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Abstract

In light of recent years’ exploding data generation in life sciences, increasing
downstream analysis capabilities is paramount to address the asymmetry of
innovation in data creation contra processing capacities. Many contemporane-
ously used tools are sequential programs, ofttimes including convoluted depen-
dencies leading to workflows crashing due to misconfiguration, detrimental to
both development efforts and production, also inducing duplicate work upon
re-execution.

This thesis proposes a distributed and easy-to-use general framework for work-
flow creation and ad hoc parallelization of existing serial programs. In further-
ance of reducing wall-clock time consumed by big data processing pipelines,
its processing is horizontally scaled out, whilst supporting recovery and tool
validation. COMBUSTI/O is a cloud and HPC ready framework for pipelined
execution of unmodified third-party program binaries on Spark. It supports
tool requirements of named input and output files, usage and redirection of
standard streams, and combinations of these, as well as both coarse and fine
granularity state recovery. Designed to run independently, its scalability is re-
duced to Spark and the underlying fault-tolerant big data frameworks.

We evaluate COMBUSTI/O on real and synthetic workflows, demonstrating its
propriety for facilitation of complex compute-intensive workflows, as well as its
applicability for data-intensive and latency-sensitive workflows, and validate
the coarse-grained recovery mechanism and its cost for the different flavors of
workflows. We show stage recovery to be beneficial during development, for
compute-intensive workflows, and for error-prone data-intensive workflows.
Moreover, we show that the 1/0 overhead of COMBUSTI/O grows for data-
intensive workflows, and that our remote tool execution is inexpensive.

COMBUSTI/O is open-sourced at https://github.com/jarlebass/combustio,
and currently used by sfB at the University of Tromsg.


https://github.com/jarlebass/combustio
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Introduction

The advent of low-cost, high-throughput deoxyribonucleic acid (DNA) sequenc-
ing was by and large the impetus establishing biology as one of the big data sci-
ences. With affordable, widely available, and high throughput technology [1, 2] -
contrary to its predecessor, the “first-generation” automated Sanger method [3]
— the inception of next-generation sequencing (NGS) allowed an increasing
number of laboratories to acquire the equipment necessary for producing volu-
minous quantities of raw sequencing data, resulting in a substantial increase
in data growth rate. Historically, over the past decade, nearly a doubling of
DNA sequencing data has been observed every seven months, and the sequenc-
ing capacities are projected to continue rapidly increasing over the next ten
years [4]. The sheer vastness of unexplored data in life sciences and omics
holds promise of great amounts of novel biological, medicinal, and evolution-
ary knowledge [1, 5, 6], but researchers are now confronted with several chal-
lenges in regard to handling and processing this distributed and heterogeneous
data.

In order to explore and extract information of biological value from raw DNA
sequencing data, it must undergo extensive refinement. This refinement usually
consists of deep computational pipelines requiring substantial compute and
storage resources for the different processing stages, involving various bioin-
formatics software [7], necessitating aptitude in both biology and computer
science to operate. Thence, biologists are often times impeded by inadequate
knowledge and experience with big data systems and frameworks, and if profi-
cient in handling big data, the compute resources needed might not be readily
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Figure 1.1: EMBL-EBI data growth by platform. Derived from Cook et al. [9]

available. Barring the aforementioned issues, non-trivial engineering matters
still remain to be addressed, e.g., considerable knowledge of hardware and
resource consumption to estimate infrastructure needs.

To contextualize scale, one of the largest genomic data repositories in the world,
sustained by the European Molecular Biology Laboratory (EMBL)-European
Bioinformatics Institute (EBI) [8], stored an approximate 75 petabytes of bio-
logical data and back-ups as of December 2015 [9]. Figure 1.1 shows the contents
of the EMBL-EBI data platforms and their growth trends over the past decade.
Correlative to the increase in data generation, the DNA sequencing cost dra-
matically decreased in roughly the same period, as shown in Figure 1.2.

Not having resources readily at hand may be amended by the increasing popu-
larity of cloud services, and the current big data analysis trend has shifted to
favor cloud-based solutions [5, 12]. Cloud computing vendors grants anyone
access to compute and storage resources without needing to buy and maintain
hardware by supporting ad hoc creation and configuration of clusters in which
only the resources used are paid for, using infrastructure as a service (1aas)
providers like Amazon Web Services (AWS) [13], Microsoft Azure [14], and
cPouta [15]. An important advantage of operating in the cloud is unifying com-
pute and storage resources by storing all data in the cloud, effectively moving
the data closer to the compute resources. This centralization allows for analyses
on data from a multitude of sources, promotes sharing, and circumvents the
need to pull data from remote sources at limited network bandwidths. More-
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Figure 1.2: DNA sequencing cost over the past years. Based on data from the National
Human Genome Research Institute (NHGRI) [10], inspired by [11]

over, most cloud service providers support elastic provisioning of resources on
demand, which enables the adjustment of resources available to a service at
a given time based on some predicate, e.g., scaling out or down in response
to workload intensity. The cloud also serves as a neat abstraction for scientists
unfamiliar with computer science, and having services deployed in the cloud
with nice and intuitive graphical user interfaces (GUIs) may help eradicate
concerns researchers of less technical prowess might have about using new
systems, thus catering to a broader audience.

In consideration of the heretofore discussed, efficient and easy-to-use big bio-
logical data management and analysis approaches for cloud and HPC platforms
are needed to alleviate portions of the bioinformatics bottlenecks and assist in
the field’s advance, and the work of this thesis addresses some of the challenges
pertaining to these aspects. Specifically, we have implemented a backwards-
compatible framework facilitating parallel execution of legacy program binaries
implementing common I/0 patterns in a pipelined fashion on top of widely
used and established big data frameworks capable of performing metagenomic
data analysis at scale.

1.1 Problem Context

This project is done in the context of the ELIXIR [16] European infrastructure
for life sciences, wherein the University of Tromsg is leading a scientific use
case in marine metagenomics. This use case is one of four demonstrations of the
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technical services developed in ELIXIR, and is intended to help drive innovation
and research within the field. It involves defining gold standard tools to be used
in a domain-specific data analysis pipeline, as well as establishing a marine
reference database, which are both to be deployed as software as a service
(saas) (if categorized according to the cloud nomenclature of the National
Institute of Standards and Technology (NIST) service models [17]), forming
the most essential contributions of the University of Tromsg team.

Concomitant with actualizing the marine reference database MarRef is the gold
standard data analysis pipeline META-pipe, which is an automated pipeline for
annotation and analysis of metagenomic and genomic sequence data used to
generate the results populating the reference database. However, some frailties
were identified in the currently implemented version of the pipeline, among
the most salient were the burden of manual failure handling, having built a dis-
tributed workflow manager from scratch: The runtime system for data manage-
ment and parallel job execution is implemented using scripts, currently exceed-
ing 10.000 lines of Perl code, and is becoming increasingly error-prone.

Current research efforts are therefore directed towards developing an improved
version of META-pipe, revising its current flaws, chiefly addressing failure han-
dling and provenance management, but also taking user interface (UI) and
portability concerns into account. Efforts to remedy these issues prompted a
revamp of the architectural components and structure of META-pipe 1.0, form-
ing the basis of the new version currently in development, in which the work
conducted in this thesis is an important part with regard to the backend pro-
cessing component.

1.2 Challenges

Based on our experience developing and operating META-pipe 1.0, we have
identified several issues and challenges for large-scale biological data analyses
on distributed platforms. Program development for distributed environments
and systems, i.e., adding new dependencies, functionality, updates, and bug
fixes, can be strenuous with regards to testing and troubleshooting, as well as
being time consuming. Distributed pipelines introduces another issue in which
missing dependencies or bugs may be left undiscovered until the stage at which
they are required or stumbled upon, possibly occurring after hours of computa-
tion in former stages. This behavior is detrimental not only to productivity, as
valuable time is wasted, but is also a nuisance to the developers with regards
to testing and debugging. Thence, we postulate that mechanisms for validation
and recovery to abate these time sinks would prove advantageous germane to
easing the testing and further development of such analysis pipelines.
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Determining what tools to employ in an analysis pipeline for the marine do-
main is done based on two principal criteria and the trade-off between the
two in combination. The first criterion is analysis result quality, as the selected
tools should produce biological results of the highest quality for marine metage-
nomics; the second criterion is scalability, considering the tools chosen must
scale to the size of the largest marine metagenomic datasets (§ 6.5) and prefer-
ably beyond, recognizing the anticipated data growth as previously emphasized.
The latter is commonly neglected, as tool developers tend to accentuate analysis
result quality over optimizing for large-scale performance. In addition, several
tools are the outcomes of research projects and ofttimes have not been through
proper software quality control and hence are not production ready. For in-
stance, various bioinformatics tools disobey norms by returning inaccurate exit
statuses, complicating their execution and error-checking. Furthermore, reim-
plementing and maintaining locally optimized tools is impractical, thus the
de facto standard, unmodified, and regularly maintained biological tools are
given a priority bias upon consideration.

Optimally; the tools should be selected based on the two aforementioned criteria
in isolation oblivious to implementational details, relying on the underlying pro-
cessing component to handle the complexities of integration without imposing
considerable nonproductive overhead and system-imposed delays. Accordingly,
one of our design goals is to be able to run a wide variety of analysis tools,
meaning the most common 1/0 patterns of such tools should be supported
by the component, enabling easy adaption and addition of new tools to the
pipeline. The ability to swap out tools in the analysis pipeline is crucial to fa-
cilitate the integration of new and improved biological analysis tools as they
are released, and enables the component to follow the evolution within the
bioinformatics field, and not get stuck in the past with a hard-coded pipeline
developed for specific tools only. E.g., if a tool is discovered not to scale well,
it is not a problem the system can remedy, however, having the ability to swap
out tools when the tools in use are deemed insufficient is imperative, really
establishing the importance of being able to easily adapt to — and add — new
tools.

1.3 Requirements

Based on the aforestated challenges, we conjecture that an ideal solution for
a big data analysis framework executing workflows of third-party unmodified
programs in parallel at scale should satisfy the following requirements:

1. Scalability: It must scale gracefully in response to increasing volumes of
work and amount of stages. The component should be able to accommo-
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date terabyte-scale workloads without incurring substantial unproductive
overhead and exorbitant delays.

2. Genericity: It should expose an interface that ameliorates extensibility
and abstracts away details, in order for the processing component to be
easily adaptable to new use cases and for effortless addition of new tools
whilst keeping code DRY.

3. Validation: The component must be able to determine at time of initial-
ization, prior to beginning a job, whether any of the tools used during
the entirety of the workflow to be run are faulty, e.g., the tool not being
installed or missing dependencies. Identifying missing tools at an early
stage by self-validation can be time-saving, as opposed to discovering it
upon invocation at the prearranged workflow stage.

4. Recovery: Re-computation of workflow stages should be avoided by any
means practicable through aggressively seeking to rebuild state of prior
stages whenever applicable. In an effort to diminish time spent debugging
and enable jobs to be resumed upon restarting them, results from the
last completed stage antecedent to crashing should be restored, given a
re-run of a job with unchanged input data following events of failure.

5. I/0 Management: The component must facilitate the integration of un-
modified third-party tools with diverse internal 1/0 requisites and pat-
terns, including tools that use the standard streams, requires named files
for input and output purposes, and combinations of these. It should ad-
dress file system manipulation, structuring, and maintenance of paths
on local and distributed file systems, involving suppression of complexity
through handling temporary directories, files, input required and output
produced by the tools used.

6. Idiomaticity: The internal behavior of the component should reflect that
of the underlying framework. Accordingly, using the Spark framework
as an example, its behavior should be resembled by forcing a tool, viz., a
given function with a corresponding subprocess, to mimic Spark’s way of
mapping to and from resilient distributed datasets (RDDs). Conforming
to these norms promotes ease of use for application programmers already
familiar with a given processing framework and its environment.

To the best of our knowledge there exists no system that satisfies all the re-
quirements stated in the preceding.

Existing systems for distributed omics anaylsis include CloudBurst [18] (§ 6.2.3)
and Crossbow [19] (§ 6.2.4), which are both implemented using Hadoop MapRe-
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duce, limiting their execution flow to a series of map and reduce tasks operating
on data tuples, whereas the ADAM [20] (§ 6.2.2) framework and our implemen-
tation utilize Spark, offering a more extensible programming model supporting
a richer set of dataset transformations and actions. However, both CloudBurst
and Crossbow showed promising results for ad hoc parallelization of external
programs, but they do not supply a generic framework for addition of new
unmodified tools and workflows. Moreover, Crossbow requires modified pro-
gram binaries for Hadoop integration and preprocessed input files, and ADAM
uses novel formats and schemata, currently limited to the field of genomics,
meaning any metagenomics tools not directly analogous to their supported
genomics functionality would need to be reimplemented in Spark and Scala
adhering to their constraints.

1.4 Proposed Solution

This thesis presents COMBUSTI/O, a backend processing component proposed
to power the new META-pipe, which includes a workflow manager and abstrac-
tions for generation and realization of workflows. COMBUSTI/O is a cloud
and HPC compatible framework for parallel pipelined execution of unmodified
third-party program binaries exhibiting common 1/0 patterns designed to han-
dle data at scale. It is built on top of well-established, scalable, and fault tolerant
big data systems, leveraging these for distributed input partitioning, dissem-
ination, execution, and aggregation of results. Prior to running the pipeline,
a user is required to specify a workflow and implement small tool wrappers
with the support of our abstractions, resulting in modest amounts of code (our
wrapper implementations ranges from 25 to 108 lines of code) while offering
great flexibility as well as mechanisms for stage and task recovery.

The etymological construction of COMBUSTI/O is blending the English word

“combust” and the abbreviation “1/0” as a morpheme suffix; the prefix “combust”
is a reference to it being implemented on top of the Spark framework, and the

“1/0” postfix is appropriate due to it performing a lot of 1/0 management. This

combination forms - the initially anticipated portmanteau — “COMBUSTI/O”,
however, “combustio” is an authentic Latin word: The singular nominative

“combustio” in Latin cleverly translates to “burning” in English.

COMBUSTI/O satisfies the foregoing requirements as follows:

1. Scalability: It is powered by the Spark [21, 22] big data processing en-
gine, running on top of the Hadoop [23] cluster computing framework.
Spark is the current leading edge of big data processing, is built to inter-
operate with Hadoop, and is in active development [24]. This software
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stack supports a rich set of operations, easing tool execution and han-
dling, distributed data management, logging, and parallelization, as well
as being inherently fault tolerant. Development on top of an already-
existing framework displaying these features aids the amendment of the
aforementioned shortcomings of the backend processing component of
META-pipe 1.0.

2. Genericity: As the new architecture is effectuated using the frameworks
mentioned in the prior, the component is suitable for both HPC and cloud
computing platforms, and is internally comprised of a workflow manager
bundled with flexible abstractions masking complex details easing the
wrapping and addition of new tools.

3. Validation: Prior to execution, a test-run of the tool specified in a tool
wrapper parametrized with a help-string is invoked to determine its ex-
istence and correct configuration with regard to dependencies.

4. Recovery: Task results are stored to local disk upon running a tool, and
through persisting stage results to HDFS, state may be recovered at two
different granularities. Hence, task results may be recovered from local
disk in an attempt to rebuild a stage, or the state may be recovered in its
entirety by loading the stage results from HDFS.

5. I/0 Management: Local and distributed file systems are manipulated
by generating an organized directory structure for each workflow and
tool that is used locally for input and output of tools, on HDFS when
persisting stage results, and is used in the recovery process.

6. Idiomaticity: We impose an unenforced convention in which wrappers
for tools are written to be independent of the Spark framework. By not
convoluting the wrappers with Spark code, each wrapper may be exe-
cuted from the workflow manager enclosed in the familiar transforma-
tions for input partitioning, dissemination, and parallel execution.

1.5 Contributions

To reiterate, in terms of the NIST category definitions, COMBUSTI/O is a plat-
form as a service (Paas) that can be embedded in a saas to be run on top of
some Iaas; our real-world use case demonstration integrates COMBUSTI/O as
a Paas, using a subset of the tools deployed in META-pipe 1.0, compatible
for incorporation with the new META-pipe Saas, running on top of a cluster
simulating an Iaas.
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We explore the feasibility and potency of COMBUSTI/O by providing a demon-
stration for the marine metagenomics domain, evaluated by applying it to
analyze metagenomics samples of raw DNA sequencing data, representing a
compute-intensive pipeline, as well as evaluating its utility in data-intensive
and latency-sensitive applications by implementing a three-stage workflow con-
sisting of cat, grep, and wc, and a mirrored workflow implementation wrap-
ping Scala built-in methods, correspondingly using small and large datasets,
to ascertain its performance characteristics. We also provide best-case mea-
surements using a pragmatic, strictly in-memory, Spark implementation on the
same datasets.

Our evaluations show that COMBUSTI/O can facilitate our bioinformatics use
case workflow and is applicable for compute-intensive and — depending on
accepted latency thresholds — can be used for latency-sensitive workflows.
Our results for data-intensive workflows shows that the throughput of com-
BUSTI/O is moderate, which is the product of the 1/0 pattern imposed on it
favorable to enabling execution of tools requiring named input and output files.
The subprocess forking for remote tool execution is shown to not incur large
overheads, and our coarse-grained recovery mechanism is best fit for compute-
intensive use, and for testing and debugging purposes of data-intensive work-
flows where the anticipated number of failures exceed the threshold wherein
the time spent recomputing surpasses the combined cost of having the recovery
mechanism enabled and rebuilding state.

In sum, the primary contributions of this thesis are:

1. COMBUSTI/O: Abstractions facilitating parallel execution of unmodified
program binaries with common 1/0 patterns for workflow generation,
management, and realization using the Spark framework

2. Evaluation of COMBUSTI/O using synthetic workflows implemented in
COMBUSTI/0, wrapping binaries and Scala built-ins run on arbitrary
datasets to ascertain its propriety for data-intensive and low-latency use
cases

3. Demonstration and evaluation of COMBUSTI/O in a real-world use case,
namely as the backend processing component of a compute-intensive
marine metagenomics analysis service

COMBUSTI/O is a general workflow creation framework supporting ad hoc
parallelization of program binaries exhibiting common 1/0 patterns, facili-
tating distributed pipelined parallel execution using Spark, while supporting
recovery on task and stage level. We conclude, based on our evaluations, that
COMBUSTI/O is applicable for compute-intensive, data-intensive and latency-
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sensitive applications, that COMBUSTI/O is flexible enough to express complex
workflows involving a variety of tools, and that it is not limited to the field of
metagenomics nor bioinformatics, but can be used to express any scientific
workflow in which distributed and parallel pipelined execution of sequential
programs is beneficial. Our framework is best suited for compute-intensive
workflows, for which it was originally designed, and we argue its ease of use
based on the modest amount of lines of code required for implementing tools
and workflows.

1.6 Outline

The remainder of the thesis is organized as follows: Chapter 2 presents the in-
ternal and external architectural traits of COMBUSTI/O, as well as an overview
of its role in the new META-pipe architecture; Chapter 3 covers the design of
COMBUSTI/0, its internal components, including examples of said components,
as well as describing the framework stack utilized in COMBUSTI/0O; Chap-
ter 4 elaborates on the marine metagenomics use case implemented in COM-
BUSTI/O, the context of it, and the bioinformatics tool wrappers constituting
the workflow; Chapter 5 evaluates COMBUSTI/O, listing the evaluation setup
used and measuring end-to-end wall-clock time consumed for data-intensive,
latency-sensitive, and compute-intensive workflows; Chapter 6 contains rele-
vant related work, including the frameworks utilized in COMBUSTI1/0, basal
biological terms, bioinformatics tools wrapped, and bioinformatics pipelines;
Chapter 7 concludes; and Chapter 8 discusses possible optimizations and future
work.



