(Z, 1) (1.1)

where £ is the Planck’s constant divided by 27 and the Hamiltonian H representing the overall
energy of the system is

H=K+V(Z) (1.2)

consisting of the kinetic energy K = —%VZ, where £ 1s the reduced mass of the atom. The
constants A, i, however, will be omitted from mathematical expressions of physical laws during

the whole work by setting 2~ = ;» = 1. This assumption has the apparent advantage of simplicity.



The potential energy V () describes all interactions on the system which can be
V(&) = Viue( @) + Vee () + Ve (7) (1.3)

where V,,.(Z) is the electron-nucleus interaction potential which in our paper will be a Dirac
delta function and a square well. V,.(Z) is the interaction potential between electrons which
we will not consider. Moreover, we will assume only one electron in play, because in many
situations only a few electrons are taking part of dynamical processes. As a matter of fact, a
good approximation is to assume one electron. These kinds of atoms are called Hydrogen-like
atoms.

The external potential V,,,(Z) represents interaction between electrons and some external
electromagnetic field caused by for example a strong laser. For lasers in the visible part of the
spectrum, the electric field varies on a length scale of microns (10~%m). On the other hand, most
atoms are of a size between 0.3 and 3 Angstrém or around 1000 time smaller than the length
scale on which the laser field varies. Therefore, it is a very good approximation to assume that
the electric field does not vary across the atom. This electric field can be represented by the
function e(t). As we know, the relation between a force F (&, ) acting on the system and the
potential energy is F'(Z,t) = —VV..;(Z), thus the external potential will look like —¢(¢) and

the whole Schrédinger equation is
ihOV (T, 1) = ——V2U(T, 1) — Ve () — e(t)T (1.4)

Let us restrict the system into one dimension. A common way to calculate the

Schrodinger equation is to represent the solution, also called wave function, in the form
U(z,t) = p(x)e ™" (1.5)

where w = % is the angular frequency of the eigenstate ¢)(x) with energy E. As we know, the
frequencies or the energy eigenvalues are discrete numbers w; each of them corresponding to an

eigenstate ¢;(x), therefore we can approximate the solution (1.5) with a truncated sum

N
U(w,t) m ) epy(a)e ™! (1.6)
j=1



where frequencies are w; = % and the energy eigenstates 1); with the energy F; are solutions

to the eigenvalue problem
Hpy = By, (1.7)

In quantum mechanics one first learns how to compute energy eigenstates, the so-called bound
states. They satisfy the eigenvalue problem and are assumed to decay at infinity so they can
be normalized. Thanks to these conditions, the Hamiltonian operator / is self-adjoint which
makes the energy eigenvalues w; real and to form a discrete set.

A more advanced solutions to the Schrodinger equation are scattering states which repre-
sent an electron approaching the potential from infinity, interacting with the potential and then
returning back to infinity. In this case the energy eigenstates are real because the Hamiltonian
stays self-adjoint but they typically form a continuum. They cannot be therefore normalized but
they have physical importance since they describe a realistic experimental situation.

The wave function W(x,t) associated with a particle has a statistical interpretation. If the
particle is described by the wave function normalised to unity, then the probability P(z,t) of

finding the particle at time ¢ in a finite interval [a, b] is

b b
/P(m,t)dx—/ O (2, 1) da (1.8)

One consequence of this is the following. An atom gets under the influence of a strong elec-
tric field excited which basically means that its electrons acquire a higher energy state. If the
strength of the field is big enough, the outermost electron receives such amount of energy that
its connection to the nucleus disappears and becomes no longer a part of the atom. The atom
became ionized. In this case, the corresponding eigenstates are called resonant states and
they have a common feature that they grow endlessly as x approaches infinity. Resonant states
are defined by assuming that there are only outgoing waves at infinity. These boundary con-
ditions causes the wave functions to increase exponentially at infinity and can not be therefore
normalized. As a direct consequence of the exponential growth of the wave functions is the fact
that the resonant states are decaying exponentially in time. That is because exponential decay
in time indicates that it is exponentially more likely that the electron was released earlier than
later which means that is exponentially more probable to find the electron far away from the

nucleus than closer to the nucleus. Thus the wave function grows exponentially. For this reason



numerical calculations of resonant wave functions can not be considered. During the calcula-
tions in our paper, we are going to solve this problem by solving the Schrédinger equation on a
complex line, where this difficulty vanishes.

The resonant states represents a situation where there is an outgoing non-zero flux of elec-
trons across any surface surrounding the atom. These states thus represent an atom that is about
to being ionized. They were first introduced by Gamow [3] in 1928 in the context of nuclear
physics, they are therefore also called Gamow states. The problem was also solved indepen-
dently by Ronald W. Gurney and Edward U. Condon [4]. However, Gurney and Condon did
not achieve the quantitative results achieved by Gamow. But this was not the first time decay-
ing eigenstates were used in physics. The decaying phenomena in electromagnetism was also
described by J. J. Thomson [S]]. Siegert [6] introduced the definition of a resonant state as a
solution of the time-independent Schrodinger equation with purely out-going waves at large
distances. Humblet [7], Peierls [8] and Couteur [9] formulated and developed rigorous dis-
persion theories for elastic and inelastic scattering characterising the nuclear scattering matrix.
The decaying states characterized by Siegert became known as resonant states. Much work
was done by Berggren [[10] to find a theory which is capable of describing the resonant be-
haviour (compound nucleus processes) as well as the non-resonant behaviour (direct reactions).
He investigated the orthogonality properties of the resonant states, and derived the appropriate
completeness relation. However, the question of completeness and asymptotic series based on
resonant states has been of continuing interest for many years.

Resonant states are not stationary states for the Schrodinger equation. The reason for this
is clear since atoms that are ionizing, are loosing their electron and then the probability of
finding the electron in a bounded region centred on the atom must decrease. The mathematical
challenge is to understand it what sense the resonant states form a complete set and to develop
analytical and numerical approximation methods for finding the resonant states for Hydrogen-
like atoms and beyond.

What we are looking for is to represent, using resonant states, wave-functions that are solu-
tions of the Schrodinger equation, starting from the ground state and where the time dependent
potential corresponds to the passing of a laser pulse.

As a start in chapter [2] we begin with a zero range potential case, then we proceed to a square
well potential in chapter[3] In both cases we calculate the ground states and the resonant states.

We use numerical approximations to work out the time dependent case of the electric field.



At the end of the chapters for both potentials, we investigate to what extent expansions using
resonant states can be used to represent a wave function or any other functions with a compact
support. It means, we will look into the completeness of the resonant states whether they can

form a linear basis to represent functions f(x) through the expansion

fl@) = cith, (z) (1.9)
w;

where 1), (z) are the resonant states. This computation will be done in two different proofs,
which provide weaker and stronger results. In chapter are the mentioned proofs for the
Dirac delta potential. In the weaker version of the proof we find out, that the function f(x) we
are expanding has to have its support on the negative real axis, for the expansion to converge.
The result in the stronger proof tells us we get the same convergence under the condition z < 0,
which means that the convergence depends on z, not the location of the support itself.

In chapter [3.3| we provide the same proofs adapted to the square well potential respectively.
Here, the results are very similar only the boundary value for the convergence is shifted to
x < d. Also, the two kinds of proofs offer the same explanation of the results as in the Dirac
delta case. There is however one aspect of the result that needs to be mentioned. In particular,
that the convergence does not depend on the depth of the well V{. This leads to the assumption
that if we had a general potential which is non-zero on the whole space, we would get a conver-
gence in (I.9) for all x. This is an interesting observation and certainly gives space to further
assumptions. One can claim, that this assumption can be viewed as an opinion or judgement
based on inconclusive or incomplete evidence, which is a definition of a conjecture. Thus it can

be considered as a highlight of this work.






2 Dirac delta potential

In this section we consider the potential energy V,,,..(z) = V(z) = —Ad(z) with a constant A
so the Hamiltonian becomes
1 d?
H=———-A¢ 2.1
S~ Ad) e

which represents the ground state since € = (0. This Hamiltonian is also self-adjoint that can be

easily proved as follows. For any functions ¢(x), ¢ (x) that go to zero as x — +00 we have

o

0. 10 = |

—0o0

¢ (—%1//’ - A&p) dz

1 /
=~y

io+%/_z¢’¢’dx—A/_zw¢dx

_ %M’i _ %/_Z & pdz — A/: boda
_ / Z (—%gb” _ Aaqs) wdr = (Ho, ) 2.2)

This section will also include the calculation of the ground and resonant states of the
Schrodinger equation. At the end of this section we investigate the completeness of the res-

onant states in two different proofs.

2.1 Ground state

We start computing first the ground states, where ¢ = 0. The form of solution to (I.I]), we are
looking for, is

U (x,t) =(x)e ™! (2.3)
Substituting it into (I.I)) considering the assumption on page [I| we get

1

i(=iwp(e)e™ = o (z)e™" — Ad()y(x)e™

S0 (@) = —w(z) — Ab()(x) 4

This equation has the same form both for x < 0 and = > 0. In this region it gives us

' (x) = —2wih(x) (2.5)



which has a solution for w = —a?, a > 0
U(x) = a1e™ 4 aze™*® (2.6)

where k& = /2. We demand from our solution to decay as x is approaching +oo. That is why

the solutions v (z) for x < 0 and v5(x) for x > 0 are

U1(z) = are™, <0 2.7)

Uo(x) = age ™, >0 (2.8)

We have 2 unknown coefficients left, so we need 2 conditions. The only undefined point in (2.4))

is at x = 0. Since the solution should be continuous everywhere we require

¥1(0) = 15(0) (2.9)

Integrating (2.4) over the interval (—e, ¢) and taking the limit ¢ — 0 we receive the second

condition at this point.

li_r)%/ —"(z)dx = hm E —wip(z)dz — lim e Ad(x)(x)dx

e—0 e

—¢() w<— ) = —AY(0)
P5(0) — ¥1(0) = —2A¢,(0) (2.10)

where we have used the condition 1) and the property of Dirac delta function f d(zx —
xo)f(z)dz = f(zo). Applying the conditions at x = 0 for our solutions v, 1, we get a

system

a; —as =0 (2.11)
—k’ag - k:al + 2Aa1 =0 (212)
which can be written also in a matrix form as
1 -1 aq 0
= (2.13)
2A —k -k a9 0



This system has a zero solution that is not interesting. It has a non-zero solution only if the

determinant of the system is zero.

24 -2k =0
24 = 2v/2a
A2 A2
2= = - 2.14
a 5 =w 5 (2.14)

To compute the coefficients a;, a; we use the ground state eigenvalue (2.14) in (2.13).

1 —1 1 -1
- (2.15)

2A—\/§% —\/5% A —A

The null space of this system is (1, 1)7, that means a; = a, where one can freely choose one

coefficient. For a; = 1, the solution to (2.5)) is

eAr z <0

U(x) = (2.16)

e~ Ax x>0

2.2 Scattering states

With considering the possibility of the wave to scatter from the potential barrier, we assume the

solution to (2.5]) to have the form

ikx —ikx
a1e"* + age <0
U (z) = 2.17)

a4+ aze” x>0

but this time with £ = v/2w. We assume that the particle is coming from the left, so we put

ag = 0. We use the coefficients of scattering states and the conditions (2.9) and (2.10) to

2 2
calculate the transmission coefficient 7' = 12‘12 and the reflection coefficient R = IZ?IQ which

are probabilities of the particle to reflect from the barrier, respectively to come out on the other

side of the barrier. From the conditions we have

a; + as = as (218)

—agik’ — &1ikf + CLQil{? = —2A(a1 + (ZQ) (219)



We solve this system with respect to the unknowns ay, as.

A k- A
M= 2T T

as (2.20)

According to the form of the reflection coefficient R mentioned before, we get

kA2 o
g el _ T % ik — AP 2.21)
_ _ P 5 .
’a1|2 @?ag A2

These two coefficients R, T  are probabilities of the particle to penetrate or reflect from the

barrier. Because of this interpretation we have 7"+ R = 1 and R < 1.

2.3 Resonant states

Resonant states occur when € # 0 in the total energy (1.2). Let us for now consider ¢ > 0, so
the Schrodinger equation (1.1]) becomes

000 (x, t) = (—%aa—; _ A6(z) — gx) U (z,t) (2.22)
The form of the solution stays the same as in (2.3]). After substituting it into (2.22)) we get
P+ (2ex +2w)h =0 (2.23)
for x # 0. We introduce a transformation for the variable « in the following way
y(x) = —a(2ex + 2w) (2.24)

and the equation (2.23)) can be rewritten as

102y (y(x)) — L p(y(a)) = 0

(0}
V() — Tt(y) = 0= a = (4e) (2.25)
V" (y) —yv(y) =0 (2.26)

The free constant o was chosen so the equation has the correct form to solve it with Airy

functions. Airy functions Ai(y), Bi(y) are two independent solutions to ODE of the form (2.26)).

10



We can see their form on Figure (2.3-1).

1.0}

_15\}0 \\W \W W W \

Figure 2.3-1: Plot of Airy functions Ai(z)(blue) and Bi(x)(red).

WAVAVIAVAAWAA /7 -
.

Judging by their behaviour at 00, the correct combination of these function is chosen for
r < 0and x > 0 respectively. According to the transformation (2.24) if + — =oo then
y — Foo. That is for ¢ (), which represents the solution in < 0, we should choose Ai(z).
For 15(x), that is in the region = > 0, both of the functions seem to be doing well so let us

choose the following combination

i (x) = arAi(y(z)) (2.27)
Va(w) = a2 [Biy(x)) £ iAi(y(z))] = a2Ci* (y(2)) (2.28)

where we have denoted Ci*(z) = Bi(z) £ iAi(x). We investigate the behaviour of Ci*(x) for

large negative = with help of [1] formulas (10.4.60) and (10.4.64) and decide which sign should
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we choose.

Ai(—x) ~
rigTd [Sin (C + E) Z(—l)kc%(’_gk — COS <C + Z> Z(—l) 62k+1<_2k_1]
k=0 k=0
(2.29)
Bi(—x) =~
-3 §+E S 1) FegpC 2 45 C"’E S 1)k C—Qk—l]
T2x [COS( 4) kz:%( ) o sm( 4) kz:%( ) Copt1
(2.30)

3
where ( = %xi

and c;, are some constants. The series in the expressions contain exponentially
decaying terms, so for simplicity only the first term can be taken. Then the function Ci* (x) for
large negative x is

C]i(—x) ~ Bl(—QJ) + ZAI(—Q}') ~ ’ﬂ'iégj‘ii cos (é’ + %) o

+ 72471 sin (C + %) ¢t
+1 (W’%x’% sin (( + %) co — T2 cos <C + %) 01§’1>

1 T 93 _1 1 ™
AT 2T 4cocos<C+—>—Z §7T 2z 4C1SIH<C+Z>

4
3
+ Zlﬂ'_%x_iCO sin (< + %) + iéﬁ_%x_gcl COS (C + %)
R W_%x_%coeii@—%) - igﬂ—éx—zcleii(ﬁ-’i)
=~ W_%.T_%eii(c—i_%) (231)

where ¢y = 1. In the last line dropped the second term, because it is decaying much faster than
the first one. Since we consider the particle to "fly" out in the positive x direction, we wish to
have a wave moving to the positive z direction and that wave is represented by Ci* (x). Now
that we have the functions in both regions, we can apply the conditions at x = 0, (2.9) and

(2.10). Note, that they stay the same in this case ¢ > 0 as well.

a1Ai(y(0)) = axCi* (y(0)) (2.32)
asy' (0)C ™ (y(0)) — a1y (0)AY (y(0)) = —2Aa1 Ai(y(0)) (2.33)

12



what can be also written as a system

. Ai(y(0)) ~Cit () [ar) _ (0 o
0

—ZAi(y(0)) — A (y(0)) G (y(0)) ) \a»

This system has a non zero solution if the determinant of the matrix is zero.

—éAi(—MW)Ci*(—?W) + Ai(y(0))Bi'(y(0)) — A¥'(y(0))Bi(y(0)) = 0

det My(w) = —O%Ai(—Qaw)CiJr(—Zaw) + % =0 (2.35)
o 4 _ae _
Ai(—2aw)Ci™ (—2aw) T 0 (2.36)

where we have used the formula (10.4.10) from [1]. From this equation (2.36) we compute w
which are the energy eigenvalues of the resonant states. To cover all the possibilities for w that
satisfies this equation, let us consider w = wpr + iw; as a complex number. These solutions can
be found using numerical methods for example Newton’s method, where the starting points can
be determined in the following way. Since the constant % 18 a small number, we set it to O and
examine the zeros of Ai(—2aw) and Ci*(—2aw). From [I] (10.4.94) we get the zeros w' of
Ai(x). In our case the zeros will be —%. The zeros w¢ of Ci*(z) are computed from (10.4.9)

in [1].

Ai () = %eiﬁi [Ai(z) T iBi(z)] = —%z’eigi Bi(x) + iAi(2)]
27 1 L
Ai <xe?’> = —§ie§’Ci+(9§)

2ie~31A (xe%) — Ci*(2) (2.37)
The zeros of Ci(x)™ are then

Ci* (ch) = 2ie"3'Aj (che?i> =0= cheTi = A

WS = wle 3! (2.38)

We sum now up all the zeros of Ai(—2aw) and Ci(—2aw) which are in fact the starting points

13



for numerical method to compute the real solutions of (2.36).

wA
zeros of Ai(—2aw) = —i (2.39)
wd o
zeros of Cit (—2aw) = —ie_?z (2.40)

-0.4

Figure 2.3-2: Plot of the zero contours of det Mg(wp + iwy). The real part of the deter-
minant Re [det Mo(wg + iwr)] is in red, the imaginary part Im [det Mo(wr + iwy)] is
in green and the eigenvalues w; (black dots).

Figure (2.3-2) shows us the zero contours of the determinant (2.36). The ground state energy
wo (2.14) is also shown. For this figure was chosen A = 1 and ¢ = 0.03. We can see that all the
resonant state energies for € > 0 are located on the lower half plane of the complex space.

To compute the coefficients a;, as in (2.34) we substitute the computed eigenvalues w; into
the matrix (2.34) and compute its null-space. But since these values are numerical, the determi-
nant is not exactly zero, but a value very close to zero. We can solve this problem by computing

the eigenvalues and eigenvectors of this matrix and pick that eigenvector which belongs to the

14



least eigenvalue. This eigenvalue should be very close to zero as is the determinant. Thus, the
picked eigenvector contains the coefficients a;, as. These values depend on what w; we choose.

The eigenstates then are

(w;) = alA.1(—oz(2€x + 2w;)) x <0 2.41)
asCit(—a(2ex + 2w;)) x>0

[g(x, i)l |@(x,wo)l
A\ o8 0.6 y
/ '\\ 04 N /
/ \\ 0.4 //’
/ b3 /
| 03 /
// M 0.2 //
\
oM —— 61 /
/// \/ e _—— g \\//
B 10 5 5 10 15 % > 2 A
(a) wy = 0.192757 — 0.00407091¢ (b) wy = —0.109864 — 0.1602027

Figure 2.3-3: Plot of two different resonant states for the parameters A = 1, = 0.03.

On Figure (2.3-3)) we can see two resonant states that corresponds to two different eigenval-
ues wy,wy for the parameters A = 1, = 0.03. Both of them grow to infinity in the positive
z-direction, where the right one (2.3-3b)) grows faster than the other. The starting point for the
numerical method to compute the eigenvalue w, was chosen to be the zero of Cit(—2aw) that
corresponds to j = 1 (2.40). Let us call these zeros as the zeros from the C-series. Whereas
the starting point for w; was the zero of Ai(—2aw) again for j = 1 (2.39). These zeros can be

called zeros from the A-series.

2.3.1 Resonant states on a complex line

The resonant states computed in the previous section grow endlessly in the positive x-direction.
In this section we will fix this by solving the Schrodinger equation (2.22)) on a complex line

which we defined to be

2(z) = v v (2.42)

z.+ ez —z.) 1>,

where 6 is the angle of the complex line after the breaking point x.. This complex line is a

straight line consisting of a real and a complex part. The solution we are looking for then is

U(z,t) = p(x)e ™ — &(z(z))e ™" (2.43)
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To apply this change the Hamiltonian in (2.22)) should be accordingly changed. The second

derivative will then be

d? i26
L b(a) = €20..0(x(a)
2
ize—dd$2w(x) = 0,.P(2(z)) > x. (2.44)

and for x < x. the derivative stays the same. The modified Hamiltonian has the form

d2
—3d2 T < T

H=D-A5x) —cz(z), D= (2.45)

= D=

—i20 d2
e IE T> .

We are now ready to substitute the proposed solution (2.43) into (2.22) using (2.45)) and get an
ODE for ¢ (z). For x < z. everything remains the same as before, since there is no change in
the evaluation line. We are going to focus mainly on = > . where the solution is ¥3(x). The
following computations will take place on x > z. unless it is told otherwise. After some easy

operations similar to (2.4) we end up with

—%e”%g(m) — e [ze + "z — 2.)] 3(x) — wipz(x) =0

§(x) + [2ez0e™ 4 22 (x — ) + 2we™] Ys(x) = 0 (2.46)

Once again we introduce a transformation so that we get the right form of equation to solve

with Airy functions.
j(z) = —a [2ex.e™ + 2ee™ (z — x.) + 2we™] (2.47)
The equation (2.46) then takes the form

a4e?e%l () — Mzbg(x) =0

&
() — %d;g(m) — 0= a = (4c2) 7 (2.48)
5(@) — G(@)Ys(z) =0 (2.49)
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In the two other regions x < 0 and 0 < = < z. we are solving the same equation as before in

(2.26). Hence, the general solution for the whole space is

Y1(z) = aAi(y(z)) <0
b(x) = § ¥o(r) = asAi(y(x)) + azBi(y(z)) 0 <z <z, (2.50)
P3(x) = as,Cit (g(x)) To<x

The goal is to determine the coefficients a, and as. At the point z. we require from the solution
that it should be continuous and also its derivative should be continuous. The derivative of
3(x) at this point is however different and we will see that the derivative can not be continuous
at this point after all. Let us apply these conditions to determine the coefficients in 15(x). We
must not forget that in the region z > z, the derivative of ®(z(z)) is 0.®(z(x)) = e " Lq)(2)

2.44).

azAi(y(x.)) + asBi(y(r.)) = a:Ci* ((.)) (2.51)

asy'(xc) AT (y(x.)) + asy'(we)Bi'(y(z.)) = ase™ " (2)CT"™ ((a)) (2.52)
The second equation (2.52)) can be simplified further

—ay20e A1 (y(z,)) — as20eBi (y(z,)) = —as2aee 0 Ci'™ (§(z.))

1 .
250

—as(2)5 A (y(x,)) — as(2)Bi (y(z.)) = —%Me-wcmm))
asAi' (y(z.)) + asBi' (y(z.)) = asCi' ™ (§(x.)) (2.53)

From the form of Ci* and the fact, that y(z.) = 7(z.) it is clear, that a; = a4i and a3 = ay.

The solution can be reduced to the following form

a1 Ai(—a(2ex + 2w;)) z <0
Y(r,w;) = 1 asCit(—a(2ex + 2w;)) 0O<az<z, (254

as Cit (—a [2ex,.6™ + 2ee™ (v — x,) + 2w;e™]) z. <z

where the first two regions are exactly the case as in (2.27), (2.28). That means the eigenvalues

w; stay the same as well. But in order to satisfy all four conditions (2 atz = 0 and 2 at x = x.)
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we consider for a moment all four coefficients.

ar1Ai(—o(2ex + 2w;)) z <0
P(r,w;) = aBi(—a(2ex + 2w))) + azAi(—a(2ex +2w;)) O<ax <z,  (2.55)

as,Cit (—a [2ex.™ + 2ee™ (v — ) + 2w;e™]) w. <

Now we apply the 4 conditions (2.9)), (2.10), (2.51)) and (2.52). One should get a system

—Ai(y(0)) —Bi(y(0)) —Ai(y(0)) 0
M - | ZAAW0O) — Y (AT ((0) ¥ (0)B(4(0) y'(0)A1'(y(0)) 0
0 Bi(y(z.)) Ai(y(z.)) —Cit(g(z.))
0 —y/ (we)BY (y(ze))  —y' (xc) AV (y(ze)) e g (2c)Cit (§(xe))
ai 0
i (2.56)
as 0
ay 0

After substituting the eigenvalues w; into this system, we get a linearly dependent system. Its
null-space should be found, but we deal with the same problem as on page [14 w; are only
numerical values, so in the eigensystem of the matrix (2.56) the eigenvector belonging to the
least eigenvalue is chosen. This eigenvector then contains the coefficients.

One question now remains. How should we choose the angle 67 To answer this we solve the
Schrodinger equation with Hamiltonian without potential energy to avoid complications, but on

the complex line introduced in (2.42)).

.1 a2
A= (2.57)

We use the same solution suggestion as before (2.43) only with a different notation for the
function ¢(x) — Qﬂ(a:) After substitution into the Schrodinger equation with H the equations

in two regions are

H(z) = —2win(2), @< (2.58)
e () = —2wiby(x), xe < (2.59)
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where (2.44) was used. Let us now denote k% = 2w. The solution to the first equation is

~

P1(x) = aleii“” + (I2€_i]%x (2.60)

We look for a wave coming from negative x-direction that is why we set a, = 0. Using e™ = —1

in the second equation (2.59), the solution is

7 l%xei(%zg)

o) = age

e’ ()

+ aqe (2.61)

This solution is for x > x., so it should represent a wave going to the positive z-direction and

exponential decay. The imaginary part of the argument in the exponentials should be therefore

T4+260

positive. In this case k& > 0, so the sign depends on ¢l("2) = cos (%29) + 7sin (%29) If we

w+20

set a, = 0, then the real part of ¢ (") must be negative and the imaginary part positive. If we
set a3 = 0, they must be the opposite. Let us restrict ourself to —7 < 6 < 7 and investigate the

first case.

cos (%29) <0 A sin(“zw) >0
s ™ 3T s
0<0<r A —5<0<73 =0<0< 7
The second case gives us
cos (I£22) > 0 A sin (Z£2) <0
—I<Z4+H<ZE A —m<ZI+6<0 (2.63)
—1<6<0 A —Ig<-2 = -r1<6< -2

We choose the first case so a, = 0 and for the angle we choose 6 = 7. Now we apply the 2
continuity conditions at x = x... In the second condition we must remember that we deal with a

derivative on a complex line, so we use the same rule as in (2.52)) for the derivative.

. R i T+26
ayeFTe — g ehree (=) (2.64)
(s

(w4260 .
A~ .p A (w420 ~ % 5 . B A i
ikajette = o (75 )agelmce ( )e 0 = gqetkTe = ggehree (2.65)

This system has zero determinant. One of the coefficients can be freely chosen. Let a; = e~ kee,
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e (55

thenas =€ . Hence, the overall solution to the problem is

7, ik(z—z.)
)(x) = ) =e v (2.66)

Uo(x) = ) g > g,

We proceed now to the plots of some resonant states namely those in Figure (2.3-3)) evaluated

on a complex line for § = 7 belonging to the same eigenvalues as in the very same Figure

@23-3).

|®(Z(X)»%M_)1=|W(X»w1)| 1®(Z(X)«t:}22)l=lw(x.w2)!
7\ 2 . A
// \\ 04 - ,‘/ ’ \\‘
/ / \\ 08 // \\
y o3 /N
Vi \ 06 / \\\
/ ?2 o4/ k
4 °\1 T ost / \
P / ‘\/ \\ /./ / TR
S5 1o 5 5 10k S 5 10 5 X
(a) wp = 0.192757 — 0.004070912 (b) wo = —0.109864 — 0.1602021

Figure 2.3.1-1: Plot of two different resonant states evaluated on a complex line for 6 = 7.

For the two results in Figure (2.3.1-1)) we used the values A = 1,z = 5, = 0.03. One can
clearly see that the difference is significant comparing to the Figure (2.3-3)). After the point x.
the functions decay nicely.

2.3.2 Numerical solution

In this section we will find a numerical solution to the Schrodinger equation for the Hamiltonian

(2.22)) on the complex line (2.42)). We modify the equation into the form
1
iV (z,t) = —éam\ll(x, t) — Ad(z)V(z,t) — ex¥(x,t)

Uy (x,t) =1 %am + Ad(z) + ex| V(z,t)

U (t) = iO(x) T (z, t) = iMY(t) (2.67)

The operator O(z) = £8,, + Ad(z) + ez will be approximated by a matrix M and the solution
U (z,t) by adiscrete vector b (t), where the discretization is in the x variable as 1;(t) = ¥ (x;, 1),

where x; is a point on the spatial grid. To achieve this, we approximate the solution by a
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polynomial

U(x,t) =~ P(z) = ap + a1(z — 1) + ag(x — 2,)* + ...+ ap(z — x,)"

=k

Z T —x,) (2.68)

=0

where k is the order of the polynomial and z,, is a discrete point on the axis. First, we choose
some boundaries for our space [— L1, Ls|. The space is discretized such as z,, = o +nAz,n =
0,1,...,N, where vy = —Ly,xny = Ls. Note, that this discretization takes place on the
complex line, so the right boundary L. should be chosen such that the breaking point x. is
included in it. The boundary values x, 2y are known from the initial condition W(x,0) =
¥ (x,w;) in (2.54). Let us denote P(x,,) = 1),,. The matrix M has then size (N — 1) x (N —1).

