

Faculty of Science and Technology

Department of Computer Science

Space-Bounded Async Scheduling
A UPC++ Extension
—
Christian Bergvoll Vik
INF-3981 Master thesis in Computer Science… June 2016

Abstract

As increasing awareness of climate changes and surging power costs for big
data centers today energy efficiency becomes increasingly important. In ad-
dition to that we carry mobile devices that depend on battery technology
that is falling behind the rapid evolution of transistor technology and ever
increasing power demands. At the same time there is an understanding that
computer resources are not efficiently used. One solution to this is the pro-
posed Space-Bounded scheduling, a scheduler that schedules tasks with the
goal of achieving better cache locality. At the other side there is also a rise
in HPC (High Performance Computing) popularity and a rising demand for
powerful and easy-to-implement systems that are portable yet still customiz-
able. For this demand the PGAS (Portable Global Address Space) model fits
well and UPC++ is one of the newest editions to that category. Implemented
as a C++ library it is both portable, powerful and easy to use.

We combine the advantages of Space-Bounded scheduling with the perfor-
mance and simplicity of UPC++ to create Space-Bounded Async Tasks: A
UPC++ extension that schedules async tasks with consideration of cache
locality.

iii

Acknowledgements

I want to thank my advisors Phuong H. Ha and Otto Anshus. Weekly meet-
ings with Phuong has helped a lot in guiding me in the right direction. My
fellow lab companions at the Arctic Green Computing lab deserve thanks for
all discussions, advice and for keeping up with me. Tommy Oines deserves
special thanks for helping to create an atmosphere called AGC party during
late night sessions, these late night sessions always had lot of music keeping
the energy levels high and the motivation up. Finally I want to thank all
my fellow students, for all encouragement and all the quality tanning time
at the bench outside.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 PGAS . 2

1.2 UPC++ . 4

1.2.1 Shared objects and global pointers 4

1.2.2 Bulk data transfers . 5

1.2.3 Async tasks . 5

1.3 Space-bounded scheduling . 6

1.4 Context . 6

1.5 Targeted applications . 7

1.6 Contribution . 7

1.7 Methodology . 7

1.8 Outline . 8

2 Idea 9

vii

viii Contents

3 Related Work 11

3.1 HabaneroUPC++ . 11

4 Architecture 13

4.1 GASNet . 13

4.1.1 Core API . 14

4.1.2 Extended API . 15

5 Creating the Space-Bounded Scheduler Extension 17

5.1 Async tasks . 18

5.2 Core affinity . 19

5.3 Discovering hardware topology 20

5.4 Space bounded scheduler . 20

5.4.1 Tree creation . 21

5.4.2 The Scheduler . 22

5.5 Inter-process communication and synchronization 23

5.5.1 Active Messages . 23

5.5.2 Alternative Global Adress space approach 26

6 Experimentation 27

6.1 Functionality evaluation . 27

6.1.1 Running UPC++ tests 29

6.2 Performance testing . 30

7 Results 33

Contents ix

8 Conclusion 35

References 37

Appendices

Appendix A Readme 41

List of Figures

4.1 GASNet Architecture . 14

4.2 UPC++ Architecture . 15

5.1 Async scheduler design . 19

5.2 Example tree layout for an Intel i5-2600 V3 21

5.3 Scheduler communication flow 24

xi

Chapter 1

Introduction

Energy awareness is an increasing trend in modern computing systems today.
Not only does datacenters have high operating costs but battery life in mobile
devices also suffer from increasing demands in energy that battery capacity
development is not able to follow. In conjunction to this there is also an
understanding that computer resources can be used more effective.

One approach to that is the use of hierarchy aware schedulers[5][2][17][13][7].
These types of schedulers have proven to be work well but some of them
are not optimized for the more advanced cache hierarchies that we see are
trending. Now there is a trend with NUMA (Non Uniform Memory Access)
architectures and other more advanced cache hierarchies that some of the
hierarchy aware schedulers like Priority Work-Stealing[13] are not specialized
for. Out of the schedulers the space-bounded[5] type of schedulers are the
one that seem most aware of this trend. With these schedulers the tasks need
to specify the size of their memory footprint. This is then matched to the
size of a cache and only scheduled on cores that have affinity to that cache.
Simhadri et al.[14] prove through their experimental analysis that that this
type of scheduler indeed is more efficient when the complexity of the cache
hierarchy rises.

Parallel to that we see the rise of Partitioned Global Adress Space (PGAS)
abstractions for different parallel programming languages. Compared to the
Message Passing model the Shared Memory model allows for the system to
have more control over communication and how data is shared. UPC++[17]
is one of those systems. UPC++ is a PGAS Extension for C++ which
interesting for many reasons. Not only is C++ a widely used language for

1

2 1 Introduction

many scientific fields but also because of the way the UPC++ extension is
built. It is built entirely on top of C++ as a library. Using templates and
clever operator overloading it enables the functionality of UPC[15] (Unified
Parallel C) without having a specific compiler or preprocessor.

We present an extension to the UPC++ implementation that allows Async
tasks to be scheduled according to the principles of Space-Bounded Sched-
ulers. More specifically we allow async tasks to be rescheduled to another
rank that will better preserve its cache locality. The original implementa-
tion of UPC++ introduces Async tasks which allow for an otherwise SPMD
program to execute asynchronous tasks. With Async any rank1 can specify
a function with arguments and the rank where it wants to run it. With
this RPC (Remote Procedure Call) feature the programmer can also specify
event-driven executions where one async task has to wait until completion of
another before it starts. Our addition extends this functionality by allowing
tasks to be rescheduled to another rank that the scheduler deems better. The
scheduler tries to match the memory footprint of the task to that of a cache.
When it has found a cache with enough room to accomodate this task it
”allocates” that space and lets the task be run on a rank that runs on a core
that is a subset to that cache. This is backed up further by using Process
Shared Memory (PSHM), a feature in UPC++ that allows sharing of mem-
ory between processes. With PSHM activated the potential consequences
of rescheduling between ranks on the same physical computer is reduced.
Because now the rescheduling has less impact when the programmer has al-
located memory specifically for the rank it wanted to execute the async task
on.

