Demetalation of Copper Undecaarylcorroles: Molecular Structures of a Free-Base Undecaarylisocorrole and a Gold Undecaarylcorrole

Jan Capar,^a Job Zonneveld,^a Steffen Berg,^a Johan Isaksson,^a Kevin J. Gagnon,^b Kolle E. Thomas,^{*,a} and Abhik Ghosh^{*,a}

^{*a*} Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway; Email: thomas.kolle@uit.no; abhik.ghosh@uit.no; ^{*b*} Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229

Abstract. Copper undecaarylcorroles were found to undergo acid-induced demetalation with unusual ease under both reductive and nonreductive conditions. The resulting free-base undecaarylcorroles were found to be rather reactive, readily photooxygenating to yield 5/10-hydroxyisocorroles and biliverdines. The use of nonreductive conditions led to fairly good yields of undecaarylisocorroles, a new class of sterically hindered ligands, of which one proved amenable to single-crystal X-ray structural analysis. In one case, interaction of an undecaarylisocorrole with gold(III) acetate resulted in aromatization of the macrocycle and a gold undecaarylcorrole. The Au complex exhibited Au-N distances of 1.941(3)-1.965(3) Å, and no significant nonbonded interactions involving the gold. The significant solubility of this complex in organic solvents, compared with the relative insolubility of gold β -octabromo-*meso*-triarylcorroles, appears to be related to the lack of aurophilic and metallophilic interactions.

Introduction. Metallocorroles,^{1,2} particularly copper corroles, are typically much more readily functionalized and elaborated in a controlled manner than free-base corroles. Subsequent demetalation then has the potential to yield novel, substituted free-base corrole ligands. Unfortunately, the demetalation of metallocorroles is generally more difficult than that of common metalloporphyrins, requiring both strong acid and an excess of a reductant such as a Fe(II) or Sn(II) salt.^{3,4,5,6,7} A notable success of this 'reductive demetalation' approach has been the synthesis of free-base β -octabromocorroles^{5,4,7,8} and their subsequent use as ligands.^{9,10} Here we report that copper undecaarylcorroles^{11,12,13} demetalate with unusual ease, in a matter of minutes, on exposure to acid, under both reductive and nonreductive conditions.

In what initially appeared to be a setback, free-base undecaarylcorroles were found to be rather reactive, readily reacting with ambient oxygen to generate 5-hydroxy- and 10-hydroxyundecaarylisocorroles as well as open-chain dioxo compounds. As shown in Figure 1, isocorroles are fascinating ligands in their own right: they are porphyrin-like by virtue of their diprotic or dianionic character and corrole-like in affording a spatially constricted cavity for metal coordination.^{14,15,16,17,18} They are thus promising platforms for unusual transition metal spin states. In a pertinent study, Bröring and coworkers have reported that thiacorroles, which are structurally similar to isocorroles, give rise to intermediate-spin iron(III) complexes.¹⁹ A second remarkable feature of isocorroles is their strong absorption in the near-infrared,^[17] which is of great relevance to photodynamic therapy.²⁰ Reported herein are optimized syntheses for a family of sterically hindered undecaarylisocorrole ligands, including the first, single-crystal X-ray structure of a free-base undecaarylisocorrole.

Furthermore, we have attempted to determine whether undecaarylisocorrole ligands can be rearomatized on metal complexation, yielding novel undecaarylcorrole complexes. This is an important question because, as of today, only copper and cobalt undecaarylcorroles have been reported.¹¹⁻¹³ New metalloundecaarylcorroles are of considerable interest as shape-selective catalysts and other functional materials. As shown in Figure 2, we found that at least one free-base undecaarylisocorrole could be smoothly converted to the corresponding gold undecaarylcorrole. The same gold complex could also be obtained from a gold β -octabromo*meso*-triarylcorrole via a tedious, week-long Suzuki coupling procedure. Remetalation and aromatization of isocorroles to corroles, when feasible, thus promises to be a useful transformation.

Figure 1. Steric and electronic relationships between porphyrin, corrole, and isocorrole ligands. Whereas porphyrin and isocorroles share the same proticity (both coordinate as dianionic ligands), isocorroles and corroles share similar, constricted coordination cavities.

Figure 2. Two alternative synthetic routes to a gold undecaarylcorrole.

