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Abstract—Melanoma is a deadly form of skin cancer which
is difficult to detect in its early stages. Several computer-aided
diagnostic systems based on dermoscopic images of skin lesions
intend to improve melanoma detection. Colour is an important
factor in correctly classifying a skin lesion. Here, we introduce
divergence-based colour features, using the Kullback-Leibler
information as a preferred divergence function. These features
are based on the divergence between the distribution of the
pixel values of a lesion image, and that of the pixel values of
either a benign or a malignant model. The features’ sensitivities
and specificities are reported, along with the contribution to
an existing classifier for skin lesions. The features improve the
performance of the existing classifier and are therefore relevant
for melanoma detection.

Keywords: Melanoma, Colour feature, Divergence,
Kullback-Leibler, Gaussian mixture distribution

I. INTRODUCTION

Melanoma is the deadliest form of all skin cancers [1]. Early
detection is crucial, since the survival rate of the patient drops
rapidly as the tumour evolves [1]. A dermoscope (magnifying
lens, surrounding light and glass plate) can ease the detection
of melanoma since it lets the light penetrate the uppermost
skin layer and by doing that provides more information
about the lesion [2]. Fig. 1 shows examples of dermoscopic
images. Several rules can help doctors interpret what they see
through the dermoscope, e.g. the ABCD rule of dermoscopy,
the 7-point checklist and more [3]. These rules all have in
common that colour is a major feature [3]. Many computer-
aided diagnostic (CAD) systems for melanoma detection based
on dermoscopic images exist [4]. These systems follow the
same procedure of image pre-processing (noise reduction,
downsampling, etc.), segmenting the lesion from the skin,
feature value calculation, feature selection and classification.
A number of feature algorithms has been introduced, many of
them concerning colour [4]. The colour features can roughly
be divided into two categories; specific colours (often light
brown, dark brown, red, black, blue and white, which are the
colours in the ABCD rule), and statistical value of the colours
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(a) Benign lesion

(b) Malignant lesion (melanoma)

Fig. 1: Dermoscopic images of skin lesions.
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in a lesion, typically the estimated moments (mean, standard
deviation, skewness) for each colour channel, as well as
entropy and energy [4]. Among the more sophisticated colour
features, Celebi and Zornberg [5] proposed a feature based
on k-means clustering and symbolic regression. Seidenari et
al. [6] calculated specific colours, estimating the number of
colours based on a training set.

Here, we introduce a new type of statistical colour feature
whose value reflects the divergence between the distribution of
the pixel values of a skin lesion image and the distribution of a
benign model or a malignant model. Gaussian mixture models
(GMM), also referred to as Gaussian mixture distribution,
are used to estimate the distributions. The Kullback-Leibler
information in combination with importance sampling form
the basis of the new colour features. The paper is organised as
follows. Section II gives the necessary technical background.
Section III introduces the new features. Section IV presents
the data set and the specific method used. Section V gives the
results. Section VI discusses the findings.

II. MODEL FITTING, DIVERGENCES, IMPORTANCE
SAMPLING AND CROSS-VALIDATION

A. Model fitting
Any continuous distribution, f(x), can be approximated

with arbitrary accuracy by a GMM [7]:
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the accuracy then depends on the quality of the observations.
Fitting is commonly done by the Expectation-Maximization
(EM) algorithm [8], which requires a pre-set number of
components, K. The estimation of K is usually done by fitting
several models with K
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many components, and
then using a criterion that balances good fit and complexity
to select the best model. The Bayesian information criterion
(BIC) [9] is well known and widely used for this purpose [10].

B. Divergence between distributions
The divergence of two distributions, p
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(x) and p
t

(x), is
a measure of how different the two distributions are. A
number of divergence functions exists, and the choice of
divergence function must be made according to criteria that
are relevant for the problem at hand. Many well-known
divergence functions are symmetric, e.g. Variational distance,
Hellinger/Kolmogorov distance, Kullback-Leibler/Jeffrey di-
vergence, Chernoff distance, Bhattacharyya distance, Matusita
distance [11]–[14], and Shannon-entropy-based divergences
[15], [16]. An example is the Jensen-Shannon divergence [17]
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well-known non-symmetric divergence is the Kullback-Leibler
information [18]
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C. Importance sampling
The integrals in Eq. 2 and Eq. 3 do not have analytical

solutions when p
s

(x) or p
t

(x) are GMMs, and a numerical
approximation is needed. Using points on a regular grid is
time consuming and inefficient for higher dimensions and/or
when the integrand has low value for a large subspace. In
Monte Carlo integration [19, p. 83], the points are randomly
sampled. In importance sampling [19, p. 90], the points are
sampled from a distribution, preferably with high density for
subspaces with large contributions to the integral, and then
weighted by the density of the distribution in that point:
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where N is the number of samples and g(x) is the probability
density function (pdf) from which the samples are drawn.