1.1 PGAS

Partitioned Global Address Space is a parallel programming model in HPC
(High Performance Computing) where the main goal is to increase produc-
tivity while still keeping performance up. It uses a shared memory model
that distinguishes between local and shared data. For a long time the dom-
inant model in HPC has been the Message Passing model. The message
passing model works by having a message passing interface (ex. MPI) that
the parallel processes use coordinate activity. The communication between
processes normaly consist of sharing results or to synchronize tasks. The

1Note: rank and node will be interchangable throughout this thesis

1.1 PGAS 3

message passing model has been very popular for several reasons. One rea-
son is that its quite easy to implement. It is easy to see how an extension to
an already popular programming language can implement a message pass-
ing interface that delivers the requirements needed for this model to work.
Secondly the programmer is in full control of the execution of the parallel
application. The programmer knows not only how the data is divided but
also the pattern of communication. This degree of control gives a high de-
gree of customization for each application, something that is important in
HPC. The Message Passing model is however losing momentum. As De-
Wael et al.[6] argues there are several reasons for this. The first being that
there is a trend towards more complex computer architectures. Where there
earlier used to be simple heterogenous systems there is now an increase in
homogenous systems. Examples of this include both NUMA (Non-Uniform
Memory Architectures) used in more advanced CPU arcitechtures, as well as
the use of co-processors or GPU to leverage their advantages, which in turn
give better utilisation of resources. With these system being more common
it is harder to specialize each application for individual system and certainly
doesn’t improve portability.

Another point that DeWael et al.[6] points out is that with internet and
the cloud the supercomputers that are often used in these HPC applications
become more available. This in turn increases the popularity among other
fields than computer science which also has use of these systems. Lusk and
Yelick(2007)[10] point out in their DARPA HPCS Project report that pro-
grammer productivity is becoming an issue and that “there exists a critical
need for improved software tools, standards, and methodologies for effective
utilization of multiprocessor computers.”. Meaning that with the rise of com-
plexity and popularity there is a need for models that are easy to learn yet
powerful enough to compete with the most customizable models in terms of
performance. One answer to this seems to be PGAS based models. Where
there before used to be only Message Passing (ex. Open MPI) and Shared
Memory (ex. OpenMP) there is now the PGAS model which sits is in the
middle of these two. With the PGAS model processes have both local and
shared memory. Giving some of the customizability and control of Message
Passing while keeping the simplicity and scalability of Shared Memory.

4 1 Introduction

1.2 UPC++

In the paper UPC++: A PGAS Extension for C++[17] Zheng et al. present
UPC++ with the following goals. A) To provide object oriented PGAS to
be available in C++. B) To allow useful idioms such as asynchrnonous tasks
and multidimensional arrays that were previously unavailable in UPC[15].
C) To offer PGAS that has interoperability with other parallel program-
ming systems such as OpenMP, CUDA and MPI. As the implementors of
UPC[15](Unified Parallel C) Zheng et al. implemented UPC++ as a library
extension to C++. Using templates and operator overloading they imple-
mented most of the features from UPC plus some additional features such as
asynchronous tasks and multidimensional arrays. This ”compiler-free” ap-
proach does not use a proprietary compiler or preprocessor and thus keeps
interoperability with other popular parallel programming libraries.

1.2.1 Shared objects and global pointers

By default all variables in UPC++ are declared private so shared variables
have to be declared excplicitly. Shared variables are declared by

shared var<Type> s;

Which are generally stored in thread 0 (Rank 0) but accessible by all. The
same applies to shared array<Type> which also overloads the [] subscriptor
to allow the same interface as normal. Once declared these shared variables
act like any other variables for the user. Though as one would suspect shared
variables have variable access-time depending on where they are physically
located.

Global pointers reference an object in the global address space. Meaning that
once created they contain both the local address and the thread id. Global
pointers are declared with the form:

global ptr<Type> sp;

Using operator overloading and templates to encapsulate the object they
allow the global pointers to have the semantics of normal pointers. In ad-
dition to semantics of normal pointers they also contain a where() method
that gives information about where it is stored. In addition to the template

1.2 UPC++ 5

types specified they also allow for void pointer types so that it can point to
basically any user-defined type.

Memory in the global address space is allocated by calling:

allocate<Type> (int rank, size t sz);

Where rank is the thread id to allocate memory on and size is the size of the
type. Similar to malloc syntax the allocated shared memory has to be freed.
This is done by calling deallocate on the pointer.

1.2.2 Bulk data transfers

UPC++ also allows for bulk data transfer using copy and async copy. The
syntax for this is:

copy(global ptr src, global ptr dst, size t count);

With copy being blocking and async copy being non-blocking. The syntax
for both being the same except async copy has an option to specify an event
to trigger which can be used for synchronization later. Additional synchro-
nization is implemented in async copy fence which waits for all async copy
to be done.

1.2.3 Async tasks

Async tasks offer RPC (Remote Procedure Calls) in UPC++. A feature
that was missing in UPC. Inspired by the C++ Async library it is possible
to start remote asynchronous tasks by using the syntax:

async(place)(function, args...);

In addition to normal asynchronous tasks there is also the possibility to
include event triggers which are added to the async call. These events can
then later be used for event-driven async tasks in the function async after.
The async after function takes in a pointer to the event and starts executing
the async task only after the previous async task is finished and has triggered
the event.

6 1 Introduction

1.3 Space-bounded scheduling

The idea of a hierarchy aware scheduler is not new and has been proposed
in several papers[5][2][17][13][7]. Most of these are of a work-stealing type
that work well for simple memory hierarchies, as the trend towards more ad-
vanced hierarchies and homogenous systems increase there is a need for an-
other type that allows utilization of the new emerging types of architectures.
A proposed type of scheduler to remedy this are the so called space-bounded
schedulers[5][2]. Furthermore this is explored by Simhadri et al.[14] which
did a comparison between space-bounded schedulers and the industry stan-
dard work-stealing and its hierarchy-aware versions. It is the space-bounded
scheduler implemented in [14] that formed the basis for the one implemented
in this thesis.

