
Faculty of Science and Technology
Department of Computer Science

A framework for building scalable web applications for
high-resolution cluster-based display walls
—
Jason Tang
Master thesis in Computer Science October 2015

Abstract
As technology advances, researchers in the natural sciences collect ever-increasing
amounts of data. While computer science research often focuses on effective
ways to perform computations on large data sets, the visualization of large data
sets can be just as important for achieving new insights. Just as cluster com-
puting enables scalable computation on large data sets, so can cluster-based
display walls enable scalable visualization of large data sets.

At the same time, visualization and user interface libraries are being most
extensively developed for the web. Examples of such libraries include D3 for
visualization and Bootstrap for user interfaces. Such libraries often contain
built-in support for scaling down to small displays (i.e. on mobile devices),
however, they have no such support for scaling up to cluster-based display walls,
which require coordination among multiple display hosts.

This thesis presents a framework, provisionally named Browzawall, for building
web applications that scale up to high-resolution cluster-based display wall envi-
ronments. Browzawall consists of several JavaScript libraries and a WebSocket
server. By using Browzawall, application developers can build web applications
that scale from mobile and desktop environments up to cluster-based display
wall.

Acknowledgements
I would like to thank my adviser, Associate Professor John Markus Bjørndalen,
and co-adviser Bjørn Fjukstad for their input and guidance, and most impor-
tantly, encouragement.

Thanks to classmate Erlend Graff for assistance with LaTeX and the formatting
of this document.

A special thank you to my family for their patience, love, and support.

Finally I would like to thank Live and Kjetil Gundersen, Sunniva Stette, Lars
Sørensen,Åse Bjerkan,and Joe Niemi for their friendship and support, especially
in the home stretch.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Challenges . 2
1.2 Organization . 3

2 Background 5
2.1 Tromsø Display Wall . 5
2.2 NOWAC and Kvik . 6
2.3 HTML and the Document Object Model 6
2.4 Related Work . 7

2.4.1 Multibrowsing . 7
2.4.2 Hydrascope . 7
2.4.3 VNC . 8
2.4.4 AtomizeJS . 8

3 Solution Space 9
3.1 Visual Scaling . 9

3.1.1 Divide and Distribute 9
3.1.2 Replicate and Zoom 10

3.2 Data Synchronization . 11
3.2.1 Synchronizing Input 12
3.2.2 Synchronizing Code 13
3.2.3 Synchronizing DOM 14
3.2.4 Synchronizing Rendered Documents 15

3.3 Alternatives Considered . 15

v

vi CONTENTS

3.3.1 Distributed Browser 15

3.3.2 SVG transform and viewBox 16

4 Design 19
4.1 Architecture . 20
4.2 Communication Server . 20
4.3 comm.js . 21
4.4 walldoc.js . 21
4.5 domsync.js . 22
4.6 dd3.js . 22

5 Implementation 23
5.1 System Integration . 23
5.2 Visual Scaling . 24
5.3 Session Initiation . 24
5.4 Message Internals . 25
5.5 Broadcast Function Calls . 26
5.6 Session-Persistent Shared Objects 26
5.7 Barriers . 27
5.8 Remote Execution and Troubleshooting 28
5.9 DOM Synchronization . 28
5.10 Distributed Event listeners 29

5.10.1 Encoding the Event 29

5.10.2 Decoding the Event 30
5.11 Distributed D3 . 30

6 Example Applications 31
6.1 Wall Controller . 31
6.2 Mandelbrot Set . 33
6.3 U.S. Counties Map . 34
6.4 Hi-Res Gallery . 35
6.5 YouTube Controller . 36

7 Evaluation 37
7.1 File Size . 37
7.2 Client Memory Usage . 38
7.3 Responsiveness . 38
7.4 Distributed D3 . 39
7.5 Security Concerns . 39
7.6 Usability . 39
7.7 Comparison to Other Solutions 40

8 Conclusion 43

CONTENTS vii

9 Future Work 45
9.1 General Improvements . 45
9.2 Distributed D3 . 45
9.3 Shared Motion . 46
9.4 Gesture Support . 46

Bibliography 47

List of Figures
2.1 Example of a gene pathway diagram generated by Kvik. . . . 6

3.1 A graph replicated among four display hosts. Each display
host has a copy of the entire graph, but displays only part
of it. 10

3.2 Displaying the dagbladet.no home page on the Tromsø Dis-
play Wall. 11

3.3 Generalized web application behavior. 12
3.4 Synchronizing input between multiple display hosts. 12
3.5 Synchronizing code between multiple display hosts. 13
3.6 Synchronizing the DOM between multiple display hosts. . . . 14
3.7 Synchronizing the rendered document between multiple dis-

play hosts. 15
3.8 Architecture overview of the Chromium open-source web browser.

From [10] . 16

5.1 Session initiation between web browser and communication
server for the Mandelbrot application (described in detail in
Section 6.2). 25

6.1 A gene pathway diagram on the Tromsø Display Wall 32
6.2 Close-up of four pathway diagrams on the Tromsø Display Wall 33
6.3 U.S. Counties Map . 34
6.4 U.S. Counties Map zoomed in on the Northeast region 35

7.1 Displaying the dagbladet.no home page on the Tromsø Dis-
play Wall. 41

ix

List of Tables
7.1 File sizes . 37
7.2 Client Memory Usage . 38

xi

List of Abbreviations
ajax Asynchronous JavaScript and XML

api application programming interface

cpu Central Processing Unit

css Cascading Style Sheets

d3 Data-Driven Documents

dd3 Distributed D3

ddos Distributed Denial of Service

dom Document Object Model

dstm Distributed Software Transactional Memory

html5 version 5 of the HyperText Markup Language standard

html HyperText Markup Language

http HyperText Transfer Protocol

ipc Inter-Process Communication

kegg Kyoto Encyclopedia of Genes and Genomes

nowac Norwegian Women and Cancer

svg Scalable Vector Graphics

tcp Transmission Control Protocol

xiii

xiv List of Abbreviations

ui User Interface

url Uniform Resource Locator

uit University of Tromsø

vnc Virtual Network Computing

1
Introduction
Scientific researchers collect ever-increasing amounts of data. Much work has
been done to create architectures and frameworks to analyze large data sets us-
ing computing clusters. However, to gain insights into scientific data, it’s often
helpful to not just analyze the data, but also to visualize it. Meaningfully visu-
alizing large quantities of data can be difficult because display technology has
not advanced as quickly as other computing technologies, for example Central
Processing Unit (cpu) technology. In order to achieve larger, higher-resolution
displays, display walls have been developed by tiling multiple projectors or LCD
displays on a physical wall[1]. Display walls controlled by a single computer
are possible within certain limits, since modern computers can support multi-
ple graphics cards, each supporting multiple displays. To scale up any further
requires a cluster-based approach with multiple computers each controlling
one or more of the tiled displays.

Meanwhile, software development has been revolutionized by the Internet
and web technologies. The web has developed into a full-fledged application
platform, as is reflected by the version 5 of the HyperText Markup Language
standard (html5)¹ standard published October 2014. One of the major ad-
vantages of web applications is that they are accessible by anyone with a web
browser and an Internet connection, regardless of operating system or cpu
architecture. Web applications are thus relatively easy to deploy, update, and
maintain, since application users usually don’t need to install anything on their

1. http://www.w3.org/TR/html5/

1

http://www.w3.org/TR/html5/

2 CHAPTER 1 INTRODUCT ION

own personal devices.

