
�

�
� �

��������	
���������������	�	���
���������	
����������
�
��������	�
��
���	�����

	����	�������
��
����������������
��������	
	�������	����������������������
�����	����������
��������





Interfacial solvation modelling with PCM

Krzysztof Mozgawa

Tromsø, 2016





THI KA⇤⇤I⌃THI





Acknowledgments

First and foremost, I would like to thank my supervisor, Luca Frediani.
Sometime at the beginning of my Ph.D. you said ”If I would get a penny
for every question, I would be a millionaire by now”. I sincerely think that,
according to that quote, by now you should be a billionaire. Thank you for
your patience and constant help throughout my work at the UiT.

Secondly, I would like to thank all the other people who helped me on
my long road to modern science, especially Kenneth, Benedetta, Adam and
Maxime, who said ”If a master student should understand everything then
what’s the point of Ph.D.? If a person with a Ph.D. is supposed to understand
everything, what is the point of being a Professor?”.

Big ’thank you!’ goes to all the people who worked on papers included in
this work, therefore involuntary becoming co-authors of my thesis, namely:
Luca Frediani, Benedetta Mennucci, Roberto Di Remigio, Ville Weijo and
Hui Cao. It was a pleasure and honor to work with you all.

I would like to thank all my friends with whom I shared my o�ce: Stig,
Arnfinn, Taye and (recently) Rune & Magnar. Thank you for creating a
peaceful work environment, and for all the jokes that made it friendly and
relaxed.

Thank you, all the people at CTCC, for making me feel welcome. Thank
you for all the discussions and words of encouragement. I can only hope that
I have left a pleasant memory.

I would like to thank my sister and parents, who showed a lot of interest
in my work and provided me with support throughout my Ph.D. studies. I
neglected you a bit during my time in Norway, and I hope I can make up for
it, eventually.

I would like to thank all the friends from Poland, who did not forget me
during my long stay in Norway.

Finally, I would like to thank my wife, Marlena, for patience, motivation
and unending enthusiasm that keeps me going. You give me a reason to keep
pushing and work. Without you, this would not be possible.



6



Contents

Preface 9

Theory 12
I Basics of the model . . . . . . . . . . . . . . . . . . . . . . . . 12
II On the cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
III The electrostatic problem . . . . . . . . . . . . . . . . . . . . 16
IV Apparent Surface Charge and BEM . . . . . . . . . . . . . . . 19
V Integral Equation Formalism PCM . . . . . . . . . . . . . . . 21
VI Quantum Mechanical Problem . . . . . . . . . . . . . . . . . . 24
VII Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

VII.1 Sharp interfaces . . . . . . . . . . . . . . . . . . . . . . 25
VII.2 Di↵use interfaces . . . . . . . . . . . . . . . . . . . . . 26

VIII Non-electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . 30
VIII.1 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . 31
VIII.2 Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . 33
VIII.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 36

IX Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Papers 44

7





Preface

”So... you mix imaginary chemicals ?”

Satander Cole

While the raise of quantum chemistry can be attributed to many groups
or individual scientists, perhaps one of the more outstanding and influential
was paper by Ko los and Wolniewicz [1], regarding the hydrogen dissociation
energy. At the time, computational chemistry was still deemed to be a bud-
ding, non-practical part of science. Because of that, no one was surprised that
the results presented in the mentioned paper were in contradiction with the
high-precision values obtained by the experimentalist and Nobel Prize win-
ner, G. Herzberg [2]. After all, imperfect method produces imperfect results.
The stunning outcome of that paper was that Herzberg, ten years after his
initial paper, published a revision of his experimental hydrogen dissociation
energies, in which his results were corrected in accordance with Ko los and
Wolniewicz work [3]. It was the first, and perhaps the most vivid, situation in
which the theoretical ab initio prediction for molecules was superior to the
high-precision experimental measurement. Since then, quantum chemistry
has flourished, especially with the exponentially increasing computational
power and general development of technology. Applications of such predic-
tive methods became quite broad, from technology [4] to even modeling of
the real biological systems [5].

The gain in using quantum chemistry is, in the author’s opinion, two-fold.
Firstly: the possibility of experimental examination of reaction mechanisms
are currently limited to the most sophisticated of spectroscopic methods[6].
The most feasible option, currently, to examine chemical processes step by
step lies within theoretical modeling. The second important factor is versatil-
ity and cost-e�ciency of the computational methods. Experimental science
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usually requires a highly specialized and sophisticated apparatus for each ob-
servable or set of observables and a constant stream of non-reusable reagents
and solvents. Conversely, quantum chemistry requires only one apparatus, a
computer, which is limited only by available software and currently available
performance of CPU and memory units (which still develop as stated in the
Moore’s Law [7]).

While many words of praise can be said about quantum chemistry, there
are numerous problems associated with it. First and foremost, quantum
mechanics is, because our limited capacity to solve its equations, approximate
beyond the one-electron system, and the number of approximations increase
as derivation of it elaborates. Because of that, usual calculations are limited
to a singular, isolated molecule in its ground state, which is usually not very
interesting for an experimental scientist.

This fact brings us to the solvation modeling. The motivation for it
is simple: most of chemistry happens in solution, therefore a way to in-
clude solvent-related e↵ects is necessary. Very often, the main focus is on a
small part of the system (i.e. a single solute molecule, or a small cluster of
molecules), for which a solvent interaction model is requited. The two very
common approaches are: explicit (i.e. Molecular Mechanics (MM)[8]), and
implicit models (i.e. Polarizable Continuum Model (PCM)[9]). Explicit mod-
els make use of classical mechanics to simulate real solvent environments and
molecular systems, with all the solvent molecules in the simulation. In this
particular approach calculations can be conducted on very large systems,
too large for quantistic calculation, with a substantial amount of solvent
molecules, which is vital for e.g. enzyme analysis and design. Some MM ap-
plications allow even for examination of small viruses [10]. Because of that,
MM is often considered to be closer to the experiment and more practical
than Quantum Mechanics (QM). Nevertheless, the most problematic factor
of MM is very heavy dependence on the parametrization, which needs to be
(usually) fitted empirically (this is also true for PCM, substantially fewer
parameters are required for the latter).

Implicit models revolve around the idea that solute-solvent interaction
can be simulated through the averaged e↵ect, without investing a lot of com-
putational power in simulating the solvent itself, in which we are not usually
interested. This averaged e↵ect is usually achieved through a set of image
charges, interacting with the solute molecule as implied solvent. The strength
of this approach is that it is both quantistic and computationally cheap. Due
to the model’s simplicity, more complex solvent environments, like surfaces
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and interfaces, can be also be simulated without huge additional computa-
tional cost [11]. The main drawback of continuum models is lack of all specific
solvent-solute interactions, i.e. hydrogen bonding, although methods exist to
re-introduce them, i.e. addition of small number of explicit solvent molecules
or additional parametrization.