Simhadri et al. define space-bounded schedulers as:

In a space-bounded scheduler it is assumed that the computation
has a nested (hierarchical) structure. The goal of a space-bounded
scheduler is to match the space taken by a subcomputation to
the space available on some level of the machine hierarchy. For
example if a machine has some number of shared caches each
with m-bytes of memory and k cores, then once a subcomputation
fits within m bytes, the scheduler can assign it to one of those
caches. The subcomputation is then said to be pinned to that
shared cache and all of its subcomputations must run on the k
cores belonging to it, ensuring that all data is shared within the
cache.

While this is the overlying concept of the scheduler a detailed description of
how the scheduler implemented can be found in Section 5.4

1.4 Context

The research in this thesis was conducted in the Arctic Green Comput-
ing groups research in Green Computing. Specifically it covers research on
energy-efficient run-time systems.

1.5 Targeted applications 7

1.5 Targeted applications

The extension built for UPC++ targets to improve locality awareness for
asynchronous tasks where the programmer hasn’t excplicitly specified or
made informed choices as to where an asynchronous task should be run.
That is the programmer hasn’t set up allocated memory that the task will
use. Because if that is the case then rescheduling will incur more overhead
than the programmer intended because of memory transfers between ranks.
For now it is sufficient to only include rescheduling where the programmer
has no requirements other than running a task asynchronously. In the fu-
ture the extension could be further expanded to overwrite async copy and
PGAS memory allocation. This will account some of the optimizations the
programmer did, but as it is hard to predict which ones are related to async
this is reserved for future work.

It will also only try to reschedule between ranks sharing the same memory,
that is ranks on one system. Because the goal here is to increase locality
awareness by integrating space-bounded scheduling[2] to asynchronous tasks
and the locality awareness concept in space-bounded scheduling is not easily
applied across network.

1.6 Contribution

The research in this thesis contributes with a UPC++ extension that allows
asynchronous tasks to be scheduled according to hardware specific informa-
tion. This preserves locality in the sense that tasks are scheduled at a level
in the memory hierarchy that allows for better cache utilization. With these
conditions in place the task will (in theory) occur fewer cache misses and
better use of bandwidth.

1.7 Methodology

To achieve this we are going to analyze the different parts of UPC++. It
is neccessary to gain a full understanding of how the different components
in UPC++ interract and what consequences there are with altering these.
Especially important is the understanding of the asynchronous task execu-

8 1 Introduction

tion. Only when this is understood can one begin to form an idea of where
such a scheduler as described in [2] can be implemented. These type of
schedulers require information about the system so it is important to figure
out what kind of information UPC++ has access to. If such information is
not available one has to acquire it by other means. One option is through
proprietary libraries such as hwloc[12] where it is possible to extract system
specific details such as memory hierarchy and processing components. With
such knowledge one can then begin to implement the ideas that is the goal
for this research. And only when implemented can one see the consequences
such a scheduler has to the system. Not only does one see how it impacts
other parts of UPC++ but also if it is possible to do it. How it compares
to the original implementation is also important. All this will then need
to be tested to see that what was created is not only practical but also an
improvement to what was there originally.

1.8 Outline

The remainder of the thesis is structured the following way:

Chapter 2 describes the general idea that was behind this research

Chapter 3 presents Related Work. It introduces alternative PGAS lan-
guages as well as another UPC++ approach similar to ours.

Chapter 4 describes the architecure of GASNET .

Chapter 5 covers detailed implementation specifics. Specifically how UPC++
works, how each component was made to fit into UPC++ and how they
communicate to create the finished scheduler.

Chapter 6 describes how the system was tested. What experiments were
made and how to reproduce them.

Chapter 7 evaluates the results achieved by the experiments.

Chapter 8 concludes the research and the results achieved.

Chapter 2

Idea

To combine the principles of space-bounded scheduling with asynchronous
tasks of UPC++. Research[2][14][17] on these subjects show promising re-
sults and offer what seems to be the state-of-the-art in both these fields. It is
therefore interesting to contribute to the further development by integrating
space-bounded scheduling into UPC++ async tasks.

We believe this is a useful feature for several reasons. One reason is the con-
tinuing trend towards more complex computer architectures. We believe that
with the trend of homogenous systems it is neccessary to use the resources
available in a more efficient manner. With this type of scheduling the tasks of
async are scheduled in accordance to how the memory hierarchy is laid out,
we believe this a positive step forward in more efficient utilization of system
resources. Another reason to do this is the rising popularity in HPC. As
HPC is more available it is used for other fields in science where programma-
bility becomes an issue. Not only because of programming knowledge among
users but also because applications become more advanced and are harder
to implement. PGAS is already showing signs of enabling easier implemen-
tation while still being able to support a high degree of customization. With
the addition of space-bounded scheduling programmers can choose to let the
system handle more of the decisions that are made when creating parallel
applications. The system knows the hardware specific details so it is able
to make informed decisions that the user will benefit from. This also makes
it more portable, because the system will adapt to different architectures,
thus enabling the application to run efficiently on different types of hardware
without recustomizing the application. With the scheduler choosing for you
we believe it will be both simple and efficient.

9

Chapter 3

Related Work

There are several languages that implement Partitioned Global Adress Space.
Unified Parallel C[15], Coarray Fortran[11],Fortress, Chapel, X10 and SHMEM[8]
are some of them.

Unified Parallel C[15] was designed by the UPC Consortium. The original
concept and specifications were published in a paper by Carlson et. al[4].
UPC is an extention to the C programming language and was the prede-
cessor to UPC++. The main features include a partitioned global address
space, the use the SPMD (Single Program Multiple Data) model and data
communication via shared memory.

The DARPA High Productivity Computing Systems (HPCS) program1 was
a government project in the U.S that contributed to an increased popu-
larity of PGAS languages. The project invited big players such as IBM,
Cray, Hewlett-Packard, Silicon Graphics, and Sun Microsystems to produce
concept studies for next-generation supercomputers. Some languages that
spawned out of this project are Fortress, Chapel and X10.