D. Cross-validation
Ideally, observed data are divided into two separate sets: a

training set and a test set. The training set is used to construct
a model, which is tested on an independent test set, i.e. a
data set that has not been used in any part of the model
construction, including feature design, feature selection and
classifier training. If the training set is too small compared
to the model complexity, the model will be unstable in the
sense that replacing a small fraction of the data in the training
set with other data from the same distribution will lead to
a different model. If the test set is too small, the observed
performance of the model is unreliable. If training and test
sets of sufficient size cannot be provided, cross-validation can
be used. The data set is partitioned into independent training
and test sets. In stratified K-fold cross-validation, each class
in the data set is divided into K folds of equal size. Fold
number 1, . . . , K is set aside as test set, while the rest of the
data is used to construct the model. The procedure is repeated
K times, until all the data have been used in the test set. If
parameter adjustment, feature selection or model selection is
done, these steps have to be repeated for every new training
set, see e.g. [20, p.245], [21], [22]. The choice of K is not
trivial, since it affects both the bias and the variance of the
model’s performance [23], [24]. Low K gives negative bias,
and both high and low K give high variance. 5- and 10-fold
cross-validation are commonly used.

III. DIVERGENCE-BASED COLOUR FEATURES

We propose a new type of feature for melanoma detection
in dermoscopic images. The divergence-based colour features
are defined as the divergence between the colour distribution
in a lesion and that of a benign or a malignant model:

D(p
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), (5)
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Fig. 2: The benign model distribution, p
b

(x) (black), has
large dispersion. The lesion distribution p

l

(x|✓
bj

) (blue) is
enveloped by p

b

(x). The lesion distribution p
l

(x|✓
mj

0) (red)
only partially overlaps with p

b

(x). For the purpose of illustra-
tion, we have used only one dimension.

where D is a divergence function, p
l

(x) is the pdf of the pixel
values from a lesion image, and p

b

(x) and p
m

(x) are the pdfs
of a benign and a malignant model, respectively.

The choice of divergence function has great impact on the
features’ values and should be made according to pre-defined
assumptions. Assume that the pixel values of a lesion image
are observations from the underlying distributions p
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)
and p
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0), where ✓
bj

is the parameter vector of benign
lesion j and ✓

mj

0 is the parameter vector of malignant lesion
j0. Assume that they are continuous, and therefore can be
approximated by GMMs. Thus, the parameter vectors ✓
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and
✓
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0 are not estimated. Define the benign model distribution
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p
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(x) ! 0 for some x ! ±1,
as illustrated in Fig. 2, where p
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0) (red) drops to zero
slower than p
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(x) (black) for x ! �1.
In other words, p
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) due to p
b

(x)’s
large dispersion, whereas it only partly overlaps with
p
l
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0) due to the latter’s shift in location. We define
the distribution p

m

(x) =
P|mal|
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0) and make
equivalent assumptions as for p

b

(x). For ease of notation, we
denote the lesion distributions p

l

(x), as we, in general, do not
know if the lesion is benign or malignant.

A divergence function with high contribution for low values
of p

b

(x) and high values of p
l

(x)/p
b

(x), but low contribution
for low values of p

l

(x) can differentiate between a benign
and a malignant lesion. This can be achieved by fulfilling the
criteria
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where X1 is the subspace of X where p
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(x) ! 1,
and X0 is the subspace of X where p

l

(x) ! 0. The criteria
cannot be fulfilled simultaneously by a symmetric divergence
function.

The non-symmetric Kullback-Leibler information fulfils the
two criteria (the calculations are straightforward)
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In importance sampling, any g(x) in Eq. 4 is asymptotically
correct, as long as X

g

◆ X
h

, but in practice the choice
of g(x) has great influence on the result. The region of
interest is where p

b

(x) has low values, p
l
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mj

0) has high
values and p

l

(x|✓
bj

) has low values, since this is where we
can differentiate between a benign and a malignant lesion.
In Fig. 2, the region of interest is at the left. By setting
g(x) = p

b

(x), samples from this region are heavily weighted.
However, since the samples also are taken from p

b

(x), they
will be sparse. We therefore propose to sample from p

m

(x),
but weight by p
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(x). We define the Kullback-Leibler-based
colour feature as follows
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where the x
i

’s are sampled from p
m

(x). The feature dm

is defined equivalently. The asterisk signals that this is not
a direct approximation of the Kullback-Leibler information,
since it is not a proper importance sampling. The proposed
feature does not fulfil all the properties of the Kullback-Leibler
information, but it fulfils the two criteria Max and Min.