Both for PCM and MM, the majority of applications in quantum chem-
istry focuses on solvent e↵ect in bulk solution. While for many applications
this is su�cient, with the rise of nanotechnology and miniaturization of elec-
tronics, micellization of the pharmaceutical agents, applications of the quan-
tum dots etc. surface and interface-related phenomena become more and
more important. This fact becomes apparent with the realization, that when
a cube of 1000 atoms is considered, 60% of them make the surface of the
cube, which means that interfacial phenomena become more important than
bulk properties of the system. Ergo, the smaller the system, the more im-
portant surfaces are, therefore the development of methods which will allow
to simulate them is vital. Nevertheless, it is rather challenging to examine
interfacial phenomena that do not involve a solid phase experimentally, apart
from macroscopic properties like surface tension. The problematic factor of
the interface lies in very small size of the system, which can be considered
to be two-dimensional, thus rather sophisticated methods with pinpoint ac-
curacy are necessary to examine interfacial region precisely, and not average
of large part of the surrounding system. One of this method is circular di-
chorism, which have been used for that specific purpose [12]. Theoretical
modeling of the interface, possible for both MM and implicit methods (see
Section VII), is both feasible and o↵ers substantial help. Apart from ver-
ification of the experimental results, theoretical models can predict certain
interfacial behavior, even before the experiment is conducted, or even appro-
priate experimental procedure invented.

The introduction to this thesis is organized as follows. The basics of
PCM are given in Section I to Section III. The Apparent Surface Charge
methods and elaboration of specific version of PCM are given in Section IV
to Section VI. Extension model to interfaces is covered in Section VII and
corresponding subsections. Lastly, non-electrostatic e↵ects and contributions
are discussed in Section VIII and corresponding subsections. At the end of
this introduction short summaries of papers included are given.
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Theory

I Basics of the model

We begin by establishing an e↵ective Hamiltonian for this method. Fol-
lowing Tomasi and Persico [13], we assume system in thermal and mechanical
equilibrium, while allowing chemical reactions. For the soluteM consisting of
N

el

electrons and N
nuc

nuclei, Hamiltonian Ĥ0

M

will depend on electronic co-
ordinates q = q

1

, q
2

, q
3

, ...q
Nel

and nuclear coordinatesQ = Q
1

, Q
2

, Q
3

, ...Q
Nnuc ,

the latter as parameters. This establishes a ground state electronic Hamil-
tonian in the Born-Oppenheimer approximation. On top of that we have to
include the interaction potential V

int

, corresponding to the solvent e↵ect on
the system, which yields an e↵ective Hamiltonian in the form

Ĥe↵

M

= Ĥ0

M

(q;Q) + V
int

. (1)

In continuum models we employ a simple version of the interaction poten-
tial, focused on electrostatics (which we will then expand to include other
contributions). In methods centered around e↵ective Hamiltonian using con-
tinuous distribution (EHCD) [14] more complicated interaction potentials are
used, namely depending on the distribution of electronic charge of the solute
%
M

and the thermally-averaged distribution function of solvent molecules g
S

.
In continuum methods, instead of using g

S

, the solvent is assumed to be a
linear isotropic continuum, characterized by a dielectric constant ✏, which is
solvent- and temperature-dependent. Therefore V

int

can be described as

V
int

(q,Q, %
M

, ✏) =
X

↵=1...Nnuc

Z
↵

�(Q
↵

)�
X

i=1...Nel

�(q
i

), (2)

where Z
↵

is the charge of nucleus ↵, and �(r) is the electrostatic poten-
tial generated by the polarized dielectric at the position r. If the solvated
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wavefunction, obtained by solving the Schrödinger’s equation using e↵ective
Hamiltonian, is given by  (f)(q;Q), then the solute-solvent interaction con-
tribution to the total energy E(f) is given by

W
MS

=

Z

allspace

 (f)⇤V
int

 (f)dq1...dq
i

=

Z

allspace

%
M

(r)�(r)dr3. (3)

This equation sets the foundation of the continuum model. For the derivation
of the basic model, it is important to state some assumptions at this point
at this point:

1. The model describes extremely diluted solution. In practice, only a
single solute molecule in infinite solvent is considered.

2. The solvent is isotropic and in equilibrium at standard conditions (that
is, 298 K and 1013 hPa). While true for the derivation, this will be
extended in Section VII, where interfaces are introduced.

3. Interactions between solvent and solute are limited to electrostatics.
This point is arbitrary, as other conventions (e.g. focusing on disper-
sion interaction first) could be considered with equally good outcome.
Regardless of approach, for a good solvation model several interactions
have to be considered (see Section VIII).

4. Solvent molecules are, and will only be considered, in the electronic
ground state, and no dynamic e↵ect are considered. This will be ex-
tended in Section VIII.3, where dispersion contribution, describing in-
teraction between transition charge densities, is introduced.
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II On the cavity

In all continuum models, which are implicit by definition, arises the prob-
lem of the boundary between the solute molecule and the continuum. In
explicit models, this problem in not present, because the explicit solvent
molecules and their interaction with the solute naturally establish space oc-
cupied by the solute. The uniform dielectric ‘space’ requires additional steps,
namely to describe where solvent can or cannot enter. Following Onsager’s
comments [15], the cavity should not only have a physical meaning, but also
contain the largest possible part of the solute charge distribution. The solute
charge distribution vanishes only at infinity, which will have a bearing on our
model later on (see Section V and Section VIII.2). The problem with the
charge distribution and cavity can be then reformulated to“cavity containing
largest sensible part of solute charge distribution”. This is, of course, highly
subjective, as there are many ways a cavity can be established using this
guidelines, of which we will mention the three perhaps most representative
formal definitions. The first approach is based on using a surface of constant
electronic density as the cavity [16]. This cavity is unique for each electronic
structure of examined solvent, so any possible deviation in it will result in a
di↵erent cavity. This approach is not widely used.

Figure 1: Illustration of solvent accessible surface (SAS) and solvent excluded
surface (SES).
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The second and third definition are based on rolling a spherical probe (see
Fig. 1), representing the solvent molecule, on the van der Waals surface of
the solute. The surface traced by the center of the probe defines the solvent
accessible surface (SAS), or in di↵erent words, a boundary between regions
where the solvent center can and cannot enter [17]. In principle, in this
definition the cavity can be considered to be, approximately, a van der Waals
surface in which radius of each sphere was increased by an additive factor.
In a third approach, a solvent sphere is used as a contact probe, encasing a
molecule in a surface solvent cannot penetrate. In this definition a cavity is
called solvent excluded surface (SES), or Connolly surface [18]. The latter,
while realistic, is challenging to parametrize and is rarely used [9].

In practice, a compromise between computational feasibility and SAS is
used, that is, a cavity made of interlocking spheres with predefined radii.
The three most common standards of radii are are: (1) radii proportional
to van der Waals radii, proposed by Miertǔs, Scrocco and Tomasi [19], (2)
radii obtained from crystallographic data by Bondi [20] and (3) the universal
force field (UFF) [21] set included in Gaussian [22] program package, which,
unlike the other two sets, covers the whole periodic table.

This approach, however, will sometimes lead to problems when sterical
obstructions from the neighboring atoms groups should be taken into account
(e.g. two or three neighboring methyl groups at the end of aliphatic chain).
This problem can be countered by applying GEPOL algorithm (developed
by Pascual-Ahuir et al [23])for building the molecular cavity. In this method,
the distance between each pair of cavity spheres is compared with the sol-
vent (probe) diameter. If this distance disallows a probe to pass between the
spheres, additional spheres are placed, to simulate sterical obstruction. Al-
ternative algorithms for the cavity creation, and solution of sterical problem,
are available. Among those it is probably important to mention DEFPOL,
developed by Pomelli [24], in which a big sphere containing entirety of solute
is then deformed and reshaped in iterative procedure into a polyhedron with
the desired number of triangular faces, and SES cavity adaptation for wavelet
formulation of PCM [25], proposed by Randrianarivony [26], in which a non-
uniform rational basis spline (NURBS) algorithm, employing Bézier curves,
is used.
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III The electrostatic problem

In the previous section we defined the possible shapes of the cavity, made
of interlocking spheres with the set radii, possibly with some additional
spheres when needed. We can now approach the solution of the electrostatic
problem, following Tomasi et al [9].