Architecture

This chapter presents both the external and internal architectures of cOM-
BUSTI/O, including its role in the new META-pipe big biological data analysis
service, as well as brief summaries of all the components and their interac-
tions.

In short, COMBUSTI/O is an embedded program execution and I/0 manage-
ment framework running on top of horizontally scalable big data storage and
processing frameworks supporting the directed acyclic graph (DAG) execution
model. It facilitates parallel execution of unmodified program binaries in a
distributed fashion by partitioning an input dataset, evenly disseminating the
partitions across all participating nodes, and then performing the program exe-
cution on each input split. This effectively accommodates parallel execution of
inherently sequential programs—presupposing the programs to be executed
are data parallel, which is the case for many common bioinformatics tools in
use today. There also exists programs natively supporting parallel execution us-
ing different frameworks, e.g., the Ray de novo assembler utilizes the Message
Passing Interface (MPI), the InterProScan 5 bioinformatic analytics framework
uses the Java Message Service (JMS) to distribute workloads, and ADAM uses
Spark to distribute and execute in parallel their sorting, duplicate removal, lo-
cal realignment, and base quality score recalibration pipeline stages, but many
still are sequential and data parallel.

We first describe and illustrate COMBUSTI/O’s external stack, elaborating on
the comprising layers, followed by an overview of its abstractions and internal

M
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COMBUSTI/O Workflow Manager

Tool Wrapper

Data Management Layer Tool Abstraction

Figure 2.1: Architectural components of COMBUSTI/O

architecture. Finally, a high-level architecture overview of the new META-pipe
service in its entirety is outlined to contextualize COMBUSTI/O. The terms
“program” and “tool” are henceforth used interchangeably.

2.1 The Architecture Stack of COMBUSTI/O

In favor of separating concerns, the stack used in COMBUSTI/0 is decomposed
into three layers, in which each layer is represented by a framework capable of
efficiently carrying out its obligations on big data in a distributed environment.
The COMBUSTI/O stack consists of a processing engine, a data management
layer, and a resource manager (Figure 2.1).

COMBUSTI/O COMBUSTI/O is a slim library implemented on top of a dis-
tributed dataflow processing framework, interfacing with a data management
layer for handling of distributed data and storage, as well as relying on a com-
patible resource manager for compute and memory resource allotment in dis-
tributed environments. It consists of the necessary functionality for distributed
parallel execution of tools and aggregation of their results.

Processing Engine The processing engine is a distributed dataflow system
supporting a rich set of operators for input data partitioning and parallel execu-
tion of DAG workflows, able to persist node failures and endure stragglers. The
processing engine assists in the administration of temporary files, including
reading, writing, and moving of data, both distributed and local, as well as
being suitable for both compute- and data-intensive applications, and provides
rich support for additional tools and expansions.
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Data Management Layer The data management layer supports cluster-
wide distributed storage, is compatible with the processing engine, and tolerates
failures of subsets of nodes in a cluster. Performance is key to reduce latencies
when performing data-intensive computations, as 1I/0 overhead is costly, and
different technologies may be used in combination as there is no exclusivity
imposed on this layer.

Resource Manager The resource manager is obligated with efficient re-
source arbitration and scheduling as required by the processing engine and
COMBUSTI/O, able to sustain partial cluster failures.

The architectonic decisions made regarding COMBUSTI/O’s external stack was
largely influenced by the experiences developing and maintaining META-pipe
1.0. Recall that META-pipe 1.0 is a script-based pipeline framework imple-
mented from scratch, primarily in Perl and UNIX shell, capable of running
on HPC platforms. Based on the knowledge obtained through working with
this system, we identified that two major disadvantages of utilizing scripting
languages for pipeline implementations are failure handling and provenance
management.

Common causes leading to crashes and interruption of pipelines include defects
in the programs wrapped in the pipeline, corruption of files, disk trouble, and
network failures. Scripts are generally not very robust and typically have no
functionality for restarting and continuing workflows upon interruption, rather
requiring all of the workflow stages to be recomputed regardless of its progress
prior to crashing [25]. Disregarding scripts, another option is to use the UNIX
Make build automation tool to represent workflows implicitly as dependency
trees of the stages to be computed, partially solving the issue of not having to
recompute all stages upon restarting a failed workflow [25].

However, neither scripts nor the Make utility have native mechanisms address-
ing distributed computing, which necessitates implementing this manually. Dis-
tributed computing is complex, hard to do correctly, and will increase both code
base, and with it, the likelihood of erroneous execution flow. Building on top of
well-established big data analytics frameworks, we can rely on these to deter-
ministically handle the distributed aspects of the execution. When dealing with
big data, utilizing robust and heavyweight frameworks designed for scalability
is advantageous, if not necessary.

The most relevant recent big data system for our use case is ADAM [20, 26],
which is a scalable data analytics framework in its own right, built on top of the
Spark processing engine, using Parquet [27] and Avro [28] for data representa-
tion. They introduce novel custom genomics formats and has reimplemented
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various genomics tools to better utilize data access and parallel execution, ar-
guing that legacy formats are ineffective as they were designed with sequential
execution in mind. ADAM supports fault tolerance through the frameworks
on top of which it is implemented, but due to the custom nature of both for-
mats and tools, in order to use this framework, not only would we have to
reimplement in Scala both the metagenomic tools and formats to adhere to
their conventions and schemata, but more importantly it breaks with our core
principle of utilizing existing unmodified tools whenever feasible, regardless of
the implementational details.

In consideration of this, COMBUSTI/O is also integrated with, and exploits the
fault tolerant design of, big data analytics frameworks, leveraging their mecha-
nisms to efficiently handle failures and error recovery. Thusly, its stack consists
of widely used scalable big data frameworks for processing that supports the
DAG workflow execution model, eases data management, and supports a shared
file system, as well as having the capability of cloud 1aas platform and HPC
environment deployment.

2.2 Internal Components of COMBUSTI/O

The bottom-up design of COMBUSTI/O consists of three main components:
the tool abstraction, the tool wrapper, and the workflow manager (Figure 2.2).
An application programmer uses the tool abstraction to write tool wrappers
for the tools needed for a given workflow, and then writes the workflow to be
executed in the workflow manager using said tool wrappers.

Workflow Manager
Tool Wrapper

Tool Abstraction

Figure 2.2: Internal components of COMBUSTI/O

Tool Abstraction The tool abstraction supplies functionality necessary for
running a program and handling its associated data at the local level, including
local recovery mechanisms, suppressing unnecessary details, and is used by an
application programmer as a template for implementing new tool wrappers,
making the process of adding new tools straightforward. The abstraction can
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be seen as the bridge between a tool wrapper and the respective tool to be
executed.

Tool Wrapper A tool wrapper consists of the logic required to validate, ex-
ecute, and retrieve output of the tool that is wrapped. It relies on the tool
abstraction to ease the addition of new tools, requiring only the tool-specific
code to be added, making use of the flexible interface exposed by the tool ab-
straction. Tool-specific code typically involves different paths, execution options
and flags, and parsers.

Workflow Manager The workflow manager is where workflows are spec-
ified by describing a preferred sequence of tool wrappers and connecting the
inputs and outputs of the tool wrappers in corresponding order. The paralleliza-
tion is also handled here, if a tool wrapper implements a data parallel tool, the
input is split and sent to participating nodes for execution. Recovery at coarser
granularity, at the distributed file system (DFS) level, is also supported in the
context of the workflow manager.

2.3 The New META-pipe Architecture

The following describes the envisioned architecture of the new META-pipe,
which is the entire big biological data analysis service within which the con-
tribution of this thesis, COMBUSTI/O, makes up an important part, and is in-
tended to serve as the backend processing framework. Development of the new
META-pipe is an effort undertaken by the Center for Bioinformatics (SfB) as
part of the ELIXIR EXCELERATE WP6: Use Case - Marine metagenomics.

The architectonic components of the complete service are divided into two sub-
groups: those residing in the external environment and those residing in the
execution environment; the former, including a GUI and Web services, being
external relative to the execution environment, which refers to the environ-
ment within the cluster to be employed for doing the data processing. The
external environment consists of a representational state transfer (REST) in-
terface and an adjoining Web service, an object store, and an external manager,
and the execution environment consists of an execution manager and a cluster
scheduler, namely COMBUSTI/O. A high-level architectonic overview of the
biological pipeline service is depicted in Figure 2.3.

Web Site The GUI part of the frontend, used for interactively creating work-
flows and submitting jobs. It is developed using Node.js [29] — an event-driven
framework designed with scalability in mind — and interacts with the exposed
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Figure 2.3: Architecture of the new META-pipe biological pipeline service

REST interface by forwarding it job descriptions.
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REST Interface The REST interface consists of a subset of the standard
RESTful application programming interface (API) HTTP calls, implementing
the GET, PUT, POST, and DELETE methods. It submits job descriptions to the
external manager and pushes input data to be processed to the object store
and waits for notifications from the object store signifying job completion, then
pulls the results, making them available for download.

Object Store The object store is a large data store managing and storing in-
put data of jobs to be executed, in addition to storing the corresponding results
of the jobs subsequent to fulfillment. It receives input data for jobs pushed by
the REST interface and makes it available for transfer to the execution manager.
The execution manager later supplies the results of the job for which it priorly
pulled input data.

External Manager Keeping track of job descriptions and securely storing
them in a database for provenance purposes is the responsibility of the external
manager. It accepts job descriptions from the REST interface, writes them to
its underlying database, and exposes them for the execution manager to fetch,
then waits for an ACK indicating job completion.

Execution Manager Within the execution environment, the execution man-
ager is in charge of orchestrating the appropriate actions compulsory to carry-
ing out individual jobs as they are described. First, it fetches a job description
from the external manager and interprets it, followed by pulling the comple-
mentary input data from the external environment to the execution environ-
ment. Next, it submits the job to COMBUSTI/O for execution, waits for the job
to complete, and thereupon pushes the results of the job to the object store,
after which it notifies the external manager that the job has been executed by
sending an ACK.

COMBUSTI/O COMBUSTI/O is a cluster scheduler that does the actual exe-
cution of jobs as they are described, and as such is the processing component
of the service. Upon receiving a job description from the execution manager,
it simply executes the job.






Design and
Implementation

This chapter covers the design and implementation of COMBUSTI/0, begin-
ning with an elaboration of the internal design and implementational details,
including an example pipeline, followed by descriptions of the tool abstrac-
tion, tool wrapper and workflow manager, and finally elucidating upon the
framework stack on top of which it is implemented.

3.1 Internal Design of COMBUSTI/O

The design is of utmost importance for the internal elements of the process-
ing component, especially so in pursuance of satisfying the requirements as
stated in the introduction. Many design choices are also likely to affect par-
tially coinciding requirements, thus decisions were carefully made by taking
priorities into account, emphasizing prominent requirements, yet still attempt-
ing to balance the trade-offs. Several design iterations and refactoring cycles
were conducted to optimize adherence to the imposed requirements to best fit
our predilections, streamline tool wrapper creation, and conform to the “don’t
repeat yourself (DRY)” principle.

We continue exercising the core design principle of META-pipe 1.0, stating that

19
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COMBUSTI/O

Workflow Manager

>y o N
Tool Wrapper

Tool Abstraction

Figure 3.1: Top-down view of COMBUSTI/O’s design

existing frameworks and infrastructure services should be utilized whenever
practicable. This includes the tools to be used, as one of the principal design
goals of ours is for the abstractions to facilitate the addition and execution
of any analysis tool that a scientist may provide, relating to compliance with
the genericity, compatibility, and 1/0 handling requirements. One of the major
associated drawbacks is having to conform to legacy programs and accompa-
nying formats, as well as requiring additional functionality for conversion of
formats in between stages and interpretation of results, and having to write
data to disk prior to executing tools and reading result data from disk after,
incurring performance penalties in the form of disk 1/0 overheads.

COMBUSTI/O is configuration based with an explicit paradigm, and schedules
work in a per-workflow-manner, consuming an entire workflow at a time. At
the very highest level, COMBUSTI/0O splits and distributes a dataset, handles
1/0 reads and writes, and forks subprocesses to execute programs — i.e., UNIX
popen() — on several machines in parallel, beneficial to reducing wall-clock
time spent on pipelined execution of data parallel programs. The interaction
of its internal components is shown in Figure 3.1. The ensuing subsections
exemplifies a workflow, followed by bottom-up detailed descriptions of the
internal components constituting COMBUSTI/O.
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Figure 3.2: Example workflow stages

3.1.1 Evaluation Workflow

In order to evaluate COMBUSTI/O as a workflow manager for data-intensive
and latency-sensitive applications, we created a pipeline (Figure 3.2) to be
replicated using our abstractions, exemplified as a UNIX shell command in Code
Listing 3.1. It is a three-stage pipeline consisting of the common UNIX tools
cat, grep, and wc, respectively used to write, search, and count words.

Code Listing 3.1: UNIX shell evaluation pipeline
cat path/to/file.txt | grep "query" | wc —-w

The UNIX pipe() uses the standard output of the preceding command as stan-
dard input for the following, meaning the inputs and outputs only reside in
memory during execution. This behavior can be easily emulated using the na-
tive Spark and Scala APIs, as shown in Code Listing 3.2. Here, the textFile
method reads a text file into an RDD of lines, mimicking the cat tool; filter
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mimics grep’s functionality; and the map transforms the RDD to represent each
line as an integer of the number of words it contains, followed by a reduce
that sums the integers using arithmetic addition, which altogether mimics wc
-W.

Code Listing 3.2: Pragmatic Spark evaluation pipeline implementation

sparkContext.textFile("path/to/file.txt")
.filter(_.contains("query"))
.map(_.split(" ").count(_.nonEmpty))
.reduce(_ + _)

However, COMBUSTI/O should provide provenance and support the common
1/0 patterns of program binaries, making the implementation more compli-
cated than conveyed by the Spark example above. For both provenance man-
agement and to facilitate the execution of programs requiring named input and
output files, input and output of each tool needs to be stored to disk. Because
of this, Code Listing 3.1 does not accurately reflect the requirements imposed
upon COMBUSTI/O.

A shell pipeline representative of what COMBUSTI/O performs is shown in
Code Listing 3.3. As inferred from the code, the standard error and output
streams are written to files, and the output file of the previous stage orches-
trated to serve as the standard input of the following stage, instead of being
directly piped using memory only. Note that COMBUSTI/O does not support
programmatic redirection of the standard input stream, but rather use named
files as command line arguments for input purposes.

Code Listing 3.3: Accurate UNIX shell evaluation pipeline
cat < path/to/file.txt 2> catErr > catOut ;
grep < catOut “"query" 2> grepErr > grepOut ;
wc < grepout —w 2> wcErr > wcOut

In order to implement this workflow in COMBUSTI/0, a tool wrapper for each
unique tool (cat, grep, wc) is required. Using these tools, a workflow can be
specified from within the workflow manager, as shown in Code Listing 3.4. The
code is curtailed for brevity, mainly omitting details including user-specified
arguments, initializations, and the coarse-grained recovery mechanism, as well
as parallelization techniques. In order to parallelize the execution, the tool
wrappers are enclosed in a map transformation using Spark, and is exemplified
in a later section.

Note that the redirection of standard output and error streams are done in the
context of the tool wrapper, not the workflow manager, hence, it is not reflected
in the code of Code Listing 3.4.
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Code Listing 3.4: Example workflow implementation of the example UNIX pipeline.
The code is abridged for concision

class WorkflowManager(context: => SparkContext) extends Command <{

override def apply(): Unit = {
val localOutputPath = "/tmp/"
val jobPath = buildJobPath(localOutputPath, "myJobId")

// Run cat on input file

val catPath = buildToolPath("cat", jobPath)
val catInput: CatInput = CatInput("file.txt")
val catContext = new ToolContext {

def help: String = "——help”
def program: String = "/bin/cat"
def path: String = catPath

}

val catWrapper = new ToolWrapperImpl(new Cat)
val cat: CatInput => CatOutput = catWrapper(catContext)
val catOutput: CatOutput = cat(catInput)

// Run grep on catOutput

val grepPath = buildToolPath("grep", jobPath)

val grepInput: GrepInput = GrepInput("query", catOutput)
val grepContext = new ToolContext {

def help: String = "——help”
def program: String = "/bin/grep"
def path: String = grepPath

}

val grepWrapper = new ToolWrapperImpl(new Grep)
val grep: GrepInput => GrepOutput = grepWrapper(grepContext)
val grepOutput: GrepOutput = grep(grepInput)

// Run wc on grepOutput
val wcPath = buildToolPath("wc", jobPath)
val wcInput: WcInput = WcInput(grepOutput)
val wcContext = new ToolContext {
def help: String = "——help"
def program: String "/usr/bin/wc"
def path: String wcPath

}

val wcWrapper = new ToolWrapperImpl(new Wc)
val wc: WcInput => WcOutput = wcWrapper(wcContext)
val wcOutput: WcOutput = wc(wcInput)
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3.1.2 Tool Abstraction

The tool abstraction implements functionality for easing integration of new
tool wrappers, in particular facilitating the forking of subprocesses executing
program binaries and accompanying arguments, redirection of output and
error streams of the program, and creation and management of local per-tool
directory structures for input and output purposes (Figure 3.3).

A helper-function for execution of programs lets the user redirect stdout and
stderr to files by supplying destination file paths and setting a flag, along with
the specified program, its arguments, and path to the execution environment.
Executors on a common node share job, stage, and tool directories; collisions
are avoided using uniquely indexed file names.

An interface of four functions (Code Listing 3.5) is exposed to be used by a
tool wrapper implementor method to perform the execution logic, which we
found to be the most pliable set of functions for conducting said logic, while
seeking to mask superfluous details. The first two functions (validateBefore
and recoverable) contains implementations for the common case, but may
be overridden for special cases; the remaining two (execute and output) are
implemented by the user for each tool wrapper, and consists of facilitating the
input and output requirements of the tool (execute), and reading, parsing, and
returning output (output).

Code Listing 3.5: Execution logic interface

def validateBefore(help: String)

def recoverable(index: Int, uld: String): Boolean
def execute(): Int

def output: Out

Our original design intended to implement and expose two functions, prepare
and command, to constitute the execution logic, but was however replaced in
favor of a unitary execute function to coalesce the execution implementation
and provide more flexibility.

The validation method in use validates a tool by performing a test-run using a
help-string and asserting its successful exit status. If a tool does not implement
a help-string, the test-run is performed in order to ascertain its presence by
asserting that its exit status does not signify the file not being found.

Recovery at the local level is complex when used in distributed environments
due to Spark on Yet Another Resource Negotiator (YARN) not deterministically
choosing nodes on which to deploy executors, i.e., the same node is not guar-
anteed to host a given executor. Moreover, the distribution pattern of partitions
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Figure 3.3: Directory structure created per tool and stage in the pipeline by the tool
abstraction with user-specified names

vary, thus assumptions cannot be made with regard to each partition being sent
to the same executor. Our recovery mechanism tests whether an output file
indexed with the assigned partition is present, if the given run was successful,
and if it matches a per-workflow 1D specified by the user, and only then is the
output recovered.

This 1D is specified prior to running as a command line argument to the appli-
cation, and it is important to change the ID when re-running a workflow with
a different amount of executors, as then the partitions of the previous run will
not match those of the current, and may result in the recovery of erroneous
output.

3.1.3 Tool Wrapper

A tool wrapper is written by the user, and relies on the implemented function-
ality of the tool abstraction, and contains the tool-specific code. It inherits the
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Code Listing 3.6: Tool wrapper implementor execution logic

if(!'recoverable(context.index, context.uId)) {
validateBefore(context.help)
execute()

}

output

functionality by extending the tool factory, which implements the tool abstrac-
tion, enabling the use of its entire interface.