For a particular point z,, # 0 the operator O(zx,,) becomes
O(x,) = ag + exyag (2.69)

We will treat the point x,, = 0 separately. The coefficients a; are computed in the following
way. Let the order of the polynomial be £ = 2. In this case we have 3 unknown coefficients
in the polynomial, so we need to use 3 points, namely x, 1, x,, T, 1. The polynomial is now

evaluated in these 3 points and we get a system of 3 unknowns.

1 Tn—1 — Tn (xn—l - In)g Qo wn—1<t>
1 0 0 a | = va(®) (2.70)
1 Tpy1 — Tp (anrl - xn)2 5) ¢n+1(t)

This gives us ag and ay as a linear combination of the discrete solutions t,,_1 (), ¥ (t), ¥n11().
We substitute these into (2.69) and the result will again be a linear combination of the discrete
solutions 1,1 (t), ¥y, (), ¥ny1(t). The coefficients in this combination then represent the coef-
ficients in the n-th line of the matrix M,,,.

There are two special points that should be mentioned separately. The first is the breaking
point x. where the "complex part" begins. As mentioned before, this point should also be a
point on our grid, because this is the transition to the complexity. The second important point
is x,, = 0. The same applies here too. Also, at this point the Hamiltonian (2.22)) is not defined,

but the polynomial (2.68)) can be evaluated. However, we treat it in a different way. We use the
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condition (2.10). Using (2.68)) in this condition we get

_l’_

al —a; = —2AY,(t) (2.71)

for z,, = 0, where the coefficients a;” and a; are computed as illustrated in (2.70)) but using the
points x,_s, T,_1, T, for a; and the points x,, T, 11, Tny2 for af. Using these coefficients in

(2.71)) we have

Un(t) = F(na(t), Yna(t), Pnia(t), Yni2(t), /O

w;(t) = w;72a@bn72p + wil,flawnle + Q/J;LHawnHF + %Hawsz (2.72)

The function F'(-) is some linear combination of the arguments, so the derivatives 0y, F' are the
coefficients of that linear combination. The derivative }(t) is exactly the i-th line in the right
hand side of the ODE system (2.67)). After substituting all these expressions into we get
the ¢}, (¢) is equal to a linear combination of v;(¢). The coefficients in the right hand-side in

this equation make up the line for z,, = 0 in matrix M.

0.6

0.6
08 Wl 0s e
\"-.\o.a ----- Q] ol 0]
o-l‘l‘q., """"""" / 0"'5.; __________
20 15“"" 10 5 0 5 10 15x 20 15- 10 5 ‘JO 5 : 10 15x
(a)t=0 (b)t =100
06 06
05 [W(x, b 0.5 [P0l
Gi s )] gl 02020 e @)l
03 03
0.2 0.2
P 0.1
% 15 0 5 \6 5 0 18 20 45 10 5 0 5 0 18
()t =375 (d) ¢t = 1000

Figure 2.3.2-1: The exact solution |¥(z,?)|(blue dashed) and the numeric solution
‘J(t)’(green) for Dirac delta potential plotted in one picture at four different times

t = 0,t = 100,t = 375 and t = 1000. The resonant states used as the initial con-
dition belongs to the eigenvalue w; = 0.192757 — 0.00407091z.

On Figure (2.3.2-1)) is shown the numerical solution for the case
wp = 0.192757 — 0.004070912. We used the following parameters: L; = 20, L, = 15, N =
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171, k = 4. For the resonant state as the initial condition we chose ¢ = 0.03,z. = 5and A = 1.

One can see that they match almost perfectly at all times.

2.3.3 Resonant states as a linear basis

The resonant states ®;(z) = ®(z(x),w;) = ¥(x,w;) can be used as a linear basis to express
certain functions f(z) as an infinite sum of a linear combination of these states. In the following

computations in this section we assume = 7. The expansion has the form

fl@)= " c®i(z(x)) (2.73)

where

x r < .
z(x) = (2.74)

Te+i(r —x.) x>,
When we introduced this complex contour and solved the Schrodinger equation on it, the Hamil-
tonian became no longer self-adjoint. To achieve a resonant mode expansion we need to define
some other inner product and introduce a notion of orthogonality with respect to this product.

We can start by the fact, that any two resonant states ®(z), ¥(z) should be creating an orthonor-

mal system, that is the inner product should satisfy

(P(2),¥(2)) = /05(2)\If(z)dz = 0y (2.75)

where C' is our complex contour and Jy; is the Kronecker delta symbol which is 1 for k = j
and 0 otherwise. From complex analysis we know that the complex conjugate of an analytic
complex function becomes non-analytic. Therefore, we need to define a different conjugation

of a function, which is

B(z) = D (z) (2.76)

We will use this in (2.75) and write the inner product in terms of x variable using (2.74)). The
integration variable then changes into dz = ¢dx for . < x and the whole integration space is

divided into two parts C; = (—o0, z ] and Cy = [z, 00). Let us use the notation ®(z(x)) =
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o(x) and ¥(z(z)) = ¥ (). Then we have

@), 9) = [ B+ [ FEE:

Cy

_ / S @e(a)ds + i / o ) e 2.77)

— 00

where the functions ¢(z) and ¢ (x) are defined on the real axis as

O(x) T < T,
p(x) = (2.78)
O(x, —i(x —z.)) x>,
U(x) r < T,
U(z) = (2.79)
V(. +i(z —x.)) x>
and satisfy the following conditions at x = z..
o = (2:80)
and
e = g (2.82)
S (2.83)

where for any function f(z) define f*° = lim,_,o f(a = ¢). One can observe, that these two
function satisfy different continuity conditions. As a result of this the two functions belong to

different vector spaces V; and V> defined as

{oten = {90(:15)|90’””C+ = —ip'® } (2.84)

W eve = {v@l =iy} 285)

where we also assume, that the functions in both spaces vanish at +-0co. Let us consider two

particular eigenfunctions ¢, and v, belonging to the eigenvectors A and 1. Using the eigenvalue
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problems Hpy = Apy, H'¢,, = uyp,,, where H' is the adjoint to H, we have

(A= 1) (ox:¥) = (Apa, ¥u) — (o, b)) = (Hon, ¥u) — (on, H',) (2.86)

The expression (2.86) is zero, if the Hamiltonian H is self-adjoint, which means that if A #
then (py,%,) = 0 butif A = p then (p,,1,) # 0 and by definition the functions ¢,, v, are
bi-orthogonal. Let us show that the Hamiltonian / is in fact self-adjoint. For two functions
o) € Vi and ¢, € V, and the fact that H = H we have

(st = [ (=1 — 450 =0 ) () e

—H/ (%;1—2—&5( )—sx> () e

Te Te 1 , - Z—/ 00
"SR (A0() - ) () vide + 5

Te

1—
= _590/)\1/}“

wi [T+ (- A8(a) — e) (75) Yy

1=
= _5‘:0/)\( Yu(Te)

e 1 d2 ' o0
_|_/ (—5@ — Ad(x) — E:B) (V) Padz — _90)\ ¢u($c) - %@@bl/t

e 1 d? "
—l—i/ (5@_146( )—6:6) (wu)@dm
]- 1xe ]-— 1xe /m
= _i(pA ‘ wu@jC) + §<P>\<x0)wu ¢ wu(xC)
+ QSOA(“;C)Q/}&F (©xs H¢u) (©rs ku) (2.87)

where we used the Hamiltonian from (2.22)) and properties of the functions in (2.84)), (2.85)

such as

Te L — Z‘+ 33(‘ 1'(‘
5O )Y = —5Ox(x )P 30 Yulre) = =503 Yulwe)
+ To xd
Qe = e i =

(2.88)

Thus, the expression (2.86) is zero, so the states ®;(z) do create an bi-orthogonal system.

We now determine how the functions ¢ A( ) look like and what is the relation between the
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eigenvalues A\, yi.

Hip, = ),
Hopy = Aoy
Hpy =gy = Pr = Y, A= p (2.89)

So the expression under the integral f P, dx, where ©y belongs to the eigenvalue A, becomes
[ w1, dx. This property can be used to expand any function from V, using 1/, and lb can

be rewritten as

fl@) = cutby (2.90)
m
where
c, = %, =y 2.91)

Let us try to approximate some functions using these states as (2.90). We start with a random
function. Let the coefficients ¢, be some real random numbers normally distributed in range
from -1 to 1. These create a function f (x) using . We now compute the coefficients cj
using (2.91) that forms a new function f(z) and compare it with f(z). If the computations are

correct, they should match f(z) = f(z).
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Figure 2.3.3-1: Comparing the function f(z) (red dashed), that was computed using the
biorthogonal product of resonant states with the generated function f(x) (green).

The two functions f(z), f(x) are shown on Figure (2.3.3-1). The parameters for the resonant
states are ¢ = 0.3, A = 1 and x. = 5 where we used N = 50 resonant states. The same values
were used also in Figures (2.3.3-2)) and (2.3.3-3)). The eigenvalues were all from A-series, which
we discussed on page T3] plus the ground state. This plot (2.3.3-1] shows that the two functions

are quite the same. In the following we will approximate some particular functions. The first

function would be a simple Gaussian f;(x) = e~*". We can see the results on Figure (2.3.3-2).

HI — fi(x)
08 e F4 )

p.6} M

fio4

o2

g =g 5 2 2 6 ” B T 2

(a) A-series (b) C-series

Figure 2.3.3-2: A Gaussian function f;(z) (green) approximated with the resonant states
expansion (red dashed) using eigenvalues both from A-series and C-series.

Two different cases are shown. In the first case (2.3.3-2a) only resonant states belonging to
eigenvalues from A-series were used and in the other case (2.3.3-2b) from C-series. We can

notice, that the one using C-series becomes very inaccurate in the positive x. This is caused by

the behaviour of the resonant states. We can see one in (2.3-3b). They grow very quickly in

this region. We will later prove that the series approximation works well only for functions that
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have their support in the negative regions. That is why we choose the next test functions in that

way.

(a) (b)

Figure 2.3.3-3: A triangle function f2(x) (green) and a rectangle function f3(z) (green)
approximated by series using resonant states (red dashed).

The other special functions are the so called triangle f>(x) and rectangle function f3(x). They
both have support only on the negative axis and only resonant states belonging to eigenvalues

from A-series were used because the states from C-series are practically zero in this area.

2.4 The completeness of the resonant states for Dirac delta potential

This section will contain 2 proofs of the completeness of resonant states. We will discuss under
what conditions does the expansion (2.90) converge. The first proof will be the weaker proof in
which we first look at the scattering form of resonant states and then using complex integration

we show the completeness. This can be expressed as

/_OO (), (2")dw = 6(z — 2') (2.92)

2.4.1 Weaker proof

We start with the scattering form of the resonant states using the solution (2.27), (2.28)).

a1 Ai(y(z)) x <0
Yo(z) = ' ‘ (2.93)
asCit(y(z)) + asCi (y(x)) = >0
where y(x) comes from (2.24). From the asymptotic expansion of Ci* for large = in (2.31) it

is clear, that while Ci™ represents an outgoing wave at positive = then Ci~ is and ingoing wave

from positive infinity and both decay algebraically. Applying the conditions (2.9)), (2.10)) to the
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expression (2.93)) and using yo = y(0) we get a linear system

) o o
M(yo) = Ai(yo) Ci' (yo) ax — Ci™ (yo) (2.94)

— 2 Ai(yo) — Ai'(g)  CT"(w0) ) \ao —Ci" ()

whose determinant is the same as (2.35) and the solution to the system we have now is

a = ——t— ™ (G (w0) O (3) = Ci* (90) Ci~ (30) ) (2.95)
as . - . A . . .
ag = —detM(yO) (—Al(yo)Cl (yo) + Ci (yO)EAl(yD) + Ci™ (yo)Ai (y0)> (2.96)

With the Wronskian rule of Airy functions in [1] (10.4.10) can this solution be simplified as

follows.
“ = ﬁg(yo) (Bi(yo)Bi'(yo) + iBi(yo) Al (o) — iAi(yo)Bi' (yo) + Ai(yo) Al (o)
—Bi(yo)Bi'(yo) — A1 (y0)Bi(yo) — iAi(yo)Bi'(y0) — Aiyo) Al (v0))
21
_ _a3m (2.97)
2= ﬁg(yo) (—Ai(yo)Bi'(y0) + iAi(y0) A'(yo) + Bi(yo) Af'(yo) — iAi(yo) Af' (o)

a3

HO ) A1) ) = e (<24 0 ) i)

det M (y[))

as 1 1 _
det M(yo) ( T * O (yo)) s

where we used the determinant (2.35) to simplify a,. Since aj is an arbitrary constant, it can

det M(yo)
det M(yo)

1
. . 2 .
be freely chosen. For convenience, let us choose a3 = ¢ < ) . Then we can write the

scattering solution (2.93) in the form

—2_—Ai(y(x)) x <0
7|det ML
va(w) = xq T e\ E (299)
—i () i (y(a)) + i (b} i (y(a)) > 0
with a normalization constant y. This constant is computed in Appendix [A]and it is
y=2"3¢76 (2.100)
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We return back to the completeness relation of the resonant states (2.92) and define a function

for R >0

R
Fr(z,2') = / . Yoo (), (2)dw (2.101)

which converges to 6(x — 2’) as R — oo. Let us now introduce the following closed contour

I'g in the lower complex half-plane as in Figure (2.4.1-1)

-R R

Figure 2.4.1-1: Closed contour in the lower complex half-plane for frequency w.

Then we have 'y = Cr U [—R, R]. Note, that the curve 'y we integrate along, must be
negatively oriented, that is the interior of the curve is on the right side when travelling along the
curve, because we chose Fg(z, 2’) to be an integral from — R to R. With the use of the Residue

theorem from complex analysis we can write
g (@) u(r')dw = Fr(z, ') + . W ()t (2)dw
—2mi ZJ: Res(1,(2)1, (), w;) = Fr(z,z') + . Yo (1)1, () dw
Fae, ') = 5 37 Res(tu ()1 (w'), )
-/ Yo ()t (2")dw (2.102)

where w; are the poles of the integrand located on the lower half-plane. These poles are the

complex frequencies of the resonant states. We first expand the integrand so we can express the
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residue. For z > 0,2’ > 0 we have

bul@)u(e) = —* {%c () Ci™ (y(@)
M (()CE* (') ~ O ()OIl - G (00

(2.103)
forx > 0,2/ <0

Vo (2)1hes (')

_2x%i 1 . . o 1 bt Az
- (detM(yO)Cl (y(x))Ai(y(z)) —detM(yo)c (y()) Ai(y( >)> (2.104)

™

forx < 0,2 >0

Yu(2)(2)
_ 2 ! i~ (y(z'))Ai L ity Al
= (m(%)@ (y(ﬂf))Al(y(ﬂf))—detM(%)C (y(2"))Ai(y( ))) (2.105)
and forz < 0,2’ <0
no__ 4 . . /
Yu(2)thu(2) = — detM(yo>m<yO)Al(y(w))Al(y(fv ) (2.106)

Airy functions are analytical and we can see from these expressions, that the poles which are

confined in the closed contour I'; are determined by the equation

det M(yg) = 0 (2.107)

Zeros of the complex conjugate of this equation are not in I'p so we are not considering the

terms containing them. All zeros are simple as we could see from our computations and Figure
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(2.3-2), so the residues are

2
S Res(Uu(@)tu(a'),w5) = 5 T [ = w))ue)bule)
[ et M Ciy (y(x))Cif (y(«')) = >0,2" >0
_2m o < W — wj > 2Ci] (y(x)Al(y(2)) r>0,2' <0
i wowy \det M(yo) 2 it (y(a)) Ay (y(2)) <02 >0
\ de:tMJ Ai;(y(x))Ai;(y(2")) x<0,2/<0
= ()1 () (2.108)
where
o W — W iy/det M;Cif (y(z)) x>0
, — i I )
wi X\/ ;e (det M(yo)) ——Z_Aji;(y(z)) =<0 210

and where Ai;(y(x)) = Ai(y(x))

w:wj w:wj

and det M, = det M(yo)

. It is easy to see that the functions ¢);(x) are proportional to the
w=wj

resonant states () up to a constant. Hence, for R — oo we can rewrite (2.102) in the form
A / . /
oz —a') = Z v()ey(a’) — lim /CR Yo ()0, (2") dw (2.110)
J

Whether the resonant states form a complete set or not, depends on the limit of the second
term in (2.T10). The radius R has huge values, so we can use the asymptotic representations
of Airy functions. These computations were done in Appendix [B] Using (B.28) for sector
—%” < @ < 0and , for sector —m < 0 < —2?”, which we concluded that vanishes,
and dw = Re™idf we can write the integral in as

0

X(2a5)%e’% R} X(Qag)%ezﬁ Ry i
Vo (2) 1 (2")dw ~ / SRR @ RE Rei?idl
Cr —2 (mA)2 (mA)z
2 0
7TA _%w
2 0
— _X QZER / 676(204)% sin(%9)(z+x’)R% eis(2a)% cos(%G)(a:er’)R% ez‘gdg (2111)

™ _2n

3

where w is defined in (B.21), (B.22). Let f(x) be any function of a compact support. Multiply-
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ing (2.110) by f(2')and integrating with respect to =’ we get

00 2
B , X 20eR
_/_Oof(.r) x—1 da:—z% / p,(x da:+l_>oo—7TA
3

/ / f 78(204 )2 sin (% )(erw’)R? 61’5(204)% cos(%Q)(x#»ﬂ)R% eiededx/

flz) = chwj(l’)

J
2 0
+ lim # (R 0) —(20)2 sm(%O)a:R%eia(Qa)%cos(%Q)zRéeiﬁde (2.112)
R—o00 m _2?77
where
P = [ et et il

From (B.21), we have that @,,w; < 0. We can conclude that if the function f(x) has
a support that is located on the negative real axis, then the limit in (2.112)) vanishes, because
(2.113)) vanishes and in this case the resonant states form a complete set for such functions.
The following Figure (2.4.1-2)) shows us examples of this resonant states expansion for a Gaus-
sian function f(x) using various number of terms. We can see that already for 50 terms, the

approximation is very good.

1.0 1.0
f(x) f(x)
77777 7x) 08 e F() 08
[ 06 :‘5 08
04 94
02 02
L I M s Sor g g R
(@ N =10 (b) N =15
1.0 1.0
e /' () A
,,,,, f(x) 058 e P 08
0.6 ’-’ "‘ 0.6
04 j '-.l 0.4
0.2 "’ \'\,\ 0.2
ST T e S 20 15 ST 5 X
(c) N =20 (d) N =50
Figure 2.4.1-2: A Gaussian function f(z) = e (x+10)? (green) compared with the reso-

nant states expansion f (x) (red dashed) with various number of terms.
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2.4.2 Stronger proof

This proof is again a proof of the completeness of resonant states (2.99) as in the previous
section only in a different way, but many things will be used from the weaker proof too. It will
contain a more precise outcome for the condition set to the expanded function f(z). We start

again writing down the resonant states in a scattering form.

7r|det1%/1(y0)\Ai(y(x)) <0

1
. [ detM 2~ . [ detM 2 .
i () it (y(@) + i (o) Ci (y(a)) @ >0

=

Yo(x) = X (2.114)

with the normalization coefficient (A.29)). We use the continuity of these states at = 0 to write

2 it = i (MO0 e g (M) )
a0 = =i (S ) e+ () €
_ m|det M(go)]
2Ai(yo)
(M) Vg (et M)\
( (detM(yO)> Ci™(yo) + (det—M(yo)) C (Z/o)) (2.115)

so we can rewrite our expression (2.114) as

1 1
. (detM(yo) \ 2 e+ - (det M(yo) \ 2 (v — Ai(y(z))
- <detM(yo)> Ci (3/0) + <detM( )) Ci (y(])) Ailo) T <0
V() = X ( " (2.116)
- (det M(yo) 2 it - (det M(yo) 2 Qi 0
—i (@onae ) O W)+ i Tary ) G (@) v

As we discussed in (2.31)) the linear combination of Airy functions Ci™ represents a wave mov-
ing in the positive = direction, hence an outgoing wave and Ci~ is an ingoing wave. The

resonant states can be then expressed as a sum of outgoing v} () and ingoing waves 1) (x) as

(@) = U5 () + U, (x) 2.117)
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where we defined

1
det M(yo)) 2 ot Ai(y(x))
—1 ( Ci' (yo) —x; <0
(z) = x det M(yo) 1 (%) Ai(yo) (2.118)
det M 2
| (detMgz%) Cit(y(x)) x>0
p 1
. (det M(yo) \ 2 ~:— Ai(y(x))
0o (2) = x4 <detM<yo>>1 O w0 2y <0 2.119)
w - (det M 2 -
i (S ) O (@) e >0

Note that these functions 1= (z) are continuous at x = 0 but do not satisfy the jump condition

(2.10). The completeness relation for scattering states as before is

/00 (), (2")dw = 6(z — 2') (2.120)

Let f(z) be any function with a compact support. Then using the completeness (2.120) we have

f(x) = / 5o — ) f(s)ds = / N / (s def(s)ds @121

We use second times as we multiply (2.120) with f(x) and integrate over the whole space:

/Z /Z Y (@) () f(w)d'd = / " (o — 8) fla)da

—00

/OO a(wW Ny (s)dw' = f(s) (2.122)

o0

where a(w') = [ 1. (z) f(x)dz. We substitute (2.122) back into (2.121) and we get

f@) = [ [ va@aede [ awiats)asds
[ o) [l [ nlpia(sasdeds (2.123)
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Using the separation of the resonant states into outgoing and ingoing waves (2.117) we can

rewrite (2.123) as

flz) = /_ Z a(w’) /_ Z P () /_ Z Vo (8) (U2 (5) + 12 (s))dsdwdw’

[T [Tt [ vownoistas
/ / Yo (x / Yo (s s)dsdwdw’
= /_OO a(w") /_Ooi/fw(a:)TJr(w,w’)dwdw’—k/ / Do) T (w, w')dwde

= fT(z) + f(2) (2.124)

where we have defined the following quantities

(w,w) / Vo (8)Y5(s) (2.125)
fi(l‘)—/ / Voo () T (w, W) dwdw’ (2.126)

The integrand in (2.123]) does not converge. It comes from the standard asymptotic expression
of Airy functions in (2.31)), where we see that Ci*(z) is decaying algebraically, but not fast

enough to converge. That is why we introduce the following correction in the variable w’
(w,w") / (s ,ﬂg( s)ds (2.127)

because the exponential part in the asymptotic behaviour in 1) e*(¢+) contains o’ through

(= %(—y(m))i and (2.24) so we can write

ii<§(2a(sx+w’))%+g) .

. 3 3 3 1
il(%(hw’)2(1+gj)+%) — pFi3(2a0)? Fi(20)2 () 2ez Eif

Q
@

3 3 3 1
:ti%(Za)?(w’:ti{)?eii(Qa)?(w’:l:if)?ax +iZ

—e e
~ eiz%(Qaw’)%(lii%)eii@a)%(w’)%(lii%)sx 4T
3 3 . 3
— pFij(200)E — (2aw')2§€iz(2a)z( W2 o (20)% (w /)2 o€t o Ei ] (2.128)
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taking the absolute value of the last line we get

‘e_mawf)%g ‘6_(2@%@/)%25,@ (2.129)

where the exponential decay for large x can be clearly seen. We will perform calculations with
a finite £ and in the end we remove this correction by letting it go to 0 in a limit. Let us focus

on the integrals T*. Observe that we can write the resonant states as

ho(s) =V (—2% <s + g)) (2.130)
rie(s) = UF (—Qag <s + Wt 25)) (2.131)

€

where the functions ¥, WU are linear combinations of Airy functions in general on intervals
(—00,0) and (0, 00). For the next step we can use the formula (3.53) in [2] which says that if

A(s) and B(s) are any linear combinations of Airy functions then

1
/ Alpls + ) Blp(s + P))ds = 53—~

— Ap(s + B1)) B (p(s + B)] (2.132)

[A'(p(s + B1)) B(p(s + 52)))

Using this in (2.127)) and the fact that the resonant states 1),,(s) decay at +oo, letting A(s) =
U(s), B(s) = ¥*(s) and defying p = 2ae we get

T (w, ) = /:\If (—p <s+ %)) v (—p (s+ ”jzg)) ds
b [T (o (s 2y (<o (s+ 55 ) as

- FooT® [‘I’ (r(s+3)) v (_p T wf§)>

ol (o 525)

+

(2.133)
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We go further and use the continuity jump of the derivative at z = 0 (2.10) and we get

ol ) (4(229)
w:l:z{)%

Tgi(w,w

/):pz(w Ew
—w<—p<t:>>w(
— 0 (=p (0% +2 (wj”g>

o
+w<— ) w’*( (o =25))|
- (-

(w—w Fif) {\Ili (wi%€>) \Iﬂ >>
< 0+ )] +u (- <>>{w(—p(o++“’?5))
(o0 25) )]}
o(52)) 2
(-

) (-
o wx@{ ( (%) |
29 e 22
w0 ()5 (el 5))
L)

where in the last line we set £ = 0 in all numerators without loss of generality. From (2.118)

and (2.119) through (2.131)) and using the determinant (2.35]) we can simplify this result as

(0 (5)5 @’*A(—ﬂ (07 “’z'>) v (oo +2))

o (SRR’ [ - ]

. [ det MT(yo) [ 24 4 ae gt
= (Ganitoy) [Tane (5~ 9000 i o o0

L/ 7 Ai/(y(/))
—Ci (v0) 37 ]

1(90)

(et M (yo) PldetM¥(yy) 1 (1 T
=i (eintzog) | wep et A (r OAG)
—Ci*(yp) Al (o)) ]
o ((detMF(yo) \ 2 det ME(yp) . |det M(yp)]
_QXQﬂMﬂmD Alyy) YAy (2139)
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where we defined y;, = —2aew’ and denoted det M (yo) = det M(yo)
and det M~ (yo) = det M(y,). Hence we can write (2.134) using (2.114) as

Lo eulyo) . |det M(yp)|
e ) = T 9™ Al
- 2ixe |det M(y)| Ai(yo) (2.136)

Tp*(w — w' F i) |det M(yo)| Ai(yy)

It is easy to verify that the following statement is true.

lim (T (w,w) + Ty (w, ') = 6(w —w') (2.137)

E—o0

Let us go back to (2.126). Using (2.136) for to express f=(x) we get the following expression

) = [~ o) [ a1 o dods

2ixe [~ |det M( |det M(yp)| / Ai(yo) ,
=F a(w » dwdw” (2.138)
| (&' ANy Yol — w' F i€ |det M(yo)]

Our whole focus is now on the integral

Ai(yo)
/ww - w$z§|detM(yo)|dw (2.139)

which we can solve using the residue theorem just as we did in (2.102)) on a closed contour

(2.4.1-1). In order to do this we define

Ai(yo)
/w - w:sz|detM(y0)\dw (2.140)

which converges to (2.139) as R — co. We use also the same notation for this contour I'; and

we get

1 Ai(yo)
L ) T i e M)

= P + ; Yu()

o 1 Ai(yo)
- zj: Res (1/Jw(37>w — w' Fi& |det M(yo)| ’ Wj)

= PgR(w,) + . ¢w(x)

1 Ai(yo)
w— w F i |det M(yo)|

1 Ai(yo)
w— w' F i€ |det M(yp)]

dw  (2.141)
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from which we can see, that if the the integral on the right hand side vanishes as I? approaches
infinity, then our function P (w’) will equal to the sum of residues. We prove that it in fact does
vanish using the knowledge we gained in Appendix [B| about asymptotic behaviours of Airy
functions along rays in the lower half of the complex frequency plane w = Re?, where we had
two sectors —2F < § < 0 and —7 < 6 < —2F. Starting with the first one we have for Ai(yo)

the formulas (B.8)),(B.9) and (B.11)), for |det M(y,)| we use (B.18)) and for the resonant states
¥, (x) (B.28). Putting it all together we get

() —— Ai(yo)
S =W F i€ [det M(yo)|
1 ,m 1
~— ‘ X(2ae)zet : wggR%M(ﬁR)ie wrs 1 1 (/{R)_i
(Re? —w' Fi&)(mA)z iAs Py
(s0m8+8) _ oni=)
- = pXOzef;l; f)Aewa:Rée—nge_iZ <€i§ei0R% B e_wR%>
e —w 17
= Xae weR? ( _ —2iq9R%>
T (R~ TiOA L-e
) 1
~ tXae ewa 2 (2 142)

(Re? —w' Fi£)A

where from (B.13) we know that ¥; < 0. For the sector —m < § < —2 we use the formula

(B.34) for Ai(yo), formula (B.42) for |[det M(y,)| and (B.53), (B.54) for the resonant states
V().