First, the dielectric constant should assume two values: one inside the
cavity � (equal to 1, as vacuum is assumed), and equal to ✏ outside. All the
charge density is assumed to be confined within the cavity, which is strictly
speaking not true (see Section II), and we will have to account for that later
(see Section V).

With that assumption, we can write the Poisson equations for this model
as:

�r2�(r) = 4⇡%
M

(r) r 2 �, (4)

�✏r2�(r) = 0 r 62 �. (5)

One should mention here that for a given charge distribution %, the elec-
trostatic potential will be di↵erent from the one calculated in vacuum, as it
contains also the reaction potential generated by the dielectric medium.

For the equations just mentioned, there are two boundary conditions that
we should explore: infinity, and the cavity boundary. For infinity we have

lim
r!1

r�(r) = ↵, (6)

lim
r!1

r2
@�(r)

@r
= �, (7)

where ↵ and � are finite numbers. Those conditions will be automatically
satisfied by this basic QM model.[9]

At the cavity surface, the conditions take form

[�] = 0 on �, (8)

[@�] = 0 on �, (9)
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where [�] is given by

[�] = lim
r!r��

�
in

(r)� lim
r!r�+

�
out

(r), (10)

where r
�

is radius of the cavity �, and ’in’ and ’out’ stand for inside and
outside of the cavity, respectively.

The jump condition in Eq. (8) describes the continuity of the potential
across the surface. The second jump condition (Eq. (9)) involves the discon-
tinuity of the component of the field perpendicular to the cavity surface. In
the model considered here, as mentioned before, we have a cavity enclosing
a space with the dielectric constant equal to 1, and an external medium with
the dielectric constant of ✏ (considered to be a number greater than one).
This leads to the equation

[@�] = lim
r!r��

✓
@�

@n

◆
� lim

r!r�+
✏

✓
@�

@n

◆
= 0, (11)

where ~n is the outward-pointing vector perpendicular to the cavity surface.
As a side note: in the classical model, we recollect that

W
MS

=

Z

�

%
M

(r)�(r)dr3, (12)

but since we assume % = 0 outside the cavity, integral boundaries are limited
to the volume of cavity. Then, following Böttcher [27], for a rigid charge
model where no polarization of solute and no relaxation is present we can
write that

�G
el

=
W

MS

2
, (13)

which defines an electrostatic contribution to the free energy of solvation.
We will refine this approach in the following sections.

The solution of the electrostatic problem is not trivial, and at least six
approaches can be named:

1. the multipole expansion (MPE) method, in which the interaction poten-
tial between set of classical charges of solute and polarizable dielectric
solvent is presented in terms of the multipole expansion formalism [28],
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2. the generalized Born approximation (GBA), in which the Born model
[29] for the interaction free energy of a spherical ion with dielectric is
extended to the many-atom case [30],

3. the image charge (IMC) method, in which solvent is approximated as
a set of point charges distributed in space around the solute [31],

4. the finite di↵erence method (FDM), in which the electrostatic prob-
lem is reformulated in terms of the Poisson equation, with a position-
dependent permittivity, which is solved using a three dimensional grid
over the whole space and a set of finite di↵erence equations [32],

5. the finite elements method(FEM), in which the problem is reformulated
similarly to FDM, but where the space is divided into a number of finite
volumes (elements) for which a set of corresponding equations have to
be solved [33],

6. the Apparent Surface Charge (ASC) method, represents the solvent
polarization in terms of a surface charge density % supported on the
cavity surface [9]. This approach is the only one applied in this work
and is described in detail in Section IV.
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IV Apparent Surface Charge and BEM

In order to reformulate our problem in terms of the ASC, we first represent
the total potential �

T

(r) as a sum of the electrostatic potential �
M

(r) gener-
ated by the charge density %

M

(r) and the reaction potential �
R

(r) generated
by the dielectric medium due to its polarization. This reaction potential can
be described in the formalism of classical electrostatics in terms of the appar-
ent charge distribution �(s), s 2 �, supported on the cavity surface. While
one can encounter various formulations of this method, the common point is
to define a potential over whole space as [9]

�(r) =

Z

�

�(s)

|r � s|ds. (14)

Treating the source of the reaction potential as a charge density on the
cavity surface is a great simplification of the electrostatic problem.

To further simplify the solution, we employ the Boundary Elements Method
(BEM). BEM is a technique widely used in physics, e.g. acoustics, in which
only a surface of the given domain need to be represented, to numerically
solve complex di↵erential problems [34]. The application of BEM in our case
approximates the cavity surface in terms of a finite number of triangular ele-
ments called tesserae. We can then describe the surface charge in terms of a
set of point charges q

t

, which can be viewed as a local value of %(s) multiplied
by tessera area a

t

. Thus, we can transform Eq. (14) as

�(r) =
X

t

�(s)a
t

|r � s| =
X

t

q
t

|r � s| . (15)

BEM in this work is used as a way of performing integration, and to reduce
a three-dimensional integral to a two-dimensional (and then summation) over
the cavity surface. This approach is a good approximation for tesserae far
away from each other. The problem arises for diagonal elements of singular
operators, for which we resort to a fitting of the analytical result for a polar
cap [35].

As the basis of this method will be the same, regardless of what particular
equation is examined (namely, to exchange integration over cavity to summa-
tion over tesserae), we will continue to use the classical form of equations, i.e.
the ones using continuous distribution of surface charge %(s) (unless specified
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otherwise). There are many approaches on how to calculate the ASC, from
among which one should mention:

1. The Dielectric PCM (D-PCM) (also simply known as PCM), in which
a scalar permittivity is used, and the surface charges are calculated
using the field generated by a solute charge density and by a reaction
potential, derived over the cavity surface [19],

2. The Conductor-like Screening Model (COSMO), in which the permit-
tivity is initially considered infinite, which causes the electric potential
to vanish at the cavity. The surface charge is then calculated using
only the charge density of the solute. The reaction field is then re-
duced by a scaling factor depending on the actual applied permittivity
(thus screening) [36],

3. the Integral Equation Formalism (IEF) formulation, in which PCM
problem is reformulated in terms of Green’s function and integral equa-
tions. This approach is the only one applied in this work and is dis-
cussed in detail in Section V.
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V Integral Equation Formalism PCM

The IEF method has been originally formulated by Cancés and Mennuci
[37]. Following their derivation, we begin by dividing the potential into two
parts: the electrostatic potential �

M

generated by the charge distribution
%
M

, and the reaction potential of the solvent �
R

. We define this potentials
in terms of Green’s functions. As a solution of the electrostatic problem,
the Green’s function G(x, y) is a potential in a point ~x generated by a point
charge in ~y. This definition can be formally presented as

�(x) =

Z

R

3

Gs(x, y)%
M

(y)dy, (16)

�
M

(x) =

Z

R

3

G(x, y)%
M

(y)dy, (17)