The execute function is used to facilitate the execution of the tool wrapped,
and will commonly consist of writing input to be processed to disk, directing
output streams, and parametrization and execution of the tool. The output
function typically reads produced output from disk to memory, converts the
format using some parser, and returns the resulting dataset.

A tool wrapper implementor performs the fixed execution logic of the imple-
mented interface of the tool wrapper, consisting of the four functions as exposed
by the tool abstraction. Code Listing 3.6 shows the logic, in which the hypo-
thetically existing output of the assigned partition is investigated, and if found,
the output method is invoked directly; else the tool is validated then executed
on the partition prior to invoking output method.

3.1.4 Workflow Manager

It is in the workflow manager a workflow constituting stages is arranged to the
developer’s preference and are executed in sequence as specified, consisting of
one or more stages. Each stage involves specifying input and arguments to a
tool wrapper, which is dispatched upon invocation of the corresponding tool
wrapper, and consequent to stage completion, the output is available for further
use by the application programmer from within the workflow manager.

A stage may be executed once on the master node, or the execution may be
distributed and run in parallel on several nodes, given a data parallel tool. Spark
code is confined to the workflow manager to keep the lower level abstractions
less convoluted and to sanction a concept in which each tool wrapper is to be
run once per input or input partition; an aspect we find appealing as it may
help application programmers reason about code and choices when writing
tool wrappers and workflows, conjointly maintaining code readability.

Using the Spark API, input may be partitioned and each partition processed
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Input RDD (context, input)

Partition 1 Executor 1

Partition 2

Partition 3 Executor 2 > Write input
— Execute tool

Partition 4

Partition 5 Executor 3

Output RDD  (output)

Partition 1 Executor 1
Partition 2
Partition 3 Executor 2 > Read output
— Convert format
Partition 4
Partition 5 Executor 3

Figure 3.4: Scheduling, dissemination, and execution using Spark

using a tool wrapper by an executor in parallel to leverage both data parallelism
and locality, and to distribute the workload. Figure 3.4 shows a simplified
example of input partitioning and dissemination, the execution flow, and how
output is mapped back to an output RDD using an input RDD with 5 partitions
and 3 executors. If a program utilizes some external parallelization mechanism,
it may be invoked once by the master (driver) node.

The optimal granularity at which to repartition, distribute, and disseminate
input data mainly depends on the characteristics of the tool and the size of the
input dataset, but is also influenced by several other factors, including hardware
features and number of nodes available for processing. Thence, the process of
repartitioning datasets is not straightforward as there is likely no optimal static
value for datasets, but rather needs to be dynamically explored to obtain the
optimum partition size for each tool and complementing wrapper.

Code Listing 3.7 illustrates how the Spark map function may be used in the work-
flow manager to disseminate and execute a tool on each partition of an RDD.
The input RDD may be repartitioned using the Spark repartition() trans-
formation, and the standard parallelize(), objectFile(), and textFile()
methods all use the defaultParallelism variable to determine the number of
partitions by default, which is set to be the largest of 2 or the aggregate number
of cores on all executors.

The recovery at the workflow manager level is implemented using the Spark
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Code Listing 3.7: Example map for distributing and disseminating tool execution

val out: RDD[ToolOutput] = inputRDD.mapPartitionsWithIndex {
(partitionIndex, partition) =>
val context = new ToolContext {
def index: Int = partitionIndex
def help: String = "——help"
def program: String = "/bin/tool"
def path: String = toolPath
def uld: String = uniqueld
}

val toolWrapper = new ToolWrapperImpl(new Tool)
val tool: ToolInput => ToolOutput = toolWrapper(context)

Iterator(tool(ToolInput(partition)))

saveAsObjectfile() function to persist stage results to HDFS as serialized Java
objects. The execution logic follows that of the tool abstraction, i.e., deciding
whether or not to recompute a given stage based on output file presence, and
is the primary recovery mechanism, making the tool abstraction recovery a
contingency option (fallback).

This overaggressive approach to state recovery at the workflow manager level
may lead to unnecessary loading of stage output from HDFS, as the state is
loaded based only on the predicate concerning the current stage in question,
viz., recovering all stages when only the last one was actually required is a
possible outcome. To remedy this, a reference containing the last recoverable
stage may be saved until an unfinished stage is encountered, then lazily loading
only the required stage into memory. This is, however, left as future work.

3.2 Framework Stack of COMBUSTI/O

The cOMBUSTI/O backend pipeline architecture is built on top of a best-of-
breed software stack consisting of open-source Apache [30] projects, all de-
signed to be run on clusters of commodity machines. The proposed software
were carefully chosen to comply with the architectural requirements imposed,
and developing under the aegis of well-established big data analytics frame-
works has its boons in terms of low-cost fault tolerance and handling, scalability,
reliability, and high availability.

The Spark big data processing framework is utilized as the core processing
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engine; Hadoop Distributed File System (HDFS) represents the data manage-
ment layer, and interfaces with Spark, assisted by the Network File System
(NFS) for facilitating MPI jobs; and YARN is the cluster resource manager in
use (Figure 3.5).

COMBUSTI/O
Apache HDFS NFS

Figure 3.5: The framework stack utilized in COMBUSTI/O

Processing Engine: Spark Among the frameworks considered represent-
ing the processing engine were Apache’s Hadoop MapReduce [23], Spark [21]
and Pig [31], and Microsoft’s Prajna [32], Naiad [33] and DryadLINQ [34]. In
theory, any processing engine supporting the DAG workflow execution model
may be applied, however Spark is the framework in use for the META-pipe
project, and was thusly chosen to represent the processing engine of COM-
BUSTI/O for compatibility reasons. The Spark big data processing engine
exposes a high-level Scala API with a rich set of operators for partitioning,
distributing, and processing data at scale. Its main advantage over MapReduce
systems is aggressively seeking to do in-memory computations using their RDD
abstraction and a supplied API for doing parallel operations on these datasets
called transformations and actions. Moreover, fault tolerance in Spark is cheap
due to only logging the set of transformations required to compute a given
RDD, enabling recomputation of RDDs while omitting replication. Spark can
be run in standalone mode, on top of Mesos, or on top of YARN, and interfaces
well with HDFS as it was designed to enhance the Hadoop stack, rather than
to replace it. See § 6.1.2 for elaborate information on Spark.

Data Management Layer: HDFS and NFS Among the considered op-
tions were Apache HDFS [35], Amazon Simple Storage Service (S3) [36], Mi-
crosoft’s Azure Storage [37] and Distributed File System [38], and NFS [39]—
although strictly speaking not a clustered file system per se. As the processing
engine needs to interface with the data management layer, we decided on
HDFS, which is the distributed file system of the Hadoop framework designed
for fault tolerant storage and manipulation of big data. It supports aggregate
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read performance, consistency, replication, data locality, and exposes a famil-
iar Java API for programmatic file system manipulation, supporting seamless
interaction in Spark using Scala. It is used to store input for, and output of, a
given workflow’s stages, which enables the recovery of serialized stage output.
A caveat called to attention by Nothaft et al. [26] is that HDFS is easily scaled
out, but more difficult to scale down, giving an incentive to store most data
in block storages of cloud service vendors and keep only frequently accessed
intermediate files in HDFS. This is, however, beyond the scope of this work,
but could be facilitated using the Spark compatible Amazon S3. NFS is used
in combination with HDFS to facilitate MPI tasks, and does not require each
participating node to have a local copy of input data. For more details on HDFS
and NFS, refer to § 6.1.1 and § 6.1.3, respectively.

Resource Manager: YARN Among the candidates for representing the re-
source manager were Apache’s fine-grained Mesos [40] and coarser-grained
Hadoop YARN [41], and Microsoft HPC Pack [42]. YARN is used for arbitrating
resources for Spark in COMBUSTI/O, and is a natural choice when operating
on a Hadoop cluster. It requests and assigns resources at a coarse level of gran-
ularity and in a homogeneous fashion, in which each container running an
executor is statically assigned a fixed amount of resources which are bound to
the container for the duration of its lifetime. It is fault tolerant, scalable, and
allows for multiple users to share a common cluster. Refer to § 6.1.1 for more
details on YARN.



Use Case: Marine
Metagenomics

In order to assess the performance and potential of the abstractions and mod-
ules constituting COMBUSTI/O in a real-world compute-intensive pipeline, we
have implemented a use case for marine metagenomics by wrapping a subset
of the biological analysis tools of an already existing big biological data analysis
pipeline, META-pipe, and executing said tools in parallel using our abstractions.
This chapter presents the workflow implemented, its context, and implemen-
tational details with regard to the tools and complementary wrappers; we
evaluate this workflow of tools in the following chapter. Readers unfamiliar
with elementary biological and bioinformatics concepts are urged to peruse
8§ 6.3 prior to continuing.

4.1 Use Case and META-pipe 1.0
The background for developing META-pipe 1.0 and this work is a use case within
the ELIXIR EXCELERATE project, in which a marine metagenomics analysis

pipeline is a projected service of the ELIXIR infrastructure.

ELIXIR (§ 6.6) is a European bioinformatics platform providing open-access
infrastructure for research in life sciences, and is an international collabora-
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tion of assorted bioinformatics institutes and their services; EXCELERATE is a
project launched for implementing and supporting operations of ELIXIR ser-
vices, aiming to efficiently coordinate and govern the European bioinformatics
community and supply leading edge life science infrastructure [43]. One of the
services of the EXCELERATE project (WP6) involves a marine metagenomics
data analysis services use case to be implemented pursuant to establishing gold
standard databases, analysis tools and pipelines for said domain, and forms
the context of META-pipe 1.0 and this work.

As may be recalled from the introduction, META-pipe 1.0 is the pipeline applied
to generate data for insertion in the marine reference database. It supports anal-
ysis and annotation of sequence data, both genomic and metagenomic, consists
of several tools for pre-processing, taxonomic classification, and functional anal-
ysis including visualization, and may be operated using the Galaxy workbench.
For further details on META-pipe 1.0, please refer to § 6.2.1.

In the broadest sense, the backend processing of significance in this work con-
sists of three stages, beginning with raw DNA sequencing reads, which are
i) assembled, followed by ii) gene prediction on the assembled contigs, and
finally iii) annotation of the predicted genes. These stages are analogous to
using the tools i) Ray Méta, ii) MGA, iii) BLAST (blastp) and the InterProScan
5 suite (using TIGRfam, ProDom, SMART, PROSITE, HAMAP, SUPERFAMILY,
PRINTS, PANTHER, Gene3D, PIRSF, COILS, and Phobius).

We argue these tools to be representative of the common cases, by reason of
this set of tools covering a wide range of functionality and 1/0 patterns. As a
deduction we claim that, on the grounds that COMBUSTI/O may be used for
this set of tools, it may also be used for any other tools exhibiting homologous
functionality and 1/0 patterns.

COMBUSTI/O forms the basis and inspiration for the cluster scheduler backend
envisaged for the new META-pipe, and is currently being improved upon and
under further development at the sfB.

4.2 Implemented Workflow and Tools Wrapped

The DAG of stages implemented in the workflow for the marine metagenomics
use case representing a compute-intensive pipeline is shown in Figure 4.1. The
implemented workflow is a slight variation of the original META-pipe, as the
original version implements the blastp command line tool, whereas this work
implements blastx; the implication of this is the direct use of nucleotide se-
quences, relying on blastx for translation to peptides, as opposed to manually
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InterProScan
5

Figure 4.1: Stages of the implemented workflow

performing the translation of the predicted genes and using blastp. Not having
done the translation manually also impacts the execution of InterProScan 5,
as we also here directly use nucleotide sequences, antagonistic to using pep-
tide sequences as done in META-pipe. Furthermore, of the tools utilized in
the InterProScan 5 suite, Phobius, is omitted in the workflow implemented
using COMBUSTI/O. Thusly, the marine metagenomics use case pipeline has
no basis for direct comparison with META-pipe 1.0, but primarily serves as a
proof-of-concept.

It is, however, of importance to acknowledge the resulting divergence as not
being an impediment of COMBUSTI/0, but a product of choosing the simpler
way when implementing the analysis workflow due to time constraints (largely
a product of translation issues BioJava4, a desire to be liberated of said library,
and the Phobius issue is based on restricted file system privileges). Moreover,
these choices are not linked to the performance of the COMBUSTI/0 framework
per se.
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Various parsers and format conversion tools for prevalent bioinformatics for-
mats comes bundled with our abstractions as a utility library, and is part of
our abstractions, simplifying 1/0 handling and reducing development efforts
required.

The following elaborates on the tool wrappers implemented for the marine
metagenomics pipeline that serves as the use case forming the demonstration
of principle and feasibility of COMBUSTI/O.

4.2.1 Ray Wrapper

The Ray wrapper contains functionality facilitating the open-source scalable de
novo assembler Ray, more specifically the Ray Méta module, which performs de
novo metagenome assembly. The tool itself is highly configurable, supporting
a great many command line arguments; the arguments used in the wrapper
is listed in Table 4.1. See § 6.4.1 for more details on Ray, and a complete list
of arguments and directions to download mirrors can be found on its Web-
site [44].

Since Ray utilizes MPI for distribution and inter-process communication (IPC),
the wrapper is designed so as to only be invoked once by the driver, and rely
on mpirun for parallel execution given the number of processes to launch and
a file listing the available hosts.

Table 4.1: Ray arguments

Argument Explanation
-k Set k-mer length
-p Specify two paired-end read files

Set minimum contig length, in num-
ber of nucleotides
-0 Specify output file path

-minimum-contig-length

The wrapper takes as input the paths of two files containing paired-end reads.
Using the execute function, the files are copied to NFS prior to running the
job using MPI through mpirun, the arguments to which is listed in Table 4.2.
After completion, the input and output directories residing in NFS are moved
to the local disk to the corresponding job directory, and the output produced
to stdout is scanned for keywords signifying a faulty run, as mpirun may exit
with a successful exit status regardless of the exit status of Ray.

The output function reads, parses, and returns the relevant output, which are
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Table 4.2: mpirun arguments

Argument Explanation

--np Number of processes to execute
Specify hostfile with list of hosts to

~_hostfile 1‘11.1)1‘1 ony

Arguments to MCA modules (e.g., ig-

--mca .
nore an interface)

the FASTA formatted contigs produced.

4.2.2 MGA Wrapper

The MGA wrapper enables the execution of MGA for gene prediction of assem-
bled contigs. MGA only takes one input parameter, which is the FASTA file on
which to perform gene prediction and writes its output to stdout. The tool is
data parallel and may thus be run in parallel, and is openly available on its
Website [45]. Refer to § 6.4.2 for further information on MGA.

Its wrapper takes a path as input, and its execution only consists of writing the
FASTA file to disk and invoking the tool, redirecting stdout to a file.

The output function reads and parses the MGA output, obtaining the different
fields, followed by reading the original input FASTA file in order to extract the
sequences of predicted genes, demarcated with start and stop positions, and
optionally reversing the sequence depending on the sign of its strand. Both the
raw output of MGA and the derived predicted sequences are returned.

4.2.3 BLAST Wrapper

The BLAST wrapper uses a command-line interface (CLI) application devel-
oped at the National Center for Biotechnology Information (NCBI), blastx,
using translated nucleotide sequences to search protein databases. It is highly
configurable and supports many command line arguments, and the arguments
set in our wrapper are listed in Table 4.3. § 6.4.3 contains a more detailed de-
scription of BLAST; for more information and open-access, visit NCBI’s BLAST
Websites [46].

By observation, memory usage seems to directly correspond to the size of
the searched BLAST database, and when running several tasks in parallel the
amount of memory per executor is rapidly exhausted given large databases,
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Table 4.3: blastx arguments

Argument Explanation
-db Path to BLAST database
FASTA file containin uery se-
-query & dquery
quences
-out Specify output file path
Number of aligned sequences to re-
-max_target_seqs
port
-outfmt Alignment view format
-evalue Expectation value save threshold
-dbsize Cumulative size of database
-num_threads Number of threads to schedule

unless the nodes of the cluster in use is configured with a large amount of
dynamic random-access memory (DRAM) to CPU virtual core ratio. Thus, we
support running on a split database in our wrapper; the current configuration
searching against the UniRef50 protein database split in 8.

The implication of having several databases is having to tally the sum of nu-
cleobases in all sequences in the source FASTA file used to create the database
splits prior to running the wrapper, conducive to acquiring a correct expecta-
tion value for the results produced by blastx. This number is provided as the
database size command line argument to the tool, and is calculated only once
at the workflow manager level.

Let R be all records in the FASTA source, S the set of splits, N the number of
splits, and s the sequence length, then

N
ZS,S:ZRS

r=1

is the accumulated sequence length calculated prior to running the job, such
that the cumulative sequence length of the source FASTA file is equal to the
cumulative sequence length of all splits used for database creation. For recovery
purposes, this value is also persisted to local disk in context of the workflow
manager.

The wrapper takes as input the predicted sequences for querying and the BLAST
database size, and executes the tool iteratively using the same queries on each
database split in succession, producing additively more unique output files
contingent upon the number of splits.
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The output function iteratively parses, extracts fields, and accumulates the
output of all runs prior to returning.

4.2.4 InterProScan 5 Wrapper

InterProScan 5 is a bioinformatics software suite — a shell script invoked using
the Bourne-again shell (bash) — and its wrapper consists of functionality for
running it in standalone mode. InterrProScan 5 encapsulates several other
tools, of which a subset are deployed from the wrapper, and are used to query
supplementary signature databases for predictive models. Table 4.4 lists the
arguments set in the wrapper; for more information on InterProScan 5, please
refer to § 6.4.4 or visit the EBI InterProScan 5 Websites [47].

Table 4.4: InterProScan 5 arguments

Argument Explanation

-goterms Enable gene ontology lookup
-iprlookup Enable InterPro lookup

-f Set format

--applications List analyses to be run

-t Set input type, nucleotide or protein
-i Specify input file path

-0 Specify output file path

Its wrapper takes as input the predicted sequences, which are passed on as a
command line argument upon launching the script.

The output function parses, extracts the fields of the InterProScan 5 format,
and returns the results.

4.2.5 Marine Metagenomics Workflow

The workflow implemented incorporates the above tools, connecting the in-
puts and outputs in sequence such that the output of Ray is used as the input
for MGA, and the output of MGA is used as input for both blastx and Inter-
ProScan 5. Figure 4.2 shows the relationship between the wrappers, abstraction,
and tools, as well as the order in which they are executed from the workflow
manager.

InterProScan 5 and BLAST reside in the same column to indicate that both are
dependent on the output of the previous stage — MGA — and thus may be run
concurrently; we implement the wrappers to run in sequence, as we find no
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rationale to motivate their simultaneous execution.

Ray Wrapper

Tool Abstraction

COMBUSTI/O

Workflow Manager

MGA Wrapper

Tool Abstraction

BLAST Wrapper

Tool Abstraction

InterProScan 5
Wrapper

Tool Abstraction

InterProScan 5

Time

Figure 4.2: Pipelined execution of the stages in the implemented workflow
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In more detail, the Ray wrapper takes as input two paired-end reads, generally
compressed FASTQ files, produces a number of outputs, but only the assembled
FASTA contigs are retrieved; the contigs forms the input of the MGA wrapper,
which predicts genes and extracts the predicted sequences from the source sub-
set of the FASTA contigs; the FASTA sequences of predicted genes constitute the
input for both blastx and InterProScan 5, using them as queries for database
searches, and antecedent to completing, the results are parsed and returned
in their respective formats.

4.3 Implementation

Ease of use and simplicity are of great appeal to users when choosing whether or
not to use a given framework, and keeping code DRY and having functionality
for the common case is essential for minimizing user implementation efforts.
Accordingly, we want our framework to be intuitive and should save time to
use, in comparison to implementing impromptu specialized pipelines.