IV. MATERIALS AND METHODS

The data set consisted of dermoscopic images of 752 benign
lesions and 80 melanomas. The lesions were excised due to
suspicion of malignancy, and the final diagnoses were made
by histopathology. For further details on the diagnoses, see
[25]. Each image was converted from raw to RGB and then
to CIELAB, assuming sRGB. Automatic segmentation was
performed [26], and the resulting mask defined the lesion. To
reduce noise, the images were binned using a coordinate-wise
median with 5 ⇥ 5 pixel non-overlapping windows. Note that
we used binning, not filtering, which downsamples the image
and preserves independency of the pixel values. Coordinate-
wise median binning was also used in [25]. Then, 1000 lesion
pixels were randomly selected from each binned image. Large
lesions can be indicative of melanoma. The potential spurious
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relationship between the feature value and diagnosis due to
lesion size is avoided by sampling a fixed number of pixels.
A slight improvement in performance was observed when
increasing the number of pixels from 250 to 500 and to 1000.

To estimate the benign model distribution, p
b

(x), GMMs
with K = 15, . . . , 45 components were fitted for a random
sample of 72 benign lesion images (the same number as for the
malignant model distribution), and BIC was used for model
selection. These images were then excluded for the sake of
independence. Due to the low number of melanomas, 10-fold
stratified cross-validation was applied to the remaining data.
The training sets then consisted of 72 melanomas, and were
used to fit p

m

(x) in the same manner as p
b

(x). To estimate
the lesion distributions, p

l

(x), GMMs with K = 1, . . . 15 were
fitted for each lesion image, and BIC was used for model
selection. The whole procedure, from random sampling of
benign lesion images to classification, was repeated 15 times,
due to variations in random sampling and cross-validation
partitioning. The estimated feature values are
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where the x
i

’s were sampled from the 72 melanomas in the
training set, p̂

l

(x) is the GMM fitted to a sample from the
lesion image, and p̂

b

(x) is the GMM fitted to a sample from
the 72 excluded benign lesion images, and

Divergence between the lesion and the malignant model:
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where the x
i

’s are sampled from the 72 excluded benign
lesions, and p̂

m

(x) is the GMM fitted to a sample from the
72 melanomas in the training set.

The two features were pooled together with the 59 features
previously developed on the same data set [25], [27]. Among
the 59 features are features for colour distribution, colour
counting, blue-grey area, colour variety and specific colour
detection. Correlation-based feature selection (CFS), which is
classifier independent [28], was performed. This was done
without cross-validation, since there is no testing. A benign
model, p

b

(x), was fitted to the pixel values from 79 randomly
selected benign images. These images were then excluded.
For each malignant lesion, the malignant model, p

m

(x), was
fitted to the other 79 malignant lesion images so that the same
lesion did not appear in the fitting of p

l

(x|✓
mj

0) and p
m

(x).
The whole procedure was repeated 50 times.

V. RESULTS

The performance of a feature or a classifier can be reported
in terms of sensitivity (proportion of melanomas classified
as malignant) and specificity (proportion of non-melanomas
classified as benign). Receiver operating characteristic (ROC)
curves are more informative than a single sensitivity/specificity

Fig. 3: ROC curves for the individual features: db and dm

reflects the divergence between a lesion and a benign model
or a malignant model, respectively.

pair. We report the new features’ performance in three ways:
(1) ROC curves for the individual features, (2) feature selec-
tion, and (3) contribution to a skin lesion classifier.

To calculate the sensitivities and specificities of d̂b, the
images in the test sets are classified according to a threshold
t, such that a lesion is classified as malignant if d̂b > t, and
benign otherwise. The calculations are done equivalently for
d̂m. Fig. 3 shows the ROC curves for d̂b and d̂m. d̂b performs
better than d̂m for sensitivities above 70%.

Fig. 4 shows the number of times that d̂b and d̂m were
selected. Both are selected almost every time. The high
frequencies indicate that the two new features’ values are
correlated to the class labels, but not highly correlated to the
existing features, and not highly correlated to each other.

Finally, the features’ contribution to a skin lesion classifier
is measured. For each cross-validation training set, CFS is used
on the 59 previously proposed features. A linear discriminant
analysis (LDA) classifier is trained with the selected features,
and the sensitivities and specificities are calculated from the
test set. A second LDA classifier is trained with log(d̂b) and
log(d̂m) added to the selected features, and tested accordingly.
The logarithm is used since the feature values are not Gaussian
distributed, which is the assumption of LDA. The ROC curves
for the two classifiers are shown in Fig. 5.