�
R

(x) =

Z

R

3

GR(x, y)%
M

(y)dy, (18)

where G(x, y) corresponds to a kernel of �r2 operator and Gs(x, y) corre-
sponds to a kernel of �r(✏r) operator. GR is given by

GR(x, y) = Gs(x, y)�G(x, y). (19)

It can be proven that the reaction potential �
R

can be represented as a
single layer potential [38]

�
R

(x) =

Z

�

�(y)

|x� y|dy, (20)

where � is the cavity surface and � is the surface charge �(y), which is a
unique solution of the equation

A� = �g, (21)

where A and g are the integral operators given by

A = (2⇡ �D
e

)S
i

+ S
e

(2⇡ +D⇤
i

), (22)
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g = (2⇡ �D
e

)�
M

+ S
e

(@�
M

/@n), (23)

where e and i stand for the exterior and interior of the cavity, respectively.
Operators D

a

and S
a

(a = e, i) are given by

(S
a

�)(x) =

Z

�

G
a

(x, y)�
M

(y)dy, (24)

(D
a

�)(x) =

Z

�

[(✏
a

~r
y

G
a

(x, y)) · ~n(y)]�(y)dy, (25)

(D⇤
a

�)(x) =

Z

�

[(✏
a

~r
x

G
a

(x, y)) · ~n(x)]�(y)dy. (26)

We recall that ✏
i

= 1, as we assume vacuum inside the cavity. The equations
Eqs. (24) to (26) are the three components (out of four) of the Calderon
projector [39], which is well known in the theory of integral equations. We
can then make use of some of the known properties of this operators in
order to simplify the working equations, namely that S

i

D⇤
i

= D
i

S
i

, D⇤
i

is
the adjoint of D

i

, and that S
i

is self-adjoint. Additionally, S
e

= S
i

/✏, and
D

i

= D
e

.
Firstly, knowing that [40]

(2⇡ �D
i

)�
M

+ S
i

(@�
M

/@n) = 0, (27)

we can rewrite Eq. (23) as

g = [(2⇡ �D
e

)� S
e

S�1

i

(2⇡ �D
i

)]�
M

, (28)

thus removing the dependence of � on the normal component of the field.
This step is important for two reasons: it is an implicit correction of the
outlying charge problem[41], and is numerically more feasible due to the fact
that only the electrostatic potential has to be calculated (which is a scalar),
without the need to additionally calculate the electric field (which is a vector).

Secondly, applying previously mentioned relations, we can further trans-
form g and A for isotropic solvents as
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A = (1� 1/✏)


2⇡

✏+ 1

✏+ 1
�D

i

�
S
i

, (29)

g = (1� 1/✏)(2⇡ �D
i

)�
M

. (30)

Finally, equation Eq. (21) can be written in a more elaborate form [40]


2⇡

✏+ 1

✏+ 1
�D

i

�
S
i

� = �(2⇡ �D
i

)�
M

. (31)

This version of IEF is sometimes denoted as IEF(V) [9], as only the solute
electrostatic potential is required to determine the ASC �. This simplification
is however only possible for an isotropic medium. For more complicated
environments, like interfaces, the general Eq. (21) must be used instead.

The big strength of the IEF approach is in its generality. As can be
seen from above, the IEF can be applied without any modifications to its
equations to any environment for which Green’s functions is known. For the
cavity interior, the Green’s function is always equal to

G(x, y) = 1/4⇡|x� y|, (32)

as vacuum is assumed. The same Green’s function, scaled by a factor 1/✏,
can be used for a uniform dielectric medium. For other cases, either the
analytical or a numerical form of the Green’s function is required. The IEF
approach can then be used for anisotropic systems, like a sharp [42] or a dif-
fuse [11] planar interface (as we will see in Section VII), or even for biological
membranes [43].

Another important point is that within this formalism no additional re-
normalization of the surface charges due to the outlying charge (see Sec-
tion III) to the first order is necessary, as was confirmed by Cances and
Mennucci [41]. This is a rather important point, since only IEF-PCM and
another continuum method (called ”surface and simulation of volume polar-
ization for electrostatics” or SS(V)PE [44]) accounts for that inherently, and
all other cavity-based methods must use the appropriate correction factors
[9]. Nevertheless, the outlying charge gives rise to the repulsion free energy
contribution, which will be discussed later (see Section VIII.2).
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VI Quantum Mechanical Problem

With IEF general formulation in place, we can move to the solution of the
QM problem, in a general form. As mentioned in Section I, the method starts
with the Hamiltonian operator including solute-solvent interaction potential

Ĥ = Ĥ0 + V ( ), (33)

where we note that the potential V is dependent on the wavefunction, dbe-
cause it depends on the electronic charge density of the solute. The expec-
tation value of free energy is then given by

G = h |Ĥ0 + 1/2V ( )| i , (34)

where the factor 1/2 is introduced due to the aforementioned dependence of
the potential on the wavefunction [45]. The right hand side of Eq. (34) can
be written as

h |Ĥ0 + 1/2V ( )| i = h |Ĥ0 + 1/2(J + Y + X + U
NN

| i , (35)

where J ,Y ,X and U
NN

refer to the interaction energy between the potential
and the charge distribution of, respectively, nuclei and electrons, electrons
and nuclei, electrons and electrons, and nuclei with nuclei. By taking a
derivative with respect to the density matrix we obtain the final form of the
operators used for PCM in QM

@G

@D
µ⌫

= F 0

µ⌫

+ 1/2(J
µ⌫

+ Y
µ⌫

) + X
µ⌫

, (36)

where F 0 is the Fock matrix. The one-electron terms can be shown to be
identical [13], therefore the final form of this equation is

@G

@D
µ⌫

= F 0

µ⌫

+ J
µ⌫

+ X
µ⌫

. (37)

The two last terms define the PCM contribution to the Fock matrix, which
can then be used in the SCF procedure.
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VII Interfaces

We have now established the formalism to calculate the electrostatic ef-
fect of solvation on energy in a uniform medium. In order to extend this
formulation to non-uniform media, like interfaces, we only need to find the
appropriate Green’s function, as mentioned in Section V.

VII.1 Sharp interfaces

The simplest case possible is the planar sharp interface, where the dis-
continuity in the solvent properties at the interface is introduced. For this
case, we define z as the coordinate normal to the interface plane, which we
locate at z = 0, between two phases with permittivities of ✏

1

(z < 0) and ✏
2

(z > 0), respectively. If we place a charge q on point d, d 2 z, d > 0, then
the Green’s function for a point P given by cylindrical coordinates (r, ✓, z) is
given by [46]

G(P ) =

8
>>>><

>>>>:

1

✏
2

 
qp

r2 + (d� z)2
+

q0p
r2 + (d+ z)2

!
if z > 0

1

✏
2

q00p
r2 + (d� z)2

if z < 0,

(38)

where q0 and q00, are the image charges of q and q0, respectively. The image
charges can be found as

q0 = �
✓
✏
2

� ✏
1

✏
2

+ ✏
1

◆
q, (39)

q00 =

✓
2✏

2

✏
2

+ ✏
1

◆
q. (40)

For the spherical sharp interface, the Green’s function is slightly more
complicated. One of the first works presenting the analytical form of Green’s
function for this case was done by Messina [47].
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Figure 2: Illustration of sphere of dielectric medium with permittivity ✏
2

,
submerged in second dielectric medium with permittivity ✏

1

.