Measuring ease of use and appeal of such frameworks is not an exact science,
and usually breaks down to subjective user surveys. Number of lines of code
required to achieve some behavior in an implementation is another, arguably
more objective, measure to this end. The tool wrappers implemented in the
marine metagenomics use case range from 63 to 108 lines of code, and the
workflow manager was the largest of the modules required implemented by the
user with its 370 lines. Table 4.5 lists number of lines of code for the workflow
manager and each tool wrapper.

It is worth noting that the wrappers for BLAST is a special case, since it executes
several times producing multiple output, the local recovery mechanism needed
to be overridden to reflect this behavior. We believe these to be modest amounts
of lines of code, however, the workflow manager is bloated and refactoring
would likely reduce its size.

Table 4.5: Lines of code per module, as reported by the cloc tool

Module Lines of code
WorkflowManager.scala 370
BlastWrapper.scala 108
RayWrapper.scala 97
InterProScan5SWrapper.scala 76
MgaWrapper.scala 63

The code is open-source and all wrapper implementations may be found on
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GitHub (see Appendix A).



Evaluation

This chapter presents our evaluation of COMBUSTI/O, demonstrating its appli-
cability by running three distinct workflows, representing compute-intensive,
data-intensive, and latency-sensitive applications, measuring end-to-end run-
ning times to assess the overhead of COMBUSTI/0, the overhead of its recov-
ery mechanism on the workflow manager, and the cost of remote tool execu-
tion.

The recovery mechanism at the workflow manager level may be beneficial
for long-running workflows, debugging, and testing purposes, as it allows for
restarting workflows at stage granularity by rebuilding the state of the last
completed stage. We therefore evaluate differences in running times with it
enabled and disabled to assess the overhead incurred for the different workflow
flavors.

We begin by describing our methodology, followed by presenting the results,
discussions, and conclusions of our evaluation.

5.1 Methodology
This section covers the setup of the cluster used for running experiments, in-

cluding its hardware and software specifications, succeeded by descriptions
of the Spark configuration options used for the different workflows. Follow-
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ing this, we describe in detail the workflows and their configurations used for
evaluation, and finally we reason about our choice of measurements.

5.1.1 Cluster Specs and Configuration

To evaluate, we use 14 compute nodes of the ice2 15 node cluster, comprised
of heterogeneous nodes consisting of two different types. Type A nodes count
9, are the newest, and the resource composition of these nodes was formed
especially with data-intensive computing in mind, with emphasis on a large
amount of DRAM, to facilitate the current generation of in-memory frameworks;
type B nodes count 5 and were also composed to efficiently do data-intensive
tasks, with two CPUs per node and originally several disks per node, which is
an artifact of the disk-intensive MapReduce era. The hardware specs of the two
node types are listed in Table 5.1 and Table 5.2 respectively.

Table 5.1: Hardware specifications of a type A ice2 node

Intel® Xeon® Processor Es5-1620

CPU (10M Cache, 3.60 GHZz)
Memory 32 GB
Storage 4 TB
Operating system Centos Final (6.7)
Cluster manager YARN
Network Ethernet 1 Gbit/s
Table 5.2: Hardware specifications of a type B ice2 node

CPU 2 X Intel® Xeon® Processor Es620

(12M Cache, 2.40 GHZ)
Memory 24 GB
Storage 1.5 TB
Operating system Centos Final (6.7)
Cluster manager YARN
Network Ethernet 1 Gbit/s

Table 5.3 shows cluster metrics for the different node types, the total amount of
resources, and resources available to YARN. Note that all numbers exclude the
frontend of the ice2 cluster, and that YARN’s ResourceManager runs on a node
of its own and sees homogeneous resources (i.e., only 8 virtual cores of the
type B nodes are available for requisitioning). The configured capacity of the
HDFS is 33 TiB with a replication factor of 3 and block sizes of 128 MB. ice2 is
a Cloudera cluster implementing Hadoop version 2.6.0-cdh5.4.9.

We argue that the ice2 cluster used for evaluation is representative of our
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Table 5.3: Accumulated cluster metrics of ice2 in sum and metrics as seen by YARN

Perspective Nodes Virtual cores Memory
ice2 type A 9 72 288 GB
ice2 type B 5 80 120 GB
ice2 total 14 152 408 GB
YARN 14 112 140 GB

target cloud and HPC platforms in terms of the software composition, although
equipped with heterogeneous hardware, its environment reflects those of the
target platforms. Moreover, it is a dedicated cluster, making it fit for testing
latency-sensitive tasks by circumventing queueing mechanisms.

In production, it is likely that the amount of nodes deployed will be larger
than the capacity of ice2, in order to decrease wall-clock time consumed per
workflow. However, our abstractions and tool wrappers are designed to be run
independently of one another, imposing no additional scalability bottlenecks,
thus we postulate that the question of scalability deflates to being contingent
on the scalability of Spark and the underlying software stack.

5.1.2 Spark Configuration

All tests were run using Spark version 1. 3.0, being the latest Cloduera-supported
version, and configuration options were set in-line upon submitting applications

using the spark-submit tool. For more information on the available configura-
tion options regarding Spark configuration, Spark on YARN, and job scheduling,

please refer to the documentation [48, 49, 50].

The Spark framework supports an abundance of configuration and tuning op-
tions, useful for tweaking application execution; the set of options modified for
the evaluation cases are described below. Unless otherwise stated, the remain-
ing options are all set to default values.

An example of a submit-script for utilizing all the YARN resources available on
ice2 is shown in Code Listing 5.1. The following elaborates on the subset of
Spark configuration options that were set for evaluating our framework, and
Figure 5.1 visualizes their architectural affiliations in the Spark, YARN, and JvmMm
ecosystem:

yarn-client Run application in YARN client mode

spark.task.cpus Number of virtual cores an executor
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Code Listing 5.1: spark-submit options used to deploy 28 containers on ice2

spark—submit \

——master yarn-client \

——conf spark.task.cpus=1 \

——conf spark.yarn.am.memory=4096m \

——conf spark.yarn.am.cores=4 \

——conf spark.yarn.am.memoryOverhead=1024 \
——conf spark.executor.memory=4096m \

——conf spark.yarn.executor.memoryOverhead=1024 \
——num—executors 27 \

——executor—-cores 4 \

——conf spark.kryoserializer.buffer.max=256m \

deploys per task
spark.yarn.am.memory Amount of memory to allot the YARN

ApplicationMaster
spark.yarn.am.memoryOverhead Amount of off-heap memory for vir-

tual machine (VM) overheads to al-
lot the YARN ApplicationMaster

spark.yarn.am.cores Number of virtual cores to allot the
YARN ApplicationMaster

spark.executor.memory Amount of memory to allot each ex-
ecutor

spark.yarn.executor.memoryOverhead Amount of off-heap memory for vMm
overheads to allot each executor

num-executors Number of executors to launch on
the cluster

executor-cores Number of virtual cores to allot each
executor
spark.kryoserializer.buffer.max Maximum buffer size for serialized

objects used by Kryo
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Client Node

spark.yarn.am.memoryOverhead

ApplicationMaster JVM

Logical Cores = spark.yarn.am.cores

DRAM = spark.yarn.am.memory

Spark Context

Worker Node 1

YARN NodeManager HDFS DataNode

Node Container Pool

Logical Cores = yarn.nodemanager . resource .cpu-vcores
RAM = yarn.nodemanager . resource .memory-mb

spark.yarn.executor.memoryOverhead

e
-
S

Executor JVM 1

Logical Cores = spark.executor.cores
DRAM = spark.executor.memory
Task 1, spark. task.cpus

Task 2, spark. task.cpus

Figure 5.1: Basic Spark configuration architecture. Inspired by [51]
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The script shown in Code Listing 5.1 allots each executor a total of 5 GB DRAM
and 4 virtual cores, and the aggregate amount of resources allocated is calcu-
lated as follows:

The total number of virtual cores C requested is calculated by:

C = (num-executors X spark.executor.cores) + spark.yarn.am.cores
C=(27%x4)+4=112

and, given executor memory

E,, = spark.executor.memory + spark.executor.memoryOverhead

and ApplicationMaster memory

AM,, = spark.yarn.am.memory + spark.yarn.am.memoryOverhead

the total amount of DRAM D requested is:

D = (num-executors X Ep,) + AMp,
D = (27 X (4096 MB + 1024 MB)) + (4096 MB + 1024 MB) = 143360 MB

5.1.3 Compute-Intensive Workflow

The compute-intensive application is represented by our use case workflow
of the previous chapter for analyzing a realistic metagenomic sample dataset.
The results serves as a proof-of-concept of COMBUSTI/O facilitating a bioin-
formatics workflow, and demonstrates the cost of the recovery mechanism at
the workflow manager level by running it with the recovery mechanism dis-
abled, enabled, and using it to rebuild the state of a completed workflow. It
does not involve other workflows for comparison, but is performed on a real-
istic dataset to determine wall-clock time consumed, and serves as a proof-of-
concept of performing a subset of the META-pipe backend processing using
COMBUSTI/O.

The BLAST database splits and InterProScan 5 distributions currently reside
in NFS, but could be replicated across all nodes on uniform local paths to
diminish networked disk 1/0 overhead and file contention, but as both tools
are compute-intensive it is likely to represent a negligible improvement in
performance relative to its total execution time.
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Tool Setup

The following paragraphs details the commands, as they are executed using
COMBUSTI/O, for the different tools:

Ray The Ray tool is special due to using the external distribution and execu-
tion command mpirun, and is thus only invoked once at the driver. It accepts
gzip compressed files as input. As the cluster used is heterogeneous, a host-
file containing information about the host and number of CPUSs it has available
is supplied the command, as well as launching an amount of processes equal
to the sum of CPUs on all hosts. Recall that 9 nodes have 8 virtual cores, and
5 have double the amount of that, making the number of processes to launch:
9X8+5X16 =152, mpirun version 1.6.2 (Open MPI) and Ray 2.3.2-devel
was used during evaluation.

Code Listing 5.2: Full Ray command

mpirun \

—np 152 \

——hostfile hostfile \

——mca btl_tcp_if_exclude docker0,lo \

Ray \

-k 31 \

—p rayInput/left_input.fastq.gz rayInput/right_input.fastq.gz \
—minimum-contig-length 300 \

-0 rayOutput

MGA The MGA command is executed using the path to the input FASTA as a
command line argument. The version of the 19 August 2008 release was used
when evaluating.

Code Listing 5.3: Full MGA command

mga_linux_ia64 mgalnput/mga.in

BLAST The blastx command has some distinct variables that are changed,
one of which determines what split to run the BLAST query against, another
based on the predicate of what host is running the command. The splits are
demarcated by monotonically increasing integers from 1 to 8, and both the
database and output names changes for each split; the other, determining
the number of threads to launch, is set to either 2 or 4, depending on a glob
predicate determining what host is running the command, in order to utilize
all cores. The version utilized is 2.2.31+.

BLAST Database The database used for querying is the UniProt UniRefs0
protein database, which contains UniRefgo seed sequence clusterings, and is
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Code Listing 5.4: Full blastx command

/usr/bin/blastx \

—db uniref50_split_1 \

—query blastInput/blast.in \
—out blastOutput/blast.out_1 \
—max_target_seqs 5 \

—outfmt 6 \

—evalue le-5 \

—dbsize <blast_db_size> \
—num_threads 2

a 6.3 GB large uncompressed FASTA file. We downloaded the UniRefso data
11 March 2016, and the data is publicly available for download on the UniProt
FTP server [52]. The source UniRef50 FASTA file was split into 8 smaller FASTA
files, using the total number of lines divided by 8 incrementally and choosing
the line of the nearest record to determine start and stop offsets. Given the
total amount of lines L, and [/ € L the line obtained when incrementing by the
amount of lines per split (Z?:O [ x é), for each [, the nearest description line
h was used to delimit a split to round to the closest record by opting for the
minimal line difference in either direction (|[[h]— 1| A || k] —1]), yielding the set
of start and stop offsets from line o to L, subtracting 1 from the end offsets to
avoid overlap except for the last split. All BLAST databases were created using
the command as shown in Code Listing 5.5 on each FASTA file split.

Code Listing 5.5: BLAST database creation command

makeblastdb \

—in uniref50.fasta_split \
—dbtype ’'prot’ \

—out uniref50_split

InterProScan 5 Similar to blastx, the number of cores to utilize is also
based on the host on which it runs, and that amount is specified in the configu-
ration file of the InterProScan 5 distribution. Conducive to supporting different
numbers of cores for the two host types, the InterProScan 5 distribution was
replicated to create two different configuration files residing in two different
directories in NFS, directing nodes to the directories with corresponding con-
figurations. We used version 5.14-53.0.

Code Listing 5.6: Full InterProScan 5 command

bash interproscan-5.14-53.0/interproscan.sh \

—goterms \

—iprlookup \

—f tsv\

——applications TIGRFAM, PRODOM, SMART,PROSITEPROFILES,HAMAP,
SUPERFAMILY, PRINTS, PANTHER, GENE3D,PIRSF,COILS \



5.1 / METHODOLOGY 49

-t n\
—i interProScan5Input/interproscan5.in \
—0 interProScan50utput/interproscan5.out \

The dataset used for evaluating COMBUSTI/O as the processing engine of
our marine metagenomics use case is a marine sediment metagenome sample,
“muddy”, which represents an anticipated typical dataset of high complexity and
medium size [53], having a combined size of approximately 2.6 GB in gzip for-
mat. Its sample accession is SAMEA3168559, the library layout of is paired, and it
was generated using the Illumina MiSeq instrument model. The dataset is pub-
licly available for download online from the Furopean Nucleotide Archive (ENA)
at EBT’s servers (https://www.ebi.ac.uk/ena/data/view/ERP008945).

The spark.task.cpus variable was increased to 2, in furtherance of launching
twice the number of threads per task, thus consuming less memory for both
blastx and InterProScan 5, and preventing the executor containers being killed
by YARN due to memory exhaustion violations. This choice was based on the
ability to configure the amount of threads to launch for both blastx and Inter-
ProScan 5, as the Ray wrapper does not utilize resources as seen by YARN, and
the runtime of the single-threaded MGA wrapper is insignificant in comparison.
All compute-intensive experiments were run using the defaultParallelism
multiplied by a factor of 3.

5.1.4 Data-Intensive and Latency-Sensitive Workflows

Both the data-intensive and latency-sensitive evaluations are assayed using
three different workflows representing different amounts of optimization; in de-
scending order: a pragmatic Spark implementation and two mirrored function-
ality workflows implemented in COMBUSTI/0O, one wrapping Scala built-ins
and another wrapping program binaries. The pragmatic Spark implementation
provides best-case running times, and the COMBUSTI/O in-memory imple-
mentation wrapping Scala built-ins performs in-memory computations while
omitting the disk 1/0 imposed when using binaries requiring named input
and output files, which represents the performance of using stdin and stdout
streams for input and output purposes. These streams may be programmatically
manipulated in memory, circumventing disk 1/0 by writing input to stdin upon
creating the environment of a subprocess prior to forking, and reading output
from stdout subsequent of its execution. The other runs of the Scala built-in
workflow adhere to the disk 1/0 pattern imposed by COMBUSTI/O.

We evaluate both the COMBUSTI/O Scala built-in and binary workflows with
the recovery on the workflow manager level disabled, enabled, and the recovery
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mechanism itself to measure the cost and trade-off of the recovery mechanism
for small and large datasets.

The data-intensive workflows demonstrates the throughput of COMBUSTI/O and
its 1/0 pattern on large datasets to ascertain its applicability by calculating
observed throughputs, looking into the performance implications of the exten-
sive disk reads and writes, as well as providing a comparison of the subprocess
forking and remote tool execution of COMBUSTI/O to the use of Scala built-ins
on bigger datasets.

For the latency-sensitive workflows we evaluate its applicability for interactive
use, the overhead of recovery for small datasets, as well as the overhead of
Scala built-ins and tool execution mechanism of COMBUSTI/O.

To evaluate our framework for data-intensive and latency-sensitive workflows
we measure end-to-end wall-clock time consumed by three workflows: our
synthetic COMBUSTI/O binary execution example workflow, a pragmatic Spark
implementation, and a COMBUSTI/O Scala built-in workflow mirroring the
functionality of the pragmatic Spark implementation.

Binary Execution Workflow A parallelized version of our example work-
flow of Chapter 3 serves as our binary execution workflow. Recall that this
workflow wraps the UNIX programs cat (version 8.4), grep (version 2.20),
and wc (version 8.4).

Scala Built-In Workflow We also use a workflow that wraps Scala built-in
methods in COMBUSTI/O to mimic the different tools, wrapping a method for
programmatic writing and reading, to and from files on disk, emulating cat; a
method filtering on a query (filter(_.contains("query"))), imitating grep;
as well as a method for counting the number of words in the lines producing a
hit in the previous stage (map(_.split(" ").count(_.nonEmpty)), to simulate
wc -w. This workflow was designed to closely resemble the different stages of
the pragmatic Spark code, with the added disk 1/0 manipulation and overhead
imposed on COMBUSTI/O. The validateBefore mechanism is overridden for
this workflow, conceptually implemented as a no-op. An illustration of the
workflow implementation is provided in Code Listing 5.7.

Pragmatic Spark Implementation The pragmatic Spark way, shown in
Code Listing 3.2), does computations in memory without any additional inter-
mediate reading and writing to disk, beyond initially reading the input data and
possible shuffling, and hence do not provide any provenance management nor
facilitates the use of legacy binary programs, to provide a best-case end-to-end
time measurement for comparison.
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Data-Intensive Input The data-intensive workflows were run using as in-
put two replicas of the Wikipedia enwiki XML dump downloaded 3 May 2016,
openly available and hosted on Wikimedia [54], totaling an approximate of
106.4 GB combined size. The pragmatic Spark implementation used the default
value of defaultParallelism to determine the amount of partitions; the Scala
built-in memory-only workflow was evaluated with the variable multiplied by
a factor of 30; the rest of the experiments were run using 600 times the default
value.

Latency-Sensitive Input To evaluate latencies, we ran the workflows us-
ing 12 MB of Web archive (WARC) data as input to the different workflows.
The source WARC file was retrieved from the Common Crawl corpus crawl
of February 2016 downloaded 3 May 2016, and the data used as input are its
first 270,000 lines (head -n 270000 warc > input). All runs were performed
using the unmodified defaultParallelism variable to select partitioning gran-
ularity and were run 5 times. The source input file is publicly available on AWS
S3:

wget https://aws-publicdatasets.s3.amazonaws.com/common-crawl/
crawl-data/CC-MAIN-2016-07/segments/1454701145519.33/warc/CC-MAIN-
20160205193905-00000-ip-10-236-182-209.ec2.internal.warc.gz


https://aws-publicdatasets.s3.amazonaws.com/common-crawl/crawl-data/CC-MAIN-2016-07/segments/1454701145519.33/warc/CC-MAIN-20160205193905-00000-ip-10-236-182-209.ec2.internal.warc.gz
https://aws-publicdatasets.s3.amazonaws.com/common-crawl/crawl-data/CC-MAIN-2016-07/segments/1454701145519.33/warc/CC-MAIN-20160205193905-00000-ip-10-236-182-209.ec2.internal.warc.gz
https://aws-publicdatasets.s3.amazonaws.com/common-crawl/crawl-data/CC-MAIN-2016-07/segments/1454701145519.33/warc/CC-MAIN-20160205193905-00000-ip-10-236-182-209.ec2.internal.warc.gz
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Code Listing 5.7: COMBUSTI/O Scala built-in workflow implementation. The code is
curtailed for brevity, chiefly omitting details of recovery and paral-
lelization mechanisms, i.e., respectively involving saving an RDD to
HDFS and having map-enclosed tool executions like shown in Code
Listing 3.7

class WorkflowManager(context: => SparkContext) extends Command {

override def apply(): Unit = {

val localOutputPath = "/tmp/"
val jobPath = buildJobPath(localOutputPath, "myJobId")

// Run ReadWrite on input file
val readWritePath = buildToolPath("readwrite", jobPath)
val readWriteInput = ReadWriteInput("file.txt")
val readWriteContext = new ToolContext {
def path: String = readWritePath
}

val readWriteWrapper = new ToolWrapperImpl(new ReadWrite)
val readWrite = readWriteWrapper(readWriteContext)
val readWriteOutput = readWrite(readWriteInput)

// Run filter on readWriteOQutput
val filterPath = buildToolPath("filter", jobPath)
val filterInput = FilterInput("query", readWriteOutput)
val filterContext = new ToolContext {
def path: String = filterPath
}

val filterWrapper = new ToolWrapperImpl(new Filter)
val filter = filterWrapper(filterContext)
val filterQutput = filter(filterInput)

// Run count on filterOQOutput
val countPath = buildToolPath("count", jobPath)
val countInput = CountInput(filterOQutput)
val countContext = new ToolContext {
def path: String = countPath
}

val countWrapper = new ToolWrapperImpl(new Count)
val count = countWrapper(countContext)
val countOutput = count(countInput)
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5.1.5 Measurements

To evaluate COMBUSTI/O, we measure the performance and overheads of data-
intensive, latency-sensitive, and compute-intensive workflows by quantifying
end-to-end wall-clock time consumed by running four distinct workflows on
different datasets representing the three types of applications, configured with
coarse-grained recovery enabled, disabled, and measuring time spent recover-
ing an entire workflow.