VI. DISCUSSION

Divergence functions are used for many aspects of image
analysis, e.g. segmentation by region merging [16] and image
retrieval [29]. There is a wide range of colour feature algo-
rithms for melanoma detection, but to our knowledge, there

96



Fig. 4: f1 and f2 are asymmetry features, f10 and f11 are colour distribution features, f14 and f18 are border features, f20
and f57 are specific colour features, and f60 = d̂b and f61 = d̂m.

Fig. 5: ROC curves for LDA classifiers: The existing LDA
classifier with previously proposed features, and the LDA
classifier when adding the two new features db and dm.

are none that applies divergence between distributions of pixel
values. GMM was used in [30] to estimate the distribution of
separate colours, but not of the lesions themselves. In [31], the
Kullback-Leibler information was used for nearest-neighbour
classification. A drawback of the Kullback-Leibler information
is its instability for numerical integration. If p

b

(x
i

) = 0
while p

l

(x
i

) > 0 for a single x
i

, then I(p
l

, p
b

) = 1
regardless of all other x

i

’s. This occurred for about 1% of
the images. By letting min(p

b

(x
i

)) = ✏, where ✏ > 0 (e.g. the
machine epsilon), and since p

l

(x
i

)/p
b

(x
i

) appears inside the
logarithmic function, the Kullback-Leibler information retains
stability. Fitting several GMMs for each lesion image is time
consuming. An alternative is to pre-define the number of
components, K, as done in [25].

The assumptions in Section III about the rate at which
p
l

(x|✓
bj

) ! 0 and p
l

(x|✓
mj

0) ! 0 compared to p
b

(x) ! 0
are not true for all lesions. However, the high sensitivities and
specificities for d̂b and d̂m suggest that they are true for a
majority of the lesions.

Many CAD systems for melanoma detection report sen-

sitivity and specificity close to 100% [32], but if feature
selection is done on the whole data set, before cross-validation
partitions, the observed performance is overly optimistic [21].
The data set at hand impacts the observed performance and
direct comparison between systems is not possible. A CAD
system based on 53 of the 59 features and an LDA classifier
has been tested, and the performance did not deviate from that
of three dermatologists [27], which puts it in the same range
as state-of-the-art systems [4], [33], [34].

The sensitivities and specificities of single features have lim-
ited interpretive value for the features’ relevance to melanoma
detection. If a new feature is highly correlated with existing
features, adding it to the classifier can lower the classifier’s
performance [35, p.52]. A feature with low sensitivity can be a
valuable contribution to a classifier if the melanomas detected
by the new feature are those that are misclassified by the
existing classifier. However, the sensitivities and specificities
indicate how general a feature is for the melanoma class.
The proposed colour features are very general, as expected.
The result from the classifier-independent feature selection
indicates that the proposed features are not highly correlated
with the existing features. Finally, the increased sensitivities
and specificities when adding the new features to an existing
classifier show their value in melanoma detection.

The ROC curves for the LDA classifier with and without
the two new features are approximately the same for low
sensitivity values. A classifier with low sensitivity is not clin-
ically relevant, due to the cost of misclassifying a melanoma.
Sensitivity of minimum 95% has been suggested [36], and at
that level, the two new features increase the specificity from
16% to 24%. At 20% specificity, adding the two new features
increases the sensitivity from 94% to 97%. The increases
might seem small, but the cost of misclassifying a melanoma
can be huge, both in terms of patient survival and treatment
costs [37], and even a small increase has a great impact.
Increasing sensitivity without decreasing specificity becomes
more difficult the higher the sensitivity is. Excision of a lesion
carries low risk and has little disadvantage for the patient.
However, for the health care system, excising a large number
of benign lesions is a burden, since each lesion is examined
by an expert pathologist. By increasing the specificity level,
valuable resources can be made available for other tasks [38].

Decreasing the size of the data set for feature selection gave
more unstable results. Since feature selection is performed
for every partition in the cross-validation, variation in the
selected feature sets gives variation in the trained classifiers.
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10-fold cross-validation, which gives larger training sets than,
for example, 5-fold cross-validation, was used. The resulting
test sets consist of only 8 melanomas, and small test sets give
large variations in the observed performance. The confidence
intervals for the ROC curves overlap, and we are not able
to conclude that the two new features actually increase the
performance of the classifier. Ongoing data collection will
provide an independent test set, which can verify the new
features’ relevance in melanoma detection in the near future.

In summary, the proposed divergence-based colour features
are relevant to melanoma detection. This is shown by high
frequencies for classifier-independent feature selection, and by
increased performance when adding them to an existing LDA
classifier, but a final independent verification is needed.
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