Following the description of variables from Fig. 2, the Green’s function
for the sharp spherical interface is given by

G(r, ✓) =
q

4⇡✏
0

✏
1

"
1

|r � b| +
1X

l=1

a2l+1

bl+1

(✏
1

� ✏
2

)l

✏
1

(l + 1) + ✏
2

l

1

rl+1

P
l

(cos✓)

#
, (41)

where l is the order of angular momentum expansion, and P
l

is Legendre
polynomial of l-th order. While in theory l ! 1, practically a value between
100 and 200 is employed.

VII.2 Di↵use interfaces

While it is possible to stop the derivation of the model at the sharp inter-
face, such system is not physical. The usual problem with sharp interfaces
is the divergence of the image charge potential close to the interface. In a
physical system a divergence, if at all, can exist only a very short time, since
induced reaction due to the entropy would immediately eliminate it. For the
real systems, an interface can be seen as an intermediate area where medium
gradually changes from the one solvent to another. For our use, it can be
defined as a medium with position dependent permittivity, varying along z
[11].
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In order to use such a di↵use interface in IEF-PCM, the corresponding
Green’s function must be found. For this case, we cannot write it in the
analytical form[11] (although it is possible to present analytical form of such
function, if a specific shape of permittivity profile is chosen). Instead, a
numerical procedure is employed to solve the following di↵erential equation
(following notation for Green’s function from Section V)

~r
x

·
h
✏(x) · ~r

x

GE(x, y)
i
= �4⇡�(x� y), (42)

where the permittivity ✏ becomes position dependent.
In our case the permittivity does not change in the xy plane and varies

only along z. The equation Eq. (42) can be reformulated as

GE(x, y) =

Z 1

0

GE(q
1

, z, z0)J
0

(q
1

|x|| � y|||)q1dq1, (43)

where J
0

is the Bessel function of zeroth order, x|| and y|| are the projections
of x and y on the interface plane. A more practical form of this equation,
which can be solved numerically is

@

@z


✏(z)

@

@z
GE(q

1

, z, z0)

�
� q2

1

✏(z)GE(q
1

, z, z0) = �2�(z � z0). (44)

In order to solve this equation, we must factor out the Coulomb singularity
which is included in this Green’s function. Finally, we obtain

G
e

(q
1

, z, z0) =
1

c(z, z0)q
1

e�q1|z�z

0| +GE

img

(q
1

, z, z0). (45)

By employing the inverse Fourier transform, we obtain the final expression
for the Green’s function for the planar di↵use interface, which consists of the
Coulomb term and the image potential term,

G
e

(x, y) =
1

c(x, y)|x� y| +G
img

(x, y), (46)

where 1/(c(x, y)|x� y|) is the Coulomb-like term, whereas G
img

(x, y) corre-
sponds to the potential of the hypothetical image charge, due to the presence
of the interface.
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For the spherical di↵use interface, the starting point and methodology is
similar to the one presented by Frediani et al [11] for a planar di↵use interface.
The full derivation, presented for the first time in the literature, can be seen
in Paper 3. Here only the final form of the Green’s function, using spherical
coordinates, is presented as follows

G(r, r0) =
1X

`=0

G
`

(r, r0) =

8
>>>><

>>>>:

1X

`=0

�2`+ 1

r02 ✏|
r

0

u
`

|
r

v
`

|
r

0

W
`

|
r

0
P
`

(cos �) if r < r0

1X

`=0

�2`+ 1

r02 ✏|
r

0

u
`

|
r

0 v
`

|
r

W
`

|
r

0
P
`

(cos �) if r > r0,

(47)

where again ` is the order of the angular momentum expansion, and P
`

is the
Legendre polynomial of `-th order, u

`

and v
`

are given by

u
`

= r` v
`

=
1

r`+1

, (48)

W
`

is the Wronskian

W
`

|
r

0 =
dv

`

dr

����
r

0
u
`

|
r

0 �
du

`

dr

����
r

0
v
`

|
r

0 , (49)

and cos � is given by

cos � =
r · r0

|r||r0| . (50)

We recall here that in theory ` ! 1, but in practice the value between
100 and 200 is employed.

As for the solvent-related parameters, like the permittivity, the most
straightforward way to define it, is by linking it with the molecular fractions
x of solvents 1 and 2,

✏(z) = x
1

(z)✏
1

+ x
2

(z)✏
2

. (51)

In order to model the shift in molar fractions across the interface we employ
the hyperbolic tangent

x
1

=
1

2
+

1

2
tanh

✓
(z)� (z

0

)

D

◆
, (52)
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with the parameter D related to the width of the interface.
Finally, we arrive at the practical formula for calculating the permittivity

for di↵use interfaces,

✏(z) =
✏
1

+ ✏
2

2
+

✏
1

� ✏
2

2
tanh

✓
(z)� (z

0

)

D

◆
. (53)

The same strategy can be employed to any solvent-related parameter.
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VIII Non-electrostatics

In the previous sections, the main focus of derivation was the electrostatic
energy of solvation. This historically has been a main focus for theoretical
development of continuum solvation models [48, 15]. This fact is under-
standable considering that polar solvents, i.e. water, for which electrostatic
contribution is dominant, are the most important in chemical applications.
Nevertheless, other early models were sometimes focused on the di↵erent as-
pects of the solute-solvent interaction, e.g. Claverie model including only
dispersion [49].

Regardless of the privilege of the electrostatic term, non-electrostatics
cannot be neglected. One of the most important reasons is that they tend to
be of the same order of magnitude as the electrostatic term [50]. Secondly,
in non-polar media the electrostatic contribution tends to be less impor-
tant. Moreover, the inclusion of other solvation e↵ects contributes to the
improvement of the model, as nature is simulated more truthfully with more
refinement. Additionaly, if a given contribution is included in the quantistic
Hamiltonian, then its e↵ect on properties can also be observed.

Following the definition given by Tomasi, Mennucci and Cammi [9], the
solvation free energy of a solute molecule in a cavity in an infinite isotropic
liquid solvent is given by the equation:

�G
sol

= �G
el

+G
rep

+G
dis

+G
cav

+�G
tm

+ P�V . (54)

We will now focus on defining and explaining each term, starting with elec-
trostatics. We define that�G

el

= G
el

�E0, where E0 is ab initio ground state
energy of examined molecule(s) in the vacuum, within Born-Oppenheimer
approximation, and G

el

is the energy of the same system calculated with sol-
vation e↵ects(see Section VI). The extension of this contribution to interfaces
was already discussed in Section VII.2.

G
rep

is the repulsion contribution to the solvation free energy, that arises
due to the charge density escaping the cavity boundary. The full description
can be found in Section VIII.2.

G
dis

is the dispersion interaction between the solute and the solvent. It
is described in detail in Section VIII.3

G
cav

is the cavitation term, which accounts for the energy required to form
the cavity in the solvent. It will be discussed in more detail in Section VIII.1.
It is also worth noting, that cavitation is the only contribution to the solvation
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free energy that is not included in the quantistic Hamiltonian, and is instead
treated classically. While the recent work by Andreussi et al [51] proposes a
quantistic approach to cavitation, it is not included in the model used in this
work.

�G
tm

, is connected to a di↵erence in the vibrational energy between the
solvated and the unsolvated case, analogously to the electrostatic contribu-
tion. This term is often neglected in the implementation due to the small
extent[52]. Moreover, it is not obvious whether the current models can ap-
propriately describe such an e↵ect on interfaces, which are the main interest
of this work. Therefore, this term has not been included in any results.