We opted for end-to-end measurements over microbenchmarks, because it is
hard to correctly do the latter on the Java Virtual Machine (JVM), entailing
warming it up with several dry runs, triggering all code to be just-in-time (JIT)
compiled and optimized, to circumvent the first couple of runs being slower and
straggler-inducing [55], and using some existing framework for benchmarking,
e.g., Caliper or Java Microbenchmark Harness (JMH). Moreover, the former pro-
vides a holistic illustration of execution times as perceived by the user, because
each workflow is to be submitted separately, imposing overheads of starting
up Spark and registering containers and launching executor JvMs, including
the pre-JIT compiled initial executions that are not subjected to optimizations.
Having done tests on a warmed up JVM with JIT compiled and optimized code
would produce synthetic best-case results that are unrepresentative of actual
usage.

The recovery mechanism at the tool abstraction level for locally assigned output
partitions is enabled for all tests except the in-memory Scala built-in workflow,
but is not evaluated, and was only tested to work given a hit on the assigned
output partition on disk. The end-to-end time is the time consumed by the
Spark application for a given workflow, from start to finish, as reported by
the YARN Web UI, and is truncated to the nearest second. All evaluation runs
deployed the entire cluster, as shown in Code Listing 5.1, unless otherwise
stated. Additionally, all results except for the compute-intensive workflows —
due to their longevity — with recovery enabled and disabled were run 5 times
to acquire more precise measurements.

5.2 Results and Discussion

This section covers the results, discussions, and conclusions of the benchmarks
of our evaluational workflows and their different configurations regarding 1/0
and recovery. We use the workflows denoted in the former to ascertain the per-
formance characteristics of COMBUSTI/O and to get insights in its overheads
of 1/0 management, subprocesses forking for binary execution, and recovery
mechanism at the workflow manager level using the results of our compute-
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intensive, data-intensive, and latency-sensitive evaluations. Additionally, we
investigated cluster-wide disk and cPU utilizations of a data-intensive inten-
sive task to determine if disk 1/0 is likely to be a bottleneck for our compute-
intensive use case.

5.2.1 Compute-Intensive Pipeline Evaluation

To evaluate the utility of COMBUSTI/0 facilitating a compute-intensive pipeline,
we run our implementation of the marine metagenomics workflow on a marine
metagenomic dataset typical for marine bioprospecting. We measure the end-to-
end wall-clock running times of this workflow having the recovery mechanism
of the workflow manager enabled, disabled, and using the recovery mechanism
for state recovery. These experiments are performed to prove the applicability
of COMBUSTI/O in compute-intensive bioinformatics workflows and to assess
the overhead of the recovery mechanism for compute-intensive workflows, as
well as the recovery time itself, to get an exemplar for trade-off reasoning pur-
poses. Note that the running times of having recovery enabled and disabled
were only measured once, opposed to the 5 of state recovery.

The results of our compute-intensive experiments are shown in Figure 5.2.
There was an issue when running the experiment with recovery off, in which
a disk of a single node crashed, having completed 320/324 tasks of the workflow,
with the remaining four being assigned to the crashed node. Due to time con-
straints, we were not able to perform another experiment, and as we did not
have straggler speculation enabled, the driver was stuck waiting for a response.
However, as the tool wrappers are run independently of one another, and the
disk crash did not occur on the driver node, we calculated a conservative es-
timate of the overall running time by adding the maximum running time of
a task to the time when the last task was submitted to the faulty node and
chose the largest value of this and the latest recorded task completion, based
on information logged in the Spark History Server. It is important to emphasize
that this is an approximate truth as the workflow was performed at slightly
reduced capacity, with the node in question completing about half the average
amount of tasks completed on the remaining nodes, likely making the running
time larger than it would have been given all healthy nodes.

With the reasoning above, the 1.75% slower running time of having recovery
disabled as opposed to enabled is probably not an anomalous result, but rather a
product of the reduced resources. Assuming a uniform environment, this would
be an estimated loss of 13/14 (nodes) for approximately 50% of the duration of
the workflow (having completed half the tasks of the average node). Direct
comparison of these running times is therefore not precise, but leads us to
assume that the overhead of having recovery enabled cannot be very large,
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COMBUSTI/O metagenomics use case results
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Figure 5.2: Results of the different compute-intensive configurations. The recovery off
and on bars represent the end-to-end time of a single run each, while the
recovery bar signify the mean of 5 sample runs. Due to the long running
times of these workflows, 5 samples could not be acquired. However, we
assume the variance of this workflow to be relatively low, based on previous
evaluations of META-pipe 1.0 [53]

because the disparity in running times is still relatively small.

In any case, the observed time required to recover an entire workflow of less
than half a minute is very fast in comparison to the longevity of the running
times of having either recovery enabled or disabled, being almost 4 orders of
magnitude smaller, making the recovery option extremely appealing.

There are several possible optimizations to the workflow of our use case, the
most pertinent of which is manual translation of nucleotide sequences to pro-
tein sequences, because not translating from nucleotides to peptides incurs a
lot of additional computation. By virtue of knowing the nucleotide sequence to
be the product of gene prediction, there is a 1:1 translation ratio of nucleotides
to proteins because we know that the translation is located at frame o in for-
ward direction. However, the annotation programs in use are not aware of this
detail, and hence the translation is expected to sextuply expand the data, as
the translation ratio then becomes 1:6 of nucleotides to proteins. In theory, this
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should entail that our measured stage running times being larger than those
of META-pipe 1.0 by a factor of approximately 6 (if execution time increases
linearly in response to input size) for blastx and InterProScan 5, given the
same setup. Adding this and support for the Phobius tool of the InterProScan
5 suite, we could begin doing direct comparisons between COMBUSTI/O and
the backend of META-pipe 1.0, to further investigate performance implications
and characteristics of using Spark and the big data frameworks versus the
script-based approach. This is, however, left as future work.

In conclusion, as the time spent computing dwarfs the time consumed perform-
ing 1/0 operations, we argue that the overhead of the 1/0 pattern enforced by
COMBUSTI/O0 is negligible relative to the CPU time. Moreover, because of the
initial dataset being smaller than those used in our tuning experiments (§ 5.2.4),
as well as the data reduction of Ray prior to the subsequent stages (reduced
to tens of megabytes of contigs), we do not believe 1/0 performance to be an
issue for our marine metagenomics compute-intensive workflow.

5.2.2 Data-Intensive Pipeline Evaluation

Data-intensive pipelines require high throughput, and typically necessitates
disk reads and writes, unless the nodes of the cluster upon which the applica-
tion is run is equipped with abundant amounts of available DRAM. To evaluate
the applicability of COMBUSTI/0 for data-intensive workflows, we measure the
end-to-end wall-clock time of running our binary and Scala built-in workflows
on a large dataset, using these results to calculate the respective throughputs
having recovery enabled and disabled, as well as measuring the time it takes
to recover a completed workflow. We also seek to gain insights in the perfor-
mance penalty of enforcing the disk 1/0 pattern of COMBUSTI/O, and the
overhead incurred by remote execution using subprocesses in comparison to
using Scala built-in functionality on big data. Moreover, to provide a best-case
in-memory running time, we also apply the pragmatic Spark pipeline to the
same dataset.

The results of our data-intensive evaluation are shown in Figure 5.3, in which
throughputs (parenthesized) were calculated based on the average end-to-end
running time (106‘#), and Table 5.4 lists the results including medians and
standard deviations. The standard deviation represents fluctuation or variation
in a set of measurements, and is the square root of the variance.

The pragmatic Spark, in-memory Scala, and binary execution with recovery off
workflows are approximately an order of magnitude apart, in terms of through-
put. The in-memory results compares the pragmatic Spark implementation with
the Scala built-in workflow in COMBUSTI/O, and as can be seen, the Spark
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Benchmark results
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Figure 5.3: Data-intensive results of the workflows using 5 samples. The bars are
the arithmetic averages of the samples, and the error bar signifies the
standard deviation of the sample set. Note that the uppermost two bars
compare the COMBUSTI/O Scala built-in workflow with the pragmatic
Spark implementation, and the subsequent three sets of bars juxtapose
running times of the binary and Scala built-in workflows of COMBUSTI/O

only implementation outperforms COMBUSTI/O by more than an order of mag-
nitude. The functions of the Spark implementation are likely optimized over
several iterations and continuous development of their framework, whereas the
ad hoc parallelization of COMBUSTI/O for memory-only computation seems
to add a significant amount of overhead in comparison. This is possibly because
of the added function call stack of COMBUSTI/0, as well as having the method
mimicking cat enabled, which reads input into memory and returns it, which
is omitted in the Spark only implementation. Moreover, the disk 1/0 pattern
of COMBUSTI/O incurs overhead equal to approximately an order of magni-
tude, comparing the recovery off binary workflow with the Scala in-memory
workflow.

For the recovery off and on configurations, we see through comparison that
the COMBUSTI/O binary execution workflow uses half the time of the com-
BUSTI/O Scala built-in workflow. This was an unexpected result to us, as we
anticipated the built-in functionality to run faster than forking subprocesses
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Table 5.4: Data-intensive results of the workflows using 5 samples

Workflow Mean (i) Median (y1/2) SD (o)

In-memory
Pragmatic Spark 34.8 s 34.08 2.32'S
COMBUSTI/O 432.0 S 430.0 S 18.14 s
Scala

Recovery off
COMBUSTI/O 4362.2 4426.0 S 257.85 S
binary
COMBUSTI/O 8300.0 s 7804.0 S 897.59 S
Scala

Recovery on
COMBUSTI/O 10502.6 S 10291.0 S 467.16 S
binary
COMBUSTI/O 19337.4 S 19284.0 S 1298.83 s
Scala

Recovery time

COMBUSTI/O 70.6 S 69.0 S 2.33S
binary
COMBUSTI/O 81.4s 82.0s 3.88 s
Scala

for remote program execution. We therefore speculate that the performance of
strings and string comparison on the JVM is poor in comparison to the UNIX
tools. Moreover, running with recovery enabled is slower by more than a factor
of two for both workflows, suggesting that our recovery mechanism is unsuit-
able for data-intensive workloads unless the number of failures are likely to
exceed 2, which may be the case when testing and debugging. The cost of the
recovery is high because it requires triply replicating stage output to HDFS,
and is thusly more pronounced for data-intensive applications.

The recovery times measured for both workflows are, as expected, very low
in comparison to the original runs. The more than 10% longer recovery times
for the Scala built-in workflow can be interpreted as to give some merit to the
theory of poor string processing performance in this workflow compared to the
binary execution workflow, as the output sizes are similar.

Based on the 1/0 pattern imposed to facilitate execution of tools requiring
named input and output files, we do not expect the throughput to be very
high, because it entails excessive amounts of disk writes and reads to and
from different locations, effectively yielding random read and write speeds,
being further degraded by the redundancy of these operations as performed in
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COMBUSTI/O.

COMBUSTI/O suffers greatly from having to do the 1/0 reads and writes nec-
essary to facilitate tools requiring named input, then writing output to files. It
represents a great penalty, but the inefficiency is obvious when the typical 1/0
manipulation pattern requires input to be read, written, read, written, then
read again, for each partition to be processed: Its I/0 pattern results in initially
reading the input partition from HDFS to memory, then writing it to the node
local disk, thereupon the tool is passed the path of the input now residing on
disk, which reads it back into memory, performs some computation and then
writes its results back to disk, and finally the results are read back into memory
to be returned as an output partition.

Somehow consolidating reads and writes to the same locations to amortize
1/0 overhead through leveraging sequential read and write speeds could be
beneficial, but is not straightforward other than increasing the size of each input
partition by decreasing the amount of total partitions. A possible optimization
is letting the input of a stage to point to the output of a previous, but would
require guarantees of data locality, else local paths will not suffice.

Furthermore, random speeds on hard disk drives (HDDs) are impacted by hav-
ing to wait for read/write heads to move to the correct tracks, and wait for
the disk to rotate to the correct sectors. The last point may already in part be
counteracted by modern HDDs through extensive buffering and larger buffer
sizes of the disk caches, batching operations.

Striping disks (RAID o) or increasing the number of disks and disk controllers
per CPU ratio would likely result in an increase in performance, as a result
of COMBUSTI/O’s excessive disk usage. Another volatile option for improving
performance would be using a DRAM mounted operating system (OS) or to
use tmpfs for reading and writing, but would require nodes with superfluous
amounts of available memory, and would also negate recovery mechanisms.
The best alternative is likely reimplementing in data-intensive tools adhering
to the principles and schemata of ADAM [20], omitting unnecessary disk 1/0 as
required by COMBUSTI/O to support tools requiring named input and output
files by seeking to exclusively perform in-memory computing. COMBUSTI/O is
still useful for its purpose, which is to reduce running times of data parallel
tasks by facilitating the distributed and parallel execution of unmodified legacy
tools and program binaries, supporting the need for named input and output
files.

Input data could be piped directly to the tools without any issues (manually or
using the Spark-supported pipe operation), but most of the tools used in the
metagenomic pipeline are not susceptible to this behavior, as they require a
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named input file and a named output file, not reading from stdin nor writing
to stdout. Bioinformatics tool writers should therefore be urged to use the
standard input, output, and error streams, to diminish the impact of the 1/0
overhead, allowing for writing to stdin and reading from stdout conducive to
partly circumventing costly disk 1/0, thus increasing throughput.

In conclusion, based on the observations, COMBUSTI/O produces an excess
amount of 1/0 overhead for disk reads and writes, making it unsuited for data-
intensive applications requiring high throughput. Having the recovery mecha-
nism enabled for large datasets is also questionable, as it more than doubles the
running time, and the trade-off of having the recovery to fall back on must be
contemplated upon making this decision, as the recovery mechanism is fast per
se. The in-memory results of the Scala built-in workflow compared with having
recovery enabled corroborates our hypothesis of the overhead generated by
the enforced 1/0 pattern being substantial. Lastly, it is difficult to assess the
overhead of the remote execution of tools in the COMBUSTI/O binary work-
flow when the disparities are as large as observed in our experiments when
compared to the Scala built-in workflow, therefore, the takeaway regarding
this is that we cannot be certain due to not having thoroughly investigated
differences in output sizes nor string performance and optimizations in the
JVM.

5.2.3 Latency-Sensitive Pipeline Evaluation

Latency-sensitive applications are typically interactive tools, in which a user
interacts with some GUI or Web interface, actively waiting for responses of the
tasks being performed, implying that the latency, i.e., the time it takes from a
task is launched until the results are returned to the user, must be reasonably
low in order to be applicable in practice. An example of such an application
is ad hoc exploration of metagenomic data results that may be performed
by biologists. We evaluate the utility of COMBUSTI/0 for facilitating latency-
sensitive workflows by measuring the end-to-end wall-clock time of running
the COMBUSTI/O binary and Scala built-in workflows on a small dataset with
recovery enabled, disabled, and the time it takes to recover a completed the
workflow. Moreover, we want to assess the cost of adhering to the 1/0 pattern
COMBUSTI/O on small datasets, and to establish the overhead incurred of the
forking subprocesses for remote tool execution in the COMBUSTI/O binary
workflow compared to the Scala built-in workflow on small datasets where this
overhead might be more pronounced. To obtain the presumed ideal end-to-end
time, we apply the pragmatic Spark implementation to the same dataset.

Spark is shown to be well suited for interactive analysis in the form of repetitive
data querying due to only loading the dataset into memory once (if it fits), then
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Benchmark results
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Figure 5.4: Latency-sensitive plot of the different workflows using 5 samples. The bars
are the arithmetic averages of the samples, and the error bar signifies the
standard deviation of the sample set

being able to query it performing in-memory computing only, which is much
faster than having to read from disk the same dataset prior to processing each
query [22]. An important distinction to make is that this interactive querying is
likely performed using the Spark shell-like REPL, and that our workflows are
run using the spark-submit tool, which is more likely used for long-running
analyses jobs and possibly not that fit for interactive usage.

Hoxmeier et al. [56] found that the response time of an interactive browser-
based program is associated with the user-perceived complexity of the task to
be performed, stating that response times in the interval of 8 — 12 seconds are
acceptable for complicated tasks, and response times exceeding 15 seconds are
disruptive to the work done by a user.

The results are shown in Figure 5.4, and the in-memory only experiments show
negligible differences in running time between the pragmatic Spark implemen-
tation and the in-memory COMBUSTI/O Scala built-in workflow, which omits
disk 1/0. Both the recovery off and recovery time measurements also show
inconsequential difference, inferring that the functionality of forking subpro-
cesses in COMBUSTI/O seems to have little to no impact on performance of
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the latency-sensitive measurements.

However, the recovery on measurements show a 3 second discrepancy in mean
running time, which is surprising anticipating that the subprocess forking would
impose a larger latency than using built-in Scala functions. It may also be at-
tributed the small sample set of only 5 runs, with results possibly converging
for more runs, or the way objects are stored to HDFS, as the discrepancy was
found with recovery enabled. Moreover, COMBUSTI/0O with the recovery mech-
anism enabled adds a significant overhead over doing in-memory computations
only.

Applications in Spark seems to be bounded by the number of nodes employed
for computation when tasks are small, and that there is a fixed minimum over-
head for Spark to register YARN containers and launch executors. We observed
that the actual job completion time as reported by the driver from the terminal
typically showed a difference of approximately 10 seconds to the time reported
by the YARN Web UI.

A concern using HDFS for small files is the potential skew in data load per
node, as the granularity of the Hadoop files are determined by the configured
block size. Moreover, for small reads, latency is also of greatly affected by the
performance footprint of doing disk 1/0, and solid-state drives (SSDs) are far
superior in terms of responsiveness to that of the traditional HDDs and also
yields greater read and write speeds, both random and sequential, circumvent-
ing the latency-inducing mechanic nature of the rotating disks and read/write
heads of HDDs.