1 Ai(yo)
w— w' F i |[det M(yo)|

1
X7 2 ~ 1 .3 Q,@z L S _
S R g )T g R

X ~\—1 _9fR3 _zyR3
= . R 2.143
Q(Rew—w’IFif)(K ) ze € ( )

()

From 1) lb and 1| we know that QSTT, 15,-, w,,@; > 0 so for the sector —7m < 6 <
—%” the integrand decays independently of = but for the first sector —%’r < 0 < 0 the integrand

decays only if < 0 in the limit R — oco. So from (2.141)) we get in the limit R — oo

2 1 Ai(yo) B ,
i ; fes <¢w(£€)w —w' F i€ |det M(yo)| ’wj> - PE(W ) (2.144)
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In the following we compute the residues through the usual formula, but before that we express

the argument using (2.114)) for resonant states. For x > 0 we have

1 Ai(yo)
w— w' F i€ |[det M(yo)|

B B Y (D AN 26 V(DA LD

‘X[(@mmm>c<“”+(£ﬁmw>c<“”]
1 Ai(yo)

w— w Fi& |det M(yo)|

()

Ai(yo)

) ! it (y(x ——Ci (y(z))| ————
= 1X [—m& (y( ))+det (yo)c (y( ))} oo T it (2.145)
and for z < 0 we have
() 1 Ai(yo) 2x Ai(y(2) 1 Ai(yo)

w—w Fif [det M(yo)| 7 |det M(yp)| w—w F i€ |det M(yp)|

_ 2x Ai(y(x))Ai(yo) (2.146)

mldet M(yo)® w— ' F i

Since the closed contour ' is on the lower half of the complex frequency plane, we are in-
terested in those poles that are located in that area. One can see, that the poles are determined
by the zeros of det M(y,). From previous experience we know that they are on the lower half-
plane so the zeros of det M(y) are on the upper half, so we consider only those terms with

det M(yo). We can then write the residues in (2.144) as

1 Ai(yo)
Res (¢w($)w — W' F i€ |det M(yo)| 7wj)

2Ai; (yo) .
=x li (&) det M (y0) (w; —w’ jFZé&)Alj (y(x)) <0

w—; \ det M(yo) —i U Cif (y () v >0
1
= TorEn® -

with

2Ai;
W — wj ) ﬁAU( (z)) =<0 (2.148)

Vi) = U}ij (detT(yo) —1Ai;( O)Clj (y(z)) =>0

and so on. We
UJ—>(/JJ'

where we denoted Ai;(y(z)) = Al(y(x))’ ,det M;(yo) = det M(yp)
W—rwj

can see that the functions v;(z) are proportional to the resonant states (2.114). The expression
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(2.144) can be then rewritten as

27r
W) 2.149
Z wj —w $ 1 ( )
Returning back to (2.138]) we can use (2.149)) taking the limit for £ and we get

lim f*(z) = hm/ (W) /00 Yoo (2) T (w, w')dwdw’

£—0
__2ixe |detM ol ,
=F o / a(w) A Z Y;(x)dw
4X5/ W) |detM(y0)| /
= dw'; (x
Z Alyo(wj_w> ()
= Z ¢t () (2.150)
J
where
dxe /“’ o et M(yo)[
ci =F— a(W')——— dw (2.151)
=T LY R - )

which ends the proof.

After we have done both of the proofs, we can discuss the qualitative difference between
them. In the weaker proof from and we have that the requirement for the in-
tegrand in to decay was, that the function f(z) has to have its support in the negative
real axis. It basically means, that the support can not enter the positive axis at all. On the other
hand the stronger proof gives us a better specification. The integrand in vanished if
x < 0. This gives a possibility for f(x) to have its compact support mixed on the negative and
positive real axis. The infinite sum in (2.141)) will converge for z < 0 and diverge otherwise. It

is therefore a stronger condition.

2.5 Time dependent energy field for Dirac delta potential

Until now we have dealt with a constant energy field €. Let us now consider its time dependency
e(t). We are not considering space dependency because the size of the atom is very small
compared to the space change of any laser fields. The form of this strong energy field takes some
assumptions. First of all, the energy field which is a laser pulse should have a smaller frequency

than the frequency of the wave function. The proposed form of this pulse is a Gaussian wave
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packet
e(t) = e~ (E10)* g (we(t —to) — 9) (2.152)

where w. is the center frequency and v, §, ¢ are parameters. On Figure (2.5-1)) we can see its
plot for w, = 0.02,v = 107°,§ = 0,y = 900 compared to the function Re [¢*?](red), where

wy 1s the eigenvalue of the ground eigenstate, which will be used as the initial condition for the

numerical scheme (0, t) = 1(0)e "o ib where ¢ (z) is (2.16) and wy = —%2.

o= Re[W(0,1)]
— €(t)

Figure 2.5-1: Plot of ¢(t) and the real part of the time dependency Re [ei“’ot] of the
solution to the Schrodinger equation for Dirac delta potential. The eigenvalue wy = —%
belongs to the ground states computed using the parameters A = 1 (2.16).

In our previous computation we assumed positive € > 0. Here we deal with ¢ that changes
signs. We need to figure out what the solution is for € < 0. Let us define a new variable 7 = —x.

Then we have

1
iV (x,t) = —iﬁm\lf(x,t) — A ()Y (z,t) + |e|x¥(z,t)
1
iV (Z,t) = —5855\11@,0 — AN(2)V(Z,t) — |e|z¥(z, 1) (2.153)
so for ¢ < 0 the solution is V(—zx,t;|¢|), where U(x,?;|e]) is the solution for € > 0. We
can solve the Schrodinger equation numerically with the same principle as before. The only

difference will be that we solve it on the flipped x-axis across the y-axis when ¢ < 0, so these

regions in time should be determined. From (2.152) it is easy to compute the intervals [t;, ;1]
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where ¢; are the zeros of (2.152}

e 110)° cos (w.(t — to) —0) <0
cos (we(t —ty) —6) <0

3
z+2jﬁ<w€(t—t0)—5<§+2jﬂ, jez

2
T 297 ) 3r 297 ) .

=+ @t LT Lt JET (2.154)
2(;(}5 WE ws th‘ WE w€

In those intervals, where £(t) < 0, the Schrodinger equation is solved on the flipped x-axis.

W(x,0)| |W(x,429)| |\U1(>B.586)\
1.0,

@t=0 (b)t =429 (c)t = 586
|W(x,743)| |¥(x,900)] |¥(x,1056)|

0.08

(e)t =900

|W(x,1370)|

5 10 -10

10 -10 5 5 10

(g)t=1213 (h)t = 1370 (1)t = 1527

Figure 2.5-2: Absolute value of the numerical solution W(z,t) in particular times. The
parameters that were used are z. = 6, A = 1,0 = 7 and the numerical parameters are
Ly =Ly =10,N = 265,k = 4.

On Figure (2.5-2)) were the parameters for the laser pulse the same as in previous figure and
the data for the equation were A = 1,2, = 6,60 = 7. We used the numerical parameters
Ly = Ly = 10, N = 265,k = 4 so the spatial grid parameter was Az = 0.0759494, where
Ly, Lo are the boundaries of the spatial space, N is the number of grid points and £ is the order of
the numerical scheme. The particular times were picked as the centres of the intervals (2.154).

Let us choose the time corresponding to the middle of the 7-th interval ¢ = 900. The numerical
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solution to the Schrodinger equation at this time is in Figure (2.5-2¢). We will compare this
particular solution with an expansion using analytical resonant states as in (2.90) to see if we
can find a detectable deviation. In this expansion we will use the perturbed ground state with
as the starting state.

0,08‘
0.0é’j

0.04

=T Tt 5 T

(@)t =900,z, =6,N =10

0'15?;: 0.157"._
0.19 0.1
o.ga':s 0.96:5
/’;‘ 7 A
=Ty £ 5 10 15 20% 7o =i 5 10 15 20
b))t =873, z,=10,N =1 ()t =873, 2. =10, N =20
015 0.15,"«':
o.1é v“‘-,\ o.1@': l‘\,‘
0.05 o.d'5 ‘
0 et 5 10 5 20 X 0 <—iaa 5 10 3 20 X
(dt=873,z,=15,N =1 (e)t =873,z = 15,N =50

Figure 2.5-3: Comparing numerical solutions at times ¢ = 900, 873 with . = 6,10, 15
with the resonant states expansion using the various number of states from A-series.

In Figure (2.5-3a) we used the same parameters as in (2.5-2)) but in (2.5-3b), (2.5-3c) we used

z. = 10 and picked the time ¢ = 873 as in the last two subfigures, where we used z. = 15. We

can see that in (2.5-3a)) the expansion looks perfect comparing to the numerical version, even if
we used only ten modes. In the other cases, since we picked a different time, where the solution
is not that smooth, we needed more modes to get the two functions closer. The improvement
can be seen even if the matches are not perfect. However, for negative x, after we took more
modes, the improvement is very satisfying. If we picked the exact same time in these cases as

for (2.5-3a)), then the match would be perfect.
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We did not include any modes from C-series, because they do not give any significant con-
tribution to the expansion, but on the other hand, modes from A-series showed themselves to be
the uppermost of the modes, especially in the negative axis. We talked about these series right

after the equation (2.41).
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3 Finite well potential

This section contains a process of solving the Schrodinger equation with a different kind of
potential. As for the delta case, we continue with ground states and then with resonant states.
After that, we look into the completeness of these states through a weaker and a stronger proof.

We consider now the following potential

Vo —d<x<d
V(z) = (3.1
0 otherwise

for some positive constants d and V{,. Figure (3-1]) shows its plot.

V(x)

Figure 3-1: Finite well potential V' (x).
The equation we are going to solve will again be (3.2) with the overall energy (3.3).

10V (z,t) = HY(z,t) (3.2)

1
H = —§6m +V(z) —ex (3.3)
and the proposed form of the solution W(z, t) will be (2.3)). After substituting this form, we get

wrb(z) = — (@) + V(@)b(a) — eap(a) (3.4)
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In the following sections, we investigate the ground state, that is ¢ = 0, and the resonant states

e > 0 as we did with the delta potential.

3.1 Ground state

In this part we consider no laser pulse ¢ = (. The form of the potential creates regions where the
solutions will be different, so let us denote ¢ (z) for x < —d (region 1), Yy (x) for —d < z < d

(region 2) and ¢3(x) for d < x (region 3). The equations we are solving are

{(z) = —2wih (2) (3.5
5(7) = —2(w + Vo)iba(x) (3.6)
3(x) = —2wihs(x) (3.7)

where w is in fact a scaled energy of the state and since this is a ground state, we expect 0 <

w < —Vj so we can write w = —v2, where y > 0. Then the solutions to (3.5) - are

U (r) = areM” + age™™” (3.8)
o) = az cos(kex) + aysin(kqx) (3.9)
Ys(x) = ase™” + age™M" (3.10)

where k2 = 292 and k2 = 2(Vp —~?). In this case we prefer writing the solution in region
2 with goniometric functions rather than exponentials for convenience. Assuming that the so-
lution should decay for large negative and positive z, we need to put a; = ag = 0. From the

conditions it should obey, we get four equations for 4 left unknowns.

U1(—d) = tha(—d) (3.11)
1(=d) = ¥5(—d) (3.12)
Ya(d) = 13(d) (3.13)

5(d) = ¥5(d) (3.14)
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These conditions can be written in a system of equations in a matrix form as follows.

ekrd — cos(kad) sin(kad) 0 as 0
—kefd —kysin(kod) —ky cos(kad 0 a 0
M — 1 2 sin(kaed) 2 cos(kad) s | _ (3.15)
0 cos(kad) sin(k2d) —ehid aq 0
0 —kysin(kod)  kocos(kod) —kyefrd as 0

To avoid the simple zero solution, we must set the determinant to be zero. This gives us an

equation for ground state energy eigenvalues w? . The equation is

e*™ ((k} — k3) sin(2dks) — 2k1ks cos(2dks)) = 0

G _
T + cot (2dky) =0
272 —1
det M(w) = + cot <2d\/2 Vo — 72)> —0 (3.16)
2v/72 (Vo —72)

The eigenvalues wj.’ can be computed using some numerical method. The eigenvalue equation
has +? as a variable which is positive. The starting points can be therefore chosen as
grid points on the real line between 0 and V{. The vector of coefficients are computed as in
previous cases. The numerically computed ground state eigenvalues &)3‘? take non-exact form so
det M(d}f ) ~ 0, but not 0. With computing the eigenvalues of M we pick the least one and
the its corresponding eigenvector will be the vector of coefficients. We have done this when we

discussed the Dirac delta case on page[I5]

elw(x, )] Rely(x,o)] Rely(x,wf)]
10
b

Re[y!

0.004]
0.0

0.44 - 0.002]
02

10 -5 0% 10 -5 5 10 ¥ 10 -5 5 10 ¥

02

- ~0.005 002]
/0.08]

0.010) 0.004]

(a) wi = —0.119307 (b) w§ = —0.414282 (¢) wi = —0.664656

Refw(x,af)]

0.003
0. Ouzl

(d) wd = —0.849498 (e) w! = —0.962183

Figure 3.1-1: The real part of the ground eigenstates for a well potential for 1y = 1,d =
O.
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In our example of ground states in Figure (3.1-1) we used V{; = 1 and d = 5. We got totally 5

eigenvalues wf for which correspond 5 eigenstates.

In order to predict how many of these eigenstates we get or how many solutions does (3.16)

have, we separate the solution ¥»(x) into an odd, in which we set a3 = 0, a4 # 0 and an even

part, where as # 0, a4 = 0. Applying the conditions (3.11)-(3.14) for the even case, we get

age "M% = a4 cos(kyd) agkie ™% = aykysin(kyd), ataz = —d (3.17)
ase "M% = a4 cos(kyd) —askie ™M = —aukysin(ked), atz =d (3.18)
and the odd case is
age M = —qay sin(kyd) askie 9 = ayky cos(ked), atz = —d (3.19)
a56_k1d = Ay Sin(kgd) —a5k51€_k1d = CL4]€2 COS(k’Qd), atx = d (320)
Taking the ration in each case for x = —d and = = d we get
—kid —kid
ase a4 co§(k2d) ase _ COS‘(de) even 321)
askie=Fd  au ko sin(kod) —agkie~Fd  —ayko sin(kad)
ayekrd _ sin(kad) aseF1d 0 sin(kad) odd (3.22)
agkie=#1d  ayky cos(kad) —askie k14 asky cos(kad)
from which we can see, that we the ratios for + = —d and x = d are the same for both cases, so
we can write
ko tan(kod) = ky even (3.23)
kg COt(ngd) = —]'Cl odd (324)
Let us multiply these two equations with d, so we get
ptan(p) = v even (3.25)
peot(p) = —v odd (3.26)

where 11 = kod = d\/2(Vy — +?) and v = kyd = d\/272. Observe, that for 1 and v we have
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the following equation
w2 4 vt =2d%(Vy — 4%) 4 2d292 = 2d*Vy = N2 (3.27)

where \? = 2d*Vj. All the points that satisfy (3.25)) and (3.26)) can be determined as the
intersections of the circle (3.27)) with the radius d/2V, and the curve ptan(u) = v for even
states and p cot(u) = —v for odd states. Graphically it looks like on Figure (3.1-2).

v

6 i |

5

%

— even

3 — odd
ok

"] =

O . . . . . 1 1

0 1 2 3 - 5 6 H
Figure 3.1-2: Graphical determination of the energy eigenvalues w? . The blue lines
represent the curves for even states ptan(y) = v and the red line the odd states
peot(p) = —v. The four different radii are A = Z,A = 7,A = 3F and A = 2.

Here we can see the curves belonging to the even (3.23) and odd states (3.26) as well as four
different quarter circles with different radius A = 5, A = 7, A = 33” and A\ = 27. It is easy to
deduce how the number of intersection depends on the radius. If the radius is 0 < A < 7, then
we have 1 intersection. For a radius § < A < 7 we have 2 intersections. Generally, we get V;

intersections or eigenstates if the radius A is
(M—Ug<A<Mg (3.28)

We can get from this an explicit formula for this number by dividing the range @ by 7 and
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rounding up the number we get in the middle. We then get

N, — [%w _ [_2”‘12%} (3.29)

™ s

For example in the case A = 5 we would get V; = [3.1831] = 4, which we can check in Figure

(3.1-2) that it is correct.

3.2 Resonant state on a complex line

We solve now the well potential with a laser pulse for ¢ > 0 in (3.3). We already know from the
Dirac delta case, that for large positive x, the solution grows beyond measure, so we skip this
solution and jump right into solving it on a complex line as in (2.42)). Let us therefore apply the
knowledge from (2.43), (2.44)). The Hamiltonian then is

— d—2 r<x
H=D+V(z)—ex, D= A ¢ (3.30)
e L >,

N= N

Hence, the z-axis is divided into 4 regions, where the differential equations using / in the

equation (3.2)) are

"(x) + 2w+ )y (z) =0, =< —d (3.31)

V(@) 42w+ Vo +ex)ihy(x) =0, —d<z<d (3.32)

3(1) +2(w +ex)s(z) =0, d<uz <z, (3.33)

(z) + [2exe™ 4 26 (v — x.) 4+ 2we™ | Pu(z) =0, z. <ux (3.34)

which construct the overall solution ¢(z). The solutions to these equations are Airy functions,
but under some variable transformations we are going to introduce. It is clear that the same
transformation y; () is for ¢; (z) and v3(x), that is y; (z) = y(x), where we introduced y(x) in

(2.24).

y1(z) = y(r) = —2a(ex + w) (3.35)

52



where o = (2¢)73. The transformation y4(x) for 1, (z) was introduced in (2.47). The only new

transformation is for 1 ().
yo(2) = —200(w + Vi + ex) (3.36)

for some constant c,. With this change of variable the equation (3.32)) becomes

o248 (a(@)) — 2 go(a)) = 0

Q2
5 (y2()) — Zéi@ Ua(y2(z)) = 0= ay = (4%) 3 (3.37)
5(Y2) — Yatha(y2) = 0 (3.38)

Observe, that avy = . We use all the information to write the overall solution as

P1(z) = aAi(yi(z)) + aBi(yi(z) = < —d

(z) = Pa(z) = G3AT(y2($)) + a4B?(y2(l’)) —d<x<d (3.39)
Us3(x) = asAi(yy () + agBi(y1(x)) d<x <z,
Yy(x) = CL7C1+(3/4($)) +asCi (ya(z)) x. <

We set ag = 0 because of the same reasons as explained at the page , that Ci~ represents
an ingoing wave. Also, we set a; = 0, because for large negative = the function Ai(y;(z))
decays. The form of 13(x) is decided based on the same principles as we did in - .
These principles were 2 conditions at = x.: the continuity and the continuity of the derivative.
According to this a5 = iay, ag = ay. This tells us, that 13(z) = a7Ci* (y,(2)), but we did not
apply the continuity conditions at the points z = —d, d, which is going to determine the rest of

the coefficients. Summing it up, we get

Y1(z) = a1 Ai(y (7)) < —d
Ya(x) = azAi(y2(r)) + asBi(ye(z)) —d <z <d
W(x) = (3.40)
Y3(z) = a;Cit (yy(x)) d<z <,
| Ya(z) = arCi¥ (ya(2)) Te <
As usual, we set up a system of equations based on continuity conditions at x = —d,d. In

this system we do not consider 4(z) and the conditions at x = z, either, because those were

53



already used. Let us denote the following constants to make the computations easier.

Ay = Ai(yi1(=d)) Ay = Ai(y2(—d)) By = Bi(y2(—d))
Ay = Ai(yz(d)) By =Bi(ya(d)) O3 = Ci'(yi(d))

(3.41)

With this notation and the fact that v} (z) = y5(x) = y4(z) we can write the conditions as

CLle = (13141 + CL4Bl
a1A6 = agA’1 -+ Q4B£

(3.42)
CL3A2 + CL4BQ = CL503
(lgA/Q + a4B§ = CL5C§
which we can write in a matrix form as
AO _Al _Bl 0 ay
A —A —-B 0 a
Mw)=|"° "+ ! ° = (3.43)

O A2 B2 —03 aq
0 A/Q Bé —Cé as

o o o O

Using a mathematical engine, the determinant £(w) = det M(w) can be easily found.

+ AgBoALCY + AyCy ALB, — AgAsBLC,
— AAL(Cy By — ByCl) — ByA(Cy Al — AyCl) — Ag A (CyBY — BoCl)
+ AgB1(C3 Ay — AyCy)

= (AoA| — AYA1)(B2C5 — ByCs) — (Ao By — AyBi)(A2C5 — AyCs)
(3.44)

We are interested for which w the expression above F(w) is zero. We must not forget that in

transformations being in (3.41)) is the variable w present.
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Figure 3.2-1: Contour plot of F(wg +iwy). The green and red lines are the zero contours
of the real and imaginary part of F'(wr+iwr), where the parameters were ¢ = 0.03, V() =
0.5,d = 4. The blue lines are contours of various values of the modified eigenvalue

formula E(wg + iwy, p) (3.45) for p = 0.4.

To see better the zeros of £, we introduce a modified eigenvalue formula via a conversion of

the absolute value | F/| in the following way
~ _ -1
E=(1-(+1E) " +p) (3.45)

On Figure (3.2-1|is the contour plot both of £ and the modified £. The green and the red lines
are the zero contours of F and the blue line are contours of E. The zeros can be easily located

on the picture.
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Figure 3.2-2: Plots of four resonant states belonging to four different eigenvalues.

To have the full form of resonant states for well potential we use the same principle as we

did earlier in the Dirac delta case. The conditions (3.42)) are written in a matrix form as

AO _Al _Bl 0

aq 0
Ay, Ay =B} 0 a 0

M) =|"" " ’ (3.46)
0 Ag Bg —03 ay 0

For a particular w; computed numerically from E(w) (3.44), the determinant of M(w;) is zero.

The vector of coefficients is therefore the eigenvector belonging to the least eigenvalue of

M (w;). We can recall this procedure from our previous case where we computed the eigen-

values for the Dirac delta potential on page (I4). In Figure (3.2-2] we picked 4 eigenvalues and
plotted the corresponding resonant states.
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3.2.1 Numerical solution

In this section we will find a numerical solution to the Schrodinger equation for the Hamiltonian

(3.30). We modify the equation into the form

iUy, 1) = —%&m\l!(x, B+ V(@) (@, t) — exb(, 1)

Uy ) — i %am—V(x)—l—ézv W(z, 1)

U (t) = iO(x) U (x, 1) = iM(t) (3.47)
The operator O(z) = 50,, — V() + e will be approximated by a matrix M and the solution
U (z, t) by a discrete vector ¢(t), where the discretization is in the z variable as 1;(t) = (1),

where z; is explained later. To achieve this, we approximate the solution by a polynomial

U(x,t) =~ P(z) =ag+ a1(z — x,) + as(x — 2,)> + ... + ap(z — x,)F

i=k
= Z ai(r — )’ (3.48)
i=0

where £ is the order of the polynomial and x,, is a discrete point on the axis. First, we choose the
boundaries for our space to be [— L1, Ls|. The axis is discretized such that z,, = x¢g+nAz,n =
0,1,...,N, where xy = —L;,xy = L. The matrix M has then size (N — 1) x (N — 1).
Note, that this discretization takes place on the complex line, so the right boundary Ly should
be chosen such that the breaking point z. (2.42)) is included in it. The boundary values z, z
are known from the initial condition V(x,0) = 1 (z,w;), where 9)(z,w;) is the ground states
belonging to the eigenvalue w;. Let us denote P(x,) = t,. For a particular point z,, the

operator O(x,,) becomes

O(xy,) = ag + expag, |d| < x, (3.49)

O(z,) = az + (exy + Vo)ag, |d| >z, (3.50)

The coefficients a; are computed in the following way. Let the order of the polynomial be
k = 2. In this case we have 3 unknown coefficients in the polynomial, so we need to use 3

points, namely x,,_1, T, n11. The polynomial is now evaluated in these 3 points and we get a
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system of 3 unknowns.

1 Tpn-1— Tp (l'n—l - xn)z Qo wn—l(t>
0 0 a |l =1 v (3.51)
1 Tpy1 — Tp (xn—l-l - xn)g a2 2/}n—|—1<t)

This gives us ag and as as a linear combination of the discrete solutions. We substitute these
into or and the result is a linear combination of v, _1(t), ¢, (t), ¥y 1(t). The
coefficients of this combination represent the n-th line in the matrix M,,...

There are three special points that should be mentioned separately. The first is the breaking
point where the "complex part" begins x.. This point should also be a point on our grid, because
this is the changing point to the complex part of the contour. The two other important points
are x,, = —d, d. The same applies here too except the complex part. Since these are transition

points, we treat them in a different way. We use the conditions for the derivatives (3.12), (3.14).

Using (3.48) we get

for z,, = —d, d, where the coefficients a;” and a] are computed as illustrated in (3.51) but using
the points z,,_9, x,,_1, T, for a; and the points ,,, T, 1, Tp42 for ai“. After doing so, these are

then substituted back to (3.52)) and we get a linear combination which we can write

wn@) = F(wn—Q(t)a Qpn—l(t)? ¢n+l(t)a wn+2(t))7 /at
¢;L(t) = %_23%72}7 + %_18%71}7 + w;—i-lalﬂnﬂF + ¢;+26¢n+2F (3.53)

where the function F'(-) is some linear combination of the arguments, so the derivatives 0y, F’
are the coefficients of that linear combination. The derivatives ¢}(¢) in (3.53) are exactly the
i-th lines in the right hand-side of the ODE system (3.47). For each of them we use the corre-
sponding i-th line in the right hand-side. After substituting all these expressions into we
get the representation of the lines corresponding to the points z,, = —d, d. The coefficients in

this line are then the coefficients in matrix M.
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Figure 3.2.1-1: The exact solution |¥(x,t)|(blue dashed) and the numeric solution

—

‘w(t)’(green) for square well potential plotted in one picture at four different times

t = 0, = 10, = 30 and ¢ = 65. This resonant state belongs to the eigenvalue
wy = 0.227766 — 0.0613823¢.

Figure (3.2.1-1)) shows the numerical solution for the case w; = 0.227766 —0.0613823:i. We
used the following parameters: L; = 20, Ly = 15, N = 171,k = 4. For the initial condition
we chose ¢ = 0.03, 2. = 5 and A = 1. One can see that they match almost perfectly at all times

and that it completely vanishes after some time.

3.2.2 Resonant states as a linear basis

Referring to the section about the Dirac delta resonant states as a linear basis, we can show in a
similar way that the resonant states of well potential also share this property of bi-orthogonality.

We show that the modes ;. (x) = 1 (x, wy) in (3.40) can be used for expansion of any function
f(z) as

@)= 3 atn(x) (3.54)

The eigenvalues wy, are of course entailed in the variable transformations y; (), y2(x) that can

be found at (3.35)) and (3.36)). The same inner product of the modes will be used ([2.77) as well

as the same conjugation (2.76). Although, we have extra conditions at x = —d, d this time, but

the vector spaces defined in (2.84)), (2.85)) do not change, because it is actually the condition at
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x = z. that defines the two spaces. Let ¢, and v, be two eigenfunctions corresponding to the

eigenvalues A\ and p. The inner product

(or) = | " @) 1 i / OO @ (a)de (3.55)

—0o0
works with functions from the following spaces

+

{oa} e i = {ea(@)lel? = —i | (3.56)

{0} € vo = {wu@)luy =i } (3.57)

where '@ = lim,_o ¢’ (a £ €). Using the eigenvalue problems Hpy = Aoy, Hip, = pib,,

where H' is the adjoint to H, we have

(A= 1) (ox:¥) = (Apa, ¥u) — (@r, b)) = (Hon, ¥u) — (ox, H'1y) (3.58)

Showing the bi-orthogonality then reduces to showing that the Hamiltonian H is self-
adjoint. If we look at the actual form of H for the well potential with § = 7 and the
previous computations (2.87)), we can see that all the trouble was at the second derivative. The
other terms in H did not get involved whatsoever, which means that / is self-adjoint also in
this case and the resonant states for well potential form a bi-orthogonal system of functions.