This ease of deployment has created incredible interest in the web as an
application platform, which has in turn motivated the development of code
libraries to make web applications easier to develop. On the client side alone,
jQuery² is notable for its ubiquity, while Bootstrap³ is notable for enabling User
Interface (ui) development across diverse screen resolutions, and Data-Driven
Documents (d3)⁴ is notable for its ability to visualize data.

This thesis presents a framework for building web applications that can scale up
to a cluster-based display wall, thus allowing application developers to combine
the rich ui and visualization libraries of the web with the high resolutions
available on display walls. This framework, still very much a prototype, has
been given the provisional name of Browzawall, and will be referred to as such
in this thesis.

1.1 Challenges
There are two main challenges in adapting interactive web applications to a
cluster-based display wall environment. The first challenge is visually scaling
the application: the application must appear correctly when multiple hosts
are each responsible for displaying a small segment of the whole, and the
application should be able to take advantage of the display wall’s full resolution.
The second challenge is that of data synchronization: any changes in the
application state (or at least those changes that result in an updated display)
must be communicated to all applicable display hosts.

These challenges are distinct. One can imagine a scenario where visual scaling
is desired, but synchronization is unnecessary, such as viewing large static
images or diagrams. One can also imagine a scenario where synchronization
is desired, but visual scaling is not, such as a remote collaboration system.
However, for interactive web applications on a cluster-based display wall, both
of these challenges must be addressed.

When addressing these challenges, both transparency and opacity are valuable.
An application programmer should be able to treat a display wall almost
identically to a single display, yet should also be able to create applications that
can detect when they are running in a high-resolution environment, in order

2. http://jquery.com
3. http://getbootstrap.com
4. http://d3js.org

http://jquery.com
http://getbootstrap.com
http://d3js.org

1.2 ORGAN IZAT ION 3

to fully utilize the available displays.

1.2 Organization
The rest of this document is organized as follows. Chapter 2 provides back-
ground. Chapter 3 provides an exploration of the solution space for running
web applications on cluster-based display walls and describes solutions con-
sidered but ultimately discarded. Chapter 4 covers the design of Browzawall
while Chapter 5 covers implementation details. Example applications built with
Browzawall are described in Chapter 6, and an evaluation of Browzawall is
provided in Chapter 7. Chapter 8 contains concluding remarks and Chapter 9
presents opportunities for future work.

2
Background
This chapter provides background about the Tromsø Display Wall, the collabo-
ration with Norwegian Women and Cancer (nowac), as well as previous work
related to running web applications on display walls.

2.1 Tromsø Display Wall
The Tromsø Display Wall has been on ongoing subject of research at University
of Tromsø (uit) since 2004-2005[1]. The Display Wall currently consists of a
Rocks¹ cluster of commodity PCs running Ubuntu Linux. There is one front-end
node and 28 tile nodes. Each tile is connected to a 1024x768 pixel projector.
These projectors project onto a screen arranged in a 7x4 pattern, thus creating
a total resolution of 7168x3072 or 22 megapixels. The Tromsø Display Wall
also has a motion-capture system to enable interaction via gesture. For an
overview of applications developed for the Tromsø Display Wall, see [1] or
http://hpds.cs.uit.no.

1. http://www.rocksclusters.org

5

http://hpds.cs.uit.no
http://www.rocksclusters.org

6 CHAPTER 2 BACKGROUND

2.2 NOWAC and Kvik
Ongoing work at the Department of Computer Science involves aiding epidemi-
ology researchers in exploring and visualizing data from the nowac study.
The nowac study seeks to discover the possible relationships between lifestyle
and cancer risk, and requires analyses of biological data. The nowac study has
collected questionnaire data from over 170,000 women, as well as over 60,000
blood samples and over 800 biopsies[4]. Kvik is a framework developing ap-
plications for interactive exploration of biological data from the nowac study
together with knowledge from online databases such as Kyoto Encyclopedia of
Genes and Genomes (kegg)[4]. One application that uses the Kvik framework
is Kvik Pathways[5]. Kvik Pathways is an application that epidemiologists can
use to browse gene expression data in the context of biological pathways maps
Biological pathways are graphical representations of biological processes in
an organism. Researchers want to use these to get an overview of different
progresses that change during development of cancer.

Figure 2.1: Example of a gene pathway diagram generated by Kvik.

2.3 HTML and the Document Object Model
The Document Object Model (dom) is both a structural representation for Hy-
perText Markup Language (html) documents, and a programming interface
for accessing and modifying that structure[9]. This thesis assumes a general
understanding of html and the dom.

2.4 RELATED WORK 7

2.4 Related Work
This section describes work related to using web applications on display walls,
whether directly or indirectly.

2.4.1 Multibrowsing
An early system to display coordinated web content in a multiple-display envi-
ronment was Multibrowsing[8]. Multibrowsing allowed users to interact with
one browser window, yet control the content displayed on other browser win-
dows on remote displays. This involved sending a Uniform Resource Locator
(url) to a daemon running on the display hosts, which would then open the
url in a browser window. Browzawall’s architecture resembles Multibrowsing
in that both use a central server to facilitate many-to-many browser communi-
cation. However, Multibrowsing treats displays individually, while Browzawall
tries to treat several tiled displays as a single display. Multibrowsing also treats
web pages statically (once they have been loaded by the browser), as there
is no way to modify content on a remote display without issuing a new url.
Browzawall has been able to take advantage of the more recent WebSocket[3]
standard to push content updates without reloading an entire page.

2.4.2 Hydrascope
Hydrascope[7] is an existing approach to adapting existing web applications
to display wall environments. Hydrascope uses a browser extension and meta-
applications to coordinate the various browser windows. This requires various
methods of reverse-engineering including dom inspection and event injection.
For example, a meta-application may watch for a changing page number in a
presentation application, and trigger events in the other windows to update
them accordingly. Hydrascope was designed to handle cases where the under-
lying application already existed and could not be modified (the application
could even be owned by a third party, as in Google Docs²). We are inter-
ested in developing new applications, or adapting applications that we have
built in the past, so these reverse-engineering techniques are complicated and
unnecessary.

2. http://docs.google.com/

http://docs.google.com/

8 CHAPTER 2 BACKGROUND

2.4.3 VNC
Virtual Network Computing (vnc) has been successfully implemented in a
cluster-based display wall environment[6][11]. A user could thus run both a
web browser and a vnc server on a personal computer, and relay the display to
display wall. This may be sufficient for many applications, though it has several
performance limitations. The computer that runs the vnc server becomes a
bottleneck for both cpu and network usage; cpu usage because it must render
the entire document, and network usage because it must transfer the segments
of the rendered document to each of the display tiles. These segments are
transferred as pixel data, which in many cases will require more bandwidth to
transfer than the original html document.

2.4.4 AtomizeJS
AtomizeJS³ is a JavaScript library and Node.js server implementation that
aims to provide synchronization using a Distributed Software Transactional
Memory (dstm) model. We did some exploration of using AtomizeJS as a
synchronization mechanism.