3.1 HabaneroUPC++

HabaneroUPC++[9] is an exciting PGAS implementation that is based on
UPC++. In addition to the functionality of UPC++ they implement dy-
namic task parallelism. The authors describe HabaneroUPC++ as a li-

1http://www.darpa.mil/about-us/timeline/highhroductivity-computing-systems

11

12 3 Related Work

brary that uses UPC++ to implement PGAS communication and function
shipping while HabaneroUPC++ implements intra-place work-stealing. Ha-
baneroUPC++ is highly based on their previous implementation of Habanero-
C++ and Habanero-C which are dynamic tasking libraries. HabaneroUPC++
therefore combines the dynamic tasking of Habanero-C++ with the PGAS
functionality of UPC++. In doing this HabaneroUPC++ introduces concur-
rent scheduling of async task on a compute node. Where the current UPC++
implementation only ran one task at a time habanero is able to run multiple
async tasks at once. This is done by creating their own versions of async as
well as specialized join tasks that join concurrently run asyn tasks. Their
results show that it outperforms standard UPC++ on some benchmarks and
that it scales up to 6k cores running on an Edison Supercomputer at NERSC.

Chapter 4

Architecture

4.1 GASNet

Underneath UPC++ is the GASNet[3] Communication Layer. GASNet pro-
vides a portable network communication layer that is specialized for PGAS
languages. It is designed to be portable and light. With GASNet the net-
work specific details of a PGAS language is abstracted to GASNet, ensuring
that the language is portable across different networking interfaces. GAS-
Net supports a number of networking interfaces such as Aries, Gemini, IBV,
MPI, MXM, PAMI, Portals4, SHMEM, SMP and UDP1. GASNet imple-
ments this support by using different conduits for each network type. When
setting up GASNet the conduit for that network type is chosen. If such
a conduit doesn’t exist there are templates available so that programmers
can implement it themselves, thus enabling support for additional network
interfaces.

GASNet also aims to provide performance by using low-level lightweight
communication primitives. Performance is important because network per-
formance directly impacts how parallel applications perform. In addition
to networking the GASNet communication interface supports GAS (Global
Address Space) by adding features that provide OS-level features such as
remote memory access and collective operations.

The GASNet Communication interface is split into two layers, the Core API

1Further information on supported networks can be found on the GASNet project
website: https://gasnet.lbl.gov/#spec

13

14 4 Architecture

and Extended API. The GASNet Core API is the lowest level layer which
provides the networking while GASNet Extended API is built on top of the
Core API and provides features together with the OS such as higher level
shared memory and collective operations. This is designed so that developers
of a PGAS language using GASNet can bypass the extended level if they
prefer to implement the functions directly to improve performance or to use
platform specific hardware support.

Figure 4.1: GASNet Architecture

4.1.1 Core API

The Core API is based on the Active Messages (AM) Paradigm[16]. Active
messages are often defined as ”Messages that are able to perform computation
of its own”. Also defined as a ”Low-level communication primitive that tries
to exploit features in modern computer networks”2. In essence it is a low-level
RPC (Remote Procedure Call) mechanism that provides unordered reliable
delivery of messages. It works by having a handler attatched to each type
of active message. The handler knows what to do with the message and is
invoked when the active message reaches its target. In the message there
is a payload that the handler extracts. Depending on the network conduit
used the Active Messages can either run in a polling based manner or use
hardware interrupts. The Core API is as mentioned earlier designed to be
very lightweight and only implements core features. Most applications will
therefore use the Extended API most of the time.

2By the Active Messages Specification: http://now.cs.berkeley.edu/AM/active messages.html

4.1 GASNet 15

4.1.2 Extended API

The Extended API sits on top of the Core API and implements most of the
features that applications use. These features include more advanced com-
munication features than those that were introduced in the previous section.
Examples of features are one sided remote memory put/get and collective
operations. Most of the features use Active Messages from the Core API as
the base. For example a remote put could be expressed as an active message
sent to the remote target where a handler registers the incoming put and
places the data in its memory. The collective operations are implemented in
the same manner, using communication between the nodes to synchronize.
In general the Extended API implements features using the Core API but
with more customizations and functionality that might not suit all applica-
tions. It is therefore recommended that applications wanting to use advanced
features go directly through the Core API or the NIC. Figure 4.1.2 shows
how UPC++ is implemented on top of GASNet.

Figure 4.2: UPC++ Architecture

PSHM

Process Shared Memory is a feature that allows processes running on the
same memory to share adress space. This feature is only available if the

16 4 Architecture

OS it is running on supports it. For UNIX systems this is provided by
POSIX Shared Memory. The goal of this feature is to allow processes on the
same compute node faster and more reliable communication. It lowers the
communication latency by not having to go through the network API loop-
back. Processes running PSHM are grouped together in a team (Similar to
MPI Groups). Compute nodes with shared memory are called supernodes3.
The supernode structure contains the number of nodes sharing memory with
indexes ranging from 0 to GASNET SUPERNODE MAXSIZE (An environ-
ment variable set in GASNet).

3Note that throughout this thesis the term Supernode is often used for the node with
index:0 in the supernode table. This is because the nodes are often accessed as supernode
+ offset

Chapter 5

Creating the Space-Bounded
Scheduler Extension

As the name implies UPC++ is a C++ library that implements UPC func-
tionality using the underlying GASNET communications library with clever
operator overloading and C++11 templates. Therefore it is natural to con-
tinue using the same programming language to write the extension. The
extension is built into the UPC++ source code using the same structure as
already in place, using source and header files in their respective places and
adding these to their makefile. It should also be easy to exclude this func-
tionality, so should one chose not to use space-bounded scheduling for async
tasks then it can be deactivated easily.

To begin implementing the idea there were certain things that needed to
be in place for the concept to work. To begin with there needed to be a way
of discovering or specifying the size of each task. It should also be possible to
alter the target rank for an async task without ruining the dependancies or
limiting async tasks’ functionality. Another aspect that one has to consider
is the affinity of each rank to a core. Because if each rank is not associated
with one core then the cache data will migrate around which is inefficient,
it’s not just inefficient but it also makes it impossible to predict and control
scheduling of tasks. It is in fact neccessary for each rank to be fixed to one
core because without that the concept of space-bounded scheduling does not
work. Lastly there is the challenge of integrating all of this into the already
working system.