We can now try to test it out by creating a random linear combination of the modes f (x) as
we did in the Dirac case. So first, we have the function f (x) created with random coefficients

¢ in (3.54) and then we use this to compute the actual coefficients ¢, as in (2.91)) to form a new

function f(x) (2.90).
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Figure 3.2.2-1: Comparing the function f(z) (red dashed), that was computed using
the biorthogonal product of resonant states and the randomly generated function f(x)
(green).

We can see the results on Figure (3.2.2-T). The parameters we used for the resonant states were
d=4,z. =10, = 0.03 and Vj = 0.5. We totally used N = 50 states from A-series. On the
next figures we tried to approximate a Gaussian g(z) = e~ ysing first N = 20 modes and
then N = 400 modes. Also, the location of the Gaussian was changed three times, in particular

¢ = —10,0 and £ = 4. The parameters of the modes were the same as for Figure (3.2.2-T]).
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Figure 3.2.2-2: Comparing the Gaussian g(x) = e~ (@=8)? (green) located at three differ-
ent places and approximated with N = 20 and N = 400 resonant modes (red dashed).

From Figure (3.2.2-2) it can be seen, that in the case £ = —20 an improvement happened. We
can conclude that in this case the expansion is a very good approximation. The same can be
stated in the second case, but no in the third one. Although, if we look on the part for negative
in these cases, some improvement is present. It appears that the situation can be the same as in
the Dirac delta case, where we proved that we the expansion converges only for those functions
which have their support on the negative real axis. We will see later, that this condition is
slightly different for the well potential.

In the following section we repeat the proofs of the completeness, but this time for the well

potential modes.
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3.3 On the completeness of the resonant states for well potential

This section is about inquiring into the completeness of the resonant states for well potential. It
will contain again two kinds of proofs: a weaker and a stronger. Before that, we first derive the
scattering form of the resonant states. It is to allow not only outgoing but also ingoing waves in
the positive z direction represented by Ci* for outgoing and Ci~ for ingoing. We take the form
(3.40) and rewrite it including the ingoing wave, rearranging the coefficients and dropping the
complex line, because that was just for decaying purposes. Instead, the asymptotic behaviour

will be important. So the scattering form of (3.40) is

a1Ai(y1 (7)) T<—d
azAi(y2 (7)) + asBi(yz(z))

as,Cit(y1(z)) + asCi~ (y1(z)) d<z

Yy, (x) = (3.59)

—d<z<d

where y; () and yo(z) are from (2.24)) and (3.36). For this function 1),,(x) there are 4 continuity

condition at the walls of the well x = —d, d. Applying these we get a system

AO —Al —B1 0 ay 0
A —A —B 0 | | a 0
M(w)d = =as (3.60)
0 A2 BQ —Cg as D3
0o 4, B, - \a D,

where we used the same notations as in (3.41)) and with additional D3 = Ci~ (y;(d)). Using a

mathematical engine we can obtain a solution to the system (3.60).

o — —a (B A} — B1A,)(C3D} — C4D3) _ 2i(AyBY) — ALBy) . 2i
° det M(w) mdet M(w) ° 72 det M(w)
(3.61)
(BiAy — BiA)(CsDy— C4Dy)  2i(Bud— BiAY)
— = 3.62
2 5 det M(w) O det M(w) (3.62)
(A1 AL — AL Ao)(DsCh — DLCly) 2i(A1 Ay — AL Ao)
= — = 3.63
3=~ det M(w) 5 det M(w) (3.63)
— AL(B1D3sAy — A1 D3BYy — Dy(As By — A1 Bs))
det M(w)
det M(w) P detM(w) '
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where we recognized that the numerator in (3.64) is actually —det M(w). We get to choose

det M(w)
det M(w)

1
) ’ Substituting this into

as as we please. Let it be the same as in (2.98) a5 = —1 <

(3.61)-(3.64) we can write the resonant states (3.59)) as

(

5 Ai(y1(2)) T < —d
77 [(BiAo — BiAg)Ai(ya(x))
+(A1 Al — A Ao)Bi(yg(x))] —d<xz<d

| (E359) Cit (o) — 1 (2259 G (o)) d <z

7r2|detM

w\detM(

(3.65)

with the normalization constant y computed in Appendix (C).

3.3.1 Weaker proof

This subsection will contain the mentioned weaker proof of the completeness of the resonant
states (3.65). Our staring point is the completeness relation for the scattering form of resonant

states.
/ ) Yoo (2)1hy (2')dw = 0(x — 2') (3.66)
Define a function for each R
R
Fr(x,2') = / Yo (2)y, (") dw (3.67)
-R

that converges to d(z — z’) as R goes to infinity. We introduce a closed contour I' as on Figure

(3.3.1I-1)) on the lower complex frequency half-plane.

-R R

Figure 3.3.1-1: Closed contour I'r on the lower frequency half-plane.
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Note, that the curve I'y we integrate along, must be negatively oriented, that is the interior of
the curve is on the right side when travelling along the curve, because we chose Fr(x, z’) to be
an integral from —R to R. This contour can be divided into two parts and using the Residue

theorem, we get
| @l = [ du()ila)d + Pl
~2mi Z Res(uso(a)vu(e’), ) = | thu(apiu(e)do + Falw, o'
Fale,a/) = 2 3 Res(t(w)iule), )
J
- [ vl)inla)de (3.68)

where w; are the poles of the integrand located on the lower half of the complex frequency

plane. Let us now express the residue. From (3.65) we have for x > d, 2’ > d

Pl ) = = {;ﬁ——mmyl (£))Ci™ (1 () = Ci (3 (2))Ci* (31 (2'))
+—j§ ﬁgi; Cit (y1 () Ci* (1 (2)) — Ci™ (yl(x'))Ci+(y1(I))} (3.69)

forz >d, 2’ < —d

Yu(@) ()
- 22 (o O DA () — O @A) ) BT

forz’ > d,x < —d

o (@)t (7))
= 2:; (detl\l/l(w)Ci*(yl(x’))Ai(yl(x)) - mCi‘(yl(ﬁ))Ai(yl(m))> (3.71)
forz < —d, 2’ < —d
N A . D
Yu(2)th(2) = ——— (o) et M (w)Al(yl (2))Ai(yi(2)) (3.72)



for—d <z <d, 2 < —d

N 4y .
) = e e S A (@)
[(B1 Ao — B1Ay)Ai(ya(x)) + (A1 Ay — A1 Ag)Bi(ya(2))] (3.73)
for—d <2’ <d,x < —d
bul@) () = i)
s 8 det M(w)det M(w) "
[(B1Ao — BiAp)Ai(ya(z')) + (A1 Ay — A1 Ag)Bi(yz(2'))] (3.74)
for—d<x<d, 2’ >d
Yulaule’) = 22 (B Ay — BuAY Ai(ya()) + (A1 4f — 4, A0)Bilya(0))]
P (P
(et O 0D ~ 5O G ) (375)
for—d <2’ <d,x >d
Yulabula’) = 225 (Bl Ay — BuADAR(n(x) + (A1 4) — A5 AgBi(ya(e’)
1 1
(i O )~ S (o) (3.76)

and for —d < x < d, —d < 2’ < d we have

N X’
Vulelul) = 72 det M(w)det M(w)
[(BjAo — BiAg)Ai(y2(x)) + (ArAy — A1 Ag)Bi(yz(2))]
[(B1Ao — BiAp)Ai(ya(2')) + (A1 Ay — A1 A¢)Bi(yz(2))] (3.77)

We are looking for the poles confined in the lower half-plane w; of these expressions and we can
see that these poles are only when det M (w) is zero. The complex conjugate of the determinant

has zeros on the upper half-plane and thus they are not inside the contour I'y. From Figure
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(3.2-1) it is clear that the poles are simple. We can then write

?Mwwwmmmzimmm)%mxmm%=?ﬁ%ﬂj:%}

1w, det M(w)
(BTG (3 (0)) O () > dr > d
25Cif (y1 (2)) Al (11 () v>da < —d
2Cﬁ( 1(2")) Al (y1 () r < —d,2 >d
wigernt, M (01 () Al (1 (2)) < —d, 2’ < —d

7r3detM Aij(y1(2")) [a;AL;(y2(x)) + b;Bij(y2(2))] —d <z <d 2’ <—d
(

e A (0(2)) [a;A1(12(2)) + 0Bl (12(a))] @ < —d, —d <2’ < d

L0 () (AL () + bBiy(e(e))]  —d<w<da’>d
Ci (1 (2)) [0,AL (n() + 0B ()] d<o—d<a <d
m [a;Al;(y2(2)) + b;Bi; (y2(2))] —d<z<d—-d<z' <d
| [a5A8(y2(2)) + b;Bi; (3o (27))]
= ¥;(2)y;(2) (3.78)
with
i (det M) ? Cif (y1()) x>d
1 —
o) =x (20 i {osi 4Y ) )
Pz Ldet M) [aA (42 (2)) + BBl (2(2))] —d <z <d
———Al;(y1 (7)) —d <z
L 7 (det j)z
(3.79)
where a; = (Bj Ay — B1 A)) ,bj = (A1 Af — A’lAO) and
Aij(y1(x)) = Al(y (m))‘ etc. It is easy to verify that the functions ;(z) are proportional
to the resonant states @D We can thus rewrite (3.68) using (3.79) in the form
5z —a') = Z;@ (2)9;(2") = lim /C U (@) 1h () dw (3.80)
J R

The completeness of the resonant states depends on the limit of the integral. Let us perform the

variable transformation w = Re® so we get dw = Re?idf. We use the asymptotic expressions
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(D.51) and from Appendix [D| For the sector —2F < # < 0 the asymptotic expression is

( 1 1
i 1 1
(’41R)1 e z,BQRQGW:JcRQ r < —d
zwfa? L 1 v
1 5 bl Yo
(HlR)l ¢~i(B+o)oR? (@R (a+2) —d<x<d
im202
xTr) = 1 1 1
77Z}w( ) X o 073 . eing (0736)6—131%2 (:E‘f‘%)
2(NR1)7I7r?
2(kR)4 e B R% wa? : o3 iB RY —wzRY
2L el — —Z= g ePohi?e d<z
\ 7202 272 (kR)4

(3.81)

For the sector —1 < § < —2F (D.93) decays independently of 2. Now let f(z) be any function

with a compact support. We will multiply (3.80) with f(z’) and integrate the equation with

respect to x’.

| a@ite = =Y [ i
A / ) / 0% F (@' )by (2)1h, (2") Reidfda’

R—o0

chzpj + Jim / F(R,0)tp,(x)Re?id

where we used w = Re® and

F(ro) - [ " (o) da
- [ s

(3.82)

(3.83)

(3.84)

If the function f(z) has its support confined in a region, then both variables x, 2z’ are non-

zero only in this region. Therefore, we do not need to consider the cross-terms in the product

oo () (2').
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Let f(x) have its support in the region = < —d, so for z, 2’ < —d we have
" X2(5R)E L ipond und o i
Z eti(@) + lim [ (R 0)X e = Rt
-2 1m202
= Z cji(z)

0
lim R4/ F(R, Q)I{ie_w@’“R%eR%(w|w*|_ﬂ‘gi‘)eiwi$3%eiedé’

71—20-2 R—o00 2:;1'
= E :CJ¢J ;
T2

s [0 L 1 1. 1 . L
lim R / F(R, Q)i 00 o202 pin(30)|R2 (sea=p) imiak o g (3.85)
— 00 27

3

_|_

1
o2

where o = (25)_%’ 6 = 2a€d, o= 2@%, K = 20[6i0 and

(;9) o = <t

w; =e(20)2 ¢

N[
Njw

= (20)7 ¢

sin (%0) (3.86)
10 3.87
cos (5 ) (3.87)

Note, that from (D.23)) and (D.39), (D.40) we know that p; < 0 and w,, w; > 0. The function

F(R,0) in (3.85) becomes

m\w

= (20)7 s

N =
/\
N —

e
~_

20 2

1
Z . 1 1
— 2 'R2
F(R,0) / fx’ - 1 e~ BeR? gwa B2 1

_ / F(a')e—BerR? () E [sin(30)|[RE e20p) ima RE (3 gg)
Z7T20'2

This expression decays for 2’¢2a — 5 < 0 which can be also written as

x < b

2w

, 2aed

< =1 <d (3.89)

[Sy187

and essentially the same goes for the « variable in (3.85]), which means that in the current region
x,x’ < —d we have a point-wise convergence for f(z).

Consider f(x) now having its support in the region —d < = < d, so for —d < z,2’ < d
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(3-82) becomes

0 i L ol
0= Sento) i x [ P (A oot e
J

R—o _ 27 /L7T20'2
3

1
_0—26@5{%(0—3/3)6*@3% (‘”*?)) Reido

(IQR)% 3
0 1 . % R% Vo i0

= chwj(x) —4— lim R4/ F(R,0)k1e (Bto)eR? o= (++3) g

- 7T20'2 R—o0 72?‘”

ot 0
_3 ioRT(o— - % Yoy e

—i—Xz lim R4/ F(R,0)r~1¢iel? (0=38) o=k (++) g

2 2 R—o0 _2?71'

— - li R4
;Cg%(:ﬁ) 1 7 gm

0
/ F(R,0)k1 —i(B+0)er RE (R3[| (a+20) = (B+o)ail] yiwi B2 (o4 2) i g

5
= E c lim R4
jwj l % R—o0

20

_ 27

O
/ F(R, e)ﬁie—i(ﬁﬂ-a).@rl%% 6(204)% ’sin(%@) ’R% [52a(x+?)—(6+0)] eiwiR% (r—i—?)ewde

3

o3 0
+ Xz lim Ri / [F(R, 6)

27r2 R—o0 _ 2w
3

HfgeigrR% (073ﬂ)e(2a)% |sin(%0) ’R% [—620((1:—}—%)—}—(0—3,3)]e—iwiR% (;r—&-?)ew do (390)
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The function F'(R, 6) in (3.83) in this case becomes

.11
1202

F(R7 (9) ~ / f(l'/> (2(/{}%)4 e—z’(ﬁ—i—a),@R% ewR% (a:’—&-?)

1
o2 o1 B _ % Vo
_ ezgR2(a 35)6 wR (:1:+ - )) dz’

o3
2kR)im

/Oo f(x/)eigTR%(a—:sﬂ)e(Qa)% |sin(%6)|R% [752a(x’+?)+(073,8)]efiwiR% (z’+%)dx/ (3.91)

o=

where o = (25)_§, B = 2aed, o0 = 2aV, and k = 2ae®. We can see that we have two integrals

both in (3.90) and (3.97)). Let us investigate under what conditions each of them decay. In both

expression we get the same results for x and 2’. The first integral vanishes if

2 <x+%) —(B+0)<0

OEETIN
e2a €
2aed + 2aVy — V2«
T <
2«
r<d (3.92)

and the second one vanishes under the condition

—2a (x—f—%) +(e—=368)<0

ik CA
e2a €
2aVy — 6aed — Vo2«
T >
e2a
T > —3d (3.93)

These are rather nice results, because both of them are obeyed, since we are in the region

—d<z<d.

Finally, suppose that f(z) has a support confined in d < x. For d < x, 2’ the equation (3.82))
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reads

N»—‘

0 1 1
:[;) = Z Cj¢j( — lim ] F(R, 9) < ( i —iBoR?2 ewa?
J

1
R—o _ 27 mT20
3

o BoR® R? i0
—j—————— PR o Re™id6

2 0 | 1
= Z cjv;(z) + lim Ri / F(R, H)Hie_zﬁgm e R eifqp

1 1
m202 R—oo 2m

7 3
1 0 3 1 1
lim Ri F(R, )k 1P0R? g==eR2 cifqp

27"'2 R—o00 _ 27
3
2

= g c]¢j —— lim R4

T202 R—o00

0
/ F(R, H)fiie*w@rR% eR%(er:v*BIQil)eiwizR% XY

0 5 1 1) 1 , L

2 ]%H}n R4 / ) F(R’ Q)Hfielﬁgrl'?? 6(204) 2 ‘SIH(%Q) |R2 (—52041‘4-5)672171':)3}27 ezede (394)
7'('2 0o _2m
3

The function F'(R, ) in (3.83) in this case becomes

1 1
R 9 / f - 24 —iﬂgR% ewaz’R% - 102 —e zﬁgR2 —wa: dz’
T202 272 (kR)%

1 1. 00
P 021 . 1 1
A 1) / —zﬂgRQ Pty R2 dz’ — - / f(l,/)ezﬁng e—wx’R2 dz'
T202 (/QR)Z _
1
1 / 4 / —z,@grRQ (2&) |sm(%9)|R% (€2ax’fﬂ)6iwiw'R% dz’
mT202
1 1 1
021 ) 1
S — / f zBQTR2 (20)2 |sm(%9)|R?(—52ax’+ﬁ)€—zwix’R2 dx' (3.95)
5 Z

where as before o = (25)‘% B = 2aed, 0 = 2aV, and k = 20e’®. We have again two integrals

both in (3.94) and (3.95). This time we will look at the conditions when these integrals grow

exponentially in the limit R — oco. In both expression we get the same results for z and z’. The
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first integral grows if

2w

For the second one we have growth if

—2ax+ >0
B

r<< —
2w

T <d

(3.96)

(3.97)

At this point we can conclude that in region d < =z, the first integral in (3.94) and (3.95)

grows while the second decays, so overall we get a divergence in this region. Summing it up,

we showed, that f(x) can be represented by the resonant states (3.65) only when f(z) has its

support confined in = < d.

3.3.2 Stronger proof

This proof is again a proof of the completeness of resonant states (3.65)) from a theoretical point

of view as in the previous section only in a different way with more specific conclusions. We

start again writing down the resonant states in a scattering form.

( .
aeeni (v (2)) r < —d
raeiaiay (B1Ao — BiAy)Ai(ys(x))

— 1 1
. (detM(w) \ 2 - . (det M(w) \ 2 ~-—
(! (de:MEMD Ci¥ (y(z)) — i (ﬁ) Cim(yu(z)) d<uz
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with the normalization constant x computed in Appendix (C)) and

X =253 (3.99)
yi1(x) = —2a(er + w) (3.100)
yo(z) = —2a(ex + Vo + w) (3.101)

Ag = Ai(yi(=d)), Ay = Ai(yz(—d)), Br = Bi(yz(—d))
with a = (2¢)~3 and the determinant
det M(w) = (AgA} — AyA1)(B2Cy — ByCs) — (Ao By — AgBi)(AxC5 — AyCs) - (3.102)

We can use the continuity conditions at * = d and x = —d to write (3.98)) in a different form.
At x = d we have

2
7| det M(w)] (

~ (%) O (1 (@) ~ i

7| det M(w
2[(B1Ag — BiAp)Ai(y2(d)) + (A1 Af — A1 Ao)Bi(y2(d))]

(@<ggg%%%§%)2(jﬁ(y1«0)—-i<g%%%%%§%)2(ji(y1@0)> (3.103)

which we use to rewrite the region —d < = < d as

B Ay — BiAG)Ai(ya(d)) + (A1 Af — A} Ag)Bi(ya(d))]

1=

2| det M(w)| [(B1Ao — B1Ap)Ai(ya(x)) + (A1 Aj — A1 Ao)Bi(yz(x))]
2| det M(w)| [(B’ Ag — B1Ay)Ai(yz(d)) + (A1 Ay — A3 Ag)Bi(ya(d))]

(z (jtﬁgwi) Cit (30 () — (jt——m> % cr<y1<d>>)

_ [(B1A) — BiAp)Ai(ya(x)) + (A1Ay — A1 Ao)Bi(ya(2))]
[(BjAy — B1A{)As + (A1 A) — A Ag) By

N =

Ci_(yl(d))> (3.104)
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Similarly we can use the continuity condition at x = —d and the newly rewritten region —d <

x < d (3.104).
2 Ai(y(—d)) =
w2[det M(w)[ ! -

[(B1Ao — B14g) Ai(ya(=d)) + (Ar1Ay — A1 A0)Bi(ya(—=d))]
[(B{Ag — B1A) Ay + (A1 Ay — A} Ag) Be]

[ det M(w) : o [ det M(w) .
(z (v ) o)~ (Fnps ) o <y1<d>>>
| et M(w)| [(BfAo — ByAf) Ay + (4,4 — 41 Ay) )
T T 24, (Bl Ao — BiAp) Ay + (AL Al — AT A0)Ba]

(z' (Fvig) o)~ (Fpa )’ cuyl(d)))
_ 7| det M(w)|
2 [(Bi Ao — Byl Ay + (A Al — A, Ag)Ba]

(i (%) : Ci* (y(d)) —i Gz——ﬁéZD 2 Cj(yl(d))> (3.105)

N

[

1

where we used [1]] (10.4.10). We can use this result (3.103)) in (3.98) for the region z < —d and

it becomes

7| det M(w)] 2 Ai((2)
1 i
2 (B[ Ay — Bi AN Ay + (A AL — A, Ag)By] 72| det M(w)| !

<z- (%) " it () — i (jz_—m@) : 01<y1<d>>)

. Ai ()
7 [(BiAg — BiAy)As + (A Ay — A1 Ao) By
(z‘ (jEE—M) Ot (d)) — ¢ (ji——m) R (yl(d))> (3.106)
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Denoting p(w) = (Bj Ay — B1Ay) As + (A1 Ay — A} Ag) B2 and using (3.104), (3.106) we write
(3.98) as

()

/ 1 i
. det M(w) \ 2 det M(w) \ 2 ~:— Ai T
@((detM&)) Ci* (1(d) — (fepad ) Ci (y1(d))) ) 5 < g
det M (w det M (w % -
z((detM ) e () — (2) ¢ <yl<d>>)
[(B{Ao—B1A6)A1(y2(UC))+(A1A6—A’le)Bi(yz(ﬂﬂ))]
P()

i () Cit (g (1)) — i (224) O (3 () d<a

(3.107)

We showed earlier that the Airy functions Ci*(z) can be interpreted as in- and outgoing waves

(2.31)), which means, we can define in- and outgoing waves )= () in terms of the representation

@.197).

( 1
. (detM(w) ) 2 - Al (z
! (dezMEwD Cl+(y1(d))% < —d
R 1
v )i G ) d<z<d
o(@) =x / A TR (3.108)
[(B} Ao—B1 Ap)Ai(y2(2))+(A1 Ay — Af Ao)Bi(y2 (@))]
p(w)
1
det M(w
\Z<deEMw)> Cl( ()) d<cx
(
det M(w Ai T
i () o @) <
. det M (w B
U (x) = x Z(deth)) Ci (y1(d)) d<z<d (3.109)
w [(B/AO B1A6)A1(y2(z))+(A1A6—A’1A0)Bi(y2(x))]
p(w)
1
det M(w
L Z(deth%) Ci~ ( ( )) d<zx
Observe, that the functions )= () are continuous at # = —d, d, also the derivative at z =

—d is continuous, but their derivative at x = d is not continuous. Also observe, that by this

construction we have

Yo(r) = 95 (x) + ¥y () (3.110)
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The completeness relation for scattering states as before is

/OO V()b (2")dw = 6(z — 2) (3.111)

Let f(z) be any wave-function. Then using the completeness (3.111) we get

fa)= [ oa-apeas= [ [ uuniodereds e

We use second times as we multiply (3.111) with f(z) and integrate over the whole space:

[ e = [~ s s

—00

/_OO a(w) iy (s)dw’ = f(s) (3.113)

where a(w') = [t (z) f(x)dz. We substitute (3.113) back into (3.112)and we get

N /_: /_Z Yoo (@) (s)dw /_ Z (W)t (s)dw'ds
- /_: a() /_ Z Vo) /_ : () (5)d sl (3.114)

Using the separation of the resonant states into outgoing and ingoing waves (3.110) we can

rewrite (3.114) as

f(z) = /_ Z a(w’) /_ Z Y () /_ Z Vo (8) (U2 (5) + 12 (s))dsdwdw’

[t [t [ vt isasuns
/ / Yol / V(s s)dsdwdw’
- /_OO a(w’) /_Ooi/fw(q:)TJr(w,w’)dwdw’—k/ / Do) T (w, w')dwde

= [*(@) + [~ (2) (3.115)
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where we have defined the following quantities

TH(w,w) = /Oo V()0 (s)ds (3.116)

fE(x) = /Oo a(w") /00 Vo (2) TF (w, w')dwdw’ (3.117)

The integrand in (3.116) does not converge. It can be seen from the standard asymptotic ex-
pression of Airy functions in (2.31]), where we see that Ci*(z) is decaying algebraically, but not

fast enough to converge. That is why we introduce the following correction in the variable w’
Te (w,w') / Yo (8)U e (5)ds (3.118)

because the exponential part in the asymptotic behaviour in ll e*(¢+1) contains o’ through

¢= %(—yl(ﬂi))% and (3.100) so we can write
(3 (0545

eii(c'i'%) =e ( (2a(8$+w/))% %) =e

m\»—t

ex *+i

3
+i(§ 0o (14557)+5) _ Hi30ewd price@)ter,

INE]

e

Q

+i2(20) 2 (' %ig) 3 eii(za)%(w/ﬂg)%sx Eis

d

(&

. 3 . . 3 1 . .
:I:z%(Zozw’ﬂ (liz%)eiz@aﬂ (w')2 (I:I:z 25 )aac +i7

Q

e €
-2 n3 ne ¢ ; / SIS - T
+i5(2aw )?e—(Qaw )2 76:!:1(201)?( )? —(204)?( )2 5>pex Eig (3119)

(& 20" e

taking the absolute value of the last line we get

‘e—@a)%(w’)% e (3.120)

where it holds for the region |z| > d and the exponential decay for large = can be clearly seen.
We will perform calculations with a finite £ and in the end we remove this correction by letting
it go to 0 in a limit. Let us now focus on the integrals T*. Observe that we can write the

resonant states as

Yu(s) = U (y12(s,w)) (3.121)

raie(5) = UF (y1a(s,0 £i€)) (3.122)
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where the functions ¥, U are linear combinations of Airy functions in general on intervals
(—o0, —d) and (d, 00) and y; o(z,w) are the usual variable transformations written with w in

the argument which one can write as

yia(s,w) = 202 (51(5) + %) (3.123)
where we defined
S =1
si(s) = (3.124)
s+2 =2

For the next step we can use the formula (3.53) in [2] which says that if A(s) and B(s) are any

linear combinations of Airy functions then

1
/A(p(s + 1)) B(p(s + pa))ds = p2(51—_52)

—Alp(s + B1)) B (p(s + B))] (3.125)

[A(p(s + 51)) B(p(s + 52))

Using this in (3.118)) and the fact that the resonant states 1),,(s) decay at +oo, letting A(s) =
U (y19(s,w)), B(s) = ¥F (y12(s,w’ +i€)) and defying p = 2ae we get

—d

vi) = [0 (wp (s 2)) s (< (a0 + Z2E) Y

—0o0

= < ! S, w * (s, £
o p2(w—w’:Fi§) [\Ij (y1< ) ))‘I; (y ( ) + 6))
— (g2 (5,w)) O (g (5.0 £3€))] [
€ / =+ / .
+ 2w — o F i€) [\II (y2(s,w)) U= (ya(s, w’ £1iE))
— (ya(s,w) U™ (ya(s, 0’ £ 36))] |7 . (3.126)
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We go further and use the continuity of the derivative at + = —d, d for W(s), the continuity of

the derivative at z = —d for ¥*(s) (3.121), (3.122) and from (3.126) we get

+ no_ £
Telos) = o=
[0 (y1(5,0)) OF (1 (5, 0" £0€)) = ¥ (y1(5,w)) O (41 (5,0 +i€))] {C}di

N £
PAw — w Fi§)

[0 (ya(5,w)) F (ya(s, 0 £0€)) — ¥ (ya(s,w)) U (yals, ' +i€)] |7,

- _‘Z}/ — [0 (g1 (—d™,w)) U (yy(—d~, o' +i€))
—V (y1(—d™,w)) U= (i (—d ™, i) = V' (1 (dF,w)) ¥ (y1(d*, o' £ 1))
W (g1 (dh,w) U (yi(dh, W' £4€)) + V' (ga(d™,w)) UF (ya(d ™, +1if))
—V (y2(d™,w)) U= (ya(d™, W' £4€)) — W' (yo(—d*,w)) U (yao(—d", o' £ i)
U (ya(—dT,w)) U (ya(—d ", W' +i€))]

- p2(w VT Zf) [\I’ (?Jl(d+,w)) p'E (yl(d+,w' 4+ zf))

—U (yo(d ™, w)) U* (yo(d™, 0’ £4€))]

_ 6ww<d+) == + w/ £ — w/
_pQ(w—w’:Fif) [\Ij (yl(d7 )) v (?JQ(da ))} (3.127)

d+

where in the last line we have put £ = 0 in all numerators without any loss of generality. From

our explicit expressions for the states () in ( , (3.109) and its derivative at x = d we

get
W (g (d* o ) W (yo(d™, o))
(3o~ BT 1) + (A~ At 2]
p(w)
— i (Siapie ) @) i (e ) CEn(de)

(B1Ay — B1A)AY + (A1 Ay — AL Ag) By,

(B Ay — BiAp)Ag + (A Al — A\ Ag) By (3.128)
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where we denoted det M (w’) = det M(w') and det M~ (w’) = det M(w’) and

every quantity A, B, C contains w'. Let us look at the determinant det M (w) (3.102):

det M(w) = (Ao A} — AgA1)(B2C5 — ByC3) — (Ao By — Ay B1)(A:05 — Ay ()

= (AoA] — AyA1) B>Cy — (Ag Ay — AyA1) ByCs — (Ao By — AyB1) AxC

+ (Ao B} — AgB1) Ay C

= C5[(AoB] — AyB1)Aj + (AgAr — Ao AY) By

— CY[(AgB] — AyB1) A + (A A1 — ApAl) Bs) (3.129)

Using this observation and Ci*(y;(d,w’)) = Cf, where Cf = C3 and C; = Ds, (3.128)

becomes

U (g (dF, W) — xlﬂi(l ) |

det Mi(w') + Cé:t [(BiAO — BlAE))AQ + (A1A6 - AIIA(])BQ]
(B1Ay — B1Ay)As + (AL Al — AL Ag) By
F(W)\ 2 = 3
g det M (w') C”i det M (w') C’i |det1\/I( ol
det M+ (w’) det M+ (w') p(w’)
| det M(w')]

=P (3.130)

where p(w') = (BjAg — B1Aj)As + (A1 Ay — A} Ap)Ba. Hence we can write (3.127)) using
(3.130) as

oo XE thu(dh) | det M(w')]|
T3 (w,w") = ?w T <qiz ) ) (3.131)

It is easy to verify that the following statement is true.

lim (T (w,w') + T¢ (w,w')) = d(w — ) (3.132)

£—0
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Let us go back to (3.117). Using (3.131)) for to express f*(x) we get the following expression

P = [ ) [ ot et

xe [ | det M / d") ,
=== w(r) —————dwdw 3.133
p2/_oo i ﬂm 1 vol@) w’:F§ G139
The goal is now to solve the integral
/ Yu( 47) ————dw (3.134)
w —w Fi&

using the residue theorem just as we did in (3.68)) on a closed contour I'p that we can see on

Figure (2.4.1-1). In order to do this we define

)
/1/) w_w:Hgdw (3.135)

which converges to (3.134) as R — oo. We use also the same notation for this contour I'p and

we get
ww(d+) _ R / ww<d+>
@) = RN+ [ ) e
2m P (dh) R b (dF)
7 ; Res <ww(5€>w W' ES Zg ) P ( ) o ww(l')mdw (3136)

from which we can see, that if the the integral on the right hand side vanishes as R approaches
infinity, then our function P (w’) will equal to the sum of residues. We will use the knowledge
we gained in Appendix [D|about asymptotic behaviours of Airy functions along rays in the lower
half of the complex frequency plane w = Re®, where we had two sectors —%” < 6 < 0and
—T <0< —%’r. The asymptotic expression for the second sector decays in the limit R — oo

independently of . In the first one first sector we will use (D.51)) for the resonant states.