We ultimately abandoned AtomizeJS because it caused cross-origin security
errors that we were unwilling to resolve or work around. It was also a more
complex solution than we needed. AtomizeJS was designed for use with Direct
Proxies⁴. For compatibility with browsers that do not yet support Direct Proxies,
either the application JavaScript code must be run through a provided code
translation tool to generate equivalent AtomizeJS application programming
interface (api) calls, or the application programmer must write those api calls
directly, resulting in verbose code.

3. http://atomizejs.github.io/
4. A feature of JavaScript that has not been formally adopted as of May 2015.

http://atomizejs.github.io/

3
Solution Space
This chapter provides a brief analysis of possible approaches to addressing the
challenges of visual scaling and data synchronization, followed by a discussion
of two alternative solutions considered before settling on Browzawall’s current
architecture.

3.1 Visual Scaling
This section identifies two possible models for scaling a document up to a
display wall, which throughout this thesis will be referred to as the "divide and
distribute" method, and the "replicate and zoom" method.

3.1.1 Divide and Distribute
In this model, a master loads the document, and then divides it according
to the arrangement of displays in the system. The master directly tells each
individual display tile what it should display. Any changes to the document
need only be sent to the tiles that display the relevant elements.

Divide and distribute could be implemented in one of the following ways:

• A standard web browser renders the entire document, then client-side

9

10 CHAPTER 3 SOLUT ION SPACE

JavaScript code or a browser extension inspects the rendered document
to calculate positioning of elements on the display wall.

• A stand-alone process implements rendering logic itself.

• Application developers use a custom api for positioning top-level ele-
ments on the display wall.

In the first twomethods, themaster becomes a performance bottleneck. The sec-
ond method also requires excessive redundant programming effort. The third
method prevents application developers from using normal html/Cascading
Style Sheets (css) flow rules to define the document as a whole.

3.1.2 Replicate and Zoom
In this model, each display host loads a complete copy of the document. The
display host then uses information it has about its position in the overall display
to display the portion of the document it is responsible for, essentially "zooming
in" on that portion of the document. Any changes to the document then need
to be replicated to all display hosts in the system.

Figure 3.1: A graph replicated among four display hosts. Each display host has a copy
of the entire graph, but displays only part of it.

The replicate and zoom method results in redundant network and CPU usage,
because every display tile will load a copy of the entire document while dis-
playing only a fraction of it. In the worst case, a display wall composed of N
tiles would display N times as much information as a single display of the same
resolution; thus each tile would load N times as many elements as it would if

3.2 DATA SYNCHRON IZAT ION 11

it only loaded the elements it visibly displayed.

Replicate and zoom is also prone to synchronization problems when retrieving
changing content. Since each display host retrieves content independently
of each other, it’s possible that some hosts could get different versions of the
content. Figure 3.2 shows an example of this on the Tromsø Display Wall. While
most of the content is the same, the advertisements on the top and right side
clearly differ on different tiles.

Figure 3.2: Displaying the dagbladet.no home page on the Tromsø Display Wall.

3.2 Data Synchronization
Regarding coordination and synchronization, it’s helpful to look at the behavior
of web applications in general. Interactive web applications can be generalized
as in figure 3.3: A user sends input, which is received by an event handler.
The event handler executes code that modifies the DOM (or DOM elements
such as canvasses), and the browser then renders the resulting DOM into an
image to display. Synchronizing the display can be achieved by synchronizing
the application at any one of these stages in the pipeline. What follows is a
brief analysis of the benefits and drawbacks of synchronization at each of these
particular stages.

12 CHAPTER 3 SOLUT ION SPACE

Figure 3.3: Generalized web application behavior.

3.2.1 Synchronizing Input

Figure 3.4: Synchronizing input between multiple display hosts.

Input can be synchronized by event handlers that broadcast events (or at least
the relevant data from the events) to all display hosts. Display hosts thus must
also listen for remote events, and invoke the appropriate application-specific
code whether the event originated on the local host or on a remote host.

The primary drawback to synchronizing input is that it only works for appli-
cations that are completely deterministic; that is, the same sequence of input
always results in the same output. Any application with randomness, including
many kinds of games, will not work properly.

3.2 DATA SYNCHRON IZAT ION 13

3.2.2 Synchronizing Code

Figure 3.5: Synchronizing code between multiple display hosts.

Synchronizing code is the process of instructing remote display hosts to execute
code to achieve the desired display. This can take an RPC-like form where the
user interface invokes a pre-defined function on all display hosts. Alternatively,
the user interface can send the code itself to be executed, either by serializing
a function, or by sending a string of code to be interpreted via eval().

The primary challenge with this approach is being able to pass parameters as
either values or references as necessary. In addition, this method may require
writing separate application-specific code for both sides of the network (both
before and after transmission), depending on the programming model used,
and in the absence of libraries to handle one side automatically. For example,
in an RPC model, one function must be defined to handle the event and
then remotely call a second function to update the DOM or other application
state.

14 CHAPTER 3 SOLUT ION SPACE

3.2.3 Synchronizing DOM

Figure 3.6: Synchronizing the DOM between multiple display hosts.

Synchronizing DOM elements themselves is a straight-forward and logical
approach, particularly when input results in only a small amount of changes to
the DOM. On the other hand, when a large number of elements are generated
programmatically (for example,with D3), it can become incredibly inefficient to
transmit these elements. Compression can help, and there exist freely-available
compression libraries for JavaScript, but for some operations the compressed
HTML will still be larger than the size of the original data, which can even be
cached.

One major advantage of synchronizing the DOM is that it is a state-based
method of synchronization rather than an event-based method. As such, it is
particularly well suited for situations where fault-tolerance and fault-recovery
are important, where events could be dropped.

3.3 ALTERNAT IVES CONS IDERED 15

3.2.4 Synchronizing Rendered Documents

Figure 3.7: Synchronizing the rendered document between multiple display hosts.

Synchronizing the image resulting from rendering the document is included
for the sake of completion. As mentioned above, this is what a vnc system
does. Such a vnc system could display any application, so there is no point in
developing a browser-specific system that would have the same benefits and
drawbacks as a general-purpose vnc.

3.3 Alternatives Considered
Before settling on our current architecture and design, we explored other
alternatives, such as creating a distributed browser process, or using properties
specific to Scalable Vector Graphics (svg).

3.3.1 Distributed Browser
We briefly considered creating a distributed browser process. Modern versions
of at least one open-source browser already have an architecture in which
each tab is rendered by a separate rendering process that communicates with
the master process via an Inter-Process Communication (ipc) mechanism[10].
Figure 3.8, shows an architectural overview of the Chromium¹ open-source
browser. The I/O thread (top left) handles all network communication, and
passes data via ipc to the appropriate Renderer process. There is one Renderer
process per browser tab.

1. http://www.chromium.org/

http://www.chromium.org/

16 CHAPTER 3 SOLUT ION SPACE

Figure 3.8: Architecture overview of the Chromium open-source web browser. From
[10]

It is thus conceivable to scale up and distribute these rendering processes across
all display hosts, replacing local ipc with network communication. Theoret-
ically, such a browser would allow any existing web application to scale up
to a cluster-based display wall. However, even if technically feasible, such a
distributed browser would require maintenance in parallel with the original
open-source browser in order to support new features, fix bugs, and patch
security vulnerabilities.