Important aspects to consider are how the individual ranks communicate

17

18 5 Creating the Space-Bounded Scheduler Extension

with eachother to decide where to schedule the async task, where the data
structure for the scheduler stored, if the data structure is shared or migrated
between cores or if there is a central scheduler that is reached through mes-
sage passing. All of these implementation specific details and the chosen
options will be adressed in the following sections.

5.1 Async tasks

Async tasks are the part of the framework that allows individual ranks to run
tasks asynchronously. To do this it implements a few data structures that
enables this to work in an otherwise SPMD (Single Process Multiple Data)
model environment. To implement this they use templates to account for
both single ranks and groups of ranks. They also implement something called
async after which waits until a dependancy event is triggered. Typically
used when it needs to wait for another async to finish before starting to
execute. Deeper down they are backed up by either C++11 supported syntax
that uses lambda functions and variadic templates for defining any type
of function. Should C++11 not be supported then there are also manual
templates that support up to 16 arguments. The tasks are then initiated with
information such as the caller, the callee, a function pointer and arguments.
When initiated they are put in their corresponding queue. There is one queue
for local tasks and a separate one for remote tasks. The queues are emptied
regularly by the runtime where tasks in the local queue are executed and
tasks in the out-queue are sent to their destination rank via active messages.
It is in the step before they are selected for a queue that a check is done to see
if space-bounded scheduling is enabled. If this is the case then the scheduler
is invoked to see if it should be scheduled somewhere else. If that is the case
the callee of the async task is altered to the one that the scheduler chooses.

5.2 Core affinity 19

Figure 5.1: Async scheduler design

5.2 Core affinity

The principles of space-bounded scheduling allows better prediction of cache
locality. But for this prediction to be correct there is a need for more fine-
grained control over the location of each rank. If one rank migrates between
cores then that prediction will not be true most of the time. Therefore there
is a need to pin each rank to one core only. To do this a library called
hwloc[12] is used. This library allows both discovery of hardware topology
as well as fine grained control over where threads are run. Section 5.3 will
cover how hwloc[12] is used to discover hardware topology while this section
will cover how cores are detected and how each rank is pinned to one core.

Each rank in UPC++ always start by running an upcxx::init(). This is
the part where hwloc is included. To pin to one core it needs a topology
object and a cpuset (a structure containing information on which cores to
schedule on.) Therefore it begins by initiating hwloc and discovering the
topology. After that is done a function is used to exclude all other objects
but the cores. When that is done it is a matter of pinning each rank to its
core. The core is decided by (rank % num cores). This is done so that each
rank greater than num cores is divided equally among cores. Although this
is not the point of the UPC++ extension it is supported.

20 5 Creating the Space-Bounded Scheduler Extension

5.3 Discovering hardware topology

For the space-bounded scheduler to work it is important to have informa-
tion about the hardware. The important information here is the size of the
different levels of cache and how they are mapped. Especially in NUMA
architectures this is important because of the penalty of cache line transfers
and inter-core communication. In section 5.2 hwloc[12] is used to discover
the hardware topology. This information is then later used in creating the
the tree data structure that the scheduler uses. The structure of the tree
that hwloc creates is a bit different and more comprehensive than what the
scheduler needs. Therefore it needs to be converted to match the structure
of the scheduling tree. The exact layout of the tree will be covered in section
5.4

5.4 Space bounded scheduler

For the scheduler to be able to make smart decisions when scheduling tasks it
is important that it is backed up by a data structure that is both simple and
that represents the hardware correctly. The structure chosen is a simple tree
structure based on Simhadri et al.(2014)[14]. The tree structure represents
a PMH (Parallel Memory hierarchy) model as presented in[1]. Each node1

in the tree represents a unit in the memory hierarchy. The node structure
represents a single node in the tree and contains information about their size
and how much space is currently occupied. This is used by the scheduler to
track how much memory is currently being used by other tasks. Next is the
number of children and number of siblings as well as their sibling id. This
is used to iterate through siblings and children. Next are pointers to their
parent, siblings and children. Finally there is a boolean value that describes
whether it is a computational unit or not.

The tree data structure represents the tree as a whole. It has integers depict-
ing the number of levels and leaves in the tree. It has a pointer to the root
node as well as an array of pointers to the leaf nodes. Starting from the top
the root represents main memory with size marked as unlimited. Because
if all other caches are full it will get scheduled here, and then it’s able to
be scheduled by any core. The next level will usually be the L3 cache. In
simpler quad core systems the L3 cache is usually shared by all four cores.

1In this section node will often refer to a tree-node

5.4 Space bounded scheduler 21

But if there are more then multiple L3 nodes will be created. L3 cache is
then followed by a number of L2 caches depending on the number of children
that the L3 has. This continues until the last level of cache L1 where they
are connected to a core.

5.4.1 Tree creation

With the information given by hwloc (Section 5.3) the scheduling tree
can be created. During the initialization of upc++ the supernode2 of each
PSHM group calls on tree init() to create the scheduling tree. Tree init()
starts with allocating memory for the tree structure and a root node. The
root node represents main memory so it is initialized with unlimited space
and zero siblings. Next hwloc is used to discover topology. Because this is
already done earlier by each rank to decide on which core they are pinned
this object can be reused. The next step is then to iterate through the hwloc
tree. For each object in the hwloc tree it is checked whether it is a cache
unit or a core. If this is the case a new node is created containing the size of
each cache and the number of children. This continues until the whole tree
is created.

Figure 5.2: Example tree layout for an Intel i5-2600 V3

2Supernode refers to the node in the supernode structure with index:0

22 5 Creating the Space-Bounded Scheduler Extension

Manual tree creation

Because of time constraints and complications in handling all exceptions of
the hwloc tree a manual tree creation is also available. This tree creation
requires the information to be known and specified at compile time. This
information includes the number of cores, number of caches, size of caches
and fan out at each level. When specified this creates a tree equal to that
which would get produced automatically by the automatic tree creation based
of the hwloc tree.