( 1 1 1
2(kR)2
(’ﬁl )1 e z,BgRQesz2 T < —d
m202 L L
2sR)T —i(Bto)oR? (@R (2+2) der<d
im202
xTr) = 1 1 3.137
Yulr) = x 02 cioR (0-3) @R (a4 L) G137
(IQR in2
1 1 1 l
2("?1"3)1‘l e~ iBeR2 jwzRZ _ ; a 3 ngR2 fwaQ d< x
\ w202 27r7(nR)
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where o = (2¢)73, 8 = 2aed, 0 = 2aV, and & = 20e™®. From (D.23), (D.39) and (D.40) we
know that o; < 0 and w,., wo; > 0 with

cos Ge) w, = —¢(2a)2 sin (%9) (3.138)
0; = (204)% sin (%6) w; = e(2a)2 cos (%9) (3.139)

Let us start analysing the various regions. For x < —d The integrand on the right hand side in

(3.136) becomes

N

or = (2a)

[SI[98)

Yo (d')

wo) ;22

2(kR)T __iBoRY wdRY . o iBoR? —wdR?
1o e T Pe oW — ————ePeiie™™
202 22 (kR)4

1 1
—ifoR2 _wxzR2 <
—5€ e

irio? w—w Fi€

1 1 1

2 2(kR)1 oz wrbe—d) | 2(6R)T _og,rY wrd(era)
=X 11 . T 3¢ +—1 ¢ €
m202 (w— w' Fif) 212 (kR)1 T202
2 : 1 e|w,~|R% (m—d)eiwiR%(m—d)
T(kR)2 (w — W' Fif)
5 A(kR)z

7o (w — W F i)
9 1
7(kR)? (w — o' T if)
2 4(’€R>%

7o (w — W F i)

= —X

1 1 1
—i280rR? (R (|| (a+d) =28l 0i]) piww: B2 (a-+d)

, 1 1. 1 o1
e*lQﬁQTRQ e(2a) 2 |sm(50) |R2 (e2a(z+d)—28) ezwiR? (z+d)

(3.140)

The first part of (3.140) decays in the limit R — oo if

e(20)2(z —d) <0

z<d (3.141)
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and for the second part if

2a(r+d)—26<0

2
T < —ﬁ —d
2w
doed
—d
2
r<d (3.142)

which is satisfied in the region x < —d, so the expression (3.140) decays.
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Let us proceed to the region —d < x < d. Here we have

2 (2("€R)‘11 —i(B+0)oR? wR%(HE) o3 ioR3 (6—38) wR%(HVO))
' e e ) —————¢ e E

3
Q
s
=N
=
I
>‘\

1 ) 1 1 1 . 1 1
:2(kR)1 67'LBQR7 ewdR7 —q 102 . ez,@gR7 efwde
272 (kR)4

w—w Fi€

2 1 1
X <2(’1R)4 —i(B+0)oR? ,wR (a4 D) 02 iBoR? —wdR?

— _ e e e e
w—w Fi{\ i3 27T%<I€R>%

1 1
o2 . _ 1 Vo o2 . 1 1
. €ZQR2(U—3B)€ wR?2 (er - ) ezBQR2 e—wdR2

=
NN
3
[\
N
=
=
IN|

2=

(SR N
—~
=N

:1\

Q
W= NI

|

_l’_
Q
S
o)
ol
5
w
=
|
g
oy
ol
—~
8
+
ol
S~—

g
1
2(kR)3 efiﬁgR% ewdR%>

m(kR)?

o ez‘gTR%(oﬂﬁ)eR% [—|wr|(:c+%+d)+|gi|(a—2,3)]e—iwiR% (z+2+d)

8n(kR)

- X ( L —iveRY B} [jonl (2422 —a) ~oloi] jiwit} (x4 22 —d)

(NI

[N

1
4(HR)2 —i(2,3+a)grR% R
—€ (&
To

['wr|($+?+d)f(2ﬁ+o‘)‘gi‘]eiwiR% (2+244)

+ 1 eigrR% (0—45)6R% [f\wr|(:Jc+?fd)+\g¢\(of4ﬁ)] efiwiR% (x+‘20d))
1

m(kR)z
- _ X2 1 e—iag,nR% 6(205)%|sin(%9)|R%[52&(m+?7d)70] eiwiR% (:er%fd)
w—w Fi§ \ n(kR)?
G eigrR%(a—Qﬁ)e@a)% |sin(36)| B2 [~e20(a+ L +d)+(o—28)] efmi}z%(ﬁ%m)
87(kR)?
4(/@R>% 1 1 1 7 . 1 v
. e*i(QﬁJrU)QrR? e(2a) 2 ’Sin(%@) |R2 [52a(x+?0+d>—(2,3+a)] ezwiR2 (a:—l-?o—l—d)
e
n 1 : eiQTR%(a—éLﬁ)e(Qa)%|sin(%0)‘R% [—620((174—%—(1)—}—(0—46)]e—iwiR% (a+%—a) (3.143)
m(kR)?

We ended up with four different parts that needs to be checked separately. Let us take the first

two of them at once. In the following computations we analyse when do they decay. The first
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column represents the first part and the second column the second part.

v
52a(az+—0—d>—a<0
€
T pd- sy
2 €
2
Vo g Vo,
e2x €
d>zx

o—20 —E—d<
e2a €
2 _
aVp 4a€d—E—d<x
e2a €
—-3d<zx (3.144)

These conditions are satisfied in the current region —d < x < d. The second two parts of

(3.143)) converge to zero if

€2a(x+?+d) —(268+0)<0

2
B+J—E—d>x
2w €

4 2
acd + a%—ﬁ—d>x
e2x €
d>zx

which are obeyed as well for the same reasons.

vanishes for this region.
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-2« (x—l—%—d) + (0 —4p) <0

045 _ Vo +d<z
e2x €
) _
aVy 8a5d_E d<u
2w
—3d < x (3.145)

This leads to the fact that the integral in (3.136)



Let us move to the last region d < x. Here we get using (3.137) the following.

1 1
T ww(d+) ~ X2 i2(KR)4 e—i,BgR% ewccR% —i 0?2 eiﬂQR% e—w:cR%
w—w Fi§ Tigh o (kR)%

[N

1 1 1 1 1
<i2('§R)4 ¢~ iBoR? ;wdR2 _ ;o ciBoR? ewdR2)
2

1 1 3
m202 272 (kR)4
w—w Fi€
2 1 1
_ X 2(’£R)4 efi,BgR% ewa% 02 ei,BgR% efwdR%
w—w Fil \ 7303 s /@R)%
1 1 1 i 1 1
o2 . 1 1 o2 . 1 1
. . _ ezﬁgRQ e—wccR2 - . ez,BQR2 e—wdRQ
212 (kR)1 22 (kR)1
1 1
2(’%R)4 7iBgR% wa% 2("£R)4 fiﬁgR% wdR%
——71 1 ¢ e —1 1 ¢ €
mT202 mT202
1 1
47 iBord —wert 2(6R)T 5 pt gk
—1, -3¢ € —1 1 € €
22 (kR)4 T202
2
_ X 1 e|w,«|R% (z—d)eiwiR%(r—d)
w—w Fi€ \ n(kR)?
_ T i260rR% B3 [~[w|(x+d)+2Bl0i] i RE ()
3
4(kR)z
1
_ 4(kR)> e—iQBQTR% eR%[|wr|(x+d)—2/3\muez‘wm%(x+d)
o
n 1 : e—|w7-\R%(x—d)e—iwiR% (z—d)
m(kR)?2
2 -
_ X 1 65(201)% ‘sin(%@) ’R% (z—d) eiwiR% (z—d)
w—w Fi W(HR)%
B o _ eiZfBQTR% 6(204)% |sin(%6‘)‘R% [—a2a(z+d)+2ﬂ}e—iwiR% (z+d)
4(kR)?2
1
_ 4(kR)z o—i280: B3 ,(20)% [sin(10) | R¥ [e2a(a+d)~26] jimw; R (a-+d)
o
1 £(20)3 |sin(16)|R (d—) , —iw; R? (2—d)
+———e 2 e twiite T (3.146)
m(kR)2

This is a similar situation as in the previous case. We proceed therefore in an almost identical
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way. The first two terms in this expression decay exponentially if

r—d<0 —2a(r+d)+26 <0
2
2w
daed
—d
e2x
T >d (3.147)
and for the second two terms we have
2a(x+d)—28<0 d—z <0
2
T < —6 —d d<zx
2w
4
< aed 4
2«
T <d (3.148)

We got a variety of answers from which we can deduce that according to the current region
d < x the first and the third term in grow while the second and fourth term decay for
R — o0. The sum of these four terms gives us exponential growth, so the integrand in (3.136)
diverges for d < z. This is exactly what the numerical evidence on page |62 indicated.

After analysing the integrand on the right hand side in (3.136) we can conclude, that it
decays exponentially only when x < d in the limit R — oo. If we go back to (3.136)), then in

this region and the limit R — oo we have
2 w(dT
T3 Res (%(z)%, wj) = Pe() (3.149)

and f*(z) in (3.133)) becomes

NN Gl Ay | det M(w')|] 27 P, (d) ,
f (CL’) - ﬁ /oo CL(CU) [:FZW] 7 zj:ReS (¢w($)m,Wj> dw (3150)

In the following we compute the residues in (3.150). The expression in the residue function

88



should first be expanded. Using (3.98)) we get

2

vo(dt) X
ww(ib)w—w’iﬂé’ Cw—w TFi
[ sty Al (@) _ o< —d
| () et - (23 (i)
MTM()\ [(B/ Ao = BiAp)Ai(ya(w) + (Ardy — A3 40)Bi(ya(2))]
() o (3:%5:;)%—@1@»__ Py
i Giﬁﬁ) it (y @iﬁﬁchlwwm)
| (E) o) - (435 o) 1<
(3.151)
which can be simplified further as
Pu(dh) _ X
¢w(x)w_w/$i§ - w—w Fil
( 7r_22 (detM Ci (y1(d)) — detM Cl (y (d>)) Ai(y1(2)) r<—d
2 [(B’Ao BlA’)AI( 2() + (A Ay — A1Ao)Bi(ya())]
( () — G 1 (d)>) ~d<z<d (3.152)
[Ci i~ (y1(d)) + Ci” ( 1(2))Ci* (1(d))]
k MM“&<<>mﬁmu» N O (1 (2))C (31 (d)) d < 2

The resonant eigenstates w; in the residue are the zero points of det M(w) located in the lower

complex frequency half-plane and similarly the zeros of det M(w) are in the upper half. It is

clear, that the poles of (3.152)) are determined by zeros of det M(w), since Cp, is in the lower

half-plane, see (3.136). Remembering this we can ignore those terms that do not have w; as

poles in the lower complex half-plane. Then we get

Ve

(

\

(x) ¢w(d+) _ X2

w—w Fi1€ w—w Fi€

7722 detM Cl (y1(d))Ai(y1 (7)) T < —d

= [(B’Ao — BiAY)Ai(ya(x) + (A1 A — A Ag)Bi(ya(2))] —d <z <d a1s3)
detM Cl (y1(d))

$ﬁ301<<»mwmw» d<a
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According to the residue theorem and using (3.153), we have

Res (w2200} = i {22}

w—w Fif’ wow; | w—w Fi
= lim {—w — }
wow; | det M(w)
(2007 (41 (d)) Al (11 () v < —d
X2 —% [(BiAO — BlAE))JAlJ(yQ(I)) —d<zxz<d
Wi =W T (A Ay — A} Ag);Bi; (1 ())] Ci (1 (d))
\ —det M(w;)Cij (:1(d))Cij (1 () d<uw
X yi(a) (3.154)

:wj—w’IFif

with

—Z.Ci; (y1(d)) Al (31 (x)) z < —d
—2[(BiAo — B14));Ai(ya(z)) —d<z<d
) = x Jim {2 b S (A — 40 Bit)

Ci; (y1(d))
—det M(w;)Ci} (11(d))CL (3a(z)) d <z

(3.155)

where we denoted Ai;(y;(x)) = Ai(y:(z))

(B1Ao — B1Ag); = (BjAg — Bi1Aj)|  ete. One can see that the functions 1) () are propor-

tional to the resonant states (3.65)). Substituting (3.154) back into (3.150) and taking the limit

& — 0 we get

b 40 = 5 [ o [N 2 x

€0 P J o p(w’) — wj —w F il
B x2me [, | det M(w')] X -
S [ [P e
=3 (@) (3.156)

J
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where

x2me [ | det M(w')| X
Cj = 7/_ CL((JJ/) |::F p(w’) oy — w/dw' (3157)

e}

with p = 2ce.

It is worth mentioning that this result is rather surprising, because the convergence of the
sum in does not depend on the depth of the well V{). As a consequence of this, one might
ask what if we set V; = 0? Then the width of the well d would lost its meaning, so would we
then get convergence everywhere? To answer this we must remember that for this case we need
to consider Vy = 0 all the way from the beginning. Let us see what do the scattering states look
like in this special case. For convenience we choose d > 0 although we know that it has no
significant meaning. The variable transformation y,(z) in the region —d < x < d now becomes

y1(z) as the rest. So we have from (3.59)

a1 Ai(yi (z)) T < —d
Yo(r) = asAi(yi(x)) + asBi(y(z)) —d<z<d (3.158)
a,Cit (y1(x)) + asCi (yi(x)) d <=z

For this function 1),,(z) there are 4 continuity condition at the walls of the well z = —d, d.

Applying these we get a system

AO _A() _BO 0 ay 0
A A, —BY 0 a 0
Myw)ya=|"° "° 7° | =as (3.159)
0 Ag Bg —Cg as D3
0o A4, B, —-c) \a D,

where we used the same notations as in (3.41) and with additional A3 = Ai(y1(d)), Bs =

Bi(y1(d)) and D3 = Ci~ (y1(d)). The determinant of this matrix is
1
det Mg(w) = C3A, — C5A3 = (Bs 4+ iA3) Ay — (B} +iA5) Az = B3 Ay — ByA; = ——
m

(3.160)
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where we used the formula (10.4.10) from [1]. The solution to this system is then

3D} — C4D; 2 .

= = = —as2 3.161

=0 et My (w) 5 det My (w) 5=t ( )
C3D} — C4Dy 2 ,

- - = —a52 3.162
2T et My(w)  PrdetMo(w) o (3.162)
as =0 (3.163)

D3 Al — DLA 1
Ay = —a5—3 88 S (3.164)

det Mo(w) 5 det M (w)

We choose a5 to be —1. Substituting this back into (3.161))-(3.164) the resonant states (3.158))

become

2iAi(y(z)) r<d
Cit (s (2)) = Ci~ (i(2)) d <z

= Xx2iAi(y:(x)) Vo (3.165)

with some normalization constant x which can be obtained in a similar way as we did in Ap-
pendix [C - for the regions x, 2’ < 0. We find out that this constant in this case is
X = 2~3c6. In both of the proofs we used the complex contour I' to prove that the function
f(x) can be represented as a linear combination of the resonant states and we got the equa-
tions (3.68) and (3.136). We needed to compute the integral along this contour using Cauchy’s
residue theorem which gives us the sum over the poles of the function that we are interested in.
In both cases, the poles were determined by the zero points w; of the determinant det M(w). In
our case Vy = 0, the determinant is det My(w) = —% which has no zeros, hence the residues

become zero. The equation we are left with is now from (3.80)

R—o0

d(x —2') = — lim V() (2")dw (3.166)
Cr

This equation is true and it follows from the Cauchy’s residue theorem.

As another consequence of the fact that the determinant has no zeros is, that there are no
energy eigenvalues, so resonant states can not exist. However, scattering states can exist. Scat-
tering states are states where an ingoing wave with amplitude a5 generates a transmitted and
reflected wave. A resonant state is a situation where there is no ingoing wave a5 = 0. Such a

solutions are non-trivial only if the determinant is equal to zero which in the case when 1 = 0
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is not possible, because det My(w) = —=.

As we did after the weaker and stronger proof in the Dirac delta case, we can discuss the
difference between these two proofs for the square well as well. The weaker proof showed us
that the integrand in (3.82)) vanishes if the function f(x) has its compact support confined in the
region x < d. However, the stronger proof provides a more exact condition. The integrand in
decays pointwise for all x < d. This means, that if the center of the compact support of
the function f(x) is located on # = d, then the part where © < d will converge, whereas the

part x > d will diverge.

3.4 Time dependent energy field for the square well potential

In this section we will numerically solve the Schrodinger equation for square well potential but
considering a time dependent energy field £(¢). As before in the Dirac delta case, we are not
considering space dependency because the size of the atom is very small compared to the space

change to any laser fields. The proposed form of the pulse is a Gaussian wave packet
e(t) = e cos (w. (t — to) — 0) (3.167)

where w; is the center frequency and v, 9, ¢y are parameters. On Figure (3.4-1)) we can see this
function(green) for w. = 0.02,y = 107>, = 0, ¢y = 900. The red function is Re [¢**!], where
wy 1s the eigenvalue corresponding to one of the ground states, in particular wy = —0.779988.
This ground state 1),,, () of the square well was computed using Vy = 1, d = 4. This state will
be used as the initial condition for our scheme in as U(z,0) = 1(0) = by, (2).
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M Re[W(0,1)]
— €(t)

-0.5

-1.0f"

Figure 3.4-1: Plot of £(¢) and the real part of the time dependency Re [ei“’ot] of the
solution to the Schrodinger equation for square well. The eigenvalue wy = —0.779988
belongs to one of the ground states computed using the parameters Vp = 1,d = 4.

The ground state v, (x) can be seen on Figure (3.4-2)).

Re[w(x,wo)] |w(x,wo)l
010 0.010

oloos

0.0§5
0.dos

T 5 70 %

0.004

~0.005 -

~0.010 - - - o

(a) (b)

Figure 3.4-2: Plot of the real part and absolute value of the ground state 1),,, (x) for square
well potential, where wy = —0.779988.

In our previous computation we assumed positive € > (0. Here we deal with ¢ that changes

signs. We need to figure out what the solution is for € < 0. Let us define a new variable 7 = —x.

Then we have

iU, (2, 1) = —%&m\lf(x,t) —AS(2) U (1) + [l (a, )

i, (7, 1) = —%855\11@,@ —AS(E) (i, ) — || (E, ) (3.168)

so for ¢ < 0 the solution is V(—zx,t;|¢|), where U(x,?;|e]) is the solution for ¢ > 0. We
can solve the Schrodinger equation numerically in the same way as before as (3.47). The only

difference will be that we solve it on the flipped x-axis across the y-axis when ¢ < 0, so these
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regions in time should be determined. We determine them from (3.167) and we get the intervals

[t;,tj41], where t; are the zeros of (3.167

e 1100 cos (w(t — tg) — 8) < 0
cos (we(t —ty) —6) <0

3
g+2j7r<w5(t—to)—5<§+2j7r, JjEZ
T 2jm 0 3r 2jm 0 .
=+ Tt < I i, JEZ (3169

2w, We W, 2w, W, We

In those intervals, where £(t) < 0, the Schrodinger equation is solved on the flipped x-axis.

|¥(x,0)| |W(x,429)| |W(x,586)|

20 30 X -30 -20 10 ' 10 20 30

20 30 -30 -20

(@t=0 (b)t =429 (c)t =586

[W(x,743)| |¥(x.900) |W(x,1056)|
0.0007

0.0008
0.0005
0.0004
0.0003
0. 0002[

0.0001

10 20 30 -30 -20 -10 ! 10 20 30 X -30 10 20 30

(d)t =743 (e)t =900 ()t = 1056
[W(x,1213)| [W(x,1370)| o[ 15271

0.00020
0.00015
0.00010

0.0000!

30 -20 10 10 20 30 -30 20 10 20 30

(g)t = 1213 (h) t = 1370 (i)t = 1527

Figure 3.4-3: Absolute value of the numerical solution W(z,t) in particular times. The
parameters that were used are z. = 15,y = 1.d = 4,60 = 7 and the numerical parame-
ters are L1 = Lo = 30, N = 801,k = 4.

On Figure (3.4-3)) were the parameters for the laser pulse the same as in previous figure and
the data for the equation were z. = 15, Vp = 1.d = 4,0 = 7. We used the numerical parameters
Ly = Ly = 30, N = 801,k = 4 so the spatial grid parameter was Ax = 0.1, where L, Lo
are the boundaries of the spatial space, N is the number of grid points and k is the order of the

numerical scheme. The particular times were picked as the centres of the intervals (3.169).
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Let us choose the time corresponding to the middle of the 5-th interval ¢ = 586. The nu-
merical solution to the Schrédinger equation at this time is in figure (3.4-3c). We will compare
this particular solution with an expansion using analytical resonant states as in (3.54)) to see if
we can find a detectable deviation. In this expansion we will use the perturbed ground state

corresponding to wy = —0.779988 as the starting state.

0.0f0}\
!' \

0pos| |
9.006
Jo.ooal | |
1[/ |
/ 0.002

i
]

0 5 5 10 15~%

(@z.=6,N=1

7\ £\
0.010}} 0.0f0f\
oposf | N oposf |\ |
! I 2 / I
I \ / / |
g.oosl | | poosf | |
/ 11\ / 1
Joooa} | [\ joooaf | |
/ VAN o\
/ oo002] |/ / o002l ] i
Ty 75 5 10 15% o 75 5 T
®)z.=10,N =1 (¢) z. =10, N =100
0070\ o.ofof}
P .
ogost| | ogosf | [}
[ 1) ] [ 11
ofoos} | | | ofoos} | | |
/ | ‘,: .". / v:. \
pooal ||\ p.o0af |
Jooozt || N / 0.002
/ \ il y S
T 5 10 15 2 I 5 5 10 15 26"
dz.=15,N=1 (&) xt. = 15, N = 100

Figure 3.4-4: Comparing numerical solutions (green) at time ¢ = 586 with x, = 6,10, 15
with the resonant states expansion (red dashed) using the various number of states from
A-series.

The parameters for the numerical solution in Figure (3.4-4) were the same as in (3.4-3)) except
for x. for which we used three different values. In (3.4-4a)) it was . = 6, while in the other
subfigures it was z, = 10 and 2. = 15. We can see that in (3.4-4a)) the expansion looks perfect
comparing to the numerical version, even if we used only one mode. In the other cases, since
we picked a different value of x., we needed more modes to bring the two functions closer. A

smaller improvement can be seen from (3.4-4b)) to (3.4-4c]) even if the matches are not perfect.
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In the last case where x. = 15 we can not see any clear improvement, however it is present,
but it would take much more modes to manifest itself. These expansion were done using only
resonant states from A-series, because the modes from C-series do not give any significant
contribution to the expansion. On the other hand, the A-series are the dominant ones, especially

in the negative axis, where the C-series modes are practically zero.
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4 Conclusion

At the beginning of this paper we introduced the Schrodinger equation which we solved suc-
cessfully for two kinds of potentials. We analytically found the resonant states for both cases
and derived the numerical solution to the same tasks to compare. Due to the exponential growth
of the resonant states, we replaced the real axis with a complex line upon which these states
were evaluated. This prevented the growth and as a consequence of this, the bi-orthogonal
product was introduced. Later on, we assumed the energy field or the laser pulse to be time
dependent and managed to solve the equation numerically.

The main effort in this work was, however, the analysing of the completeness of the resonant
states. In other words, we investigated whether the resonant states can form a complete set of
functions to be used to represent any function with a compact support as a linear basis. The
theory behind the completeness was provided in chapters and for Dirac delta potential
and square well potential respectively. At the end of both proofs we found some interesting
results. In the Dirac delta case the conclusion was that any function f(x) with a compact
support confined in the negative real axis can be expanded using the resonant states. In the
stronger version of this proof we found out that this compact support does not have to be all
the way in the negative part. The desired convergence happened for < 0. This result was a
bit different for the square well. Instead of the negative real axis, we talked about the region
x < d, where d was the positive boundary of the well. The convergence was present for x < d
and it did not depend on the depth of the well 1j,. We also discussed the option when V; = 0,
where we concluded that it is not possible to get any resonant states in this case, so we must
have V; > 0. This conclusion gives rise to an interesting thought. Let us have two such square
wells next to each other with different depths. Using the same methods, similar results could be
shown. If we would proceed further, we could consider a continuous potential well V' (x) over
the whole space which decays at 0o approximated with narrow square wells with suitable
depths V; and widths Az. The outermost square wells would be then more and more shallow
such that 0 < V; < 1. Without our result one would think, that we would loose the convergence
in those places. Our result however tells us, it is not necessarily the case. On the other side we
do not know if this result can be generalized to this case when one has many square wells one
after each other, therefore it is a conjecture as we stated in the introduction. This statement
could be supported only by explicit computations of more examples. If our result turns out to

be true for these more complicated examples, one could think of constructing a formal proof of
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this statement. It would be interesting to see the properties of those resonant states obtained by

eventually taking the limit in that potential discretization lim; ,, az—0 Vi = V(x). We can see

an example of this approximation on Figure @4-1]

P

— V(x)

=41

Figure 4-1: A continuous potential V' (x) with a suitable disretization V;.