P�V term, or the adiabatic volume work, is also neglected in this work,
because this contribution is very small, of order of 10�3 in terms of (P�V )/�G
ratio[53].

VIII.1 Cavitation

The problem of the cavity and cavitation was already mentioned in Sec-
tion II. The cavitation energy contribution is usually defined as a reversible
work necessary to create an empty space, a cavity, in the solvent medium.
Historically, numerous strategies to obtain this contribution have been pro-
posed. One of the earliest, by Uhlig [54], links the energy to create a bubble
encasing solute of radius R

M

to a surface tension � between the solute and
solvent

G
cav

= 4⇡�R2

M

. (55)

This approach is somewhat simplistic, considering that the surface tension
is a macroscopic value used to describe the average interaction between two
phases, and not between a singular molecule and the solvent.

According to a relatively recent review paper[9], it is very hard or impos-
sible to find the experimental data on the energetics of cavitation process,
that is, a creation of a perfect empty bubble in a liquid medium. While in
chemistry this methods are of little (but existing) interest, there is perhaps
the possibility of future collaborations with marine research, where cavita-
tion in ship propulsion is a rather lively topic, and similar methods like BEM
are employed to study cavitation[55, 56].

To obtain the results, we make use of a method called scaled particle
theory (SPT) developed by Pierotti for the spherical cavities and hardsphere
solvent [57]. In this method, the cavitation energy is considered in terms of an
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entropic e↵ect of introduction of a sphere (or solute molecule) into the solvent
volume: the solvent movement is restricted thus the entropy decreases. Cav-
itation is then considered to be proportional to this decrease in entropy. This
method was originally developed in a statistical thermodynamics formalism
for spherical cavities, and has been extended heuristically for multi-sphere
cavities. The formula used in the implementation of the IEF-PCM used for
this work is as follows. First we define an auxiliary function y

y =
4⇡NR3

S

3V
S

, (56)

where N is avogadro number, V
S

and R
S

are the molecule radius and the
molar volume of the solvent, respectively. The cavitation free energy is then
given by

G
cav

= RT

(
� ln(1� y) +

3y

1� y

✓
R

M

R
S

◆
+

"
3y

1� y
+

9

2

✓
y

1� y

◆
2

#✓
R

M

R
S

◆
2

)
,

(57)
where R

M

is the molecular radius of the solute, R is the gas constant and T
is the temperature (standard conditions). This formula can be extended to
cavities made of multiple interlocking spheres by calculating the contribution
for each sphere and then weighting it by the solvent-exposed part of each
sphere !

n

G
cav

=
X

n

!
n

G
cav

R
n

, (58)

where R
n

is radius of the sphere n.
In order to extend this formalism to interfaces, we then employ BEM (see

Section IV), and divide the cavity into t triangular tesserae. We assume here
that only the solvent-exposed part of the cavity has been tesselated by an
appropriate algorithm. The new formula reads

G
cav

=
X

t

a
t

4⇡R2

t

G
cav

R
t

, (59)

where a is the area of the t-th tesserae, and R
t

is radius of the sphere that
tesserae belongs to.
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For sharp interfaces, cavitation can be considered to be the sum of con-
tributions from each solvent, weighted by the part of cavity exposed to each
solvent. For di↵use interfaces, we must account for the existence of the
intermediate interfacial area. This is accomplished by including the position-
dependent solvent density ⇢ ratio as weight

G
cav

=
X

sol

X

t

⇢(s
t

)

⇢
0

a
t

4⇡R2

t

G
cav,sol

(R
t

), (60)

where s
t

is the collocation point. We note an additional summation, which
implies that the cavitation contribution needs to be calculated separately for
each solvent and then summed. Certainly, if a given solvent is not present in
the molecule’s vicinity, ⇢(s

t

) = 0 and its contribution is zero.
With the inclusion of interface, an additional contribution, called surface

term G
surf

, arises[50]. If a molecule occupies part of the interfacial area, the
solvent surface is reduced by a cross section of the cavity at the interface.
This can be accounted for by using the formula

G
surf

= �
s

A(z = 0), (61)

where �
s

is the surface tension between the solvents, and A(z = 0) is the
mentioned cross section of the cavity at the interface. A is calculated as

A =

Z

�

✓
⇢(z)/⇢

0

� 1

2

◆
ẑ(s) · n̂(s)ds, (62)

where the
�
⇢(z)/⇢

0

� 1

2

�
factor is introduced because the interface is a di↵use

region rather than a two-dimensional plane.

VIII.2 Repulsion

The repulsion contribution arises because assumption that the entirety of
the solute charge density is encased within the cavity is an approximation.
This problem has been already mentioned in Section III. While the IEF-
PCM accounts for the outlying charge in terms of an ACS correction to the
electrostatic energy [41], the outlying charge gives rise to the energetic e↵ect
that we have to account for.
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The method used within this work was developed by Amovilli and Men-
nucci [58], based on the exchange and penetration terms of the intermolecular
interaction energy, and their decomposition. The basic idea is to start with
the exchange energy of a dimer, considering solute to be the first part of
dimer, and solvent, the second one. The electron density of the second part-
ner is then replaced with the one-electron charge distribution, averaged over
the whole solvent volume, which is taken as a constant factor. This reduces
a double integral problem to a single integral over outlying charge

G
rep

= ↵

Z

r 62C
dr%

M

(r), (63)

where %
M

is charge density of solute and ↵ is

↵ = 0.063⇢
S

nS

val

M
S

, (64)

where ⇢
S

, nS

val

,M
S

are the density (relative to water at standard conditions),
the number of valence electrons and the molar weight of the solvent, respec-
tively. The integral in Eq. (63) is in practice obtained by calculating the
di↵erence between a total number of solute electrons and the charge encased
in the cavity. If we employ the Gauss theorem, we obtain that the internal
charge is equal to 1/2⇡

R
�

~E
M

(s)~n(s)d2s, where ~n is the vector perpendicular
to the cavity at the cavity surface point s, and E

M

is the solute electronic
electric field. This contribution may then be included in our Fock matrix, by
adding following repulsion operator in matrix form [9]

(h
rep

)
µ⌫

= ↵[S � S(in)]
µ⌫

, (65)

where S is the overlap matrix and S(in) is given by

S(in)

µ⌫

= 1/4⇡

Z

�

~E
µ⌫

(s)~n(s)d2s, (66)

where ~E
µ⌫

are the electric field integrals. In order to obtain the repulsion
contribution to the free energy, we can use the following formula

G
rep

= trDreph
rep

, (67)
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where Drep is the density matrix obtained by using the repulsion term oper-
ator from Eq. (65) in the SCF procedure. The last step is the application of
BEM in order to simplify the integral in Eq. (66). This allows us to exchange
integration with a summation of contributions from tesserae.