Based on the observed results, we conclude that having recovery enabled for
such small datasets is nonproductive, as the cost of restarting and recovering
stage data seems to outgrow the cost of restarting and recomputing everything.
Additionally, conforming to the 1/0 patterns used in COMBUSTI/O produces
an overhead of a couple of seconds for this small dataset, and the end-to-end
measurements using subprocess forking for remote tool execution does not
incur large overheads. Furthermore, for small datasets, the overhead of the
COMBUSTI/O framework per se is not large when performing in-memory com-
putations, and both COMBUSTI/0O workflows with recovery off are compara-
ble to the best-case running time of the pragmatic Spark implementation. Its
marginally disruptive results — from the perspective of the study referred to
in the former - yields the ambiguous takeaway that it may be applicable for
browser-based interactive applications with recovery disabled.
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5.2.4 Spark and 1/0 Tuning

While performing the evaluation of data-intensive workflows we initially expe-
rienced very poor throughput, and found the cluster-wide disk 1/0 to be very
low. We therefore investigated this in furtherance of increasing the throughput
by experimenting with input the partition granularity of Spark.

During experimentation on large datasets (8§ 5.2.2), aggregate disk 1/0 in-
creased correlative to increasing number of partitions, which is an unintuitive
observation, as batching reads and writes to exploit sequential speeds would
seem logical, as opposed to having a myriad of small effectively random reads
and writes; to paraphrase, throughput increased parallel to finer task granu-
larity when tested using arbitrary factors in the range of [30, 700] times de-
faultParallelism. Only at a multiplication factor of 700 the Java heap space
was exhausted, even though the observed aggregate disk 1/0 was higher than
with 600.

Spark seems to thrive on small tasks, requiring a fine balance of task gran-
ularity as having too large tasks leads to poor performance and ultimately
having executors killed by YARN, and too small tasks cause garbage collection
(GC) churn, leaving no resources for performing progressive work. No net-
work contention was observed when performing these experiments. Graphs of
cluster-wide aggregate disk I/0 and CPU usage are illustrated in Figure 5.5
and Figure 5.6, and it is worth noting that the cpU utilization is high for a
presumed data-intensive task.

400 MB/s Aggregate disk 1/O rate across hosts

I Read
[ Write

300 MB/s

200 MB/s

100 MB/s

0 MB/s

Time

Figure 5.5: Stacked plot of disk 1/0 of the binary execution workflow from one sample
with recovery enabled, as reported in the Cloudera Manager
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Figure 5.6: CPU utilization of the binary execution workflow from one sample with
recovery enabled, as reported in the Cloudera Manager



Related Work

This chapter gives elaborate descriptions of the frameworks used in cOM-
BUSTI/O, brief descriptions of basal biological terms and bioinformatics for-
mats, elucidations on the four bioinformatics tools wrapped to implement the
marine metagenomics use case, related bioinformatics pipelines and frame-
works, information on the ELIXIR platform, and finally a description of the
largest metagenomic study to date—Tara Oceans.

6.1 Frameworks Utilized

The following subsections provide more detailed descriptions the frameworks
utilized by COMBUSTI1/0, including Apache Hadoop YARN and HDFS, Apache
Spark, and NFsS.

6.1.1 Apache Hadoop

Hadoop [23] is an open-source implementation of the proprietary Google
MapReduce [57] framework. It is designed to be run on large Linux clusters
composed of machines using commodity hardware providing reliability, fault
tolerance, and high availability, and is commonly used for distributed data anal-
ysis at scale. There are four modules included in Hadoop: Hadoop Common,
Hadoop YARN, HDFS, and Hadoop MapReduce.

65
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Yet Another Resource Negotiator

YARN [41] is the resource manager of Hadoop and applications can run on
top of and rely on it for scheduling and resource handling in a scalable and
efficient manner, while also enabling the sharing and simultaneous use of a
cluster by large numbers of frameworks. Its architecture consists of a per cluster
ResourceManager that dynamically allocates containers to applications to be
run on arbitrary nodes in the cluster, in collaboration with NodeManagers
running on the worker nodes, which are responsible for the inhabited node’s
resources. A container is an abstraction that comprises the delegated logical
resources. An ApplicationMaster is responsible for coordinating the execution
plan by requesting resources from the ResourceManager and do the execution
of a program in a fault tolerant manner, and is itself run as a container in the
cluster.

Hadoop Distributed File System

The HDFS [35] is a file system developed to run on a clusters of commod-
ity machines and is designed to support data-intensive workloads in a dis-
tributed environment, and is optimized for large files. It is scalable, reliable,
highly available, provides accumulative performance, and employs a multiple
readers/single-writer model for ensuring file consistency (append and read
only). A NameNode, DataNodes, and the HDFS client constitutes the archi-
tecture: the NameNode is responsible for maintaining file system metadata
and the name space hierarchy; the DataNodes stores the blocks of HDFS files
in their local file systems and exposes commands the NameNode can use for
organizational purposes; the HDFS client contains code exposing the file sys-
tem API to applications and handles read and write requests. Identifying that
failures are commonplace in large distributed systems emphasizes the need
for fault tolerance and recovery and HDFS supports a variety of redundancy
mechanisms, including CheckpointNodes, BackupNodes, replication, and block
placement strategies.

6.1.2 Apache Spark

Spark [21, 22, 58] is a cluster computing framework written in the Scala pro-
gramming language, originally built on top of the Mesos [40] platform. It was
developed by the AMPLab [59] of UC Berkeley and serves as the processing
engine of their Berkeley Data Analysis Stack (BDAS). The BDAS’ raison d’étre
is making sense of big data, and consists of several self-built and third-party
components. Spark is designed to support applications unable to be efficiently
expressed as acyclic data flows, such as graph processing and machine learn-
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ing, in a scalable and fault tolerant manner similar to MapReduce. It does
so by introducing the RDD [21] abstraction and parallel operations on these
datasets. This abstraction and its accompanying interface allows for efficiently
expressing several existing programming models, including MapReduce, SQL,
and Pregel [60].

RDDs are read-only (i.e., immutable), partitioned collections of objects cre-
ated through operations on data in stable storage or other RDDs. This parallel
data structure enables data reuse by persisting intermediate results in mem-
ory, improving the performance of several types of applications, most notably
iterative algorithms and interactive data mining tools [21]. The RDDs expose
an interface of transformations that executes an operation on many data ele-
ments. Transformations define new RDDs and are lazily computed to support
pipelining. Efficient fault tolerance is achieved by logging a dataset’s lineage
instead of the data itself — the lineage consists of all transformations used to
build a certain dataset — which allows for recomputing lost partitions, without
the overhead of replication. Upon failure, only the missing partitions are re-
computed in parallel, if possible. After creation, an RDD can be manipulated
using operations that return a value to the driver program or to write data to a
storage system, referred to as actions. An RDD is represented as a Scala object
in Spark, statically typed and parametrized by an element type.

Table 6.1: Examples of transformations in Spark. Derived from [21]

Transformation Effect

map Each item is passed through the provided function
(f: T=U): RDD[T] = RDD[U]
flatMap Like map, but can map each input to multiple output

(f: T = Seq[U]): RDD[T] = RDD[U]

filter Filter dataset based on the provided function
(f: T = Bool): RDD[T] = RDD[T]

In Spark terminology, a developer writes a driver program that connects to a
cluster of workers. At runtime, a driver program containing the control flow of
an application launches multiple workers that read data from some distributed
file system and may persist to memory the computed RDD partitions. The Spark
scheduler builds a DAG consisting of execution stages based on the lineage
graph of the RDD upon which the action is performed [21]. Tasks may also
be scheduled based on data locality using delay scheduling, and in case of
memory exhaustion, data is spilled to disk and the performance of the RDDs
gracefully degrade [21]. Spark was designed to enhance the Hadoop stack
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Table 6.2: Examples of actions in Spark. Derived from [21]

Action Effect

count Count elements in dataset

0: RDD[T] = Long

reduce Aggregate elements of dataset using a provided function

(f: (TT) > T): RDD[T] = T

savex Save dataset to storage system
(path): RDD[T] = storage(path)

and thus supports HDFS, HBase [61], SequenceFiles, as well as AWS s3 [36],
amongst others.

RDDs can be persisted in memory either as serialized data or as deserialized
Java objects, and it can be persisted in non-volatile storage. Furthermore mem-
ory is managed using the least recently used (LRU) eviction policy on RDDs
currently residing in memory. By storing Java objects in memory, the cost of
deserialization and 1/0 can be circumvented, making Spark perform better
than Hadoop MapReduce in graph and iterative machine learning applica-
tions [21].

Spark also includes access to, and interfaces for, GraphX [62], MLIlib [63], and
Spark Streaming [64], to mention some.

6.1.3 Network File System

The NFS [39] is a distributed file system, originally developed at Sun Microsys-
tems, which was designed to be portable, opaque to the end-user, support
recovery following events of failure, and to maintain reasonable performance.
The file system components and protocol allows for transparent access to re-
mote file systems using the External Data Representation (XDR) specification
to define machine independent protocols and integrates remote procedure calls
(RPcCs) for remote interaction. NFS consists of interfaces for the Virtual File
System (VFS) and for vnodes, both implemented and added to the kernel in
order to achieve the user-perceived transparency, as well as a protocol, a server
side, and a client side.

The file system has been through several iterations of improvements, and the
current latest version is version 4 (NFSv4), defined in RFC 3530.
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6.2 Bioinformatics Pipelines and Frameworks

In this section we describe some of the most relevant and popular bioinformat-
ics pipelines for doing metagenomics analyses, which are related to the work
conducted in this thesis.

6.2.1 META-pipe 1.0

META-pipe 1.0 [53] is an automated pipeline developed at SfB (UiT) for anno-
tation and analysis of metagenomic and genomic sequence data, primarily a
domain-specific service in that it targets marine metagenomics. It has integra-
tions for Galaxy [65], Metagenomics Reports (METAREP) [66], the Stallo super-
computer, and the Norwegian e-Infrastructure for Life Sciences (NeLS) [67].
Galaxy and Taverna [68] are two of the most popular bioinformatics work-
benches [25], and Galaxy was chosen over Taverna largely due to the former
being the most familiar workflow manager among the collaborators. It also
provides a GUT which circumvents the need for programming and CLI manipu-
lation. The design philosophy of META-pipe 1.0 includes utilization of existing
frameworks and infrastructure services whenever feasible, and ease of both
development and deployment, and the main motivation for developing the sys-
tem was to efficiently produce full length annotated genes from metagenomic
assemblies, as there existed no alternatives that offered the desired properties
of flexibility, extensive annotation and visualization options. META-pipe 1.0 cur-
rently supports analysis of whole genome shotgun sequence and 16S amplicon
data, both taxonomic and functional. The pipeline itself consists of modules
for pre-processing, assembly, taxonomic classification, and functional analysis,
all of which are modular components that can be configured and combined
to the individual user’s preference. Figure 6.1 depicts an overview of the main
components and modules of META-pipe 1.0.

The default first stage is pre-processing, in which the system is given as input
raw sequencing data to be subjected to data cleaning and quality control. The
following stage is taxonomic classification, producing an overview of present
organisms in the input dataset, succeeded by assembly, constructing a set of
contigs (from contiguous, “the result of joining an overlapping collection of
sequences or clones” [69]) for functional analysis. Subsequently, functional
analysis uses the contigs produced to predict a set of genes and conjoining
the genes with the corresponding functional annotations. The final stage is
visualization of the produced output, using a Web-based interface for viewing,
browsing and various data set manipulation methods.

META-pipe 1.0 is openly available for students and academic employees with
a Feide [70] account at https://galaxy-uit.bioinfo.no/.


https://galaxy-uit.bioinfo.no/

70

Figure 6.1: Schematic overview of META-pipe 1.0, including components and major
modules. Adaption from [53]

The prompt for further development and improving upon version 1.0 was pre-
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dominantly galvanized by its manual failure handling, having built from scratch
a distributed runtime framework for data management and parallel job exe-
cution using the Perl and Bash scripting languages, and its lack of provenance
management. This, addressing portability concerns, and enhancing the U1,
forms the basis for the new META-pipe, which architecture and design is built
around rectifying said deficiencies.
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6.2.2 ADAM

The ADAM [20, 26] framework is developed as a collaborative effort between UC
Berkeley, MIT, and Harvard, originally designed to take on big data genomics,
and is made open-source on their Web sites [71]. Their latest work include
revising data-intensive analytics as a whole, providing case studies in astronomy
and genomics, and more broadly discussing the current trends and road ahead
for scientific data analysis and processing systems, introducing a stack model
for scientific computing, sanctioning data independence, computation being
pushed to data, and quick parallel metadata access.

Within bioinformatics, specifically genomics, they argue the inefficiency of the
current de facto standard genomics formats for distributed computing, attribut-
ing it to their being initially designed for sequential single-machine processing.
Having non-splittable formats does not scale well to the size of current big
data, hence ADAM introduces novel, backwards compatible, formats, patterns,
and schemata for big data genomics processing designed for distributed and
parallel computing at cloud scale using horizontally scalable methods without
sacrificing result accuracy.

ADAM is built on top of the Spark big data processing engine, using the Avro
serialization system for data representation within the Parquet columnar stor-
age format. Avro provides fast serialization in binary data formats, human-
readable schemata, and compatibility with several programming languages;
Parquet supports predicate pushdown, high compression, facilitation of paral-
lelism through independent reads as row data is written to disk in fixed size
parts, and data may be queried directly using for example Spark SQL. They
seek to separate data formats and parsing from processing and representation
using their schema for dividing concerns, and achieves speedups in processing
using their formats largely because they are able to do iterative in-memory
processing of their pipelined stages, omitting the need of having to write and
read data to and from disk in between each stage, making the total time spent
writing amortized over the entire execution.

Using ADAM would entail reimplementing all tools to be used for a given work-
flow in Scala, as well as adhering to their formats, schemata, and separation of
concerns. One of the principal design goals of COMBUSTI/O is using existing
and unmodified tools and frameworks wherever applicable, in favor of not hav-
ing to reimplement and maintain locally implemented and optimized custom
programs, but rather having the goal of being able to run any binary provided
by a scientist.

However, ADAM does not incur the penalizing disk 1/0 to the extent of COM-
BUSTI/O, as it does not require writing data to disk, before reading it back
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in to memory, prior to processing it. Therefore, and because its tools are writ-
ten in Scala for Spark using natives, splittable formats, and Spark built-ins
rather than doing ad hoc parallelization, the performance and throughput of
the ADAM framework is doubtlessly better than COMBUSTI/0, as it can perform
its execution mostly in memory. Whether or not ADAM plan on expanding their
framework to include tools for analyses in the field of metagenomics is uncer-
tain, but it would be of great interest for ELIXIR to get involved with this work
and possibly establish a collaboration if this scenario became a reality.

6.2.3 CloudBurst

CloudBurst [18] is an open-source parallel read-mapping seed-and-extend style
algorithm, developed at the University of Maryland, for genotyping, personal
genomics, and single-nucleotide polymorphism (SNP) discovery, optimized for
NGS data. It is modelled after the RMAP program for short-read mapping and
utilizes Hadoop MapReduce and HDFS for execution parallelization and data
management across nodes, exhibiting linear scalability in running times over
RMAP, improving performance by a factor of more than a hundred. Taking as
input a multi-FASTA file containing reads and a multi-FASTA file containing
reference sequences, its map phase consists of emitting tuples of k-mers and
reference sequences, and the reduce phase creates shared seeds to end-to-end
alignments through extension.

Their evaluation also showed similar speedups doing ad hoc parallelization
using the RMAP program on input splits, as compared to CloudBurst, and their
implementation is available as a Hadoop MapReduce algorithm parallelization
model.

CloudBurst is implemented in Hadoop MapReduce, which is a major limiting
factor in terms of its supported execution flow being restricted to map and
reduce stages, as compared to Spark which is used in COMBUSTI/0O. Moreover,
their implementation only cover a read-mapping algorithm, which is only anal-
ogous to a single stage in our metagenomics pipeline, but made available their
approach and parallelization model for adding other tools, but like ADAM it
also would require the reimplementation of the remaining tools required for a
given workflow.

6.2.4 Crossbow

Crossbow [19] is a software tool implemented in Hadoop using its streaming
module and HDFS for creating a seamless automatic pipeline combining mod-
ifications of the already existing Burrows-Wheeler transform (BWT) aligner
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Bowtie and the SNP caller SOAPsnp software to be run in parallel on split
input across multiple nodes using standard input and output streams, primar-
ily limiting their scope to human resequencing and SNP detection. Bowtie
provides fast mammalian genome alignment of short reads with conservative
memory usage; SOAPsnp uses aligned short-reads to provide calls of haploid
and diploid consensus. It takes as input a preprocessed file wherein reads are
tab-demarcated tuples, the map phase consists of alignment using Bowtie, and
the reduce phase consists of SNP calling using SOAPsnp, resulting in a stream
of tuples containing SNPs.

Moreover, their tests showed Crossbow achieving high precision and sensitivity
for alignment and SNP calling, and a high agreement level when compared to
the results of the SOAP and SOAPsnp combination.

Similar to COMBUSTI/0, Crossbow also performs ad hoc parallelization of pro-
grams by splitting input data and performing the execution of programs on each
split, but like CloudBurst it uses the limiting Hadoop MapReduce framework.
Additionally, their ad hoc parallelization does not support the use of unmod-
ified program binaries, rather opting for customizing the tools they used for
their workflow, meaning that to create our metagenomics pipeline, customized
versions of all tools to be used would need to be implemented.

6.3 Biology and Bioinformatics Glossary

The ensuing paragraphs contain explanations of general concepts and terms
in biology and bioinformatics.

DNA Deoxyribonucleic acid is one of two types of nucleic acids, which are
the molecules holding genetic information, as well as being responsible for
its expression, transmission, and storage. DNA molecules are composed of se-
quences of repeating nucleotides that constitutes the genetic information. Each
nucleotide consists of a sugar molecule, a phosphate molecule, and a nucleobase,
and the nucleotides present in DNA are the two purine bases adenine (A) and
guanine (G) as well as the two pyrimidine bases cytosine (C) and thymine
(T). A DNA molecule consists of two nucleotide chains which are held together
by hydrogen bonds of G-C and A-T base-pairs, forming the widely identifiable
double helix structure [72]. A gene is a DNA nucleotide sequence specifying
one polypeptide chain’s ordering of amino acids, and a genome is the DNA’s
encoded genetic information in its entirety. DNA sequencing is the deciphering
of an organism’s genetic information by determining the correct ordering of the
nucleotides. With the next-generation sequencing technologies (non-Sanger
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methods), efficiently performing low-cost sequencing of DNA (whole genomes)
helps drive several research fields, including biology and medicine [73].

RNA Ribonucleic acid (RNA) is the second type of nucleic acids, and differs
from DNA in that it only consists of one nucleotide chain and that the nucleotide
thymine (T) is replaced with uracil (U) which may form A-U base-pairs, making
the nucleotides present in RNA adenine (A), guanine (G), cytosine (C), and
uracil (U). In addition, the sugar molecule of the nucleotides in RNA is ribose
instead of DNA’s deoxyribose [72]. The three main classes of RNA are messenger
RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).

Metagenomics A genome contains all of an organism’s genes; its complete
set of DNA. Genomics is the analysis of genomes on the organism-level, in fur-
therance of better understanding the means of the organism and its evolution,
but is argued to be insufficient because only a small fraction of microbes can
be cultured [74]. Metagenomics seek to understand complex communities of
organisms by analyzing their genetic composition, thus capturing the dynam-
ics of these communities in a way genomics cannot, and is also believed to
help clarify the questions “Who is there?” and “What are they doing?” [74],
which may contribute to the fields of life and earth sciences, and biomedicine,
amongst others.

FASTA FASTA is a file format used for storing DNA sequencing data, which
consists of records with a description followed by a sequence of nucleotides. A
FASTA sequence consists of two fields: (1) a description line that is distinguished
by always beginning with the “>” (ASCII 0x3E) symbol, (2) sequence data
of arbitrary length [75]. Blank lines are disallowed and sequences should be
represented using IUPAC single letter codes. A FASTA file contains one or more
sequences and are represented as plain text.