As we mentioned in the introduction, this idea of a continuous potential without a compact

support is considerably an important conjecture. It can be formulated for example as a statement

which says that with a potential we just described, we would get a convergence of the series

(T1.9) for all z. It is a very important result of this work since the solution to that discovery

would reveal other interesting facts as well. That is, however, a topic for a possibly near future.
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Appendix A

This Appendix provides a computation of the normalisation constant x for the scattering form
of the resonant states in (2.99). We know, that the Hamiltonian in (2.22) is Hermitian, so the
scattering states (2.99) form a set with a continuous spectrum. The completeness of these states

can be therefore expressed through the relation

/00 Vo (1), (2 )dw = §(x — ) (A.1)

where the scattering states are

2 .
bolz) = x WAI(yl(x)) ; <0 )
i () it (y(@) + i (o) Ci (y(a)) @ >0
with
y(x) = —2a(er + w) (A.3)
1 A
det M(yo) = — — —Ai(yo) Ci" (o) (A4)

where o = (2¢)75 and yo = y(0). Let us integrate (A.1) over the interval I, = [z — €,z + €]
and take the limit as e approaches zero. We get the formula that determines Y.

i [ ([ ot ) ar =1

e—0 I

lim (/00 &w(:v)?ﬁ:(x/)dw) dr’ = x 72 (A.5)
=0 /. oo

where we denoted sz as v, with Y = 1. Since we deal with an infinitely small interval, any

finite part of the integral

Q. 2') = / T (@) de (A6)

will give no contribution to the value of y. This has a very useful consequence. In this integral
we integrate over real w. We integrate with respect to w. We can see from (A.3)) that the positions
of x and w are basically the same. Let us see what happens when w — —oo. The argument y(x)
turns into a big positive value, thus we can use the expression (10.4.59) and (10.4.63) from [1]]

for Airy functions to conclude that the function 1, (z) decays exponentially for all x. This fact
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allows us to write

Q(x,a') = / N V() (2")dw (A.7)

for some positive value ¢, because the part from —oo to ¢ is finite. Also, ¢ can be chosen as
large as we like, so we can use the asymptotic expressions of the Airy functions Ci* (2.31) and
(10.4.59) from [[1]]. Define

z2(z) = —y(z) = 2a(ex + w) = P+ yw (A.8)

Ai(—z(x)) =~ %71'_;(2(:1}))_‘11 (€i<§(z(z))g+z> - ei(g(z(‘r))%Jrz)) (A.9)
Cit(—z(z)) ~ w—%(z(x))—za@z(x”%*%) (A.10)

+3) (A1)
As the first case, we take x, 2’ > 0. We now expand the integrand in Q(x, z) and we get

Qz,2") = /OO {Ci*(=2(2))Ci (=2 () + Ci~ (—2(2))Ci* (=2 (') } dw

o detM(yg) . i /
- {—mmc )R

det M(yo) 1 . /
+detT(yo)Cl (—z(x))Ci (—z(m))}dw (A.12)

Let us consider the various terms and start with the term

/ T G (—2(2)) G (— (2 )dw

- / T [(Br 4 yw) (B0 + )] e[
™ q

P (a2 ] -ig g

3
2

1 3 3 ’
1 [ / 1 —i2(w)z | (Z241)2 (2241
N — {(W)Q <@+1> (5—x+1)] e () () dw
i J, Yw Yw
1 o0 . 3
N / w 213092 g (A.13)
imy2 Jg

Due to large w, we dropped the terms in the second line, where w was in the denominator.

It is easy to see that this integral converges, hence it is finite and gives no contribution to Y.
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Similarly, we get for the next term in (A.12)

/ it (—2(2))Cit (= 2(2'))dw ~ — / P CELE
4 q

1
Y2

which does not give any contribution either. We proceed to the cross terms.

/OO Cit(=2(2))Ci™ (—2z(2"))dw

1 00 e . .
I e
(e

q

1 Rt %(w)2
T / w”ze
Y2 Jg

Q

(et ()

Q

dw

Q

> 1
7T"}/§ 71-75
BV%CL}% =u
2 [

1 / W 26 3(7“}) [gngrl 32[3@ 71] dw =~ 1 / w—%ei('yw)%ﬁ[a}—x’]dw
q q

(A.14)

(A.15)

where » = 3,/7q. In a almost exactly similar way we compute the second cross term too.

/01 (@) Ci (=2 dw

~ ;/ [(Bz + yw)(Br +w)] Te 2o -(o+w)?]

q

1 *° 1. 3 / 1, 1 1
R~ 1/ w2 02 Bl gy, — —5B72w 2dw = du
Tz Jyq L
w2dw = ——2-du
B2

2 e , 2 -r ,
- __= / ezu[a:—:v }du — / ezu[x—:p }du
W/B/y -r 7T57 —00

Summing the terms up in (A.12) which give contribution, we have

2 & 2 - / 1 o0
N — zu[z T ]d zu[m—x ]d —
Q(Z’,$> ,ﬂ_ﬁ,y/r u+ 7-(-6'7/ b m20%e /—oo

1 /

(A.16)

eiu[x—m’]du

(A.17)

We proceed with the next region which is z < 0,0 < 2. In this case, the integral (A.7)
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becomes

P 2 .
Q(fl?aﬂf)—/q mm(y(ﬂ?))

. detM(yO) % . / . detM(yo) % PuE /
<z (i) e~ () © <y<x>>) s

2 [

™

1

1 . P ‘ o
(detM(yO)AI(y(x))Cl (y(w))—mAl(y(x))Cl (y(af))) dw (A.18)

q

To get the asymptotic expression for this integrand we are going to need an expression for

det M(yo). We define zy = z(0) and from (A.4) we have

det M(yp) = — — O%Ai(—zo)Cﬁ(—zo)
TR (e’@(“)gﬂ’) - e‘i@(”)g”)) 7 () e (0t 1)
= % - %%(yw)_éeié(”’w)% ~ % (A.19)
Similarly for the conjugate det M (1) we get
det M(yo) = % - éAi(—zO)Cl_(—ZO)
w2 L () L b)) gyt ()
= % - %%(W) P (OLI % (A.20)

+ie
1

~ T(yw)*% (ei(vw)%ﬁ(ﬂc*w’) + ie*i%(vw)%) (A.21)
i

i2[(Batrw) B (B’ ) B] )

where we used the same arguments as in (A.13) and (A.13). By conjugating it we get the next
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term.
Ai(—2(2))Cit (—2(2")) & = (qw) "3 <ze SR e-iw)?ﬁ(w—w) (A.22)

. 3
It can be seen the the terms including eti30%)2 after integrating will be finite numbers and

hence will give no contribution to the constant y. We can therefore exclude them and we can

write (A.T8) as

20 [ 1 1
z, 7)) = — Ai(y(2))Ci™ (y(« Ai(y(z))Cit (y(z"))dw
Qo) =7 | s MO 06 ~ g IO ()
21 /11 -1 i(yw)2B(z—2a L1 N w% z—ax’
~ q (g%(w 3t(w)2 Bz—a’) _%(%)) 30 0w)28( )> dw
= 1 - /OO w3 (ei(W)%ﬂ(fﬂ—w’) + e—i(w)%ﬂ(:v—z’)> dw (A.23)
my2 Jgq

This can be further transformed as we did in (A.T5) and (A.16)) into

Q(x; xl) = 1 /Oo w_% (ei(”/w)%ﬂ(a:—x’) + e_i(Ww)%ﬁ(z—x’)> dw
q

=~
2 oo . , —q . , 2 o0 . 7
— (/ em(xfz )d'U, + / ezu(xfa: )du) — / ezu(zfa: )du
8y \Jq oo ™07 J s
_ d(x—a') = ! d(x — ) (A.24)
By a% '

The last region we need to cover is x, 2’ < 0. The function Q(z, z") now reads

, o 2 ) 2 ) ,
Q(%x):/q mAl(y(ﬂf))mAl(Q(ﬂﬂ))dw

o0 4 ) . /
_ /q e A (A.25)

Before we write the asymptotic expression for the whole integrand, let us first take the term
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= ——(ﬁx+vw)j(5a:'+7w)7i (e (3ortrrieg) _ —i(3mewieg >>

<e i(28a+w)i+1) e—i(g(ﬁx’+vw)%+g)

1 -
~ —E(Wﬂ)

(S

(ieié [(Botrw)E 40 +93] i3 [(Bre) (e +90) 8]

3 [Grrwtaw?] i [<Bm+w>3+<ﬁz/+vw>3]>
~ —%(w)‘% (iez‘%ww)% _ i) 2a—a’) _ gmilyw)2Bla—a!) _ ;i mw)%) (A.26)
m

where we used the same simplifying approach as in (A.13)) and (A.15). Using this expression

) 3
and the fact that we drop the terms including et1309)% pecause they give no contribution to Y,

the integral (A.25) becomes

N 4 . ) ,
Q(x,x) _/q g ’detM(y0)|2Al(y(x))A1(y(x))dw

& 4 1 1 1 /
%/ — (yw) "2 (e i(w) 2 Blo—a') | i) 2 pla— x)) dw

o ()

1

00 L 1
_ / w3 (6 i(yw)2 Bz— ac)+€ (“/W)Qﬁx ! )dw (A.27)
q

1
Ty 2

and we end up with exactly identical situation as in (A.23) so the result is

Q(z,7') = —¥d(x — ') (A.28)

It is helpful to stress out that for the switched regions (for example instead of z < 0,0 < 2’
the switched is 2/ < 0,0 < x) the results are the same, because the Dirac delta function is even

(6(x) = §(—x)). The conclusion from (A.17), (A.24) and (A.28) is that the equation (A.5) turns
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into

1 1 4
-2 _ . _ _ 2
= Gt f, Sl — e = g = (%)
1 44 \3 1
v = (%) = (278ede) " —orie (A29)

which is the desired normalization constant.
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Appendix B

In this Appendix, we investigate the integral term in (2.110) by using asymptotic expressions
of resonant states along complex rays in the lower half of the frequency plane for large 2. The

resonant state have the form

o 7r\det12\/1(y0)|Ai(y<x)) x <0
¢w(x> =X - ( det M(yo) 2 -+ - ( det M(yo) 7 e ®B.1)
-1 (Seni) " ot +1 (i) O ) >0
with
XY =236 (B.2)
y(x) = —2a(er + w) (B.3)
1 A . .
det M(yo) = — — —Ai(yo)Ci" (yo) (B.4)
T Qg
where v = (2¢)7% and yo = y(0). Define the following quantity
z(z) = —y(z) = 2a(ex + w) (B.5)
Let us express the rays on the lower half of the frequency plane as
w=Re?’ —1<0<0 (B.6)
where R — co. Using this, the transformation then takes form
2(z) = 2a(ex 4 Re) (B.7)
2 = 2(0) = 20 R = kR (B.8)

where k = 2ae®. There are 2 different asymptotic forms of Airy functions for this complex

region —7 < § < —2F and —& < § < 0. We will investigate them separately. Let us first

consider the sector —%’r < 0 < 0. The variable has now changed from x to radius R and

for large positive radius the asymptotic expansions are in y, which is large negative. From [1]]
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(10.4.60), (10.4.64) we have

Ai(—2) &~ 72 (2) 4 sin ((0 + Z) = 2ii/?<zo)_i (ei<<°+§) - e"'<40+%)> (B.9)

(20) "He*i(@+5) (B.10)

D=

Cii(—ZQ) %

where we defined ¢, = %(zo)% that we can write using lb as

G = vt RY = 9RE = (9, + i9,) B} (B.11)
~~
[V
with
2 3

= Z(20)? = B.12
I, 3( a)2 cos (29) (B.12)
0; = ;(204)3 sin (;9) (B.13)

Since we are in the sector —3 < < 0, we have —7 < 26 < 0 and therefore for these rays we
have ¢; < 0.
The reason we expressed the formulas (B.9) and (B.10)) is to help us with the determinants

in the resonant states (2.99). This determinant can be found in (2.35).

1 A

det M(y0> = ; — a—gAi(—Zo)Ci+(—Zo)
~ 1_ £2'1/_(KR)}1 (ei(ﬂ32+g) B 6—i(19R2+Z)> W,%(KR),iei(ﬁRﬂg)
T e 2i\/T
. 1 A _1 22'(19}?,%—1-%) —~ A -1 %9RS
=5 (kR) (e —1) =~ Sror (kR) ze (B.14)

LA Ryt (1 - e”(”ﬂ’i)) ~ 1 (B.15)
T

Observe that the complex conjugate determinant was reduced to a constant, because ¥; < 0
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which made the exponential decay as R — oo. Looking at the terms in (2.99) we have

<detM(y0>> ~ A () teon] (B.16)
det M (o) (2ae)2
det M(yo) \ > _ (2ae)2 L ond
(detM(yo)> ~ Ay e (17
- 1 Z’A% 1 opd
|det M(yo)| = (det M(yo)det M(yo))® ~ T (kR)"1e™H (B.18)
T(20e)2

In the following we find the asymptotic behaviour in y(z) too using the transformation (B.7).

We simplify the expression ( = %(z(x))% used in asymptotic formulas.

C= (=)t =2 [ (cw + Re")] =2 [2067R (cre R+ 1))
= SR (14 e PR = ORE (14 cre PR}
~ JR3 (1 + gaxewR1> = JR? + ;ﬁaiew(—z)mé
—
— JR? — iwzR? (B.19)

where we defined a new quantity o which can be simplified further.

2 273 2
— ci(2a)} {cos 69) cos (6) + sin @9) sin ()

b <sin (;9> cos (6) — cos (ge> sin (9))}
= ci(20)? [cos (%9) +isin (%9)}

= 5(2@)% [— sin (%9) + 1 cos (%9)] = w, + iw, (B.20)

= = Sgeie® = 322 (20} [cos (%) +isin (ge)} fcos (6) — isin (0)]

where

w, = —5(2@)% sin (%9) (B.21)
w; = 5(2&)% Cos (%9) (B.22)

21

T < 6 < 0wehave —F < 16 < 0 and therefore

Note, that in the current sector which is — 3

111



w,, w; > 0.

Using (B.19)), we have in the current sector —2% < 6 < 0 the following asymptotic relations
g 3 g asymp

21
3. 1 3 SR
_ lﬂ'i%(z(x))ii ez(ﬁR2—zwa2 +Z> . e—z(ﬂR2—zwa2 +Z)
21
I L (i i9RY 3 T _idR3 R%
= ;71'_5(2(37))_1 <e’16’ R2wrR2 _ o=l gm1WhHE gmww ) (B.23)
)
o _1 “1i(c+3) _1 1 im i9R% R
CiT(—z(z)) =7 2(2(x)) 1e"\>T1) =77 2(z(x)) 1e'1e™ e (B.24)
. s . . 3 1
Ci(—z(z)) ~ ﬂ_%(z(m))_ieﬂ(@q) = W_%(z(x))_%e_zze_wm e @it (B.25)

At this point we are ready to find the asymptotic behaviour of the resonant states (2.99) along

rays in the lower half of the complex frequency plane. For x > 0 we get

. det M(yo) 2 . B det M(yo) : o a(p
outo) = iv | (Sand ) e (=) - (ma) Ci" <>>]

~1 ord 1 ~l T iR} _wuR?
(kR)" 1" " w7 2(2(x)) 1e e e

1
_ (2(151 2 (kR)ie 17974277'_%(2(%))_%6246“9}22 c@TR2
1A2
Az . - 1
=% (22 2) - (KR)_%W_%(I{R)_i(l + €xR_le_w)_%e_zze_me2
QE)z
(20) 2 )

(FJR)%W_% (&R)_% (1+ ExR_le_w)_Zei% em’RQ]

©
3
o)
™
=N

=
(S

1 x 1 ™
20e)3 el s 1 1 . 2c€)ze 1
- _X( a8)26 4 eszz (1 . ZSfol 19) ~ _%ewxb& (B.26)

The first term in the last line disappears for exponential decay because of w,,w; > 0. For the
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region x < 0 we get

o) = — 2 ni(—s()) e DT ot L )
w(T) = i(—2(z - e —m 2 (z(x
7 |det M(yo)| T A3 i
Y | 1 Y | 1
(61261191%2 ewa:RQ o e—zze—zﬂR2 e—w:L’R2>
X(2az)2 1 _i9R? -1 ~1_—i0\-1 iT iR} wuR?
~ ———(kR)ie (kR)"4(14+exR e ") ae'2e" e
(rA)2
1 1l ,n
~ X209 ()L peagin) gfgeend o XROEPCE copd g o)
(rA)} \ 4 (rA)}
Summing it up, the approximation of the resonant states along rays for —%” < 0 < 0in the
lower complex frequency plane is
1 .«
20e)ze's 1
VY, (z) ~ —Mewxm, Vi (B.28)

(WA)%
We proceed to the second sector in the lower half-plane —7m < 6 < —%”. According to
(10.4.59) and (10.4.63) in [1] we can see that comparing to the previous cases, the sign of the

argument stays the same in the expression. That means we would use a square root of a negative

quantity o, so we adjust it as

yo = —20€” R = 20’ R = iR (B.29)

K

from which we can observe that 0 < ¢ + 7 < Z. The asymptotic formulas for Airy functions

for this sector are

1 1
T2y, fem (B.30)

1
Bi(y) = m 2y, ‘e (B.31)
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Go = 2yi = 2R} RY = DR = 2(20)iet 0 R
3 3 3
<~
d
2 3 2 3 ~ -
= | 2(2)? cos (5(9 + w)) +i2(2a)2 sin (5(9 + n)) R? = (ﬁr + m,-) R? (B.32)
Note, that in the current sector —m < 6 < —%” we have for the argument of VU the range

0 < 3(0+m) < Z where

J,,0; >0 (B.33)

1 s 3
Ai(yo) ~ §7r—%(/%R)—ie—ﬁRQ (B.34)
~ 3
Bi(yo) ~ 72 (RR) ie”" (B.35)
then for the Airy functions Ci* we have
+ 1 _1gpd 1 EEUT°S Rt _1 jgid
Ci (yo) ~ 72 (RR) "1™ +ica 2 (RR) e " ~ 13 (RR) e (B.36)
1 1 35p3 1 1 1 Gps 1 1 5p3
Ci~(yo) =~ n 2(RR) 1e"F* —iEW_i(/%R)_Ze_ﬂRQ ~ 2 (kR)" 1"’ (B.37)

where we used the fact that 0,,,J; > 0. The determinant terms lb can be expressed then as

1 A . :
det M(yo) = — = ——Ai(yo)Ci" (o)
1 Al 1 _3pd 5ps 1 Al
~ = — I i(RR) i VR 3 (RR) 1M = = - S oaml(RR)
™ ag2 T Q€
1
~ — (B.38)
T
Since in this case we have Ci* (y9) = Ci™ (yo) then we also have
1
det M(yo) ~ — (B.39)
T
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and hence we get

NI

(detM(yO)) ~ 1 (B.40)
det M(y0>
det M(y)\ *
(i) = @
— 1 1
|det M(yo)| = (det M(yo)det M(yp))? ~ - (B.42)

As a next step we write the standard asymptotic relations for Airy functions with the argument

y(z) = —2a(ex + Re®).

Aiy(x) = 5 (y(a)) he S (B.43)

“H(y(x) e (B.44)
where in this case we rewrite y(z) as
y(z) = —2a (ex + Rei(g)) =20 (exe™ + Rei(9+”)) (B.45)

and we have

= ; [2046“””]% (6:1@'6’”1%’1 + 1)]%

3 3
2 2

[/%R (z—:xe_ieR_l + 1)} = @R% (1 + 52:6_“9}%_1)

- 3 . 3 N
~ UR? (1 + 5590@—293—1) = JR2 + 556—1%9 2R? = VR? + cwRe (B.46)
\ﬁ,—/

where we defined the quantity c which is

= —ee”0) = gse_wg (204)% i3(0+m)

= £ (2a)7 €303 = ¢ (2)2 {cos (%(9 + 37r)) + i sin (%(6 + 3@)}

e

= w, +10; (B.47)
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with

Njw

@, = ¢ (2a)

cos (%(9 + 37r)>
sin (%(e + 3@)

Njw

w; =€ (2a)

We can say that in the sector —7 < 6 < —2% we have 7 < 1(0 + 37) < ™ and therefore
y 3 2 6

&, i < 0

Substituting (B.46)) into (B.43)) and (B.44) we get

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

Finally we got to the point where we can find the asymptotic expressions for the resonant states

(2.99) along rays in the sector —7 < # < —2%, which is a part of a the lower half of the complex
gray 3

frequency plane. Using (B.40), we have for z > 0

det M(y0> det M(y(])

wlw) = i [(W@)) Gt - t=vim) % cﬁ@@»]

773 [2a (ex + €0FD) R}—% RS ~waR

YT %(/%R)’i (1 - %lexe"(””)Rl) 67&3% —@zR2
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1,01 —i(6+7) p—1\ "1 —OR3 —&aR3
= x7 2(RR)"7 (14 cxe e+ R ) e o

(B.53)



and using (B.42) for z < 0
. 2X 3 ~ ]
le) = e Ally(2) & 2uAiy(a)

~ 23 (y(a))He

=72 [204 (gx—i—ei((””)) R}—i e IR3 —&aR?

—5(FP)"i L i 1\ —dR3_&aR?
~xm 2(RR)"1 | 1— JEve MR e o

1 1 3 xR
~ XW_§</%R)_16_ﬂR2_sz2 (B54)

Since in the current sector we have J,,9; > 0 and &,,%; < 0, both (B.53) and (B.54) decay
~_ 3
exponentially even for z > 0, because the term e~?%* decays much faster in the limit R — oo.
Summing it up, the asymptotic expression for the resonant states (2.99) along rays —m < 0 <
2m s

-3 1S

1 1 3 . o1
Yo () = xm 2 (RR) "1 VR TmeR2 Ly (B.55)
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Appendix C

This Appendix provides a computation of the normalisation constant x for the scattering form
of the resonant states of the square well potential in (3.65). As for the Dirac delta potential,
the Hamiltonian (@) is Hermitian, the scattering states @ form a set with a continuous
spectrum. Therefore there must exist a normalization constant. This constant can be computed

from the completeness relation. The completeness relation is

| vlaeyis = o - ) .1

where the scattering state have the form

7r2|det2M(w)|Ai(y1(x)) r < —d
bo(z) = X 7r|d+1\/[(w)\ [(B1Ao — B1Ap)Ai(yz(x)) (2)
+(AL AL — A1 Ap)Bi(ye(z))] —d <z <d
i (5) " G (@) — i (M) Cir(n () d<a
In this formula we have defined
n(r) = —2a(er +w) (C.3)
ya(x) = —2a(ex + Vo + w) (C.4)

Ao = Al(y1(—=d)), A1 = Ai(y2(—d)), Br = Bi(y2(—d))

with o = (25)_%. Integrating the relation (C.1) through the interval I, = [z — €,z + €] and

taking the limit we obtain a formula for x.

lim g (/_OO X?ﬁw(l’)xg@w(m')dw) de’ =1

lim (/OO &w(x)gﬁw(aj')dw) da’ = y 72 (C.5)
I, —00

e—0

where v, (z) is the resonant state setting Y = 1. The interval I, is infinitely small which means

that any finite part of the integral

Q(x,2') = /_ ) Yoo (2, () dw (C.6)
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gives no contribution to . The goal then is to recognize those parts and exclude them. We
integrate with respect to w. Essentially, we can see from (C.3) and (C.4)) that the positions of
and w are the same. Let us see what happens when w — —oo. The arguments y; () and y»(x)
turn into big positive values, hence we can use the expression (10.4.59), (10.4.61), (10.4.63) and
(10.4.66) from [1]] for Airy functions to conclude that the function v, (z) decays exponentially

for all z. Therefore it gives a finite contribution so we can write

Maﬂ:/gﬂm&@Mw C.7)

for some positive ¢, which can be chosen as big as we like. Therefore we can treat the integrands
in their asymptotic forms. We are going to investigate each regions separately. Let us start first

with —d < x < d and d < . In this regions we have

Q) = [ iy (Pido = BADA() + (4145 = 4,40 Bi(1(x)

fdetM(w)\2 .. , (det M(w)\* ... ,
[—z (i) o) +i (S ) )
__/WP@MWBﬁ@
. rdet M(w)
2i(B} Ay — B1A})
- mdet M(w)
2i(A; Ay — AL Ap)
mdet M(w)
2i(A, Al — A Ag)
~ mdet M(w)

dw

Ai(yz(2))Ci (y1(2))

Ai(yo () Cit (g1 (2))

Bi(y2(2))Ci~ (31(2"))

Bi(yz(z))Cit (yi () | dw (C.8)

Let us first begin with det M(w). Its form can be seen in ll as the numerator. Instead of

working with that form, we can use (3.44).

det M(w) = (AgA] — AYA1)(ByCy — B5Cs) — (AgBy — AyB1)(AxC5 — AYCl) (C.9)
det M(w) = (AgA] — AyA,) (B2 Dy — ByDs) — (AgBy — AyB1)(A: D — AyD3)  (C.10)

Define

212(x) = —y12(2) (C.11)
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We will use z(z) without an index for the general asymptotic expressions of Airy functions.

The asymptotic behaviours of Airy functions according to [[1]] (10.4.60) and (10.4.64) are

Ai(=2(0) = 5= (a(a)) (60D (D) C.12)
Bi(—2(x)) ~ 2\1/7_?@(:5))—1 (cH68) 4 mi(6r)) (C.13)
Cit(—z2(x)) ~ 173 (2(x)) 1e5(¢FT) (C.14)

with ¢ = %(z(x))% We get the asymptotic behaviour for their derivatives from [[1] (10.4.62)
and (10.4.67).

Al (—2(2)) ~ — 2\1/%(2(@)411 (a"(“%) n e—"<<+%)) (C.15)
Bf«—zcw>232¢b%<z@»>i(é@+1>—-e*@+1>) (C.16)

~ 71'_%(2(%'))% sin (C + %) + iﬂ_%(z(x))% cos (C + %)
— ir 3 (2(a))te (¢ F) (C.17)
Cit (—z2(2)) &~ —ir 3 (2(z)) e (¢F5) (C.18)

Define the following quantities

21(—d) = 2aed — 20w = —f + yw 21(d) = 20ed — 20w = B+ yw  (C.19)
2o(—d) =2a(ed — Vo) + 20w = =B+ 0 +yw  2(d) =2a(ed + Vp) + 2aw

=040+ (C.20)

where 5 = 2aed, 0 = 2aVj and v = 2« and consequently define

2 3 2 3 2 3 2
Gt = 2t = 2 4wt = 2wt (2 +1)
2 3 3 2 3 1
~ 3007 (12 52 ) = 20w £ 500! a1
G = Haa)t = 2+ 04wt = 2wt (2041
2 3 3(c £ 2 3 1
~ 20wt (14 2222 ~ 2wt + 0 £ 5)0w)! )



In our proceeding calculations we will use the following computations

e

W=

21(d) iz (d) T = (£ +w) i (0 £ § + w)
o+ 6) i

=t (12 2) "ot (145
:<1¢i) (H“iﬁ):lgi% EY)

dyw dyw dyw  Ayw o 16(yw)?
~ 1t (C.23)
dyw

and we also have

_ (HEi) (1_0i/3> _,_0*B B _Plop)
dyw 4dyw dyw ~ dyw o 16(w)?
Ml (C.24)
4yw

~ _ﬁ( L(—d))~ (ei(CH%) e z’(q%)) (za(—d))} <ez(<;+4) Le z(<2+4)>

¥ (o)) (60 4 D)) () (o6 E) - i)

~ —ﬁ( 4%) <6i<<;+z;) _e—i(qﬂ)) (ez(g+4) L z(<;+4)>

+ ﬁ ( —~ ﬁ) (ei(cf%) +e*i(<;+z)) (ei(cg%) e*i(gﬂf))

_ _ﬁ (i(646) 4 67 -6) — i66) el

— ﬁ&% (iei(q"‘g) 4l =G) _ i) 4 ie—i(<;+<;)>

+ ﬁ <2’ei<41_ ) i) 4ol -G) 4 ze—i(<f+<5)>

- ﬁé}% (€646 = (6 -6) 4 eil6 -6 ) 4 el 440))

_ _i (e6=6) - emla=)) ﬁ (66 1 i) ©25)
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where we used (C.23) and we proceed to the next one.
ByCl — ByCy = Bi(—2a(d))Ci'™" (—21(d)) — Bi'(—22(d))Cit (—21(d))
Qj#@(d))— (68 4 (G0 (—im i (2 (a)) 1l 40))
(zald))} (cH65+5) — e +0)) bz ()46 +0)
N % (1 _ L) (iefle ) 4 el -eb))

PN

~
~

B (iei(cﬁq) N 61‘(4#6))
2T 4yw
_ b (Zez(cnq) +ez~(q—<;)) Lo (Z-ei(Cfr—&-Cj) L ile—a)
2im 2im dryw
_ L (el ei(é#cfi)) 1L o (iez‘(cﬁcz*) _ ei(cf—g))
2T 2im 4ryw
_ L) L () 26
i dTyw

and similarly

By D — ByD3 = Bi(—25(d))Ci'™ (—21(d)) — Bi'(—22(d))Ci™ (—21(d))

A i) LT i)
i dTyw

Q

(C.27)

123



We proceed to the next term in (C.9) which is

AgBy — AyBy = Ai(—21(—d))Bi'(—25(—d)) — Ai'(—21(—d))Bi(—22(—d))

~ Qilﬁ(zl(—d))—i (e6+5) — i +D)
)t (6 H) — )
+ 2\1/E(Zl(_d))l <6i(<1_+7) +e (cr+ )>
2;%@2(—@)— (ei(cﬁﬁ) +eile +*)>
~ (1 ) (M) - oD (v - el )
S (1 _
47 4ryw
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With the same approach we take the next term.