This approach is su�cient for a uniform medium, but for interfaces some
modifications are necessary. The most important challenge is that we cannot
assume that the escaped charge is distributed in a uniform way, because
the medium is not isotropic due to the interface presence. A way to weight
electron density to account for a position dependence of the escaped charges
was proposed by Bondesson et al [59], who stated that the electron density,
assuming symmetric radial decay with the distance r from the origin, can be
written as

%
M

(r) = %
M

(R)
e��r

2

e��R

2 , (68)

where R corresponds to the radius of cavity, and � is a parameter, which can
be found considering that the integration of Eq. (68) outside of cavity yields
number of outlying electrons, which can also be calculated using the Gauss’
theorem

n
out

= %
M

(R)

Z

r 62C
dr

e��r

2

e��R

2 . (69)

If radial decay is kept, but we assume that the electron density does not have
to be constant on cavity surface we arrive at

n
out

=
1

e��R

2

Z Z
%(✓,�) sin(✓)d✓d�

1Z

R

e��r

2
r2dr, (70)

which divides problem in a radial and an angular part, the latter over the
cavity surface. If BEM is employed, one arrives at

n
out

=
X

t

%(s
t

)f(s
t

), (71)

where f is given by

f(s
t

) =
a
t

2�R2

t

e��R

2
t

⇢
R2

t

e��R

2
t +

r
⇡

4�
[1� erf(

p
�R)]

�
, (72)
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where a
t

is area of tesserae t, R
t

is radius of the corresponding sphere. With
that factor in place, we can write, again in terms of BEM

G
rep

= ↵0
X

t

%
M

(s
t

)f(s
t

)nS

val

(s
t

). (73)

We note here that for interface calculations the number of valence elec-
trons of the solvent becomes position dependent, and is parameterized in
the same way as other solvent dependent properties at the interface are (see
Section VII.2), and ↵0 collects all the other constant factors. By using the
delta function operator we arrive at

G
rep

= ↵0
X

t

%
M

(s
t

)f(s
t

)nS

val

(s
t

)trD�
t

= trDh
rep

, (74)

which we can use to obtain the final, interface-adapted repulsion operator,
by taking a functional derivative

h
rep

=
@G

rep

@D
= ↵0

X

t

%
M

(s
t

)f(s
t

)nS

val

(s
t

)�
t

. (75)

VIII.3 Dispersion

The dispersion contribution is usually described in terms of the fluctuation
of local charge density, giving rise to an interaction between the temporarily
induced dipole moments. The most common classical description of this con-
tribution is the Lennard-Jones potential [60], or the van der Waals interaction
energy. While this term is very often coupled with repulsion (especially in
terms of van der Waals contribution), these two terms have di↵erent physical
origins, therefore they should be discussed separately.

We start with the expression developed by Amovilli [61]

G
disp

=
1

⇡

Z
d!

X

p

!
p

!
p

2 + !2

⇥
Z

dr
1

Z

�
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2

|r
1

� r
2

|%p(r1)�S

[✏(i!), %
p

](r
2

),

(76)
where p runs over all the excited states of the solute, and ! and % are exci-
tation energies and transition densities, respectively. The term �

S

[✏(i!), %
p

]
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corresponds to the ASC density of the cavity surface, induced by a transi-
tion charge density %

p

, which is calculated using a dielectric constant at the
imaginary frequency ✏(i!). This equation will serve both as a starting point
and as reference for the future derivation.

We continue by assuming that �
S

[✏(i!), %
p

] is proportional to the corre-
sponding electrostatic field generated by the ASC [58]

G
disp

= � 1

8⇡

⌘2
S

� 1

⌘2
S

X

p

⌦S

⌦S + !
p

Z

�

dsV
p

(s)E
p

(s), (77)

where E
p

and V
p

are the electrostatic potential and the field induced by the
transition charge density %

p

, respectively. ⌦S = ⌘
S

I, where I is the first
ionization potential of the solvent, and ⌘

S

is its refractive index. We then
exchange the excitation energy !

p

and the summation over all excited states
with an average excitation energy value !

ave

. Furthermore, a factor 1

8⇡

is
exchanged with an empirical factor c

f

, which is solvent dependent [62]
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disp
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f

⌘2
S

� 1

⌘2
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⌦S

⌦S + !
ave

Z

�

ds
X

p

V
p

(s)E
p

(s). (78)

In order to compute !
ave

, Amovilli and Mennucci [58] suggested to average
the energy of a subset of virtual and occupied orbitals. This approach is
however very dependent on the method and basis set. Later, Weijo et al [62]
proposed to compute !

ave

by imposing equivalence of the results between
Eq. (76) and Eq. (78). With the average excitation energy in place, the last
step is to collect all the factors before the integral into a constant factor
� (note that this factor is di↵erent from and unrelated to the one used in
Section VIII.2)

G
disp

= ��

Z

�

ds
X

p

V
p

(s)E
p

(s). (79)

Eq. (79) can be transformed in terms of molecular orbitals [58] into the
expression

G
disp

= ��
X

µ⌫�

[µ⌫|�]D
µ�

(S�1

⌫

) + �/2
X

µ⌫�
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µ�

D
⌫

, (80)
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where µ, ⌫, and � run over the atomic orbitals, D is the density matrix and
S is the overlap matrix. [µ⌫|�] is given by (in terms of BEM)

[µ⌫|�] = 1/2
X

t

[V
µ⌫

(s
t

)E
�

(s
t

) + V
�

(s
t

)E
µ⌫

(s
t

)] . (81)

We can rewrite Eq. (80) in a matrix form as follows [9]

G
disp

= trD[h
disp

+ 1/2X
disp

(D)], (82)

where the new matrix elements are given by

(h
disp

)
µ�

= ��
X

⌫

[µ⌫|�](S�1

⌫

), (83)

(X
disp

)
µ�

= �
X

⌫

[µ⌫|�]D
⌫

. (84)

With the formalism in place in order to account for dispersion energy in
quantistic Hamiltonian, we can now extend it to planar di↵use interfaces. In
case of dispersion, this is done simply by assuming position-dependence of �,
which is achieved in the usual way, as described in Section VII.2,

�(z) =
�
1

+ �
2

2
+

�
1

� �
2

2
tanh

✓
(z)� (z

0

)

D

◆
. (85)

38



IX Properties

Now that the formalism for the full IEF-PCM model including non-
electrostatic contributions has been established, we can proceed to the cal-
culation of molecular properties.

In the presence of the external electric field E in the z-direction (axis
choice is arbitrary for the sake of simplicity), the perturbation due to that
field can be written as

Ĥ(1) = �µ̂
z

E, (86)

where µ̂
z

is the dipole moment operator. Before we apply perturbation theory
to obtain the expression for the dipole moment, polarizability and excitation
energies, we must first use the Hellmann-Feynman theorem to link the energy
E and the perturbation (external electric field)

dE

dE
=

*
@Ĥ

@E

+
. (87)

The partial derivative of the Hamiltonian is simply

@Ĥ

@E
=

@(�µ
z

E)

@E
= �µ

z

, (88)

because Ĥ0 is not field dependent. This implies that

dE

dE
= �hµ

z

i . (89)

If we expand the energy in a Maclaurin series, in terms of the electric field
derivative, and apply Eq. (89) we get

hµ
z

i = �
✓
dE

dE

◆

0

�
✓
d2E

dE2

◆

0

E� · · · (90)

The expectation value of the dipole moment operator is the permanent dipole
moment and the additional contributions induced by the field, corresponding
to the first, second, etc. (hyper)polarizability:

hµ
z

i = µperm

z

+ ↵
zz

E+
1

2
�
zzz

E2 + · · · (91)
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where ↵ is the polarizability and � is the first hyperpolarizability, which
measure of how strongly the dipole moment is a↵ected by the external electric
field.