5.4.2 The Scheduler

With the underlying tree structure in place the scheduler can now start to
schedule tasks. Passed along to the scheduler is the tree, the rank that the
async task was scheduled on originally and the size of the task. It starts out
by fetching the core of the tree by looking up the core id in the leaf array.
Now at the core it moves on to the parent of that core, that is the L1 cache.
At the L1 cache it checks if the total size of that level is enough to hold
the size of the task. If not it continues to go up one level as each cache on
this level has the same size. It continues to do this check until it reaches
A) a cache level which size is able to contain the task or B) reaching Main
Memory, main memory has size infinite so it will always fit here.

When reaching a level that has enough cache size to fit the task it knows
that this level of cache can contain the task. First it checks whether the
cache of the original core fits the task including now its occupied size as
well. This is because if there are already running tasks on that core this task
will also be occupying that cache so there will be contention for that level of
cache leading to more cache misses. If the original cache doesn’t have enough
available memory it iterates through its siblings trying to find an alternative
cache to pin the task to. If it fits it will schedule it at one of the cores in the
subtree of that node. In the case of the Intel Xeon E5-1607 there will only
be one core for L1 and L2 caches, so the decision is easy. However for higher
level cache where there are more than one core the decision is harder. In
this case it will be scheduled at the original rank (given that it is one of the
possible candidates). Whenever a task is pinned to a core the cache that was
chosen marks its occupied value with that of the task size. This is also done
to all caches its connected through up to main memory as well. Because if
something is scheduled on a L1 cache then its L2 cache and L3 will also have

5.5 Inter-process communication and synchronization 23

to reserve space for this task.

In addition to marking space as occupied when a task has been scheduled
there it is also important to remove this allocation of space when tasks are
finished. This is done by each rank when they finish executing the task. Upon
finishing a task each async task checks if there are dependancy events tied
to it. Right after this check they also signal the scheduler at the supernode
that they are finished. The scheduler is called with information about the
rank and task size. The scheduler then goes through the occupied caches
and subtracts the value of the task size from the nodes occupied counter.

5.5 Inter-process communication and synchro-

nization

For the scheduling to work between the ranks of the system they need to
have a shared notion of the scheduler. In UPC++ and GASNET there are
several ways of achieving this. One option is to have a central scheduler at
the supernode that the other ranks communicate with using active messages.
Another approach is to have the scheduling tree shared among all ranks using
global address space features of UPC++. A final approach that is a mix
between both of the previous approaches is to have the scheduling tree at
the supernode with communication being in the form of mailboxes in the
global adress space. The two first approaches were researched the most, with
the active message approach being the currently used variant.

5.5.1 Active Messages

Active messages are the communication form available in UPC++ and GAS-
NET. They require destination rank, handler tag, the data and the size of the
data. With the active message approach the supernode handles all schedul-
ing for its PSHM group. The rank of the supernode is already known in
UPC++ by all ranks sharing the same supernode. The active message flow
is discribed step-by-step in the list below.

24 5 Creating the Space-Bounded Scheduler Extension

Figure 5.3: Scheduler communication flow

Rank 1 is trying to execute an async task on rank 2:

1. Rank 1

(a) Call to the local scheduler with rank and task size

(b) The scheduler prepares to send a request to group scheduler.

i. It creates two new structs. One for the request and one for
the reply

ii. In addition to that an event is created and incremented

iii. The request struct has pointers to reply and event which are
set to the newly created objects.

iv. The other fields of struct are rank and task size which cor-
respond to the rank and task size that was specified when
calling the scheduler.

v. The Reply struct is left unchanged

(c) The active message is sent through GASNET with the SCHED GET
tag.

(d) Because the message is not blocking it needs to wait for an answer.
It does this by waiting for the event that was passed along in the
active message to be triggered.

2. Rank 0 - Supernode

5.5 Inter-process communication and synchronization 25

(a) Receives message with tag SCHED GET

(b) The tag is registered to the get handler function

i. The get handler function extracts the data from the package
which is the request struct.

ii. From the request struct it extracts the rank and task size
which it uses to call the scheduler which is local to the su-
pernode.

(c) The scheduler returns the rank the task should be be scheduled
on.

(d) This is written into the same request struct as was received.

(e) An active message reply is sent back to the requesting node with
the SCHED REPLY tag. The reply has the same request object
that was received but with altered rank.

3. Rank 1

(a) Receives message with tag SCHED REPLY

(b) The tag is registered to the reply handler function.

i. The reply handler extracts the message as a request struct.

ii. Inside the request struct there is the rank now altered by the
scheduler.

iii. It writes this rank to the address of the reply struct which is
also described in the request struct.

iv. Finally it decreases the event reference

(c) The event triggered because the reply handler decreased the ref-
erence.

(d) It now checks the reply struct for the rank to schedule on.

(e) The scheduler is finished and rank is returned to async

The active message data structs look like this:

Request struct

event ∗cb event;

rank t rank;

size t task size;

26 5 Creating the Space-Bounded Scheduler Extension

void ∗reply;

Reply struct

rank t rank;

5.5.2 Alternative Global Adress space approach

Another approach to scheduling is to have the scheduling tree available for all
nodes. Since UPC++ is a PGAS language it allows this with the use of shared
variables and global pointers. With this approach the tree is allocated in the
global address space so that all other ranks have access to it. The practical
way this work is by having a global pointer to the tree that is shared among
all nodes using shared variables. The global pointer points to the tree struct
which then in turn uses global pointers to point to the other nodes of the
tree.

The general idea of this approach is good. It uses the advantages that PGAS
gives to declare shared memory that all nodes have access to. Even better
is it that the nature of the scheduler applies to nodes in the same PSHM
system. This means that the access time of the global pointers will not
have to include network delay as they share memory. The only problem
with this approach is the conversion between pointers and synchronization.
The synchronization part uses shared locks which works well. One global
shared lock for the tree gives a little contention but not much. Further
fine-grained locks enable concurrent access to the tree, but incur additional
communication. The additional communication comes from the fact that
locks are implemented using active messages. The problem with conversion
arises due to the way these global pointers are implemented in UPC++.
Template specialization allows for typecasting between the different pointer
types but for custom structs like the tree the void type has to be used.
Whenever casting a global ptr <void> to void pointer the local address of a
shared variable is given, this pointer then has to be typecasted to the tree
structure. This then has to be done for every pointer when traversing the
tree data structure. This requires massive changes to the entire scheduler as
it has to do conversions back and forth every time it traverses to a new node.
This works but overly complicates the construction of the tree and gives less
flexibility when trying to allow for creation of generic trees using hwloc data.