Results and Discussion

(a) Demetallation of copper undecaarylcorroles and isocorrole formation. Four different copper undecaarylcorroles were demetallated in this study, copper β -octakis(p-X-phenyl)-*meso*-tris(p-methylphenyl)corrole, where X = H, F, and CF₃, and copper β -octakis(p-trifluoromethylphenyl)-*meso*-triphenylcorrole (Figure 3). For brevity, we will refer to these complexes as Cu[X₈Me₃]. We will also refer to the corresponding free-base corroles as H₃[X₈Me₃] and the isocorroles as H₂[X₈Me₃(5-OH)]. Reductive demetallation of Cu[X₈Me₃] with concentrated sulfuric acid and ~10 equiv of anhydrous FeCl₂ led to ~70% yields of the free-base corroles, H₃[X₈Me₃], in a matter of minutes, but in the presence of air and light, free-base undecaarylcorroles quickly decomposed to open-chain dioxotetrapyrroles such as biliverdines and small quantities of the isocorroles, H₂[X₈Me₃(5/10-OH)]. Eliminating reductive conditions (i.e., FeCl₂) proved to be an effective way of improving the yield of isocorroles, the key targets of this study, as did the presence of an organic solvent such as dichloromethane. The final optimized conditions, involving demetallation in dichloromethane and concentrated sulfuric acid, led to 50-65% yields of highly stable, free-base isocorroles, with negligible quantities of corroles.

Figure 3. Corrole and Isocorrole derivatives investigated in this study.

Each demetallation led to both 5- and 10-OH isocorroles, with the former dominating. Although not separable by column chromatography, the two regioisomers could be separated by preparative thin-layer chromatography. Except for one case, H₂[(CF₃)₈Me₃(10-OH)], however, the pure 10-regioisomer was not obtained in large enough quantities for full characterization. Examples of preferential formation of one or the other regioisomer occur in the literature.^{21,22,23} Thus, a convenient isocorrole synthesis, involving DDQ oxidation of *meso*-triarylcorroles in methanol, was found to lead preferentially to 5-OMe isocorroles.¹⁸ On the other hand, nonreductive demetallation of Cu[Br₈H₃] (i.e., copper β -octabromo-*meso*-triphenylcorrole) with H₂SO₄/CHCl₃ led to preferential formation of the 10-OH isocorrole, H₂[Br₈H₃(10-OH)].³ A combination of electronic and steric factors is presumably responsible for the preponderance of one isomer over the other.

Literature reports suggest that the oxygen in 5/10-OH isocorroles arises from O₂ rather than water, although the latter has not been strictly ruled out.^{22,23} To determine the source of oxygen in the isocorroles obtained in this study, we carried out isotope labeling experiments with H₂¹⁸O and ¹⁸O₂. The freshly purified, vacuum-dried corrole H₃[(CF₃)₈Me₃], upon stirring in anhydrous dichloromethane and H₂¹⁸O under argon, showed no evidence of ¹⁸O incorporation with electrospray ionization (ESI) mass spectrometry (MS). In contrast, bubbling ¹⁶O₂ into a solution of pure H₃[(CF₃)₈Me₃] in anhydrous dichloromethane revealed the incorporation of both one and two oxygen atoms via ESI-MS. Flushing the ESI mass spectrometer with ¹⁸O₂ also resulted in the incorporation of both one and two ¹⁸O atoms into H₃[(CF₃)₈Me₃], confirming the strong affinity of free-base undecaarylcorroles for dioxygen. A plausible pathway for the oxidative decomposition of free-base corroles, based on both literature precedence^{22,23,24,25} and our own experiments, is depicted in Figure 4.

Figure 4. Proposed pathway for photooxygenation of a free-base undecaarylcorrole.

A single-crystal X-ray structure could be obtained for the free-base undecaarylisocorrole $H_2[(CF_3)_8Me_3(5-OH)]$ (Figure 5, Table 1). Despite the considerable steric crowding, the macrocyclic skeleton of $H_2[(CF_3)_8Me_3(5-OH)]$ was found to be essentially planar, as for other free-base isocorroles, but in sharp contrast to free-base corroles, which are generally strongly buckled as a result of steric repulsion among the three inner hydrogens.²⁶ The two central hydrogens could be unambiguously located for $H_2[(CF_3)_8Me_3(5-OH)]$.

Figure 5. X-ray structure of free-base undecaarylisocorrole $H_2[(CF_3)_8Me_3(5-OH)]$: (a) top view and (b, c) side views.

Sample	H ₂ [(CF ₃) ₈ Me ₃ (5-OH)]	Au[(CF3)8H3]
Chemical formula	$C_{96}H_{56}F_{24}N_4$	C95H51F24N4Cl4Au
Formula mass	1737.44	2043.16
Crystal system	Triclinic	Triclinic
Space group	P 1	<i>P</i> -1
λ (Å)	0.7749	0.7749
<i>a</i> (Å)	12.783(3)	15.4998(6)
<i>b</i> (Å)	18.085(4)	16.8410(6)
<i>c</i> (Å)	18.600(4)	16.9639(6)
α (deg.)	102.363(3)	106.229(2)
β (deg.)	108.203(3)	91.961(2)
γ (deg.)	96.468(3)	106.901(2)
Z	2	2
V (Å ³)	3914.7(15)	4035.8(3)
Temperature (K)	100(2)	100(2)
Density (g/cm^3)	1.474	1.681
Measured reflections	40303	78866
Unique reflections	15237	29236
Parameters	1169	1256
Restraints	66	646
Rint	0.0670	0.0524
θ range (deg.)	2.587 - 28.553	2.165 - 36.007
R_1 , w R_2 all data	0.0683, 0.2226	0.0459, 0.1140
S (GooF) all data	1.024	1.030
Max/min res. Dens. (e/Å ³)	0.410/-0.349	2.151/-1.956