FASTQ FASTQ is the de facto standard file format for storing and sharing
DNA sequencing data [76]. It improves on the FASTA format by including qual-
ity scores from the Phred quality scale to each nucleobase in all sequences. One
read in the FASTQ format consists of four lines: (1) title and optional descrip-
tion, (2) raw sequence, (3) optional repeat of first line, (4) quality scores. The
sequence here is also recommended to be represented using IUPAC codes and,
like FASTA files, FASTQ files are plain text.

k-mer In nucleotide sequence analysis, k-mer analysis can be used for se-
quencing coverage estimation, repeat detection, and preparation for de novo
assembly [77]. It is defined as all substrings of a DNA read sequence of length
k, and is a specialization of the n-gram concept of computational linguistics.
An example is given below in Code Listing 6.1.
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Code Listing 6.1: Example k-mers

// Original string
ACAGTCA

// K-mers, k = 4
ACAG
CAGT

AGTC

GTCA

However, most contemporary assembly algorithms represent k-mer prefixes
and suffixes as de Bruijn graphs, as representing all k-mers in full does not
scale to the very large [78].

6.4 Bioinformatics Tools Wrapped

The following describes the four bioinformatics tools wrapped — Ray, MGA,
BLAST, and InterProScan 5 — in order to implement a workflow reflecting the
marine metagenomics use case evaluated.

6.4.1 Ray

Ray [79] is an open-source assembler that, simultaneously, assembles short-
reads in parallel from a mix of sequencing technologies. Sequencers gener-
ate short-reads by decoding fragmented DNA, and assemblers assemble said
short-reads into longer sequences of contiguous genomic regions, which is a
requirement to obtain a genome sequence of high quality. Accurately assem-
bled genomes are often prerequisites for further analysis. Ray can perform the
assembly of single-end, paired-end, and interleaved paired-end reads. Paired
reads contains knowledge of the DNA strand of each read and of the sequence
content of the reads in pair, and pairs of short reads have previously been
deemed satisfactory for de novo sequencing [79].

Ray is a de Bruijn assembler, in the sense that it uses a de Bruijn graph for
representing sequences, motivated by the fact that there occurs lots of overlaps
between reads, and that this type of graph is memory efficient (dictated by the
length of the genome) in the presence of redundant information. The vertices
of a de Bruijn graph consists of a k-mer, the arcs consists of (k+1)-mers, and the
value of k is fixed on a per-run-basis and may be specified as an input parameter,
the value of which — according to the authors of Ray — should not be a smaller
value than 19 to remain sensible. It also supports hybrid assembly, which is
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a term used to describe the usage of several different sequencing technolo-
gies simultaneously, favorable to diminishing the amount of correlated errors
in the reads. The assembler uses several automatically calculated parameters
to increase popularity and broaden the user base, including local minimum,
local maximum, average fragment library length, and the tolerable difference
between the length of a particular pair of reads and the average length. Ray uti-
lizes MPI for scaling purposes, in order to efficiently handle the large amounts
of data produced by contemporary sequencers. The metagenomic extension of
Ray is called Ray Méta, and is embedded in the original program.

6.4.2 MetaGeneAnnotator

MGA [80] is an ab initio gene prediction tool based on the hidden Markov model
that precisely predicts genes in anonmyous phage and prokaryotic genomes by
detecting patterns of ribosomal binding sites (RBSs) that are species-specific.
It is operated from the command line, and can predict prokaryotic genes from
one or more various length genomic sequences, includes statistical models
of prophage genes to sensitively detect both typical and atypical genes, and
provides a novel RBS analysis approach that enables precise and sensitive
prediction of translation starts of genes while maintaining high specificities.
The output reports information on RBSs as well as on gene locations used
in both metagenomic analyses and for annotation of phage and prokaryotic
genomes.

MGA is a further development of MetaGene [81], a metagenomic tool that uses
di-codon frequencies and guanine-cytosine content to create logistic regres-
sion models for gene prediction using prokaryotic genome sequences as input,
and improves on it by adding prophage gene models and an adaptable RBS
model that allows for precise prediction even on short and anonymous genomic
sequences.

6.4.3 Basic Local Alignment Search Tool

BLAST [82] is a novel sequence comparison approach that, based on optimizing
the maximal segment pair (MSP) score, directly approximates alignments as
they would be produced by a dynamic programming algorithm based on the
same measure. The similarity score is the sum of similarity values for each
aligned residue pair of two aligned segments, which are contiguous sequences;
the MSP is the pair with the highest similarity score of two aligned segments
of same length; and the MSP score quantifies local similarity of any sequence
pair, and is sought heuristically computed by BLAST. Local similarity measures
are typically preferred over global similarity measures when used for searching
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databases [82].

BLAST is chiefly used for various sequence similarity searching schemes, in-
cluding searches in databases for DNA and protein sequences, motifs, and gene
identification, but can also be used for analyzing similarity regions in DNA se-
quences. It includes optimizations for searching databases more efficiently by
reducing time spent on regions of sequences whose similarity to the query are
unlikely to surpass the highest MSP score. The running time of BLAST is the
cumulative time it takes to create a list of words that, when compared to the
words in the query, are presumed able to exceed a score higher than the given
threshold, to find word matches from said list in the database, and ultimately
to identify the set of matches that have segment pairs with a score higher than
the cutoff.

6.4.4 InterProScans

InterProScan 5 [83] is a CLI tool for protein function classification at the scale
of genomes by enabling the use of multiprocessor machines and clusters for dis-
tributed and scalable data analysis. It is used for obtaining potential functions
of protein sequences through summarizing the results of a variety of search
applications that it incorporates. Search applications are generally divided into
two subcategories, based on their approach: those that perform a single al-
gorithm for specific feature prediction, and those that uses several algorithms
for multiple model search per sequence also requiring some post processing;
InterProScan 5 includes both.

InterProScan 5 also enables the parallelization of search jobs along three di-
mensions to efficiently characterize and analyze modest amounts of sequences
using a spoke-hub distribution model, in which a master communicates with
some number of workers, obtaining scalability through preventing congestion
by — in addition to the master — allowing workers to spawn new layers workers,
allowing for an arbitrary amount of layers. The parallelization is conducted
through repartitioning sequence sets for finer granularity to increase paral-
lelism, running different analyses in parallel, and enabling applications that
natively exploit parallel computing. The tool is developed and written in Java,
utilizing Apache ActiveMQ JMs for IPC purposes, Hibernate for the relational
database schema, and JAXB for the XML schema, only leaving one requirement
in that the nodes have to share the same file system.
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6.5 Tara Oceans

Various world ocean ecosystems were sampled during the four year-long sci-
entific voyage of the Tara Oceans [84] Expedition (2009—2013), and in total
more than 35,000 samples of seawater and plankton and 13,000 contextual
measures were collected from the surface of the ocean and the mesopelagic
zone, making it the largest modern-day plankton collection of its kind and the
largest metagenomics dataset of today. The samples contain millions of small
organisms, sampled in 20 biogeographic provinces covering 210 ecosystems,
and the raw and validated data sets are promptly made open access [85]. The
raw sequencing data is hosted by the ENA, which is the EBI’s short read archive,
and fast release policy of this data is intended to promote sharing and collab-
oration, to maximize discoverability, and to expedite exploration, facilitating
holistic analyses.

One of the incentives for doing sampling of sea water and plankton on a global
scale is the fact that life originated in the sea — which at least is the most widely
supported explanation of evolution within science and academia — meaning the
ocean contains large quantities of untapped evolutionary knowledge. Plankton
is arguably as important as the rainforest for the climate on Earth, and yet so
little is known about how these tiny organisms, that cooperate in large num-
bers converting cO, to O, in bulk, actually function. This in addition to the
potential of analysis of eukaryotes, prokaryotes, and viruses of the oceans have
already been demonstrated by a series of publications [85]. The latent infor-
mation within these datasets are believed to be of relevance to several fields,
including bioenergy, nanotechnology, nutrition, and pharmaceutics, amongst
others [84].

We plan on using the Tara Oceans data as input to the META-pipe pipeline
for functional analysis purposes contributing to populating the MarCat marine
reference database.

6.6 ELIXIR

ELIXIR is an infrastructure platform constituting the EMBL-EBI in conjunc-
tion with various national bioinformatics institutions, having joined forces to
increase life science research capabilities. ELIXIR’s work primarily consists of
forming and coordinating a coherent infrastructure encompassing a collabora-
tive effort between Europe’s national and international research resources for
analyses and archiving of big biological heterogeneous data [86]. Their open-
access infrastructure provides easy access to sustainable, community-standard
data resources, and is intended to play an important role in life science projects
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across Europe for research purposes within medicine, bioindustries, and society.
It incorporates the EMBL-EBI — under which ELIXIR is a special project — and
several Nodes, the notion of which are national bionformatics centres including
projects from the institutions’ affiliated life-science communities.

ELIXIR.NO [87] is a project launched conducive to developing a Norwegian
bioinformatics infrastructure to serve as the Norwegian ELIXIR Node, and
is financed by the Research Council of Norway (RCN). The project officially
launched 1st October 2012, organized by the University of Bergen in cooper-
ation with the Universities of Tromsg, Trondheim, Oslo, and As. In addition
to being backed by the RCN, it is also partially funded by the partaking aca-
demic institutions, and is a further development of a bioinformatics technology
platform which was the product of a partnership between the Universities of
Bergen, Tromsg, Trondheim, and Oslo spanning the decade antecedent to the
project start. In addition to inaugurating a national ELIXIR Node, the goals of
the project includes continuation of the Help Desk service and providing an
infrastructure delivering genomic scale data analysis, storage, and publishing
services.

Among the obligations of the Norwegian ELIXIR Node is marine metagenomics,
assigned the SfB at the University of Tromsg, which involves marine metage-
nomics research and bioinformatics services. SfB is a cross-disciplinary biotech-
nology and computer science service center at the Faculty of Science and Tech-
nology, comprised of researchers and students from two research groups: Molec-
ular Biosystems Research Group (MBRG) [88] affiliated with the Department
of Chemistry and Biological Data Processing Systems (BDPS) [89] affiliated
with the Department of Computer Science. The focal point of the research of
the latter within SfB is experimental creation and evaluation of metagenomics
analysis pipelines beneficial to developing data processing systems of scalable,
flexible, and interactive nature.






Conclusion

This thesis presents COMBUSTI/O, a general framework for distributed work-
flow generation and ad hoc parallelization of serial program binary execution,
constituting abstractions that facilitate parallel execution of programs imple-
menting common I/0 patterns in a pipelined fashion as workflows in Spark,
chiefly supporting compute-intensive applications.

We have elaborated on the motivation for doing this work, which is largely due
to the explosive growth in biological data generation and the comparably lower
downstream analysis capabilities, and identifying that several bioinformatics
tools in current use are sequential programs that — if data parallel — may be
distributed across several nodes and executed in parallel in order to diminish
wall-clock execution time of analysis pipelines. This entails splitting input data,
disseminating the resulting partitions across participating nodes of a cluster,
and performing parallel execution of specified tools on each input data partition
in a fault tolerant and horizontally scalable manner.

In our experience operating META-pipe 1.0, we have identified some issues
that needed addressing in the next iteration of our big biological data analy-
sis service. One of these issues is the nuisance of having to recompute stages
following failure, and is commonly encountered for long-running workflows
and during testing, debugging and developing workflows. Furthermore, work-
flow failures ofttimes involve the tools themselves, and may be mitigated by
inspecting their correct installation, including dependencies, prior to running a
workflow. Additionally, to support a wide variety of tools, flexibility in abstrac-
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tion interfaces and 1/0 handling is of crucial importance, also helping ease the
addition of new tools.

We have described the COMBUSTI/O architecture and its place as the cluster
scheduler in the new META-pipe architecture, wherein COMBUSTI/O is cur-
rently being used as part of an effort migrating the entire big biological data
analysis backend to run solely on Spark.

The design of COMBUSTI/O was detailed showing the interaction between
the internal components using examples of a workflow, descriptions of the tool
abstraction and tool wrapper modules, in addition to code excerpts for clarifica-
tion of concepts and execution logic. We also detail the metagenomics use case
for which the framework is originally designed, inclusive of the tools wrapped
for creating the workflow mimicking a subset of the original META-pipe process-
ing backend, the command line arguments altered, and the workflow itself. It is
also worth noting that the flexibility of COMBUSTI/O extends to combinations
and hybrid solutions of different tools, as the tool wrappers are independent
and linked together in a workflow manager. There are no limitations to what
may or may not be combined, including but not limited to workflows involv-
ing combinations of Spark, Scala and Java built-ins or programs, and different
program binaries.

We evaluated COMBUSTI/O using synthetic workflows with wrappers writ-
ten for UNIX binaries and Scala methods to ascertain how COMBUSTI/O per-
formed for data-intensive and latency-sensitive applications, showing that its
throughput is modest for data-intensive tasks due to its imposed 1/0 pattern
of disk reads and writes, and that it incurs latency defined as disruptive to
interactive work for latency-sensitive tasks. The evaluation of its applicability
in compute-intensive applications were performed with the marine metage-
nomics use case, demonstrating that COMBUSTI/O is flexible and can support
a wide range of 1/0 patterns, and that the coarse-grained recovery mecha-
nism is also well-suited for compute-intensive applications, and applications
wherein several failures or crashes are expected, like development, debugging
and testing.

By building on top of established frameworks supporting rich sets of opera-
tors for big data analysis and management, COMBUSTI/O leverages the mech-
anisms of these for fault-tolerance and scalability, as the abstractions and
workflow manager of COMBUSTI/O are run independently of one another,
making these characteristics contingent on the underlying frameworks. COM-
BUSTI/O also supports recovery mechanisms on task and stage granularities,
analogous to results of tasks being persisted locally and stages on HDFS, to
facilitate restarting workflows following events of failure. Additionally, cOM-
BUSTI/O performs validations on all involved tools prior to running a workflow,
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to detect tools that are not installed or incorrectly configured, and missing de-
pendencies. Also, our abstractions are flexible enough to support easy addition
of tools and complex 1/0 patterns, including tools requiring named input and
output files, and facilitation of standard stream redirection and handling.

To conclude, COMBUSTI/O is a scalable general framework appropriate for rep-
resenting and realizing complex compute-intensive, data-intensive, and latency-
sensitive applications that supports tool validation, two-level recovery, and flex-
ible 1/0 handling. It allows for easy addition and parallelization of unmodified
tools with common 1/0 patterns and workflow creation using said tools by
splitting input data into smaller pieces, evenly distributing the pieces among
participating hosts, and performing tool execution on each split in parallel using
native Spark mechanisms, in order to reduce wall-clock time spent performing
pipelined data analysis on big data. COMBUSTI/O is not limited to bioinfor-
matics workflows, but may be utilized for any scientific workflow requiring
distributed parallel execution of data parallel sequential program binaries in
pipelined fashion.






Future Work

In this chapter, we discuss possible optimizations and future work for improving
COMBUSTI/0, based on the lessons learned and experiences gained implement-
ing and evaluating our framework.

Further Refactoring The implementation of COMBUSTI/O as of the deliv-
ery is not of production quality, and would benefit from further refactoring, as
the code produced is not as DRY as anticipated given that was one of our design
goals. Moreover, the current inheritance-based approach to implementing tool
wrappers is likely detrimental to code DRYness as it requires boilerplate code
for each wrapper, making the approach using getters and setters enticing. This
would entail creating methods extending the current factory method pattern
by adding an interface of getters and setters instead of relying on tools being
implemented through inheritance from the tool abstraction and existing as a
class of its own, which might also increase ease of use.

COMBUSTI/O and Increasing Input Sizes Asis, COMBUSTI/O has been
evaluate for two extremities in terms of input size, one being tens of megabytes,
the other being more than a hundred gigabytes. We recognize the need for an
evaluation of how COMBUSTI/O responds to increases in input size in further-
ance of establishing a trend, and to see at what sizes issues are introduced,
yielding insights in what size applications should be sanctioned and not for use
with COMBUSTI/0.
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Workflow Language We are looking into supporting the Common Work-
flow Language (CWL) [90] to help the standardization and portability of work-
flows definitions, and in turn making it attractive to a broader user base. It is
designed for expression of physics, astronomy, bioinformatics and chemistry
workflows, and while currently out of the scope in draft 4, it is flexible enough
to allow workflow platforms to remotely handle security, cloud, cluster and vM
deployment, DFS usage, and identification and recovery of previously executed
stages’ results.

Dependency Injection Dependencies of bioinformatics tools can be con-
voluted, and missing dependencies often-times result in pipeline crashes. As a
better solution to our validation method, we propose adding support for encap-
sulation and dissemination of tool binaries and dependencies. One approach
to this is using a tool like AppImage [91] for packaging the tools and all their
dependencies into a single executable, and distributing the set of all AppImages
of tools in a given workflow to all participating nodes prior to running the job,
allowing the application to make sure that all dependencies are correct and as
a result avoiding unnecessary crashes.

Arbitrary Code Execution Another perspective that is outside the scope
of this work is security concerns when forking subprocesses using strings and
sequences of strings, being susceptible to code injection not only through our
framework, but also being innately susceptible to the vulnerabilities of the tools
wrapped. This is to be addressed at several levels, but mainly through exten-
sively sanitizing the input strings before they reach coMmBUSTI/0, but tool-
specific string restrictions may also be required within the framework.

Execution Isolation Since string sanitation is complex, and the ideal of
covering all potential vulnerabilities of implemented tools is improbable, mea-
sures for damage control is another aspect that will be addressed in META-
pipe from within either COMBUSTI/O or the execution manager. Two ap-
proaches are currently under consideration, which are containerization and
chroot-esque isolation both conducive to mitigating the damage potential of
malicious users. Containers provide isolation from the hardware it is run on
top of, as well as between individual programs, and there are several ways of
achieving containerization—which, unlike virtualization, is done from within
the kernel. Docker [92] is one of the contemporaneously popular open-source
platforms which may be used with its Swarm extension for cluster manage-
ment using the same API, and also supports explicit dependency-management;
another option is running Spark using the Kubernetes [93] cluster manager to
leverage container flexibility, portability, and isolation [94]. The forethought
chroot-solution isolates the original file system of a node by limiting access
through pivoting the current root directory on a per-user or per-workflow basis,
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thereby limiting the access privileges of the running process.

Software Enhancements Inspired by the ADAM big data genomics frame-
work, we will be looking to integrate our framework using Apache’s Avro and
Parquet for extensible binary formats and creating files that may be used directly
as SQL tables. Column-based storage formats are preferred over row-based for-
mats for performance benefits of applications that are not write-intensive, and
provides high performance when reading [20, 26], making this combination
suitable for our primary compute-intensive workloads. Moreover, as pointed
out by Nothaft et al. [26], the high compression achieved by the Parquet column-
based storage also diminish 1/0 bandwidth and non-volatile storage consump-
tion, using dictionary encoding that require only three bits per nucleobase for
sequence data representation. Encoding formats for nucleotide sequences may
involve encoding and decoding to and from formats in between tool stages
requiring different input formats, and care should be taken not to trade cPU
resources for network and 1/0 performance improvements too aggressively, as
called to attention by Ousterhout et al. [55]. Finally, Nothaft et al. [26] states
that their current research efforts partly lie in developing a genome assembler
on top of ADAM using GraphX, which is of great interest to our project if it is to
support the assembly of metagenomic sequence data, as previous evaluations
using META-pipe 1.0 has shown concerning results regarding the scalability of
Ray on the Stallo supercomputer [53].