Chapter 6

Experimentation

The UPC++ Space-Bounded Async Task extension was developed and tested
using a Lenovo Workstation equipped with a Xeon E5-1607 v3 (2.7Ghz) Quad
Core. The Xeon E5-1607 has a memory architecture with private L1 and L2
caches with L3 being shared among all cores. The size of the different caches
are L1: 256KB L2: 1MB L3: 10MB.

The specs of this machine are typical for a Programming and Development
Workstation but not typical for UPC++ applications. UPC++ is foremost
created to run on clusters running GASNet communication layer underneath.
The experiments run were not extensive and only tested conceptually that
the new features worked as expected and that they did not interfere with
UPC++ elsewise.

6.1 Functionality evaluation

The functionality testing aims to test that the scheduler works as it is in-
tended. It tests that when space-bounded scheduling is activated the sched-
uler will reschedule tasks according to how they fit in the memory hierarchy.
The first step in testing this is to test that the underlying data structure is
correct. The scheduling tree data structure should be created at each supern-
ode and should contain correct information about the size and layout of the
memory architecture. Because the tree is currently implemented manually
and not dynamically with hwloc it is easy to reason about and to verify that
the tree is indeed created correctly. This is verified by printing the size of

27

28 6 Experimentation

each node as well as scheduling behaviour once it starts scheduling.

The second thing that needs testing is that the communication between ranks
are working correctly. That the messages are sent to the correct scheduler and
that the replies are received with the correct content and in the right order.
Initial tests verified that once set up the active message style communication
works great. Prints to terminal as well as scheduling behaviour back up
this claim. Throughout all testing the communication has been working
flawlessly.

Third thing that needs testing is the scheduler. With the data structure
and communication in place the scheduler itself can be tested. To test the
scheduler the test async.cpp included in UPC++ was used. The original
test async.cpp tested the functionality of async. With some minor changes
this test is altered to better test the space-bounded scheduler implemented.
The test was conducted using 4 ranks, one for each core of the CPU and
using the following source code:

i n t main (i n t argc , char ∗∗ argv)
{

upcxx : : i n i t (&argc , &argv) ;
i f (myrank () == 0) {

p r i n t f (”Rank %d w i l l spawn %d task s . . . \ n” , myrank () , ranks ()) ;

f o r (u i n t 3 2 t i = 0 ; i < 10 ; i++) {
async (1) ([=] () { p r i n t f (”Rank %d n %d\n” , myrank () , 1000+ i) ; }) ;

}

}
async wait () ;
upcxx : : f i n a l i z e () ;
r e turn 0 ;

}

This source code tests the scheduler by spawning 10 tasks on rank 1. With an
artificially high task size of 32000 the scheduler is encouraged to reschedule
tasks more often. Verified by prints to the terminal it is observed that the
scheduler lets the first task schedule at the original rank, 3 next tasks are
rescheduled to the other cores because they have free space in their L1 caches.
After all 4 cores have gotten 1 task each it has to go up one level in cache.
At L2 there is enough room for the rest of the remaining 6 tasks so they are

6.1 Functionality evaluation 29

scheduled at the original rank. The async tasks are spawned faster than they
complete so there is no deduction of occupied space until after all tasks are
scheduled.

6.1.1 Running UPC++ tests

With UPC++ there are a number of tests that test the basic functionality
of UPC++. The tests reside in upcxx/examples.

The following tests of upcxx/examples were found to be working with space-
bounded scheduling and artificial task size (to promote rescheduling):

basic/test event Tests that async after works. The test spawns async
tasks with following async after tasks that waits for an event. Shows
that events are still working even though they are rescheduled to a
different rank.

basic/test event2 Also uses async after. Completes different steps of ex-
ecuting after the previous rank has finished and copied their data to
shared memory using async copy.

basic/test progress thread Tests asynchronous task execution by the progress
thread. The progress thread is a module in UPC++ that can halt task
execution on different ranks.

basic/test copy close Copies data to a neighbour and runs async.

Tests that do not work:

basic/test copy and signal Works without scheduling. The copy and sig-
nal benchmark has too many assumptions as to where the data is copied
and located. This test does not work with rescheduling. Likely caused
by rescheduled tasks not being able to find the data that their async
task tries to compute.

basic/test am bcast Doesn’t work without scheduling either

basic/test shared array Doesn’t work without scheduling either

30 6 Experimentation

spmv/spmv The sparse matrix vector multiplication algorithm does not
work with rescheduling for the same reasons as test and signal. The al-
gorithm is designed using dependancies that does not allow for reschedul-
ing.

Tests that are running but doesn’t use any functionality tied to the async
scheduler implemented:

• basic/test global ptr

• basic/test lock

• basic/test remote inc

• basic/test shared array2

• basic/test shared var

• basic/test fetch add

• basic/test team

6.2 Performance testing

Unfortunately the benchmarks included in UPC++ does not use async in a
way that will benefit from the new scheduler. For example the benchmark
SPMV (Sparse Matrix-Vector multiplication) only divides its problem set
on the number of ranks. So running this benchmark with 4 ranks will only
spawn 4 Async tasks. With benchmarks running the same number of async
tasks as number of ranks the scheduler is never really used, and certainly not
used as intended. While this is a reasonable way of dividing the matrix for
the old async tasks it does not take advantage of the benefits provided by
the new scheduler. Instead one would have to divide the problem area in N
parts and let Async schedule them as needed. Unfortunately there was no
time to change these benchmarks to utilize the advantages of the scheduler.
To complete the experiments there will have to be minimum of relevant
benchmarks that compare the old Async tasks with the new space-bounded
Async tasks. The experiments will have to compare running time, cache hits
and energy consumption. Benchmarks that in theory should benefit from
space-bounded scheduling are those of a memory-intensive nature.