In order to obtain the final expression for the dipole moment and polar-
izability, we first rewrite the energy E in terms of perturbative expansion for
the ground state | 

0

i

E
0

= E
(0)

0

+h 
0

|Ĥ(1)| 
0
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0
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0
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n

i h 
n
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0
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n
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(92)
Due to the absence of any second-order term in the zeroth order Hamiltonian
Ĥ0 for the electric field perturbation, the third term in the expansion is zero.
If we then apply Eq. (86), we obtain
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If we apply Eq. (90) and Eq. (91), respectively for the dipole moment and
polarizability, we finally get

µperm

z

= �
✓
dE

dE

◆

0

= h 
0

|µ
z

| 
0

i , (94)
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Eq. (94) can be reformulated for any dimension as
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and the mean polarizability is then defined as

↵ =
1

3
(↵

xx

+ ↵
yy

+ ↵
zz

). (97)
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With the mean polarizability defined, we can then link it to the spectroscopy.
The oscillator strength of a given transition can be defined as [63]

f
n 0

=

✓
4⇡m

e

3e2~

◆
⌫
n 0

h 
0

|µ| 
n

i h 
n

|µ| 
0

i , (98)

where ⌫ corresponds to the frequency of a photon, e and m
e

are electron
charge and mass, respectively. If we apply Eq. (97), we then obtain
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n
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(99)

For the excitation energies, and to show how PCM is generally included
in calculation of properties, we need to find an appropriate solution in the
time-dependent framework. For this derivation, the Einstein convention for
summation is adopted, that is, a repeated index implies summation over it.
Following Olsen and Jørgensen[64], we start by defining a fully optimized
time-dependent, single-determinant wavefunction in its ground state, | (t)i,
which is assumed to be the eigenfunction | i of the ground state Hamiltonian
for t = 0, when no perturbations are present. We then write the time-
dependent Schrödinger equation

Ĥ | (t)i = i
@

@t
| (t)i , (100)

with the total Hamiltonian operator Ĥ = Ĥ
0

+ V t, with V t being time-
dependent perturbation. This perturbation can contain time-independent
frequency components V !.

At a finite time t, a perturbed wavefunction in the frequency domain is
given by the perturbation expansion

| (t)i = | i+
1Z

�1

d! | !

1

i e�i!t+�t + · · · , (101)

where � is a damping factor, and | !

1

i contains all terms which are linear
in the perturbation. The time-dependent expectation value of the arbitrary
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operator Â can be written as

h (t)|Â| (t)i = h |Â| i+
1Z

�1

d!
1

| !

1

i e�i!t+�t hhA;V !1ii
!1

+ · · · , (102)

where hhA;V !1ii
!1

is called the linear response function, which contains all
terms linear in V !. In the simple case of a monochromatic field at frequency
! the perturbation operator can be written as

V t = V !e�i!t+�t + V �!ei!t+�t (103)

The expectation value of the operator Â, at a finite time, can be written as

h (t)|Â| (t)i = h |Â| i+ 1

2

X

i

hhA;V !1ii
0

. (104)

In order to obtain the expectation value of a property in time-dependent
domain we need to find the linear response function. It can be shown [64]
that the aforementioned function can be expressed in terms of eigenfunctions
of Ĥ

0

in a form similar to Eq. (95)
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(105)
This equation has poles for frequencies equal to excitation energies, which
can be used to obtain the latter.

To show how PCM is included in calculation of properties a more technical
explanation is required . In order to obtain the linear response function we
first expand the variational parameters ↵(t), which describe the response of
the wavefunction to the perturbation, in powers of perturbation V t [65]

↵
l

(t) = ↵
(1)

l

+ ↵
(2)

l

+ ... (106)

We note here that the zeroth term vanishes, because | i satisfies the gener-
alized Brillouin theorem. In order to obtain linear response properties only
term ↵(1) need to be considered. It is given by

iS
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(t)�G
jl
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l
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, (107)
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where S
jl

is given by

S
jl

= sgn(l)�
jl

. (108)

G
jl

obtained by diagonalization of the following matrix

eG =

✓
A B
B⇤ A⇤

◆
, (109)

where A and B collect the second derivatives of the free energy with respect
to non-redundant orbital rotations (that is, between occupied and virtual
orbitals)
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The exact form of this contributions can be seen in Paper 2. After the
derivation, we finally obtain

hhA;V !

1

ii
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sgn(l)A[1]

k
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k
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1

� sgn(k)!
k
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, (112)

where

A
[1]

k

= �h |[X
k

, A]| i , (113)

where X are the basis set elements.
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Papers

Three papers are included in this thesis, and will now be discussed briefly.

1. ”Solvation at Surfaces and Interfaces: A Quantum-Mechanical/ Con-
tinuum Approach Including Nonelectrostatic Contributions”,
K. Mozgawa, B. Mennucci and L. Frediani
Journal of Physical Chemistry C, 2014, 118, 4715-4725

This paper is a benchmark of a full approach to IEF-PCM, with non-
electrostatic contributions, against other computational results. Two
sets of molecules have been investigated, one being methane halides
at the water-hexane interface, and second - a subset of (mainly) or-
ganic molecules investigated by Pohorille and Wilson [66] at the water-
air interface. Additionally, orientational analysis has been performed
on phenol and ethanol at water-air interface. For this paper, addi-
tionally, c

f

parameter value (see Section VIII.3) has been established
for the solvents used. The results show a good qualitative agreement
with the other computational work. Features, like preferred solvation
at interface due to the energetic minimum, can be observed with the
non-electrostatic contributions, unlike in simpler PCM approaches with
electrostatics only.

2. ”Electronic structure of small surfactants: a continuum solvation study”,
K. Mozgawa and L. Frediani
Manuscript

This paper extends the work done in Paper 1. Firstly, a Boltzmann av-
eraging scheme was implemented. The approach exploits Leopardi sam-
pling[67] in order to generate a spherical coordinates used in averaging
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over rotational degrees of freedom. With that established, energies and
properties for several organic molecules (formaldehyde, benzaldehyde,
o-cyanophenol, valine, glycine) are calculated. For first three of the or-
ganic molecules, additional properties were calculated, namely dipole
moments and excitation energies and compared with work done within
Quantum Mechanics/Molecular Mechanics (QM/MM) formalism. Sim-
ilarities and discrepancies compared to QM/MM/MD simulations are
discussed and motivated.

3. ”A Polarizable Continuum Model for Molecules at Spherical Di↵use In-
terfaces”,
R. Di Remigio, K. Mozgawa, H. Cao, V. Weijo and L. Frediani
Manuscript

In this paper, a framework for the IEF-PCM calculations at the spher-
ical di↵use interface is presented. A full derivation of Green’s function
is shown, together with a discussion of the implementation within LS-
DALTON. Additionally, results of calculations of the electrostatic con-
tribution to the free energy of solvation for ions (Li+, Br�), acetone,
paranitrioaniline and L0 dye from [68], are presented. The e↵ect of
curvature on the solvation energy has been investigated and presented.
Non-electrostatic contributions to the free energy of solvation have not
been included yet in this implementation. No comparison with other
work has been performed because we mainly focused on the develop-
ment and implementation of the model.

Paper not included in this thesis:

• ”Wavelet formulation of the polarizable continuum model. II. Use of
piecewise bilinear boundary elements”,
M. Bugeanu, R. Di Remigio, K. Mozgawa, S.S. Reine, H. Harbrecht
and L. Frediani
Physical Chemistry Chemical Physics, 2015, 15, 31566-31581
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