AyCl — ALCy = Ai(—2(d))Ci T (—21(d)) — AT (—25(d))Cit (=21 (d))

~ Qilﬁwd»—i (68 — G0 (—im 3 (g (a)) ()
_ (_2%(22@ JCCE i(<;+z>)> 73 (2(d))"hei ()
~ (1 _ m) (e +ed) — il -eD)
N % (1 N 4%) (i) 4 (6 =c0))

1

_ ( i(GF+ed) _ e - <2)>+LL(Z@¢<G+@)_61‘(<T42*))

2 21 dyw
L( (¢ +ed) oy (e <2)>Jr 1 o <Z€ (Gr+6) 4 gilet @))
2 2m 4’yw
_ Ll -a) T i) (C.29)
m 47T’ycu

and similarly its complex conjugate

AyDy — ALD3 = Ai(—22(d))Ci"™ (—21(d)) — Ai'(—22(d))Ci™ (—21(d))

o Lol =) _ Tt (e )
T Aryw

(C.30)

We can now conclude that the asymptotic expression for det M(w) using (C.25), (C.26), (C.28)
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det M(w) = (AgA} — AYAy)(BoCh — ByCs) — (Ao By — Ay By)(A:C4
{_L (ei(q—cg) _ e—i(<;—<;)> __9 (ei(cl‘—i-cj;) +€—i(§f+§2‘)>:|

8Tyw

(iei(cr—cg) Giler e
1

H
Py

T 47r’yw

)
i (15790l et
>

o1

el =) 7Y i+

s 47ww

L < (e =6 —¢F) _ e —i(¢r =G -G +6 ))
272

(ei(<;+<1+—<;+c;) _ omiler - ¢ ¢t )>
8im2yw

o ((<1+<1+<2 F) 4 eiler <r+<;+<;)>

a 8i7r2’yw

GHGHG ) i —G G —G ))

327?2( w)? ( !
< GGG oy pmiler - <;+cz*))

( i(Cr+GT -G +¢) +€—i(<;—<f—<;—c;))

827? Yw
__ ¢ <€z‘(<;+<1++<;—<;) _ e—z’(q—cr+<;+c;))
8im2yw
2
__ T (ei(<f+cf+<;+<;) _ efi(qfcﬁc;fc;))
3272 (yw)?

Sl -a ) T (G -G )
2 4im2yw
2

_ T e -G) T i -

4im2yw 1672 (yw)?
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We can use (C.27)) and (C.22) to simplify this expression.

1

det M(w) = ——
3 7T 3 1 3 1 3 1

o—i(30w)F=80) 1= (3002 +80) )= (3(0) +0=B) w)? ) + 3 (1) T +(o+B) (1) )

g

4im2yw

i(202)2 -8 2+ 2 (3w) 3 +8(w) L

l\‘:h—t

~(20) 3 +(0-8)(1)2 ) +2 (v) B+ (0+8) (1) 2 )

€
g

C dim?w
(3002 -B0w) 1 +300) F 48003 +2 () T +e—8) 0w) E — (303 +(0+8) () ) )

0.2

* 1672 (yw)?
o—i(30@) =80 = (36 +80)} ) +3 (0) F +(0-8) (1) 2 - (30) T+ (e+8) () D))

L a(sewbeseat) 9 (iowi-s6wi)
dim?yw 4im2yw
2
+ 0T B
167°(yw)?
N - o ei<%(7w)%+2ﬁ(7”)%> R o ei(é(w)%ﬁﬁ(vw)%) ~ 1 (C32)
4im2yw 4im2yw 2

where in the last line we used the fact that w is real. In the same way using (C.25)), (C.27),
(C.28) and (C.30) we have the complex conjugate of the determinant

10 (s 280w)d 0 i(4w)d 280y
det M(w) e +——ct
- 2 4i7T2”)/w 4i712fyw
1
~ - (C.33)
T

We continue with the expression in (C.8). Let us introduce the following quantities for

transformations z1(x) and zo(z).

z1(x) = 2a(er + w) = pr + yw (C.34)

2o(x) =20(ex + Vo +w) = px + 0 +yw (C.35)
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where v = 2a, 4t = 2ae and 0 = 2a'Vj. Also, the following computations will be helpful.

o
£
S~—
S~—
e
w
)
—~
=
I
IS
I
—
=
H\
+
=2
&
S~—
e
=
&
+
Q
_l’_
2
E
e

~ ) (1- 22 (1 222) — oy (©36)

[NJIe]

NI

) — H(’YW)% (x — ') + o(yw) (C.37)

3
2

[SI[9)

2
+ (2’ +w)

Foa(@) = S+ o b+

3

2

3

2 3 3ux’ 4 :
~ 2 (w)} (1+M+1+ﬂ) ~ 2 (w)? (C.38)
where (15 = %(zl,g(m))%. With this notation, the first term in the integral 1) becomes

Ai(—25(2))Ci™ (=21 (2"))

1 1 4 - . P
~———(z(z)) 1 <€z(<2+4) 6—2(C2+Z)>7T b (n (2f))Fe (6 E)

2i\/T
= 1 : (61(6741) _ 6*1(42+Ci+%)>

2im(yw)2
~5 (1 ¥ (61”(”“)%‘9”‘90')63"”(7“)% +z’e"§(w)%>

1YW )2

L : /o . 3

" 2in (1 H <€ZM(W)§(“ “)ﬂ'e—’é(w%) (C39)

m(yw)?2

where we used the help of (C.36)-(C.38). Similarly we have
1 - 3 ; ! 1o
Ai(—25(2))Cit (=2 (2))) ~ —>1 (ie’g(w)Q Rk G +u)) (C.40)

2im (yw

We are ready to return back to our integral (C.8)) and collect the gained knowledge to compute
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the first two terms. We have

2i(B1Ag — B1Ap) 2t > = (e’i"(W)% + ei"(W)%> (C.4D)
m

wdet M(w)
then the first two terms in (C.8) are
2i(B} Ay — B1A}) . . ,
— Ai(—29(2))Ci (=21 (z
o A 5O (-a(@)

_ 2i(B1A) — Bi4y)
mdet M(w)

~ i (e—ww)% + eww%) [Ai(—2(2)) Cit (=21 (7)) — Ai(—29(2))Ci (=2 (2))]

~ 1 (671'0'(7(.0)% + eio’('yw)%> |:<Z'€i§('yw)% _ e—i,u('yw)%(m—a:/—l-;t))
27 (yw)

_ (eiu(vw)

It is easy to verify, that the integrals that contain the term ( i)l etiz(w)
Yw) 2

w — oo and therefore they give no contribution to . Dropping those terms, the expression

(C.42) becomes

Ai(—2(2))Cit (=2 (2))

ST SIS

(xfm’Jr%) + ie_ié(’yw)%):| (C42)

3
2

are convergent for

— ; (efia(’ﬂd)% + eio’('yw)%) e—i#(vw)%(x—x’+%)

27 (yw)z
_ ; e—ia’(')’w)% + eia('yw)%) eiu(vw)%(o&—x’+%)

27r(fyw)%

L —ip(rw)? (z—a'+22) o) b (&7
= _ﬁ e u(yw r—x W)+ efz,u('yw) (z'—x)
7(yw)?

e ko)) o

The integral of this can be transformed just as we did in Appendix A (A.15) and (A.T6). Using
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this, the integral of the first two terms in (C.8) becomes

/OO —; (ei“('yw)%(l’_l’/) + ei#('Yw)%(wf:r’JrQ%)
q 27 (yw)

[N

e _L |:/ (e’lu(x—x/) + elu($7$’+2%)> du
Y LSy

+/_ (ez’u(:c—:c/) +€iu<$—x’+2%)> du]

o0

_ _L (eiu(a:—a:’) +eiu(x—x’+2%)> du
™Y J oo
2 , , o

= —— [5(w—x)+5(:f;—m +2—)} (C.44)
oy 7

with r = 11,/7q and the whole integral (C.8) can be written as

Qlz,a') = = [5(33 )46 (:v e 2%)}

Y
 [20(AA4) — AjAo) o
_/q [ T M) @) (=al@)
2i(A1 Ay — AT Ao) . . /
T ordaM) )G <—zl<x>>} dw (C45)

We take now the other part which is going to be very similar to the previous one. With the use

of (C.23) and (C.33) we have

-1 10 (yw 5 —io(yw 5
2i(A Ay — AL Ay) | ~2iniz (eiotm? = emiotr?)
wdet M (w) - -

™

ol

— 6icr('yu.;)

. 1
i (C.46)

and similarly to (C.40) Bi(—z(z))Ci*(—2,(2’)) can be expressed as

Nl

1 : (iez'%(w)% 4 i) (m—x’)e—ia(vw)%)
3

= (ieié(w)g + e_i“(W)%(x—”'”LZ)) (C.47)
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and its complex conjugate is

Bi(—2(2))Ci~ (—21(2))) & ﬁ (ewﬁwﬁ(“’ﬂ) - z'e_ig(”w)%) (C.48)

N[

then the integral in (C.43)) becomes

* [2i(A1 4L — AlA) . 3 /
/q { 7Tdet—1\/[(w) Bi(—22(2))Ci™ (=21 ("))

2i(A 4L — ATA)
mdet M(w)

~ /Oo ;1 (610(7@% _ e-ia(w)%> Keiu(w)%(:c—wurg) _ ie—zg(wﬁ)
q 2m(yw)?

B (ieiﬁ(vw)g + e—iu<vw>%<w—w'+z))] } dw (C.49)

Bi(—Zg(I))Ci+(—Zl(I/)):| dw

. . 3
Those terms containing ( Z) T e*130%)2 can be dropped considering the fact that the integral of
w)?2

them is finite and give no contribution to . After this we are left with

/ L <evza(w>%_e—w<w>
q QW(VW)E

= /oo ;1 (eil.b(’YW)%(:D—z'—&-QZ) . ei,u('yw)%(xfx/)
¢ 2m(yw)z

_eiﬂ("/w)%(ﬂf'w)_i_e—iu(vw)%(x—x’-s-zz)) dw

[N

) (6"“<vw>%<x—w'+z> - e—z‘mwﬁ(w—x’ﬁ)) du

- (e“‘(:’”’w'”%) - e"“(x_x/)> du

THY Jy
+/ <_€iu(m’7m) +€iu($—x’+2%)> du

o0

b (/ gu(e=="+28) g —/ ei“(gj_m/)du)
1y \J oo oo
2

T
_2 [5 (x s 22) (- x')] (C.50)
Y p

where we used the same method as in Appendix [A] (A.15) and (A.T6). Substituting this into
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(C.45) we get

Qa2 = — {5(33 )46 (:n S 23)}

py 7
_ 2 [(5 (x—x’—l—Qg) —5(w—x')1

py M
— i(g( —a2) = L(s( — ') (C.51)
= =) =50l —a :

Note, that this is for the region —d < x < d and d < z’. In an entirely similar way we could do

the region —d < 2’ < d and d < z. Here, the function Q(z, z’) reads
/ ]‘ / ]' /
Qz,2") = —=0(2' — ) = —0(z — ") (C.52)
« a

since the Dirac delta function is an even distribution. The result for z > d and =’ > d is also

known. We have done this in Appendix A (A.12). The solution in this region is

Qz,2') = %5@ — ) (C.53)

ace

The next region we will investigate is —d < = < d and —d < z’ < d. The integral (C.7) in

this region reads

N e 2
Q@"”)_/q 7] det M(w))]

[(BiAo — BiAg)Ai(—22(x)) + (A1 Ag — A} Ag)Bi(—2(x))]
2
7| det M(w)]

- /OO 2| detzi\/l(wﬂ2 [(Bido = BiAg) *Ai(=z()) Ai(=2(2')

+(A1 Af — A7 Ag)*Bi(—25(2))Bi(—22(2"))] dw

00 4 / ) / o
" /q 2| det M(w)|? (B1Ag — B14y) (A1 4y — AT A)
A= () Bi( =22 (a')) + Ai(—2a(a'))Bi( 2 (x)] do 54
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There will be needed to additional smaller computations.

—~
I\
)
&
hl
S
N
)
=
I
S
I
=
&\
+
Q
+
2
&
|
N,
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=
8
+
Q
_l_
=2
&
S~—
e

e\ -}
= (yw)71 (1+ e +0> (yw) 1 <1+ ”‘%LU)

Yw Yw
_1 Y r+o _1
~ (yw) "3 (1 - M4w ) (1 - M4w > ~ (yw) "3 (C.55)
, 2 3 2 A 3 2 3 2 / 3
G2 — G = 5(22(3?))2 - 5(2’2@))2 = g(ﬂ$+0+’yw)2 - g(lﬂc +0+w)?
3 3
92 2 / 2
() (522
2 3 3(px’
~ w1+ el W) = plyw)? (z — ) (C.56)
Yw w
;2 3 2 3 2 3 , 3
G2+ G = 3(22(2))2 + S (22(2)2 = S(p + 0 +yw)2 + (ur’ + 0 +qw)>
3 3
2 2 ! 2
= g(vw)% (MV:: Ti1) o+ MW: 75 1)
2 3 3(pz + o) 3(pz’ + o) 4 3
~ = 1 1 ~ - C.57
5 () ( o TP T 5 (1) (C.57)

Let us start with the first integral. For each term we found an asymptotic expression except for

Ai(=2(2)) Ai(—22(2"))

~ zii/%(zg(x))_i (a’(m%) - e*i(@%)) %iﬁ(@(x'))—i (ei(<é+%> — @ﬂ'(cﬁ))
~ —m (ei(<2+%> _ e—i<<z+%>) (a(cﬁ%) _ e—i(<é+%>)
= _m (Z'ei(42+C£) _ile—G) _ i(e—¢) _ ie*i(CQJrCé)) (C.58)

where we used (C.53)). For the next term we have

1

Bi(—2y(z))Bi(—2(2")) = (20(z)) "7 <6¢(cz+g) " efi((2+%)>

2y
el () D)
~- (1 7 (ez(c2+4) Le z(<2+4)) (ei(C§+Z) Le z(<§+g))
m(Yyw)?
- miw)é (sei(e+e) 4 ei(6am6) 1 ei(em) — jemi(cavai)) (C.59)
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Using and (C.25), (C.28)), (C.30) in the first integral of (C.54)) we get

/ oo = de&(w)p (B} A0 — By Ag)? Ai(—za(2))Ai(~ 22(a"))

+(AAf — A7 Ag)*Bi(—22(2))Bi(—22(2'))] dw

/OO 4
~ 71
q 7T7r4

+ (—L <ei"(7‘”)% - ei"(W)%)>2 Bi(—22(IL’))Bi(_Z2(xI))] dw

2im
= [ [t o i)

. 1 . 1N 2
— (620'(7&))2 _ 6—10(7&7)2) Bl(_z2(x))Bl(_22(x/)):| dw (C60)
We examine the first part of the integrand in (C.60) using (C.58]

, 1 . 1N2
(e—wwz n ewww) Ai(—29()) Ai(—2o(a))
2
~ (eficr('Yw)% + eiU('YW)%>

;1 (iei(<2+<é) _ ei(@—Cé) _ e—z‘(gg—gé) . ie_i(<2+<é)>
A (yw)2
= _;1 (6—2'20(%))% 4 eiQU(W)% n 2)
4 (yw)?2
(z’e"(<2+<é) _eile-6) _ mile-a) _ Z-e—z'(<2+<§)) (C.61)

and the other part is

! S A
<em<w>2 _ efwww)?) Bi(—2(x))Bi(—2(z"))

2
~ (ew(w% _ efw(w%)

;1 (,iei<C2+C§) + ei(@—{é) + e—i(gg—(g) . Z.e_i(gz_;_gé))
A (yw)?z
pr— ;1 (6120(7“’)% + 6*7520’(70_})% _ 2)
A7 (yw)z
<Z-ez‘<C2+Cé) 4 ei(Cz—%) + e—i(C2—C§) _ ie_i<<2+<é)) (C.62)

Both (C.61) and (C.62)) are integrands. Looking at the form of (5 + ¢} in (C.57) we can see

that the integrals containing terms with this exponent can be ignored since they give a finite
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contribution to . Doing so and subtracting (C.62)) from (C.61)) according to (C.60] we get

/°° {(6_@7( )t ez’a(vm%)Q Ai(—2(2)) Ai(— 2o (2"))

(e _ wﬁw)%)Q Bi(—2(x))Bi(—2(a")) | dw

<ei(C2—Cé—20(’Yw)%) +oi(e-Gr2etw?) L i(e-Graetw?)
1

2

—(5—2 ( )%> + 2¢t (C2 Cz) +2¢7" (C2—C§) _6i<C2—Cé+20(’YW)%)

\

(
—i(G—Gp—200@)?) _ i(G-G=20(w)7) _ —i(C—Gh+20(1w)?)
(

+

9¢i(C2=G2) + 26_i<C2_<é)> dw

~ 1 (ei(Cz—Cé) +e—z‘(<2—<5)) dw

¢ (W)
~ /Oo ( 1 )l (ew(vw)%(z_x/) + e—m(yw)%(a:—x’)> dew (C63)
¢ T(yw)2

where we used (C.56)), (C.57). This expression can be simplified further as

o0 1 . 1 , ) 1 ,
/ (em(w)2 (e-a') 4 o-in()} @z )> dw
q

m(yw)?
2 o ; / - ; / 2 o ; /
— (/ ew(mfx )du + / ezu(xf:t )du> — ezu(a:fx )du
ey \J» oo Ty J oo
4 / 1 /
=—6(r—2)=—-06(r—2) (C.64)
ey a’e

Returning back to (C.54) we have the following

Q') = [ e [(Bido = B PAi2(a) Ai(—2(e')

+(A Ay — A7 Ag)Bi(—22(2))Bi(—22(2"))] dw

00 4 / / / ,

[Ai(—22(2))Bi(—22(2")) + Ai(—22(2"))Bi(—22(x))] dw

4 / x 4 / / / /
= mé (ZL‘ — X ) -+ /q 7T2| det M(w)|2 (Ble — BlAQ)(AlAO Ale)

[Ai(—22(2))Bi(—22(2")) + Ai(—22(2"))Bi(—22(x))] dw (C.65)
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The next term we need to express asymptotically is

1
NG

(22(2))”

SIS
/N
)

.
~—
e
RS
+
Gl
N~—
[

J
—
s

N
+
INE
S~—
——

~ L (ez‘(<2+g) _e—z‘(<2+g)> (ez‘(<§+g) +e—z‘(<§+g)>
dim(yw)2
o1 <Z~€i(Cz+C§) 4 eil6a=6s) _ gmilea=¢s) 4 ie*i(CQJrCé))
i (yw)?
1 4 3 . 1 , . 1 , 4 3
~N— (ielg(vw)? 4 i) 2(@=a') _ o—ip(yw)2(z—a’) | ie—%(wﬁ) (C.66)
dim(yw)?

where we used (C.56)), (C.57) and similarly we have

Ai(—z2(2"))Bi(—2(x))

~_ b (iezg(w)% 4 emin) da—a) _ intw)d o= ie—i%(wﬁ) (C.67)

dim(yw)?

Using (C.66) and (C.67) together with (C.25), (C.28)), (C.30) in the integral in (C.65) we get

o 4
(B1Ag — B1Ay) (AL A — AL Ap)
/q 72| det Mi(w)[2* 0 0 !

[Ai(—29(2))Bi(—22(2")) + Ai(—22(2"))Bi(—22(2))] dw

> 4 1 , 1 . 1N 1 ) 1 , 1
~ 2 io(w)? w(w)?) L ( io(yw)2 _ fwww)'z)
/q 7T27% 27 <6 te 24T € €
1 )

i (yw)?2
()3 mintw)d @—a') _ intw)? @) ie—iﬁé,(w)%)] dw

[9V)

4 3 . 1 / ; 3 / i 4
(ieww 4 )2 (@=a) _ gmip(w)2 (e=a) | jo=iz(w)

1 .
—
dim(yw)?

_ /OO 1 . <6i20('\/w)% . e—iQU('\/w)%>
A (w)?

[iel

Lieidow? | omintw)E@—a) _ jintw)? @-a) | ie—igmm%} du

ol

Q

Wl

()f | i) ) _ mintw)d =) | jo—idtw)}

_ /OO ;1 <6i2cr('yw)% _ e—iZU(’yw)%> [iei%("ﬂd)% + Z'e—i%("fw)%] dw (C.68)
¢ 2m(yw)?

It is easy to verify that this integral does not give any contribution either. So basically from
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(C.63) we have

Qx,x') = L(5 (x — ') (C.69)

a2e

Continuing with this process, as the next we will investigate the region < —d,d < z’. The

integral (C.6) here becomes

Q)= [ g @)
[—z (det—M(‘“")) : Ci~ (g1 () + i (@) ’ Ci+(y1(x'))] dw

det M(w) det M(w)
00 21 . .t , 2 ) . ,
- /q 2 detM<w)A1(yl($>)Cl (y1(2)) — —7r2det—M(w)A1(y1<x))Cl (y1(2"))dw (C.70)

For this, we need the following asymptotic expressions

Ai(—=2z1(2))Ci™ (=2 (2))

1 L[ e . . P
~ Qiﬁ('zl(x))il (el(C1+Z) _ e—z((ﬁ-z)) 7T7§(21(1’/))716_2(41+Z)
— 1 ' ! i 1 1 , 1 / . 3
= in(,}/w)% <el(Cl—C1> — e—Z(C1+C1+§>) ~ —in(,yw)% <€w(’7w)7(xf:r) _|_Z'€fz§('yw)?> (C.71)
Ai(—2(2))Cit (=2 (2))
v (i‘fi%”‘”)% - e*l"‘(”“’)%(m”/)) (C.72)
im(yw)?
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The using (C.30), (C.33), (C.71)) and (C.72) the integral becomes

Q. )

o g . e 2i | o,
:/q mm(yl(l’))@l (%(fﬂ))—mm(m(x))@l (y1(2"))dw
~ [T E A )G () — Al () C (0 ()

2 =
¢ 2im(yw)?z
: ( 30u)3 i) (o /))
— = (gefslw)2 _ gmin(w)2(z—2) ) 4.,
2im(w)

— ol

— /oO : <ei,u(’yw)%(ilf—x’) + Z'e—i%('yw)% . iei%(’yw)% _|_ e_iﬂ(’Yw)%(x—:c’)) dw
g m(w)?2

- / h ( ! ¥ (em<w>%<x—w’> +e—w<’yw>%<w—x’>> dw (C.73)
g m(yw)?2

which can be further transformed into

Qo) = Ly [t (roboon) o),
Y2 Jq

2 o . / - ; / 4 1
= — (/ e qy, +/ ehula—e )du) = —d(x—2') = —=0(x—2a") (C74)
oy \J, o wy aZe

where r = 1,/7q and at the same time the region 2’ < —d,d < x is also determined and it is
the same as (C.74) because of the delta function is even.

The following region we discuss is © < —d, —d < 2’ < d. The function Q(z, z) reads

Q(r,2") = /qoo mm(%@))m [(By Ao — B1Ag)Ai(yz ("))

+(A1 A — AT Ao)Bi(y2(2))] dw

> 4 / / . . /
~ | i (o — BAAIGA(x) Ao
+(A1 Ay — A Ag)Ai(y1 (7)) Bi(yz(2"))] dw (C.75)

The only expressions we do not have asymptotic versions for are Ai(y;(z))Ai(y2(z’)) and
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Ai(y;(x))Bi(y2(2")). From (C.58) and (C.60) they are easily obtainable.

Ai( =21 (2))Ai(—2(2"))
~__ L iei(Gr) _ i(a=¢) _ mi(a-¢) _ omi(ate)
47r(fyw)% ( >
B 1
dr(yw)z

<Z-ei§(7w)% R (ICRLICE DR COL)

~
~

[N

_ i(109? @=a)=o(w)

) _ z‘e—ié‘Wg) (C.76)

and the second is

Ai(—2(2))Bi(—2(2"))

~ ;1 <iei(C1+C§) + ez‘(cl—cg) _ e—i(gl—gé) i z’e‘i<<l+<§)>
dim(yw)?
1

~

- i (yw)?2
(ieié(w)% + ei(u(w)%(x—w’)—a(vw)%)

Nl

_ pi(mow e —ou?) it )

) (C.77)

) 3
( 1) T e*13()% can be dropped in the following computations,
Yw

because they do not give any contribution to y. Carrying that in mind and also (C.25)), (C.28)

In both cases, the terms including
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we have from (C.73)

Q)% [ Sy (B — BUADAG ) AiG(r)

+(A1 Ay — A1 A Ai(y: (2))Bi(yz(2))] dw

N/“’L
o ()
1

(_ei(uww)%(xx')a(w)%) B 6i(u<vw>%(m'>0<w>?)>

1
2

1

<€—z’a(w>% n eia(w)%> :
A (yw)?

1

1 / * 1 [ei(u(w)%(m—fc’)—%(w)%) 4 i) | i(pow) @)
q

() —i(p(w) 2 (z-a")~20(1) )

—1
+e -

(o) @20 (w2 6%’(#(%)5(901’))} dw

_ l /OO 1 [eip(vw)%(z—m/) + e—i#(VW)%(r_x/)} dw (C78)
™Jg (W)

[NIES

which can be transformed as we did several times into

Qlz,a') ~ / ©o1 [eiu(vw)%(w—z’)+e—iu(vw)%(m—r’)} d
q

mJy ()2
2 & : / - ; / 2 & ; /
_ (/ ezu(ac—z )du + / ezu(w—m )du> _ ezu(z—x )du
oy \J, oo Ty J o
4 / 1 /
:—5(a7—x)275(x—x) (C.79)
ey a’e
with r = u,/vq.

Finally we have come to the last region x, ' < —d. Here we deal with the integral

Q) = [ (@) e Ai(y ()

72| det M(w)| 2| det M(w)|
© 4 . . /
- / et MR (A (2) (C.80)
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The asymptotic expression for the term Ai(y; (z))Ai(y,(z')) is

Ai(—z1(2))Ai(—2z(2))

22-1/%(21@))_ (e"(CH%) - e‘i(@*%)) Qii/%(ZI(x/))_i <€i(<1+%) _ e—i(<{+g))
= _;1 (iei(CH—C{) _ila=¢) _ mila—q) _ ie_i(<1+q)>
A (yw)?

~__ L (ieig(m% @) a—a) _ —in(re) e—a') _ ie—z‘%(wm%) (C.81)

A (yw)

N

~
~

N

.4 3 . . . .
( 1) —eF30%)? can be removed because the give a finite contribution to
yw)?2

The terms that include

X, so (C.80) becomes

N /OO B 4 1 i <_eiu(7w)%(x—x/) _ e*l’l‘«('Yw)%(xfx/)> dw
. R

_ /OO 1 i (eiu(ﬁ’w)%(xf:r/) + eii/‘(’w)%(xfm/v dw (C.82)
¢ m(w)2

and we end up with the same situation as in (C.74). The answer for this region therefore is

Qz,2') = %(5(:5 — ) (C.83)

ace

Summing it all the regions up, we can see from (C.57)), (C.33)), (C.69), (C.74), (C.79) and
(C.83) that the function Q(x,z’) is exactly the same in every region. When it comes to the

switched regions, by which I mean for example in stead of * < —d,d < 2/, the switched
regions is ' < —d, d < x, then they give us also the same and equal term, namely ﬁ& (x—a’).

The cause of that is that the Dirac delta function is even. So overall we have

1 1
-2 1: / T o r_

X =l . @z, 2)dz’ = lim . ozl — @) = o
X = (a%)? =275c75 (C.84)

which we recognize it to be exactly the same as the normalization constant for the Dirac delta

case (A.29).
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Appendix D

This Appendix is about acquiring the asymptotic formulas for the scattering form of the resonant
states v, (x) for the square well potential (3.1)) along rays in the lower part of the complex

frequency plane. The state have the form

.