Hardware Enhancements Exploring performance impacts of current and
next-generation hardware resources would be interesting, especially experi-
menting with the Intel and Micron collaboration 3D XPoint non-volatile mem-
ory as it is claimed to exhibit exponentially greater durability and significantly
lower latency than NAND-based memory technologies, and using SSDs as op-
posed to mechanic HDDs. Specifically, within stable storage, the Non-Volatile
Memory (NVM) Express is an interface for PCI Express SSDs that increases
read and write throughput by doing it in parallel, circumvents the latency in-
efficiencies of using AHCI for SSDs — due to the behavior of SSDs more closely
resembling that of DRAM as opposed to slow rotating disks — thus reducing the
interaction overhead [95], and it could be worth exploring how it affects the
overall performance of, especially data-intensive, tasks in the big data ecosys-
tem.






A

Source Code

The source code can be found on GitHub (https://github.com/jarlebass/
combustio).

89


https://github.com/jarlebass/combustio
https://github.com/jarlebass/combustio




Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature biotech-
nology, vol. 26, no. 10, pp. 1135-1145, 2008.

S. D. Kahn et al., “On the Future of Genomic Data,” Science(Washington),
vol. 331, no. 6018, pp. 728-729, 2011.

M. L. Metzker, “Sequencing technologies—the next generation,” Nature
reviews genetics, vol. 11, no. 1, pp. 31—46, 2010.

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,
R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big Data: Astronom-
ical or Genomical?,” PLoS Biol, vol. 13, no. 7, p. 1002195, 2015.

V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498,
no. 7453, Pp. 255-260, 2013.

W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential,” Health Information Science and Systems, vol. 2,
no. 1, p. 3, 2014.

Y. Diao, A. Roy, and T. Bloom, “Building Highly-Optimized, Low-Latency
Pipelines for Genomic Data Analysis,” in Proceedings of the Conference on
Innovative Data Systems Research (CIDR’15), 2015.

“EMBL European Bioinformatics Institute.” http://www.ebi.ac.uk/.

C. E. Cook, M. T. Bergman, R. D. Finn, G. Cochrane, E. Birney, and R. Ap-
weiler, “The European Bioinformatics Institute in 2016: Data growth and

integration,” Nucleic acids research, vol. 44, no. D1, pp. D20-D26, 2016.

“DNA Sequencing Costs.” https://www.genome.gov/sequencingcosts/.
[Online; accessed 12-April-2016].

B. Fjukstad, “Kvik: Interactive exploration of genomic data from the

AN


http://www.ebi.ac.uk/
https://www.genome.gov/sequencingcosts/

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

NOWAC postgenome biobank,” 2014.

L. Dai, X. Gao, Y. Guo, J. Xiao, Z. Zhang, et al., “Bioinformatics clouds for
big data manipulation,” Biology direct, vol. 7, no. 1, p. 43, 2012.

“Amazon Web Services (AWS) - Cloud Computing Services.” https://
aws.amazon.com/.

“Microsoft Azure: Cloud Computing Platform & Services.” https://azure.
microsoft.com/en-us/.

“CSC - cPouta.” https://research.csc.fi/cpouta.
“ELIXIR Data for life.” https://www.elixir-europe.org/.
P Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011.

M. C. Schatz, “CloudBurst: Highly Sensitive Read Mapping with MapRe-
duce,” Bioinformatics, vol. 25, no. 11, pp. 1363-1369, 2009.

B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg, “Searching
for SNPs with cloud computing,” Genome Biol, vol. 10, no. 11, p. R134,
20009.

M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D. Joseph,
and D. A. Patterson, “ADAM: Genomics Formats and Processing Patterns
for Cloud Scale Computing,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2013-207, 2013.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing,” in Proceedings
of the gth USENIX conference on Networked Systems Design and Implemen-
tation, pp. 2—2, USENIX Association, 2012.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, p. 10, 2010.

“Welcome to Apache™ Hadoop®!.” https://hadoop.apache.org/.

“GitHub apache/spark.” https://github.com/apache/spark/. [Online;
accessed 19-November-2015].


https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://research.csc.fi/cpouta
https://www.elixir-europe.org/
https://hadoop.apache.org/
https://github.com/apache/spark/

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Leipzig, “A review of bioinformatic pipeline frameworks,” Briefings in
Bioinformatics, p. bbwo20, 2016.

F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian,
J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman, et al., “Rethinking
Data-Intensive Science Using Scalable Analytics Systems,” in Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pp.- 631-646, ACM, 2015.

“Apache Parquet.” http://parquet.apache.org/.
“Welcome to Apache Avro!.” https://avro.apache.org/.
“Node.js.” https://nodejs.org/.

“Foundation Project.” http://www.apache.org/foundation/. [Online;
accessed 25-November-2015].

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin: A
Not-So-Foreign Language for Data Processing,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp. 1099—
1110, ACM, 2008.

J. Li, S. Mehrotra, and W. Zhu, “Prajna: Cloud Service and Interactive Big
Data Analytics.” https://msrccs.github.io/Prajna/paper/Prajna_v1.
pdf, 2015. [Online; accessed 24-May-2016].

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P Barham, and M. Abadi,
“Naiad: A Timely Dataflow System,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 439—455, ACM, 2013.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P K. Gunda, and
J. Currey, “DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language.,” in OSDI, vol. 8, pp. 1—
14, 2008.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-
tributed File System,” in Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pp. 1-10, IEEE, 2010.

“Amazon Simple Storage Service (S3) - Object Storage.” https://aws.
amazon.com/s3/.

“Azure Storage - Secure cloud storage | Microsoft Azure.” https://azure.


http://parquet.apache.org/
https://avro.apache.org/
https://nodejs.org/
http://www.apache.org/foundation/
https://msrccs.github.io/Prajna/paper/Prajna_v1.pdf
https://msrccs.github.io/Prajna/paper/Prajna_v1.pdf
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

microsoft.com/en-us/services/storage/.

“Distributed File System overview: Remote File Systems; File and
Storage Services.” https://technet.microsoft.com/en-us/library/
cc738688(v=ws.10).aspx. [Online; accessed 16-April-2016].

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and Implementation of the Sun Network Filesystem,” in Proceedings of
the Summer USENIX conference, pp. 119—130, 1985.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center.,” in NSDI, vol. 11, pp. 22—22, 2011.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache Hadoop YARN: Yet
Another Resource Negotiator,” in Proceedings of the 4th annual Symposium
on Cloud Computing, p. 5, ACM, 2013.

“Microsoft  HPC Pack.” https://technet.microsoft.com/en-
us/library/cc514029.aspx. [Online; accessed 16-April-2016].

“Introduction to ELIXIR-EXCELERATE.” https://www.elixir-europe.
org/system/files/documents/excelerate-introduction.pdf. [On-

line; accessed 04-May-2016].

“Ray — Parallel genome assemblies for parallel DNA sequencing.” http:
//denovoassembler.sourceforge.net/.

“MetaGeneAnnotator.” http://metagene.nig.ac.jp/.

“BLAST: Basic Local Alignment Search Tool.” https://blast.ncbi.nlm.
nih.gov/Blast.cgi.

“About InterProScan 5 < InterPro < EMBL-EBIL.” https://www.ebi.ac.
uk/interpro/interproscan.html.

“Configuration - Spark 1.3.0 Documentation.” https://spark.apache.
org/docs/1.3.0/configuration.html.

“Running Spark on YARN - Spark 1.3.0 Documentation.” https://spark.
apache.org/docs/1.3.0/running-on-yarn.html.

“Job Scheduling - Spark 1.3.0 Documentation.” https://spark.apache.


https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://technet.microsoft.com/en-us/library/cc738688(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc738688(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc514029.aspx
https://technet.microsoft.com/en-us/library/cc514029.aspx
https://www.elixir-europe.org/system/files/documents/excelerate-introduction.pdf
https://www.elixir-europe.org/system/files/documents/excelerate-introduction.pdf
http://denovoassembler.sourceforge.net/
http://denovoassembler.sourceforge.net/
http://metagene.nig.ac.jp/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/interpro/interproscan.html
https://www.ebi.ac.uk/interpro/interproscan.html
https://spark.apache.org/docs/1.3.0/configuration.html
https://spark.apache.org/docs/1.3.0/configuration.html
https://spark.apache.org/docs/1.3.0/running-on-yarn.html
https://spark.apache.org/docs/1.3.0/running-on-yarn.html
https://spark.apache.org/docs/1.3.0/job-scheduling.html
https://spark.apache.org/docs/1.3.0/job-scheduling.html

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

org/docs/1.3.0/job-scheduling.html.

“Spark Architecture | Distributed Systems Architecture.” http://0x0fff.
com/spark-architecture/. [Online; accessed 13-April-2016].

“Index of pub/databases/uniprot/previous_releases/release-
2016_o2/uniref/.”  ftp://ftp.uniprot.org/pub/databases/uniprot/
previous_releases/release-2016_02/uniref/. [Online; accessed

11-March-2016].

E. M. Robertsen, T. Kahlke, I. A. Raknes, E. Pedersen, E. K Semb, M. Ern-
stsen, L. A. Bongo, and N. P Willassen, “META-pipe - Pipeline Annota-
tion, Analysis and Visualization of Marine Metagenomic Sequence Data.”
Unpublished (submitted, preprint: http://arxiv.org/abs/1604.04103),
2016.

“Index of /enwiki/.” https://dumps.wikimedia.org/enwiki/.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Mak-
ing sense of performance in data analytics frameworks,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15),
Pp. 293-307, 2015.

J. A. Hoxmeier and C. DiCesare, “System Response Time and User Satis-
faction: An Experimental Study of Browser-Based Applications,” AMCIS
2000 Proceedings, p. 347, 2000.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

“Apache Spark.” http://spark.apache.org/.

“AMPLab.” https://amplab.cs.berkeley.edu/.

[60] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

[61]

[62]

and G. Czajkowski, “Pregel: A System for Large-Scale Graph Processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pp. 135-146, ACM, 2010.

“Apache HBase — Apache HBase™Home.” https://hbase.apache.org/.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A Resilient
Distributed Graph System on Spark,” in First International Workshop on


https://spark.apache.org/docs/1.3.0/job-scheduling.html
https://spark.apache.org/docs/1.3.0/job-scheduling.html
https://spark.apache.org/docs/1.3.0/job-scheduling.html
http://0x0fff.com/spark-architecture/
http://0x0fff.com/spark-architecture/
ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2016_02/uniref/
ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2016_02/uniref/
http://arxiv.org/abs/1604.04103
https://dumps.wikimedia.org/enwiki/
http://spark.apache.org/
https://amplab.cs.berkeley.edu/
https://hbase.apache.org/

Graph Data Management Experiences and Systems, p. 2, ACM, 2013.

[63] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Free-
man, D. Tsai, M. Amde, S. Owen, et al., “MLlib: Machine Learning in
Apache Spark,” arXiv preprint arXiv:1505.06807, 2015.

[64] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized Streams:
An Efficient and Fault-Tolerant Model for Stream Processing on Large
Clusters,” in Proceedings of the 4th USENIX conference on Hot Topics in
Cloud Ccomputing, pp. 10-10, USENIX Association, 2012.

[65] J. Goecks, A. Nekrutenko, J. Taylor, et al., “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences,” Genome Biol, vol. 11, no. 8, p. R86,
2010.

[66] J. Goll, D. B. Rusch, D. M. Tanenbaum, M. Thiagarajan, K. Li, B. A. Methé,
and S. Yooseph, “METAREP: JCVI Metagenomics Reports—an open source
tool for high-performance comparative metagenomics,” Bioinformatics,
vol. 26, no. 20, pp. 2631—2632, 2010.

[67] “Welcome to the NeLS portal!.” https://nels.bioinfo.no/.

[68] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., “The Taverna
workflow suite: designing and executing workflows of Web Services on
the desktop, web or in the cloud,” Nucleic acids research, p. gkt328, 2013.

[69] E.S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin,
K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al., “Initial Sequencing and

Analysis of the Human Genome,” Nature, vol. 409, no. 6822, pp. 860-921,
2001.

[70] “Feide.” https://www.feide.no/.
[71] “Big Data Genomics.” http://bdgenomics.org/.

[72] A.J.Vander and D. JH Luciano, “Vander’s Human Physiology: The Mech-
anisms of Body Function,” 1980.

[73] E. Pettersson,J. Lundeberg, and A. Ahmadian, “Generations of sequencing
technologies,” Genomics, vol. 93, no. 2, pp. 105-111, 2009.

[74] J. Handelsman, J. Tiedje, L. Alvarez-Cohen, M. Ashburner, I. Cann, E. De-


https://nels.bioinfo.no/
https://www.feide.no/
http://bdgenomics.org/

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

long, W. F. Doolittle, C. Fraser-Liggett, A. Godzik, J. Gordon, et al., “The
New Science of Metagenomics: Revealing the Secrets of Our Microbial
Planet,” Nat Res Council Report, vol. 13, 2007.

“Web BLAST page options.” http://blast.ncbi.nlm.nih.gov/
blastcgihelp.shtml. [Online; accessed 8-March-2016].

P J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illu-
mina FASTQ variants,” Nucleic acids research, vol. 38, no. 6, pp. 1767-1771,
2010.

Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T. Brown, “These
Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting
using a Probabilistic Data Structure,” 2014.

P E. Compeau, P A. Pevzner, and G. Tesler, “How to apply de Bruijn graphs
to genome assembly,” Nature biotechnology, vol. 29, no. 11, pp. 987-991,
2011.

S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: Simultaneous Assembly of
Reads from a Mix of High-Throughput Sequencing Technologies,” Journal
of Computational Biology, vol. 17, no. 11, pp. 1519-1533, 2010.

H. Noguchi, T. Taniguchi, and T. Itoh, “MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise gene pre-
diction in anonymous prokaryotic and phage genomes,” DNA research,
vol. 15, no. 6, pp. 387-396, 2008.

H. Noguchi, J. Park, and T. Takagi, “MetaGene: prokaryotic gene finding
from environmental genome shotgun sequences,” Nucleic acids research,
vol. 34, no. 19, pp. 5623-5630, 2006.

S. E. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic
Local Alignment Search Tool,” Journal of molecular biology, vol. 215, no. 3,
Pp. 403-410, 1990.

P Jones, D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla,
H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, et al., “InterProScan 5:
Genome-scale Protein Function Classification,” Bioinformatics, vol. 30,
no. 9, pp. 1236-1240, 2014.

“Tara Oceans science - EMBL.” http://www.embl.de/tara-oceans/
start/. [Online; accessed 17-February-2016].


http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://www.embl.de/tara-oceans/start/
http://www.embl.de/tara-oceans/start/

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

S. Pesant, F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot, G. Gorsky,
D. Iudicone, E. Karsenti, S. Speich, R. Troublé, et al., “Open science re-
sources for the discovery and analysis of Tara Oceans data,” Scientific data,
vol. 2, 2015.

“ELIXIR Scientific Programme 2014-2018.” http://www.elixir-europe.
org/system/files/elixir_scientific_programme_1.pdf. [Online; ac-
cessed 22-November-2015].

“ELIXIR and ELIXIR-Norway — Site.” http://www.bioinfo.no/elixir.
[Online; accessed 11-February-2016].

“Molecular Biosystems Research Group (MBRG) | UiT The Arctic Uni-
versity of Norway.” https://en.uit.no/forskning/forskningsgrupper/
gruppe?p_document_1d=349423.

“Biological Data Processing Systems (BDPS).” http://bdps.cs.uit.no/.
“Common Workflow Language.” http://www.commonwl.org/.
“Applmage | Linux apps that run anywhere.” http://appimage.org/.

“Docker - Build, Ship, and Run Any App, Anyhwere.” https: //www.docker.
com/.

“Kubernetes - Accelerate Your Delivery.” http://kubernetes.io/.

“Kubernetes: Using Spark and Zeppelin to process big data on Ku-
bernetes 1.2.” http://blog.kubernetes.io/2016/03/using-Spark-and-
Zeppelin-to-process-Big-Data-on-Kubernetes.html. [Online; ac-
cessed 19-May-2016].

D. Landsman, “AHCI and NVMe as Interfaces for SATA Express™ Devices
- Overview.” SanDisk https://www.sata-io.org/sites/default/files/
documents/NVMe%20and%20AHCI%20as%20SATA%20Express%20Interface%
200ptions%20-%20Whitepaper_.pdf. [Online; accessed 24-May-2016],
2016.


http://www.elixir-europe.org/system/files/elixir_scientific_programme_1.pdf
http://www.elixir-europe.org/system/files/elixir_scientific_programme_1.pdf
http://www.bioinfo.no/elixir
https://en.uit.no/forskning/forskningsgrupper/gruppe?p_document_id=349423
https://en.uit.no/forskning/forskningsgrupper/gruppe?p_document_id=349423
http://bdps.cs.uit.no/
http://www.commonwl.org/
http://appimage.org/
https://www.docker.com/
https://www.docker.com/
http://kubernetes.io/
http://blog.kubernetes.io/2016/03/using-Spark-and-Zeppelin-to-process-Big-Data-on-Kubernetes.html
http://blog.kubernetes.io/2016/03/using-Spark-and-Zeppelin-to-process-Big-Data-on-Kubernetes.html
https://www.sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI%20as%20SATA%20Express%20Interface%20Options%20-%20Whitepaper_.pdf
https://www.sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI%20as%20SATA%20Express%20Interface%20Options%20-%20Whitepaper_.pdf
https://www.sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI%20as%20SATA%20Express%20Interface%20Options%20-%20Whitepaper_.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	1 Introduction
	1.1 Problem Context
	1.2 Challenges
	1.3 Requirements
	1.4 Proposed Solution
	1.5 Contributions
	1.6 Outline

	2 Architecture
	2.1 The Architecture Stack of COMBUSTI/O
	2.2 Internal Components of COMBUSTI/O
	2.3 The New META-pipe Architecture

	3 Design and Implementation
	3.1 Internal Design of COMBUSTI/O
	3.1.1 Evaluation Workflow
	3.1.2 Tool Abstraction
	3.1.3 Tool Wrapper
	3.1.4 Workflow Manager

	3.2 Framework Stack of COMBUSTI/O

	4 Use Case: Marine Metagenomics
	4.1 Use Case and META-pipe 1.0
	4.2 Implemented Workflow and Tools Wrapped
	4.2.1 Ray Wrapper
	4.2.2 mga Wrapper
	4.2.3 blast Wrapper
	4.2.4 InterProScan 5 Wrapper
	4.2.5 Marine Metagenomics Workflow

	4.3 Implementation

	5 Evaluation
	5.1 Methodology
	5.1.1 Cluster Specs and Configuration
	5.1.2 Spark Configuration
	5.1.3 Compute-Intensive Workflow
	5.1.4 Data-Intensive and Latency-Sensitive Workflows
	5.1.5 Measurements

	5.2 Results and Discussion
	5.2.1 Compute-Intensive Pipeline Evaluation
	5.2.2 Data-Intensive Pipeline Evaluation
	5.2.3 Latency-Sensitive Pipeline Evaluation
	5.2.4 Spark and io Tuning


	6 Related Work
	6.1 Frameworks Utilized
	6.1.1 Apache Hadoop
	6.1.2 Apache Spark
	6.1.3 Network File System

	6.2 Bioinformatics Pipelines and Frameworks
	6.2.1 META-pipe 1.0
	6.2.2 ADAM
	6.2.3 CloudBurst
	6.2.4 Crossbow

	6.3 Biology and Bioinformatics Glossary
	6.4 Bioinformatics Tools Wrapped
	6.4.1 Ray
	6.4.2 MetaGeneAnnotator
	6.4.3 Basic Local Alignment Search Tool
	6.4.4 InterProScan 5

	6.5 Tara Oceans
	6.6 ELIXIR

	7 Conclusion
	8 Future Work
	Appendices
	A Source Code
	Bibliography