3.3.2 SVG transform and viewBox
Early work on this project focused on displaying svg diagrams on the display
wall, since that is the format of the diagrams created by Kvik[4]. By using svg’s
transform and viewBox² attributes, we were able to scale up (via "replicate and

2. http://www.w3.org/TR/SVG/coords.html

http://www.w3.org/TR/SVG/coords.html

3.3 ALTERNAT IVES CONS IDERED 17

zoom") svg diagrams to the display wall. However, once we found that css3
Transform functions can accomplish the same behavior for not only svg but
all visible html elements, we abandoned this svg-specific solution.

4
Design
Browzawall provides a method for scaling up web applications to display walls,
as well as several methods of synchronizing web applications through a central
communication server. Browzawall is based on a replicate and zoom model of
visual scaling. Replicate and zoom was chosen because of its ease of implemen-
tation, decentralization, and flexibility for the application developer.

• Ease of implementation: Replicate and zoom means that the system as
a whole maintains a single state regardless of how many display hosts
are participating.

• Decentralization: The scaling logic is contained entirely within the
browser window. Browzawall does have a central component, the commu-
nication server, but this only handles basic communication and synchro-
nization functionality. With the majority of the functionality in client-side
JavaScript libraries, it’s easy to add new functionality without risking the
disruption of existing applications.

• Flexibility: Replicate and zoom models the entire display wall as one
large HTML page, and can be treated as such by designers and application
programmers. Normal CSS rules will work to lay out pages that span the
entire wall.

The replicate and zoom method lends itself to a dual-channel approach to
browser communication; Normal HyperText Transfer Protocol (http) com-

19

20 CHAPTER 4 DES IGN

munication is used to load html documents and other resources, while a
WebSocket connection is used for coordination and synchronization. By maxi-
mizing the amount of data transferred via http, the system takes advantage
of the browser’s ability to parallelize requests and cache frequently-requested
files.

4.1 Architecture
Browzawall consists of four client-side JavaScript libraries and a communica-
tion server. The client-side libraries provide connectivity to the communication
server and various methods of data synchronization, each with their advan-
tages and disadvantages. In addition, the client-side libraries handle scaling
applications up for display on a display wall.

The four client-side libraries are:

• comm.js – a library for basic communication and synchronization

• walldoc.js – a library for visual scaling on a display wall

• domsync.js – a library for synchronizing dom elements, subtrees, and
input across multiple hosts

• dd3.js – an experimental wrapper and extension for d3 that supports
performing synchronized operations according to d3’s programming
idioms.

4.2 Communication Server
The communication server is a single-threaded WebSocket[3] server built on
Node.js¹. WebSocket is the ideal protocol for communication between browsers
and the communication server, because once connected, either the browser
or the server can initiate message transmission. This is in contrast with other
approaches such as Asynchronous JavaScript and XML (ajax), where the
browser must always initiate an exchange.

Node.js was chosen for its ease of use. It hashttp andWebSocket support, and
it was easy to find example WebSocket servers on the Internet. Additionally,

1. http://nodejs.org

http://nodejs.org

4.3 COMM . J S 21

it is convenient to work in the same programming language (JavaScript) for
both the client libraries and the server implementation.

Because of the replicate and zoom model, the communication server will typ-
ically receive incoming messages and broadcast them to all other applicable
display hosts. However, some messages are directed to the server itself and
thus do not get broadcast. These server-directed messages include messages
for session identification and server-side synchronization, both described be-
low.

4.3 comm.js
The comm.js library handles connection to the communication server. This
happens automatically when the script file is loaded. The library supplies a ses-
sion id in order to keep different applications from interfering with each other
while connected to the same communication server. Comm.js several methods
of synchronizing applications at the code stage. The most robust method is
termed a Broadcast Function Call, as it allows one browser window to call a
particular function, with particular arguments, on every participating browser.
The comm library automatically handles marshalling and unmarshalling pa-
rameters.

Comm.js also has another feature for synchronizing display hosts in cases where
fault-tolerance is more important. Session-persistent shared objects are objects
that are stored in a key-value store in the communication server. Browsers can
push updates to the server, which stores it and then pushes it to any other
participating browsers. Any browser windows that join the session late (or
recover from a crash), can receive the most recent values directly from the
server.

Finally, the Comm library provides other server-side synchronization capabil-
ities. It provides a sort of barrier implementation that is useful for keeping a
smooth feel when browsers have intensive computation and I/O to perform
before updating the view. Comm.js also provides a function for generating an
html id that is unique session-wide.

4.4 walldoc.js
Walldoc handles the basic visual scaling of Browzawall. Basically, it turns the
document into one giant document with dimensions as large as the display

22 CHAPTER 4 DES IGN

wall, and then zooms in appropriately based on which tile it is configured to
be.

4.5 domsync.js
Domsync aims to be a re-usable client-side JavaScript library that covers com-
mon use cases with distributedweb applications. Domsync consists of twomajor
components: dom synchronization and distributed event handlers.

Domsync provides methods to synchronize DOM elements and subtrees directly.
Thesemethods cover common use cases such asmodifying attributes,modifying
style declarations, and updating child trees.

Distributed event listeners provide the ability to synchronize the web applica-
tion by synchronizing user input, while using an api that is nearly identical to
normal dom event listeners. By registering a distributed event listener function
for a particular event, the Domsync library will automatically broadcast any of
those events that trigger locally. Domsync will then invoke the event listener
function for both events triggered locally and events received from remote
hosts.

4.6 dd3.js
DD3 was an experiment to automatically broadcast d3 functions. For more
details, see the Implementation chapter below.

5
Implementation
This chapter describes various implementation details of interest in the Browza-
wall framework.

5.1 System Integration
The system for developing and testing Browzawall was the Tromsø Display
Wall, described in Section 2.1. Existing open-source web servers were used to
serve web pages; first Apache¹, then the http-server² Node package because
of its easier deployment. The Browzawall communication server is a separate
process and listens for Transmission Control Protocol (tcp) connections on a
separate port.

The Tromsø Display Wall uses the Chromium browser³. Browsers are launched
on the display tiles issuing a cluster-fork⁴ command from the cluster front-end.
Chromium’s –app command-line parameter specifies the url to load, and
launches the browser window with the viewport fullscreen. The url query
string consists of the output of a hostname command. By embedding hostnames

1. http://httpd.apache.org
2. https://www.npmjs.com/package/http-server
3. http://chromium.org
4. Part of Rocks; http://www.rocksclusters.org

23

http://httpd.apache.org
https://www.npmjs.com/package/http-server
http://chromium.org
http://www.rocksclusters.org

24 CHAPTER 5 IMPLEMENTAT ION

in the url, browser windows can access this information and use it to display
the correct contents for each tile.

5.2 Visual Scaling
Browzawall relies on each display host to supply information about that host’s
role in the system. A role may be either "tile", indicating a display tile that’s part
of a wall, and or a "default" role typically used by control interfaces. Display
tiles also need to supply information about their relative position within the
wall. On the Tromsø Display Wall, the host names of the tiles includes this
positioning information, so it’s sufficient to run a hostname command and
paste the result into the url’s query string.