7r2|detM(w Ai(y () x < —d
ey = A T (Bl = B Ai(1n(0) o)
N (A A — A Ao)Bi(yz(x))] —d<z<d
| () Gt g ) — i (22)* i) d <
In this formula we have defined

Y =236 (D.2)

yi(r) = —2a(er + w) (D.3)

y2(7) = —20(ex + Vo + w) (D.4)

Ao = Ai(y1(—d)), Ay = Ai(y2(—d)), By = Bi(y2(—d))
with @ = (2¢)~3 and the determinant is

et M(w) = (Ao} — AYAL) (BaCl — BACy) — (AoB, — ApB1)(AsCy — 44Cy) (D)
det M(w) = (AgA} — AyA1)(BaDy — ByD3) — (AgB] — AyB1)(A2 Dy — A Dg) - (D.6)

We represent the rays in the lower frequency half-plane as
w=ReY —7<0<0 (D.7)

where @ — oco. There are two different asymptotic behaviours of Airy functions depending on
the angle of the ray. The two sectors are —=F < § < 0 and —7 < # < —=F, which are going to
be treated independently.

Let us first take the sector

2
<o (D.8)
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and define

z12(x) = —y12(2) (D.9)

We will use z(x) without an index for the general asymptotic expressions of Airy functions. In
this sector the asymptotic behaviours of Airy functions according to [1] (10.4.60) and (10.4.64)

are

Ai(—z(x)) =~ QZ'i/E(Z(I))_}l <ei(<+%) - eii(“%)) (D.10)
Bi(—2(z)) ~ 2\1/7?(2:(9[;))1 (ei(“%) + e‘i<<+%)> (D.11)
Ci*(—z(2)) ~ W*%(Z(x))*ieﬂ(ﬁg) (D.12)

with ( = %(z(x))% We get the asymptotic behaviour for their derivatives from [[1] (10.4.62)
and (10.4.67).

Al (—2(2)) ~ —2\1/%(2(90))1 (ei(%) + e*i<<+%)) (D.13)
Bi'(—z(x)) ~ 22‘\1/%(2(@)411 (ei(ﬁg) - e_i(ﬁg)) (D.14)

~ 777 (2(x))7 sin (( + Z) + i 2(2(2))7 cos (C + %)
— i3 (2(z)) T (CFF) (D.15)
Ci (—2(2)) ~ —in 2 (2(x)) el (¢H5) (D.16)

Define the following quantities

2 (—d) = —20ed + 200 = = + KR 21(d) = 20ed + 20w = f+ kR (D.17)
2o(—d) = 2a(—ed + Vo) + 20w = =B+ 0+ kR 23(d) = 2a(ed + Vp) + 20w

=pB+o0+kR (D.13)
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where 3 = 2aed, 0 = 2aV} and k = 2 and consequently define

2 2 2 :
G = 5(21(Fd)2 = S(E6 + kR): = S(kR): (i% + 1)
~ g(m)? (1 4 %) = gmi R® 4+ B k2 R2 =49R? + BoR? (D.19)
~~ 0
9
2 2 2 + 2
Gt = Stk = S(eh o+t = St (0 41)
2 :t 2 1 1 1 1
~ §(m%)% (1 + 3(%;”)) = gm%R% + BKk2R? + oKkZR2
= UR? + pR2(c £ f3) (D.20)
where we defined ¥ = %m% and p = k2 with
3 3 1 1
¥, = =(2a)2 cos (59) or = (2a0)2 cos (§0> (D.21)
3 . (3 1. (1
v; = =(2c0)2 sin (59) 0; = (2a)2 sin (§9> (D.22)

Observe, that in the current sector —%” < 6 < 0wehave —7 < %9 < 0 and —% < %9 < 0 and

therefore
¥; <0, 0,>0,0 <0 (D.23)

Let us start with the determinants. With a help from Appendix [C| we can see from (C.32)) that

we can straight use this expression

detM(w) ~ _i : o ei(%(’YW)%-i-Qﬁ(’YW)%) . ,Lei<%(,YW)%_2B(’YW)%> (D24)
w2 dimyw 4im2yw

One should remember that in Appendix [C] the w was real, whereas now it is complex. We can

however see the connection between the involved quantities from (C.21)) and (C.22).

Yw — kR (D.25)
2, .

2 (1)} — v} (D.26)

(yw)? — oR? (D.27)
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Using these analogies, we can rewrite (D.24)) as

1 o i(zﬁR%HﬁgR%) o i(QﬂR% —2[393%)
det M(w) = —— —
et M(w) 2 + 4im?kR" Yim?kR"
_ b L ei279R% (62'2,89}2% B 6-1’2593%)
4im?’kR
o i2<ﬂR%+ﬁgR%)
~ D.28
4in?kR" ( )
where we used the fact that p; < 0 and 1J; < 0.
The asymptotic expression for det M(w) according to (C.33) is
. 3 1 . 3 1
ot Mi(w) ~ _i? _ f; 671<219R7+2ﬁQR7> | o 671<219R772,89R7>
w2 dimlyw 4im2yw
_ _i ¢ e—in% (e—ﬂﬁgR% _ 61‘2[39R%>
w2 dim?’kR
1
~—— (D.29)
T
where we again used ¥; < 0.
The expression |det M(w)| can be then written as
— .\ 0 i2(9R%+poR?) 1\)\2
det M = (det M(w)det M 2 ——
ot M)| = (det MTE M) ~ (15 -
L iz ) 3 1
_ o€ i(9RZ4p0R?) (D.30)

[NIES

212(kR)

We also have

NI
N
=

(detM(w)) N -5 B ( 1 4in*kR —z2(ﬁR?+ﬁgR?>>2

det M(w) ( R34 %) ™ o
4z7r FiR
¢~ (PRE +50R%) (D.31)
el 4(72
1
1 i 3 3 2 1
(det M(w)>2 | woage 2(oRE +enz _ (_ﬂ_z a 6i2<19R%+59R%)) ’
det M(w) -5 4im?kR
ooeld 3
_ _i(9R% +0eR2) (D.32)
2(kR)2

In the region —d < x < d we are going to need the following terms. We can therefore use
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(C.25) and (C28).

AgBy — AyBy = Ai(—21(—d))Bi'(—25(—d)) — Ai'(—21(—d))Bi(—22(—d))

s (ei(q—g) n e—z‘(C;—CQ)) _ 91 <€z‘(<;+<;) _ e—i(<f+<2‘)>

T on 8Tk R
- 2i (ei(ng—ﬁgR%_(ﬁRS+gR%(J—5))) n e—i(ﬁR% —ﬂgR%—(wRS'JrgR%(a—ﬁ))))
T

ol (ei(ﬂR%—ﬁgR%-l—ﬁRg—&—gR%(a—ﬁ)) B e—i(ﬂRg—ﬁgR%wR%JrgR%(0—5)))

_ 1 (eﬂ-UQR% n eiggR%> i (ei(wR%JrgR%(a—gﬁ)) B e—i(%}R%—&-gR%(a—Qﬁ))) (D33)
The other term in this region is

AGA; — AgAl = AT (—21(—d))Ai(—22(—d)) — Ai(—21(—d))Ai'(—22(—d))

~ L <6i(Cf—C2_) _ 6—i(€f—(§)> L+ <ei(Cf+C2‘) " e—i(q+<2‘)>

e 8Tk R
_ L (ei(ﬂRS_ggR%—(ﬁR§+gR%(cr—ﬁ))) _ e—i(ﬁRg—BgR%—(ﬁRg-i-gR%(0—5)>>)
um
. 3 1 3 1 . 3 1 3 1
+ o 62(19R2—BQR2 +OR? +gR2(U—,8)) n e—z(ﬁR2—,8@R2 +19R2+QR2(J—B))
8k R
1 1 . 3 1 . 3 1
_ L (efwgm B eiggm> L 62(219R2 +oR? (0-25)) n 6—1(2191%2 +oR? (0-25)) (D.34)
2 8Tk R

We take (D.30), (D.33)) and (D.34)) and do separately the following terms in the region —d <

T <d.

2 2
———————(BjAy — B1Ay) ~
7r|detM(w)|( 10 14ho) oh il ei(ﬁR%+ggR%)

1

2m2(kR)2

 8TKR
_ 4%(&3)% 6—i<19R%+ﬁgR%)

ei

[% (e_ng% N eigg3%> oi (ei(wzz%wz%%(azm) B ei(wR%wR%(U?B)))}
m

[T
ENE]

g

1 (6—z’agR% N eng%> _ 00 [ i(20R3+0RY(0-28)) _ —i(20R3+0R? (0—29))
2T 8Tk R
1 . 3 1 . 3 1
2R (o) o)
oz2ela
1. /o3 1 . 3 1
- <el(”9R2+@R2<“—3ﬁ>) _6‘1(3”“932(“—@)) (D.35)
2(kR)2e"1
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In a similar way using we get

2 2
——(AA — A A ~
7| det M(w)]( 1o — A1) T ei<ﬁR%+ﬁgR%)
27F2(/€R)%
L ( —ioeRY _ eng%) L Ji(20R3 +orb (5-29)) n —i(20R3 +oRr) (0-29))
2im 8TkR
_ 4r (1/‘65;)% iR +por?)
o2e's
L —ioeRY _ eiagR%) L oi(20R3 +orY (5-29)) n —i(20R3 +oRr) (0-29))
2im 8TkR
1
_ 2("’§1Fi)5 (6—1<79R2+(B+U)QR%) —z<§R2+(ﬁ—o)gR%))
io2elt
1
n o (ei (ﬁR%+QR%(o’73ﬁ)> n efi<319R%+,QR% (aﬁ))) (D.36)
2(kR)zels

For the variable transformations (), y2(x) from (2.24) and (3.36)) using (D.7) we intro-

duce the following notations for the quantities (2 = 2(—y1.2(2))3 = 2(z12())3 used in

asymptotic formulas.

G = (o)) = 5 20 (er + Re?)]F = 2 [2acR (cae R + 1]
= 2[R (1 + e "R = 0RE (14 ere UR)
~ YR? (1 + ;me—ieR—l) = JR? + ;ﬁeie—”(—i)m%
D
= YR? — iwzR? (D.37)

where we defined a new quantity o which can be simplified further.

w = gﬂm’e—“" = geig(Za)g [cos (29) +isin (ge)] [cos (6) — i sin ()]
i fs (20) s ) 5 (20) 0
i (Sin (;9> cos (6) — cos (;9> sin (9))}
= ci(20)? {cos (%9) + isin (%9)}

= 5(2(1)% [— sin (%9) + i cos (%9)] = w, + 1w, (D.38)
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where

@, = —£(20)? sin (%0) (D.39)
w; = £(20)? cos (%9) (D.40)

3
2 s 2 ion13 2 i cex + WV, 2
(o = 5(22(@)3 =3 [204 (5:Jc+\/() + Re 9)} 2 = 3 {2046 'R ( eieRO + 1)]
3 3
2 ex +Vo\ |2 3 ex + Vo \ 2
3{#@3( A )} 032( e )
3 3(55L‘+Vo) 3 ) 103, e, Vot
~ 14+ 2 %) —yR> — “Weie™?(—i) =2
IRz ( 4 5o > YR? —iwzR2 + 219526 (—1) 5 Rz
= 9R? — iwrR? — m?}zé = 9R? — iwR?2 (x + %) (D.41)

Note, that in the current sector which is —2?“ < # < 0 we have —% < %9 < 0 and therefore

w’r"a wi > O
Using (D.37) and (D.41)) we have for Airy function in the current sector the asymptotic
relations
1 L o
Al(=z(z)) = .—(zl(x))*i <e’(C1+z) _ e_l(<1+z)>
1 1 . 3 1 4 3 L
[20& (€ZL' + Rei@)} 1 61(79]%?71wa§+1> . 67Z<19R?72wa§+Z>
2i /T
(2aRe”) " (5 + 1>—1 (ei(ﬁga_mmm) _i(om

1 1 .3 1. I IR
~ (KZR) 1 <6219R? ewa? el — e—zﬁR? 6—wa?e ZZ) (D42)

~
~

and

. T 1 o 3 1
Cit (=21 (2)) ~ 13 (21 (2) 16 (OF5) m 773 (kR) 73 ¢/ PR? gmaR? (D.43)
1

i s . RPN 1 1
Ci (—2z(z)) = W_%(zl(:p))_ieﬂ(CﬁZ) ~ T (/{R)_% e i WR2 gmwr Rz (D.44)
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We also have

Ai(—2(z)) = 22,}/%(,22(33))—}1 <€i(<2+§) B e_i(cﬁg))

[2a (ez + Vi + Re”)] =

204/

1 ~1( WR? wRiz wR¥% ;= —i9R? —wRz —wREY _in
%2.\/_(I€R)4 e e e ce't —e e e e 4 (D.45)
i
and similarly from (D.TT))
Bi(—2())
1 -1/ i9R> =R Y0 g« _i9R? —wRYs —wR3Y0 _jm
~ 2\/_ (I{R) i (6“9R ewR xewR el e R e wR To wR e ’Z) (D46)
T

At this point we have everything to write the asymptotic expression of the resonant states

(D.1). For x < —d we get using (D.30) and (D.42])

2
x) = y———-—-—Ai(—2(x
ww( ) X7T2\detl\/[(w)| ( 1( ))
~ 2 1 ( R)—i 'M?R% wa% i7 fiﬁR% fwa% —i7
wa2 e ei(ﬁR%JngR%) Qiﬁ K e e e e e e
27r2(nR)%
1 .
_ X4</f]?: e—i(ﬂR%JrﬁgR%) 2.3/_ (,%R)ii <€i19R% ewa% oiF _ 6—2‘191%% e—wa% e—i%)
oz2e'4 1/ T
1
_ 2’("@1R)14 <€—zﬂgR% eme% n Z-e—mm% e—iﬁgR% e—m:R%>
1m202
2(kR i 1 1
e (D47)
Im202

where in the last line we used the fact that ¥J; < 0 from (D.23)). For —d < = < d using (D.35),
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([D.36) and (D.45), (D.46) we have

u(0) = Xy (B = BADAI(22(0) + (At — AL ABI(— (o)
1
o | 2R [ —i(oRBBrorent) | —i(9RT+(5-a)en?)
o2t
B ot <6i(0R%+QR%(a—3ﬁ)) _ e—i(wR%JrgR%(a—ﬁ)))
2(kR)zeli
2.i/_ (/ﬁR)_i (emR% ewR%xewR%%eg _ eme% ewa%xewa%éefig)
i/

~i(9R3+(p+o)oRY) _ e—i(ﬂR%HB—a)gR%) >

[\
—~
&
-
~—
[N
Q)

—i—a—% <ei(ﬂR§+gR5(a—3ﬁ)) 4 e_i(ngwR%(a_ﬁ)))]
i

—1( i9R3 =Rz wRIW iz —i0R® —wRYz —wRIV
—(K)R)“(B e e et te e e c

e—i%) (D.48)

We can simplify this expression by dropping those exponential terms, that contain —iYR? in

their exponents after multiplying all out. Since ¥; < 0, these exponentials will decay very fast.
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Bearing this in mind we have from (D.48)
el

1

1
2(/€R)2 1 (KJR)_Z e_l(ﬂR%‘f‘(B‘FU)QR?) u?R2 wR2x wR%

w x ~ s .
Yo(z) = X Tt 9
1
Q(HR)Q 1 (HR)** (19R2+(ﬁ )QRQ) zﬁR?ewR?xewR7 7 6':{
o3elt 2T
1. 3 1
N 024 1 (KR)_% (ﬁR7+9R?(0*35)> iWR3 wR2:c sz"O ois
2(/@R)%ei% 214/
1. )
. o214 1 (xR)"} ez'(ﬂR%-i-QR%(cr—?)ﬂ)) ~WRE ,~wRis,~wRE Y T
2(/1R)%e’% 204/T
1
+X2("£R)2 1 (HR)_}l e '<ﬁR%+(ﬁ+0)9R2) 'LﬂR?ewR?xewR%Toei%
iozelT 2y/T
1
_X2(’L€R)2 1 (I{R) i —i<ﬂR%+(B—U)QR2) u9R2€wR2wewR2?ei%
iozelT 2¢/T
1
+y 02 1 (/-@R)_i ei(ﬁR%JrgR%(U*tgﬁ)) mRzeszxemegeiz
2(kR)2e'i 2/T
1
+y g2 1 (/{R)ii ei(ﬁR%-l-QR% (U—35)> e—iﬁR% e—wR%xe—wa?Oe_i%
2(kR)2e'i 2/T
1
:2X2(RR)2 1 (HR)_i _i(ﬁR%+(ﬁ+a)gR2) ugRgewaxeng Voezg
et 2T
1
02 - 21 (/{R)fi ei<79R%+QR%(U*3B)> —zﬂRQ —wR2x —wR2 ?e—zz
4 LU\ T
1
o2 igR%(a—S,B)e—wR% (:v—i—v?) (D49)

~ i
62%0'%
1 .=
. O-EGZZ 1 1 . 3 _ 1
T o ond) et it o e
2(kR)?
1
. 2(kR)x% 3 o2 3oR?  —wuR?
=iy <1 2 B E et Ly — glPoR? gmwa Rz (D.50)
Ti02 22 (kR)%

Summing it up, the asymptotic behaviour of the resonant states (D.1]) along rays w = Re®
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in the sector —2F < § < 0is

( 1 1 1

2 4
(’ilR)l e iBoR2 eme2 T < —d
m202 | . v
. ' 5 0
AR ¢—ilB+o)eR? (@R (242 —d<z<d
m202
Yu(T) = X R (D.51)
_ o2 e'LgRQ(o 35)6 w (33-‘1- 2 )
2 HRBfoﬂ'j

2(kR)E—if R% w:r:R% : U% 8 R% —wa%
11— e Wette ——T—FeWeh e d<zx

\ 7202 272 (kR)%

Let us continue with the second sector —7 < 6 < —%’r. Here we are not going to use z; ()
as the argument, but y; »(x). For the general expressions of Airy functions we use y(z) without
index. In this region the asymptotic expression for Airy functions according to [1] (10.4.59)

and (10.4.63) are

72 (y(z)) ie (D.52)

2 (y(x)) 1 (D.53)

G (y(0) % 74yl HeS i Hy(a)) e =) (5 ) 5

where ( = %(y(x))% The asymptotic expression of the derivatives of Airy functions for this

sector we can find in [1]] (10.4.61) and (10.4.66)

T2 (y(x))ie (D.55)

Bi'(y(z)) ~ 72 (y(z)) i€ (D.56)
and hence
s _1 1 N 1 _1 1 v
Ci*(y(2)) ~ w (@) el F iprd(y(@) e = 7 y(a) (e<¢§e <) (D.57)

Our argument to these expressions is y; 2(%d), so it needs to be written differently as in the
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previous sector, where the argument was —y; o(+d).

y1(—d) = 2aed — 20 Re™
=B+ KR

yo(—d) = 2a(ed — Vi) — 2aRe™
=pf—0+kR

y1(d) = —2aed — 2aRe™
=—[B+iR
Yo(d) = —2a(ed + Vg) — 2aRe™

=—0f—0+ kR

where 3 = 2aed, 0 = 22V, and & = 20e’®*™) and consequently define

- 2 3 2 _ 3 2 3 ﬁ
:t:— :i:d 2 = — 2 = — 2 B —
G = 3(n(£d)? = S (F6 +kR)2 = S(RR)? [ F— +1
2, .3 38 2_3 3 1.1 ~.3 1
S~~~ 0
]
- 2 2 3 2 .3 —0 2
G = 2t = S - o4 wm)t = 2t (T2 1)
2, .3 3(FB — o) 2 3 3 11 11
~ — 2 (1 = —k2R>2 2 R2 — 2 R2
3(I€R) ( + iR 3P R2> ¥ fr2R2 — oR2 R
—JR? — pR2 (0 £ B)

o, = (2a)2 cos (%(9 + w))
8; = (20)7 sin (%(9 + w))
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In the next computations we use the same approach for simplification of the following.

F-o_ B  BEFE-0) | o

1-— ~1+—— D.65
IRR T 4RR - 16(RR)? TR (D.65)
and we also have
yi(d) yp(+d)s = (FB+ &R) (F6 — 0 + RR)S

kR kR
s FL—0o
N (1im) (H ARR >
-0 B  BEFB-0) . o
Your TmrT were © ' wn (D.66)

We are now ready to start writing the asymptotic expressions for the resonant states (D.I) in

the current sector. Let us start with the determinant (D.5]). The first term is

AoAi - A6A1 = Ai(?/l(—d))Ai/(Zh(—d)) - Ai/(yl(—d))Ai(?h(—d))

2
1 o z— 1 g PO
= —— (1 - _> ) _ ( _> —¢1 =G
Ar ( 1=Rr) ¢ T TR/ ¢
L0 (&) 5
8TRR (D.67)
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The next one is

1
T
1 fo5+ 0 Bt 1 o i+ +_Ft
— Cl +C2 _ _(Cl _CQ ) - Cl +42 _ (Cl _CQ )
= (e 2° > IR\ 2°
1 o+ At 1 o v+ 1 it
— (e e (@G ) o (T e ()
w(e T3° )+7r4/%R <€ e
L (eaey) + _ 9+ (D.68)
T 2tk R

Its complex conjugate is

By Dy — By D3 = Bi(ya(d))Ci™ (y1(d)) — Bi'(32(d)) Ci™ (y1(d))

~ Lo (=) 4 T GG (D.69)
2rkR

3

We take the next term in (D.5)).

AoBi - A631 = Ai(yl(—d))Bi/(yz(—d)) - Ai/(yl(—d))Bi(?h(—d))

1
2
(1 _ L) -Gy . L (1 N L) (G -&)

1
T on 4RR o 4%ER
16*(51’*55) (D.70)
T
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The last term in the determinant (D.3)) is

1 o T ) o
— (1= ) ¢ =G _<C1 +¢ )
o ( ARR < T3°
1 T o Er 1 o v+ 0 T
— ¢ =G *(Cl +C2 ) - - ¢ =G *(C1 +¢ )
o (6 2" ) AR (6 2"
1 1 it 1 o gt ot
i QNGO _ *(Cl +¢o ) N (PN SO _ *(Cl +¢; )
o\ T el ) o1 4k R <6 e
= leﬁ—@r — U_je—(ffrﬂ?) (D.71)
T 8TRR

whose complex conjugate is

Ay Dy — Ay Dy = Ai(ya(d))Ci'™ (y1(d)) — Ai'(y2(d))Ci™ (11(d))

o Loi -G T () (D.72)
s STRR

Using (D.67), (D.68) and (D.70), (D.71) we can write the asymptotic expression for the

determinant.

det M(w) ~ — %~ (G +3) (_ie—(ﬁr—ii) N Leén@)

8TRR m 2k R
_lo@-a) (Lag 0 @y
m s 8Tk R
. 2 .
ot gy o0 b oy D.73
8RR° T 16m2(RR)? x| RnRR’ 2 D.73)
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and for its complex conjugate we use (D.67), (D.69) and (D.70)), (D.72).

det Mi(w) ~ —2 (G467 (ie—(ér—a;> N Lem)

" 8TiR m 21R R
_lo@-a) (a9 (@)
s s 8TRR
__ ot g om L or Ly 1 D.74
8RR 16m2(RR)? 12 ®n°AR 2 D74
The absolute value of the determinant can be expressed as
__ 1 1\?2 1
|det M(w)| = (det M(w)det M(w))? ~ (—4) == (D.75)
™ s

and also the expression we need in our resonant states
( ) 3 _ 1Nz
— )~ (=) =1 (D.76)
) ~(55)
1 1
det M(w) 2 -5\?
(e_—(”)> ~ ( ff) ~1 (D.77)
det M(w) -

Let us now find the asymptotic relations of the actual functions in (D.1). There is going

to be a difference in the quantities (; 2 used in asymptotic formulas compared to the previous

sector. Denote them ; , in this case. We use the same trick as in (D.58) or (D.59) and we write

y1(z) = —2a (ez + Re’) = 20 (exe’™ + Rei(eﬂ)) (D.78)

yo(2) = —2a (ez + V + Re") = 2a ((ex + Vp)e'™ + Rei(eJ”r)) (D.79)

so the expression (; becomes

G = ;(yl(m))g = ; [2a (exe™ + Rei(””))]% = ; [2(1R6i<9+“) (exe ™R+ 1)]%
= SRR (14 e PRT)]F = IRE (14 cre PR
~ UR? (1 + gaa:ewR1> = JR? + gﬁsew vR?
H.‘/—/
= JR? + @rR? (D.80)
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where we defined a new quantity o which can be simplified further.

3
2

3~ . 3 2 . . .
&= —dee ™ = 555(2@%6’%(9”)6_’9 =£(2a) ei3(3047) — W, + 100, (D.81)

2

where

(NI

@, = £(2a)

sin (g (%9 + W)) (D.82)
cos (; (%9 + 7T>) (D.83)

Note, that in the current sector which is —m < § < —2F we have 7 < 3 (36 +7) < = or

[SIY

w; = e(2a)

-7 < % (%9 + 7T) < —%” and therefore

&, 51 < 0 (D.84)

In a similar way we get for (,

2 2 ) . 3
G = Sn() = 5 20 (2 + Vo)e'™ + ReHD)] 2
. 3
2 , (ex + Vp)e™ 2
_“ i(04) 0
=3 [2046 R (—ei(9+”)R + 1)}
3 3
2 (. ex+Vo\|2 -~ 3 ex+ Vo \?
3[HR< A )} mz( T )
~ OR> 1+M — OR2 + &rR? + 20 *wER%
2e R €
~ s _ v Vo 1 - 3 1 Vo
=9JR2 + wxR2 —i—w?fh =vR2+wR2 (z+ - (D.85)

Using (D.80), (D-85) and (D.52), (D.54) we have for Airy function in the current sector the

asymptotic relations

L T S 1 i ; _1 =3 _ 1
Ai(y1(z)) ~ 571'_% (y1(x)) i e~ §7r_% (QQ (gxew + R61(9+7r))) 1 ,~0R2 —wzR?
1 , ‘ s
— 57'(7% (204R61(9+7r) (ngflesz + 1)) 1 efﬁR27wa2
~ 171'7% (/%R)_i 1— lngfle i) ,~0R%-@aR2
2 4
U TP R P R
~ 57{' 2 (HR) ) (D86)
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and similarly

i (o)) ~ 7 (o) (e o)

~o (2o (eze™™ + Re’ 9*“)))% (651 + 3'e<~1>

2
~~ 2 .
For —d < x < d we get
1 1 -3 i 52
Ailya(e)) ~ 57t () F e
%W %( ((ex + V) )ei™ + Rei(0+m) )" ie—éR%—@R%(H%)
1 ) 1 <3 1
57.‘_ -5 (zaRez(O—Hr (€.T+VE])R_16_20+1)> 46_19R§_WRZ(I+?)
1 1 1 =nd -1
~ éﬁ—g (RR)~ i <1_ ZL(€$+V)R 1 —z@) e —UR2—&R2 (a+2)
~ %wé (RR)"3 ¢RI -wR} (o) (D.88)
and
1 = 1 sn3
Bi(ya(2)) ~ % (ys(2)) T e mo % (RR) T PRETERE(0+2) (D.89)

We are prepared to get the final form of (D.1)) for the sector —m < § < —2¢. Using (D.75) and
(D.86) we have for x < —d

N SR 2x 1 1 o1 GRrY_serd
w\T) = A ~ - i @z
¢ (ZL’) 7r2|detPI(w)| 1(y1<l’)> 7T27r1_2 27T 2 (K;R) 2
1 1 ~ 3 - 1
= X7 2 (RR) 3 7T (D.90)

which decays for large R since ¥, > 0. For —d < = < d we use (]D.75|), (]D.70I), d]).67b and
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bo(z) = X [(B1Ao — BiAp)Ai(yz(x)) + (A1 Ay — A) Ag)Bi(yz(x))]

| det M(w)]
2y |1 _6R? | S RO R e I R ( +m)
~ - o= R)1 @ T+
sl 57 (RR) 1e

#(a+2) ~R%0 (D.91)

which also decays because of (D.64).
For the last region x > d we have using (D.76)), (D.77) and (D.87).

. N\ el [ det M(w)
Yo(r) = i (det—l\/l(w)) Ci(y1()) — xi (th——M(w)

~_ 3
efﬁPﬁ —wzR2

) G (o)

N | .

-1 —19R% —warR2 (D92)

= 3
that goes to exponentially small values as well because of the term e~%* which decays faster

- 1
than e~®*1*> grows because of (D.64).

Summing it up, the asymptotic expression for the resonant states for the sector —m <

0 <—2is
1 1 5p3 - nd
T2 (RR) ™1 e V2 —walt? r < —d
: 1 _
Yo(r) = xq 72 (,‘%R)_i IR —FR e+ 0) orte g o g (D.93)
% (RR) "1 e~ORE—saR} d<u
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