6.2 Performance testing 31

Another important point is that the theory of the space-bounded scheduler
works best when the memory hierarchy become more advanced. To put the
extension to test one should test it both on a two-socket system as well as
a cluster. Running it on a two-socket system would display the benefits
when memory architecture become more advanced and running it on a clus-
ter would showcase its behaviour when there are more than one supernode.
Meaning that there are ranks working together that are not part of the same
physical system and that they communicate via a network interface.

Chapter 7

Results

Because of the limitations in the experiments it was only possible to test
functionality. The functionality evaluation show that the scheduler works
the way its supposed to work. Both the communication back and forth as
well as the data structure works as it should. Being able to run most of the
tests included shows that the scheduler works on on simple tests that use
async without specialized distribution of data. The tests that are not able
to run are those that explicitly defines where the data should reside. The
tests that do work show that the tests that did not run would be able to
run if they are redesigned using global ptrs and not as strict data allocation.
For example one could reference a problem set with global ptrs and have the
asynchronous tasks copy over what data they needed. Eventually not copy
at all because these nodes run on the same compute node and use shared
memory.

For the performance testing the results would show how this new type of
async scheduling would compare to the old async task execution.

33

Chapter 8

Conclusion

In this thesis we presented a Space-Bounded Asynchronous extension to
UPC++. The scheduler is integrated into UPC++ by interrupting the nor-
mal async execution flow. With the task size known the scheduler can come
up with a suggestion as to where the task should be run. If this type of
scheduling is chosen then the asynchronous task will alter its destination and
be sent to that rank instead. This type of scheduling alleviates the need to
choose a particular rank and makes a scheduling decision based on the com-
puters memory hierarchy and the current state of it. In theory this should
cause the application to use resources more efficiently but this is hard to
prove without extensive testing of performance.

The tests show that scheduling works, but that in some cases it requires the
application to be redesigned so that it doesn’t explicitly define data locations
or wait for a reply from a fixed rank using other means than attaching events
to async tasks.

The Space-Bounded Asynchronous Scheduler shows promising results for the
future. With more testing and evaluation this might prove to be a really
useful addition to UPC++. The theory of the space-bounded scheduler is
already proven and on systems with a more advanced memory-hierarchy this
type of schedulers really start to shine.

35

References

[1] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers
as memory hierarchies. In Programming Models for Massively Parallel
Computers, 1993. Proceedings, pages 116–123, Sep 1993.

[2] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Har-
sha Vardhan Simhadri. Scheduling irregular parallel computations on
hierarchical caches. In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 355–366, New York, NY, USA, 2011. ACM.

[3] D Bonachea and J Jeong. Gasnet: A portable high-performance com-
munication layer for global address-space languages. CS258 Parallel
Computer Architecture . . . , pages 1–27, 2002.

[4] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick,
Eugene Brooks, Karen Warren, Lawrence Livermore, and National Lab-
oratory. Introduction to upc and language specification introduction to
upc and language specification introduction to upc and language speci-
fication. 2000.

[5] Rezaul A. Chowdhury, Francesco Silvestri, Brandon Blakeley, and Vijaya
Ramachandran. Oblivious algorithms for multicores and network of
processors. In Proceedings of the 24th IEEE International Parallel &
Distributed Processing Symposium, pages 1–12, April 2010.

[6] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and
Wolfgang De Meuter. Partitioned global address space languages. ACM
Comput. Surv., 47(4):62:1–62:27, May 2015.

[7] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon
Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex
Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming the

37

38 References

memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[8] Karl Feind. Shared Memory Access (SHMEM) Routines. Cray User
Group, pages 303–308, 1995.

[9] Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimlić, and Vivek
Sarkar. Habaneroupc++: A compiler-free pgas library. In Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models, PGAS ’14, pages 5:1–5:10, New York, NY, USA,
2014. ACM.

[10] Ewing L. Lusk and Katherine A. Yelick. Languages for high-productivity
computing: The darpa hpcs language project. Parallel Processing Let-
ters, 17(1):89–102, 2007.

[11] Robert W. Numrich and John Reid. Co-array fortran for parallel pro-
gramming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[12] Open MPI project. Portable Hardware Locality hwloc. https://www.

open-mpi.org/projects/hwloc/, 2016.

[13] Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In
Proceedings of the 16th International Euro-Par Conference on Parallel
Processing: Part I, EuroPar’10, pages 217–229, Berlin, Heidelberg, 2010.
Springer-Verlag.

[14] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman,
Phillip B. Gibbons, and Aapo Kyrola. Experimental analysis of space-
bounded schedulers. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14, pages 30–41,
New York, NY, USA, 2014. ACM.

[15] Berkeley UPC. Berkeley UPC unified parallel c. http://upc.lbl.gov,
2016.

[16] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, ISCA ’92, pages
256–266, New York, NY, USA, 1992. ACM.

[17] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and
Katherine Yelick. Upc++: A pgas extension for c++. In Proceedings

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
http://upc.lbl.gov

REFERENCES 39

of the 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 1105–1114, Washington, DC, USA, 2014.
IEEE Computer Society.

Appendix A

Readme

How to make it work.

41

	Abstract
	Acknowledgements
	Introduction
	PGAS
	UPC++
	Shared objects and global pointers
	Bulk data transfers
	Async tasks

	Space-bounded scheduling
	Context
	Targeted applications
	Contribution
	Methodology
	Outline

	Idea
	Related Work
	HabaneroUPC++

	Architecture
	GASNet
	Core API
	Extended API

	Creating the Space-Bounded Scheduler Extension
	Async tasks
	Core affinity
	Discovering hardware topology
	Space bounded scheduler
	Tree creation
	The Scheduler

	Inter-process communication and synchronization
	Active Messages
	Alternative Global Adress space approach

	Experimentation
	Functionality evaluation
	Running UPC++ tests

	Performance testing

	Results
	Conclusion
	References
	Appendix Readme