The JavaScript file responsible for visually scaling the document, walldoc.js,
currently contains hard-coded parameters and logic that apply specifically to
the Tromsø Display Wall.

The host names of all tiles is of the form tile-X-Y, where X is the horizontal
position on the wall (0-6, left-to-right), and Y is the vertical position (0-3,
bottom-to-top). Given these positions, it’s simply a matter of multiplying the
horizontal position by the horizontal resolution of each display to determine the
horizontal offset. The vertical offset is calculated in a similar manner, however,
the vertical positions must be inverted because the positions increase from
bottom to top, while html Y-coordinates increase from top to bottom.

The appropriate scaling occurs automatically by including walldoc.js, which
executes a function on page load to parse the query string. The zooming is
then accomplished by simply using css 3 transform⁵ functions to scale and
translate the body of the document appropriately for each tile. Configuration
of the wall currently requires manual changes to walldoc.js.

5.3 Session Initiation
Connection to the communication server is automatic when including the
comm.js library. The connection routine assumes the communication server is
running on the same host as the web server, and assumes a default port.

Upon connection to the server, the client application identifies the session it

5. http://www.w3.org/TR/css3-transforms/

http://www.w3.org/TR/css3-transforms/

5.4 MESSAGE INTERNALS 25

desires to participate in. The session name defaults to the file name of the
client page, which under basic use-cases is sufficient for preventing different
applications from interfering with each other.

Figure 5.1: Session initiation between web browser and communication server for the
Mandelbrot application (described in detail in Section 6.2).

5.4 Message Internals
Messages are sent to and from the communication server via unicode text, as
this is the standard implementation of strings in JavaScript. Each message
is composed of an operation identifier, followed by a space character and
an optional payload of arbitrary text. Payloads are typically JSON-formatted
data, since JSON is human-readable, more concise than XML, and built in to
JavaScript. The reason the entire message is not JSON is that the server is
usually not interested in contents of the payload itself, since most of the time
that will just get broadcast to all connected hosts in the session. By separating
the operation identifier at the start of the message by just a space character,
the server only has to interpret the message up to the first space to determine
what to do with a message; it does not have to parse all of the JSON in the
message.

26 CHAPTER 5 IMPLEMENTAT ION

5.5 Broadcast Function Calls
Browzawall allows application programmers to invoke JavaScript functions on
all display hosts in the current session, for the purposes of updating application
state.

The first step is to call comm.register(), which associates a function key with a
callback function. The function key is simply an identifier string. The function
key is what gets encoded into messages broadcast to the other display hosts,
and subsequently used by them to look up the appropriate function to call.
Registering a new function under an existing function key will replace the
function previously associated with the key.

After a function has been registered, it can be invoked by calling comm.callAll().
The first argument to callAll() can be either the appropriate function key or
the function itself. Any remaining arguments are encoded into JSON and
transmitted over the network. The callAll() function will also call the function
locally.

Remote display hosts will receive the message, use the received function key to
look up the appropriate function (if one has been registered), decode the JSON
parameters, and then call the function with the received parameters.

There are two pitfalls to be aware of when using Browzawall’s broadcast
function calls:

• As with most other uses of callbacks in JavaScript, "this" in the function
body will resolve to window. Function.prototype.bind() can work around
this issue.

• The function’s arguments must be passed by value. Most notably, this
means that DOM Nodes (including Elements) can’t be passed as argu-
ments to a remote function call. Instead, pass a string such as an id string
or an object key. A future enhancement may support Element arguments
by automatically encoding and decoding Element selectors in the same
manner as the domsync library.

5.6 Session-Persistent Shared Objects
For cases where applications could become unsynchronized if any display host
connects (or reconnects) late, the communication server provides the ability
to store JavaScript objects in a key-value store. A late-connecting display host

5.7 BARR IERS 27

can thus receive objects from this store to obtain the current state of the
application. Shared objects are available as long as the session is active, that
is, as long as at least one host is connected to that session. After the last host
disconnects, the server deletes any session-persistent objects so that they can
be garbage-collected.

Shared objects are updated according to a publish/subscribe method. Client
applications can push updated objects for a particular key to the communication
server, which will store the object and push it to all other connected display
hosts. Client applications can also subscribe to a particular key, supplying a
callback to be invoked when an updated object is received.

Applications may be more interested in storing a log of events rather than
the current state. A session-persistent object can be used to create a shared
log by declaring an array as one of its members and appending to that array.
Note however that the object will not be treated as a log internally, and any
changes to the object (including appending to a member array) will result in
retransmission of the entire object.

5.7 Barriers
Barriers are a synchronization method whereby all members of a group wait
until all of them signal that they have completed some task. Barriers are
typically used in parallel computation problems, but here they are available
to synchronize displays in situations where intensive computation or network
usage can result in inconsistent updating. An example of an application of
barriers is the Mandelbrot set described in detail later; since the computation
time of regions vary, a smoother user experience is achieved by performing all
calculations, invoking a barrier, then updating the canvas when the barrier is
complete.

It should be noted that in browsers, JavaScript’s programming model does not
allow for true barriers. A true barrier is a function that blocks until receiving
a notification to proceed. JavaScript is single-threaded and relies on asyn-
chronous programming for web pages to remain responsive. Therefore barriers
are implemented by supplying a callback to the barrier function. Any code
immediately following the barrier invocation will be executed immediately,
before receiving the barrier notification.

28 CHAPTER 5 IMPLEMENTAT ION

5.8 Remote Execution and Troubleshooting
Modern browsers include a JavaScript console, allowing developers to ex-
periment with and execute JavaScript code without editing and reloading a
document containing JavaScript. To provide this capability for a display wall
environment, Browzawall provides a reval() function. Short for "remote eval()",
it accepts a string of JavaScript code as its only parameter. The string is broad-
cast to all display hosts in the session, where it is executed using the eval()
function. The string is also executed locally with eval().

While reval() could be used in production code to satisfy the data synchro-
nization needs of many applications, application developers will likely find
other methods easier to use. The security implications of reval() (as well as the
other forms of remote code execution in Browzawall) are discussed in detail
in Section 7.5.

Browzawall also provides a reloadAll() function that, as expected, issues a com-
mand to all display hosts in the session to reload their current document.

5.9 DOM Synchronization
Domsync provides convenience methods replicating DOM elements to all dis-
play hosts. Domsync uses the Broadcast Function Calls The following functions
are provided:

• syncAttr([name, value]) This method serializes all style defined on the
element and broadcasts them to all display hosts. For convenience, users
can supply a name and value to update the attribute by that name with
that particular value before broadcasting all attributes.

• syncStyle([name, value]) This method serializes all style declarations
defined on the element itself (not those defined in style sheets) and
broadcasts them to all display hosts. For convenience, users can supply a
name and value to update the style declaration by that name with that
particular value before broadcasting all style declarations.

• syncInner() This method synchronizes all children of an element by
broadcasting the element’s innerHTML attribute.

• syncOuter() This method synchronizes an element and all of its children
by broadcasting its outerHTML attribute.

5.10 D ISTR IBUTED EVENT L ISTENERS 29

5.10 Distributed Event listeners
Another feature provided by domsync.js is distributed event listeners. To the ap-
plication developer, distributed event listeners behave almost identically to reg-
ular event listeners. The preferred way of defining event listeners[] in HTML5
is with addEventListener() and removeEventListener(), both methods from the
EventTarget prototype[]. Domsync extends the prototype of EventTarget with
addDistributedEventListener() and removeDistributedEventListener(), which
accept the same parameter list as addEventListener() and removeEventLis-
tener().

Internally, adding a distributed event listener stores the user-defined event
listener in a data structure while adding a meta-listener on the EventTarget
for the event type in question. When the appropriate event is triggered, the
meta-listener encodes the triggered event and sends it over the network. Then
it looks up the actual user-defined event listeners (there can be multiple) and
executes them locally.

Domsync also listens for remote event messages from the communication server.
Upon receiving a remote event, it will look up the event listener for the correct
EventTarget and event type (and useCapture), and execute the handler.

5.10.1 Encoding the Event
DOM Events contain references to DOM elements. It makes more sense to
encode these references than to try to serialize the element itself. Domsync
encodes element references as CSS selectors. The selector is generated by
traversing up the DOM tree until reaching either an element with a defined id
attribute or the body element. The algorithm relies on the Child Combinator
">" and :nth-child(n) pseudo-class[]. Allowing an id as a base case (instead of
just the root of the document) not only prevents unnecessary DOM traversal,
but also supports use cases where the entire document is not synchronized
between hosts, but only select subtrees. For example, an end user might use
a mobile tablet as an interface for the display wall, and that mobile interface
might only display a portion of the document at a time.

DOM events can also be triggered on, and contain references to, document
and window, which are not Elements, and thus can’t be addressed by a CSS
selector. Instead, each has a "magic string" to identify it: "#$win" for window
and "#$doc" for document. These magic strings were designed to be invalid
CSS selectors to avoid potential conflicts with user-defined elements. They are
invalid because # denotes an id selector, and a valid id cannot begin with a
$.

30 CHAPTER 5 IMPLEMENTAT ION

5.10.2 Decoding the Event
Decoding a remote event consists of two steps: decoding references and assign-
ing dummy methods.

Decoding references at the remote hosts is simply the reverse of the process de-
scribed above. For each applicable field, the decoder first looks for magic strings,
and otherwise invokes document.querySelector() for DOM Elements.

Dummy methods must be assigned to the remote event to allow the same event
listener to be executed for both remote and local events. For example, an event
listener may want call event.stopPropagation(). On the host where the event is
originally triggered, this will have the usual effect of stopping the propagation
of the event to elements either higher or lower on the dom tree (depending on
whether or not the event listener is registered for the capture phase). Because
remote events do not propagate, the remote event listener simply needs an
empty function to call to avoid an error.

5.11 Distributed D3
Distributed D3 (dd3) is a lightweight wrapper to the popular visualization
library d3. Distributed d3 provides the ability to execute d3 operations on all
Browzawall hosts, while supporting d3’s characteristic programming idioms,
such as method chaining.

Distributed D3 is based on DD3Batch objects that appear as d3 Selection
objects. Calling a method on a DD3Batch object encodes that method call and
its parameters, and adds them to a queue. A DD3Batch can be executed only
locally by calling local(), or it can be broadcast to all display hosts by calling
remote().

A common usage pattern with d3 is to create a selection and assign it to
a variable, so that it can be used later for multiple other operations. In a
distributed environment where all display hosts are executing the same d3
operations, each display hostmust store its own copy of the selection,whichmay
then be referenced by dd3 operations initiated by any other host. Distributed
d3 allows for storage of selections by accepting an optional key string as an
argument to remote() and local(). The selection can be recalled by calling
dd3.load(), passing the desired key string.

6
Example Applications
This chapter describes some of the notable example applications developed
using Browzawall.

6.1 Wall Controller
The Wall Controller is a prototype interface for directing content on the display
wall. The intended use case is that a user operates a control interface from a
personal computer, such as a laptop. (The system is designed so that multiple
collaborating users could each have their own control interface, though this
has not been extensively tested.) This control interface presents a miniaturized
overview of the entire wall. The user can click and drag on empty space
to specify the position and size of a new element (i.e. the point where the
user clicks and the point where the user releases will be opposite corners of
the rectangle that bounds the element). The user can then click and drag the
element tomove it around. The elementwill always appear in the corresponding
location on the display wall. Two types of elements are currently supported,
iframes and svg gene pathway diagrams.

When creating an iframe, which is the default element, the Wall Controller will
prompt the user for a web address that will become the src attribute of the new
iframe, automatically prepending "http://". This allows the Wall Controller to
display arbitrary web pages or other web-hosted files on the display wall. Wall

31

32 CHAPTER 6 EXAMPLE APPL ICAT IONS

Controller iframes work great for displaying static content such as images or
Portable Document Format (pdf) documents. It is also possible to load other
web pages, though they may not display properly for two reasons. First, some
web pages are designed to not display when loaded in an iframe in another
document. Second, web pages may contain dynamic or changing content,
and since all of the display hosts are independently requesting this content,
they may retrieve different content. For example, a news web page may show
different headlines, or may show different advertisements. Figure 3.2 in Section
9.1 shows this exact problem. Automatically-playing slideshows may get out of
sync.

If the user holds the shift key while clicking and dragging, the Wall Controller
will instead prompt the user for a gene pathway number, and then create an svg
drawing of the corresponding pathway diagram. These gene pathway diagrams
are generated with code contributed from the Kvik[4] project. Adapting Kvik’s
interactive gene pathway diagrams for a display wall environment was a large
part of the motivation behind Browzawall. Figure 6.1 shows the Tromsø Display
Wall displaying such a pathway diagram in this way. Figure 6.2 is a closer view
of four different pathways on the display wall.

Figure 6.1: A gene pathway diagram on the Tromsø Display Wall

6.2 MANDELBROT SET 33

Figure 6.2: Close-up of four pathway diagrams on the Tromsø Display Wall

6.2 Mandelbrot Set
The Mandelbrot Set is a fractal frequently used as an example problem for
parallel and distributed computing. The fractal is generated by iteratively
performing a computation based on a point’s coordinates in real and imaginary
space. The number of iterations necessary to exceed a particular bound then
gets mapped to a particular color for display. Interesting properties of the
Mandelbrot set are that each point can be calculated independently of each
other, and that different regions can take different amounts of time to calculate
even if they contain the same number of points.

The Mandelbrot set application is interesting because it departs from the typi-
cal replicate and zoom model of Browzawall and demonstrates how Browza-
wall can synchronize browser windows that render their own individual con-
tent.

This Mandelbrot set application displays a single full-screen html canvas on
each display host. Users can click on the canvas to pan and zoom around the
Mandelbrot fractal. Display tiles use the communication interface to synchro-
nize the coordinates of the bounding box of the full image, then use walldoc
to calculate the coordinates of the bounding box of the tile’s own region. Af-
ter calculating values for each of its pixels, it invokes a barrier to wait for all
display hosts to finish computation before writing the pixel data to the canvas
element.

34 CHAPTER 6 EXAMPLE APPL ICAT IONS

6.3 U.S. Counties Map
There are over 3,000 counties in the United States[2]. Many statistics are
collected on a per-county basis, and a high-resolution display wall would be
helpful for visualizing such statistics.

This application, adapted from a d3 example application¹, displays a vector
graphic of the outlines of the counties. Clicking and dragging the graphic will
pan it, while the mouse wheel zooms in and out.

Figure 6.3: U.S. Counties Map

1. http://bl.ocks.org/mbostock/5914438

http://bl.ocks.org/mbostock/5914438

6.4 H I-RES GALLERY 35

Figure 6.4: U.S. Counties Map zoomed in on the Northeast region

6.4 Hi-Res Gallery
This application is meant to showcase the flexibility and power of the replicate
and zoom model, and the ability to treat the entire display wall as one large
web page. It is a simple gallery of high-resolution .jpg images obtained from
NASA’s Jet Propulsion Laboratories/Caltech². When launched on the display
wall, the images will span across the entire wall, left to right, top to bottom.
When launched on a typical personal computer (that isn’t behaving as a tile),
the web page will arrange the images downward in a column that the user can
then scroll down as a normal-looking web page.

All that’s happening behind the scenes is that JavaScript code detects whether
or not the web page has been launched as a tile, i.e. the url query string is
the form "?tile-x-y". If it is a tile, then all it does is resize the document as a
whole, then perform the appropriate css3 transforms to achieve the correct
viewport. The standard html layout algorithm then handles the page layout
according to the document size it’s given.

2. http://www.jpl.nasa.gov/spaceimages/

http://www.jpl.nasa.gov/spaceimages/

36 CHAPTER 6 EXAMPLE APPL ICAT IONS

6.5 YouTube Controller
This application combines the interface of the Wall Controller described above
with the YouTube Player api³. Clicking and dragging will prompt the user for
a YouTube video ID, then load a YouTube Player that will play the specified
video.

3. https://developers.google.com/youtube/iframe_api_reference

https://developers.google.com/youtube/iframe_api_reference

7
Evaluation
This chapter provides a brief evaluation of various aspects of Browzawall.

7.1 File Size
Table 7.1 lists the file sizes of Browzawall’s client-side libraries, as well as the
file sizes of the commonly-used jQuery and d3 libraries. Browzawall’s libraries
are very small relative to them, so transferring them over the network should
not significantly impact page load time; nor should retrieving them from the
browser’s cache. There is still room for potential optimization (if necessary)
by combining the Browzawall JavaScript files (to reduce the total number of
requests) and/or using a JavaScript minifier.

File Size (KB)
comm.js 9
walldoc.js 6
domsync.js 7
dd3.js 6
jquery-2.1.4.min.js 83
d3.v3.min.js 148

Table 7.1: File sizes

37

38 CHAPTER 7 EVALUAT ION

File Total Phys. Memory (MB)
(single blank tab) 92.4
memtestbase.html 103.0
memtest.html 102.3
wallcontroller.html 103.3

Table 7.2: Client Memory Usage

7.2 Client Memory Usage
Client memory usage was tested for the Wall Controller application, and com-
pared against two "skeleton" applications as a reference point. The skeletons
contained only basichtml structure, andwere each less than .5 KB in size. One,
named "memtest.html" loaded the three core Browzawall libraries (comm.js,
walldoc.js, and domsync.js), the other, named "memtestbase.html", loaded no
external Javascript. (Note that simply loading the comm.js library will initiate
the WebSocket connection to the communication server.) Wall Controller, or
wallcontroller.html loads not just the Browzawall libraries, d3, the d3 color-
brewer library, and a library for generating gene pathway diagrams.

Measurements were taking with Firefox version 40.0.3 on a Windows 8 laptop,
using the physical memory statistics provided by TaskManager. Each web pages
was loaded by a fresh Firefox process that hadn’t loaded any other tabs (except
for the blank tab as the "home" page). As this measurement was intended to
measure the baseline memory usage of Browzawall, the measurements were
recorded once the page had loaded but before any user-initiated actions had
taken place. Table 7.2 shows the results. While loading any web page appears to
have an overhead of roughly 10.5 MB more than a starting blank tab, the pages
that loaded the Browzawall libraries didn’t use significantly more memory than
the page that did not.

7.3 Responsiveness
Browzawall is the integration of display walls and web-based visualization,
which are essentially two different user interface technologies. As such, respon-
siveness is the most important metric. We have used the Pathway Controller
application described in the previous chapter to observe the responsiveness
of clicking and dragging pathway diagrams to reposition them on the display
wall. There was little to no visible lag on the display wall whether the Pathway
Controller used custom messages, dom Synchronization, or Distributed Event
Listeners to synchronize the position of the pathway diagram.

7.4 D ISTR IBUTED D3 39

7.4 Distributed D3
In order to evaluate Distributed d3, I turned to the example applications linked
on http://d3js.org, with the intent to adapt them to function on a cluster-
based display wall. However, all of these applications that I explored relied on
features beyond the basic d3 Selection object, e.g. Transitions, and thus were
not supported by the prototype Distributed d3. It will take further effort to
determine if it’s feasible and worthwhile to implement Distributed d3 for the
entirety of d3.

7.5 Security Concerns
Any users of Browzawall should be aware of security concerns. While the
typical security concerns of web applications apply, of particular note is the fact
that Browzawall provides several methods of executing JavaScript code in a
browser window on remote machines. These remote machines may be behind
firewalls or otherwise have higher access privileges. Or, by executing code on all
hosts that are part of a display wall, a malicious user could effect a Distributed
Denial of Service (ddos) attack. Adding encryption and authentication is an
opportunity for future work.

Without encryption and authentication, a malicious user could simply connect
to the communication server and flood it with messages. If other display hosts
are connected to the same session, they would each also receive this traffic.
Depending on the application and the messages sent, this could cause the
browser window to create new Elements, and thus eat up memory.

Session-persistent shared objects currently leave the communication server
vulnerable to excessive memory usage. The server does not enforce any limits
on the number of such objects or their size, so a malicious user could cause the
server to consume memory up to the limit allowed by Node.js.

Browzawall inherits any security vulnerabilities from the open-source or "off-
the-shelf" software it relies on. Currently this includes Node.js, and whatever
web server, web browsers, and operating systems it’s installed with.

7.6 Usability
Any framework should be evaluated on its ease of use. This is one area where
more work is required. With clear API documentation, other web application

http://d3js.org

40 CHAPTER 7 EVALUAT ION

developers can try building their own Browzawall applications.

7.7 Comparison to Other Solutions
Section 2.4 introduced existing solutions for displaying interactive web appli-
cations on cluster-based display walls.

Browzawall has several benefits over Multibrowsing[8]. Browzawall is capable
of a greater degree of abstraction than Multibrowsing, since it can treat several
displays, even across multiple display nodes, as one large display. Browzawall
also benefits from the smoother performance that the WebSocket protocol
offers, and its ability to push data to browsers without requiring the browser
to completely refresh the page.

Hydrascope[7] has the ability to scale up and synchronize applications without
modifying existing source code, though it relies on reverse-engineering, which
can result in brittle solutions.

vnc and the Display Cloud[6][11] allow display of web applications from
the vnc server’s desktop to a cluster-based display wall. This is an incredibly
versatile solution, as it can display not justweb applications, but any applications
on the vnc server’s desktop. This is, however, subject to available bandwidth.
Browzawall has an advantage in that it is able to transmit events, rather than
just pixels. Transitions, such as menus sliding out, create multiple pixel changes
from a single event. We have observed brief artifacts in such situations when
using vnc.

One of Browzawall’s largest weaknesses relative to other solutions is that it
requires retrofitting client-side JavaScript code into existing web applications,
or building new applications from scratch. However, many or most existing web
applications and pages were designed for normal desktop or mobile resolutions,
and do not produce any additional benefit on higher resolution displays. See
Figure 7.1, where the dagbladet.no home page has enough horizontal space as
the red bar at the top, but only uses a small portion of that space.

7.7 COMPAR ISON TO OTHER SOLUT IONS 41

Figure 7.1: Displaying the dagbladet.no home page on the Tromsø Display Wall.

8
Conclusion
This thesis has described the challenges inherent to integrating web tech-
nologies with cluster-based display walls, and has presented an overview of
possible solutions. This thesis has also described Browzawall, a framework
providing several methods for addressing those challenges, which application
programmers can use according to what is most appropriate.

43

9
Future Work
This chapter suggests potential future work, including improvements to current
functionality and integration with other technologies.

9.1 General Improvements
The security concerns in Section 7.5 could be addressed by implementing
the WebSocket Secure (wss://) protocol. The excess bandwidth and content
desynchronization mentioned inherent to "replicate and zoom" (described in
Section) could be mitigated by setting up a proxy cache for the display tiles
to receive content from.

9.2 Distributed D3
As mentioned in Chapter 7, the current implementation of Distributed d3 is
too limited to handle anything but the most basic use cases. Implementing
additional features of d3 in Distributed d3 would allow us to better explore
the potential of this approach.

45

46 CHAPTER 9 FUTURE WORK

9.3 Shared Motion
Browzawall was designed for scientific visualization applications in which the
display would not be changing frequently, and thus even latencies (between
display tiles) close to a second would be acceptable. For finer-grained synchro-
nization on a display wall, Browzawall could be integrated with Shared Motion
developed by Motion Corporation¹. With Shared Motion, it may be possible to
play high-resolution html video content on a display wall.

9.4 Gesture Support
The Tromsø Display Wall has a motion-capture system that detects motion in
front of the display screen[1]. A future project could supply this motion data
to the communication server and display hosts in order for applications to be
controlled by gestures.

1. http://mcorp.no

http://mcorp.no

Bibliography
[1] O Anshus, Daniel Stødle, T Hagen, Bård Fjukstad, J Bjørndalen, L Bongo,

Yong Liu, and Lars Tiede. Nineyears of the tromsø display wall. In
Proceedings of Powerwall, SIGCHI Workshop, 2013.

[2] U.S. Geological Survey/Audio by Steve Sobieszczyk. "how many counties
are there in the united states?". http://gallery.usgs.gov/audios/124,
2008. Accessed 1-October-2015.

[3] Ian Fette and Alexey Melnikov. The websocket protocol. 2011.

[4] Bjørn Fjukstad. Kvik: Interactive exploration of genomic data from the
nowac postgenome biobank. 2014.

[5] Bjørn Fjukstad, Karina Standahl Olsen, Mie Jareid, Eiliv Lund, and
Lars Ailo Bongo. Kvik: three-tier data exploration tools for flexible analysis
of genomic data in epidemiological studies. F1000Research, 4, 2015.

[6] Tor-Magne Stien Hagen. Interactive visualization on high-resolution tiled
display walls with network accessible compute-and display-resources.
2011.

[7] Björn Hartmann, Michel Beaudouin-Lafon, and Wendy E Mackay. Hydras-
cope: creating multi-surface meta-applications through view synchroniza-
tion and input multiplexing. In Proceedings of the 2nd ACM International
Symposium on Pervasive Displays, pages 43–48. ACM, 2013.

[8] Brad Johanson, Shankar Ponnekanti, Caesar Sengupta, and Armando Fox.
Multibrowsing: Moving web content across multiple displays. In Ubicomp
2001: Ubiquitous Computing, pages 346–353. Springer, 2001.

[9] Mozilla Developer Network. "document object model (dom) - web apis |
mdn". https://developer.mozilla.org/en-US/docs/Web/API/Document_
Object_Model, 2015. Accessed 1-October-2015.

47

http://gallery.usgs.gov/audios/124
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

48 B IBL IOGRAPHY

[10] The Chromium Projects. "multi-process architecture - the chromium
projects". http://www.chromium.org/developers/design-documents/
multi-process-architecture, 2008. Accessed 1-October-2015.

[11] Lars Tiede, John Markus Bjørndalen, and Otto J Anshus. Cloud displays
for mobile users in a display cloud. In Proceedings of the 14th Workshop
on Mobile Computing Systems and Applications, page 12. ACM, 2013.

http://www.chromium.org/developers/design-documents/multi-process-architecture
http://www.chromium.org/developers/design-documents/multi-process-architecture

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Challenges
	1.2 Organization

	2 Background
	2.1 Tromsø Display Wall
	2.2 NOWAC and Kvik
	2.3 HTML and the Document Object Model
	2.4 Related Work
	2.4.1 Multibrowsing
	2.4.2 Hydrascope
	2.4.3 VNC
	2.4.4 AtomizeJS

	3 Solution Space
	3.1 Visual Scaling
	3.1.1 Divide and Distribute
	3.1.2 Replicate and Zoom

	3.2 Data Synchronization
	3.2.1 Synchronizing Input
	3.2.2 Synchronizing Code
	3.2.3 Synchronizing DOM
	3.2.4 Synchronizing Rendered Documents

	3.3 Alternatives Considered
	3.3.1 Distributed Browser
	3.3.2 SVG transform and viewBox

	4 Design
	4.1 Architecture
	4.2 Communication Server
	4.3 comm.js
	4.4 walldoc.js
	4.5 domsync.js
	4.6 dd3.js

	5 Implementation
	5.1 System Integration
	5.2 Visual Scaling
	5.3 Session Initiation
	5.4 Message Internals
	5.5 Broadcast Function Calls
	5.6 Session-Persistent Shared Objects
	5.7 Barriers
	5.8 Remote Execution and Troubleshooting
	5.9 DOM Synchronization
	5.10 Distributed Event listeners
	5.10.1 Encoding the Event
	5.10.2 Decoding the Event

	5.11 Distributed D3

	6 Example Applications
	6.1 Wall Controller
	6.2 Mandelbrot Set
	6.3 U.S. Counties Map
	6.4 Hi-Res Gallery
	6.5 YouTube Controller

	7 Evaluation
	7.1 File Size
	7.2 Client Memory Usage
	7.3 Responsiveness
	7.4 Distributed D3
	7.5 Security Concerns
	7.6 Usability
	7.7 Comparison to Other Solutions

	8 Conclusion
	9 Future Work
	9.1 General Improvements
	9.2 Distributed D3
	9.3 Shared Motion
	9.4 Gesture Support

	Bibliography