Table 1. Crystallographic data for H₂[(CF₃)₈Me₃(5-OH)].

(b) Synthesis and molecular structure of a gold undecaarylcorrole. Given the oxidative instability of free-base undecaarylcorroles, we were intrigued by the question whether metal insertion into a free-base undecaarylisocorrole might proceed with concomitant aromatization, thereby providing a pathway to novel metalloundecaarylcorroles. Although a full exploration of this question, involving different isocorroles and metal ions, has not yet been carried out, we were gratified to discover that interaction of free-base H₃[(CF₃)₈H₃(5-OH)] and gold(III) acetate in pyridine leads to the fully aromatized undecaarylcorrole complex Au[(CF₃)₈H₃] in yields of ~40%.^{27,28} We are currently examining the generality of this process and will report on our findings in due course.

Unlike many gold β -octabromocorrole complexes, which tend to be quite insoluble, presumably because of intermolecular metallophilic Au...Br interactions,²⁷ Au[(CF₃)₈H₃] was

found to be moderately soluble. X-ray quality crystals were obtained and single-crystal structure determination revealed a planar Au-corrole, Au-N distances of 1.941(3)-1.965(3) Å, and no significant nonbonded interactions involving the gold (Figure 6).²⁹ The planarity of the gold corrole may be contrasted with the strong nonplanarity of copper corroles, which is believed to be due to ligand noninnocence. Silver corroles exhibit more variable behavior in this regard. Thus, whereas simple silver *meso*-triarylcorroles are only slightly saddled, a recent X-ray structure has provided an example of a strongly saddled silver β -octabromocorrole.³⁰ The substantial variations in corrole geometry in the silver case has been attributed to variations in noninnocent character among the different ligands. By contrast, corrole ligands in gold corroles are thought to be innocent.

Figure 6. X-ray structure of the gold undecaarylcorrole Au[(CF₃)₈H₃]: (a) top view and (b) side view.

Conclusion

In summary, copper undecaarylcorroles were found to demetallate with unusual ease under standard reductive demetallation conditions. The free-base undecaarylcorroles, however, proved to be light- and oxygen-sensitive, readily oxidizing to biliverdines and 5/10-OH isocorroles. Nonreductive conditions could be devised that led to good yields 65-80% of 5/10-OH undecaarylisocorroles, a new class of sterically hindered and relatively stable macrocyclic ligands. Interaction of one such ligand with gold(III) acetate resulted in rearomatization of the macrocycle and a gold undecaarylcorrole, which proved amenable to single-crystal X-ray diffraction analysis. Unlike the rather insoluble gold β -octabromo-*meso*-triarylcorroles, the gold undecaarylcorrole was found to be moderately soluble in organic solvents. The relatively high solubility appears to be related to the lack of intermolecular aurophilic and metallophilic interactions involving the gold atom.

Experimental section

Materials. All reagents and solvents were used as purchased unless stated otherwise. Anhydrous toluene (Sigma-aldrich) was stored over pre-activated 3 Å molecular sieves. Silica gel 150 (35-70 μ m particle size, Davisil) was used for flash chromatography and silica gel 60 plates (20 × 20 cm; 0.5 mm thick, Merck) were used for preparative thin-layer chromatography (PLC). Copper β -octabromo-*meso*-tris(4-methylphenyl)corrole, Cu[Br₈Me₃] and copper β -octabromo-*meso*-triphenylcorrole, Cu[Br₈H₃], served as the starting materials for copper undecaarylcorroles and were synthesized as previously described.³¹ Copper β -octakis(*p*-trifluoromethylphenyl)-*meso*-triphenylcorrole], Cu[(CF₃)₈H₃], was also synthesized according to a literature method.¹¹

Instrumentation. Ultraviolet-visible (UV-vis) spectra were recorded with CH₂Cl₂ as solvent on an HP 8453 spectrophotometer. ¹H NMR spectra were obtained at 298 K on either a Mercury Plus Varian spectrometer (400 MHz) in CDCl₃ (referenced to 7.26 ppm), in CD₂Cl₂ (referenced to 5.30 ppm), and in C₆D₆ (referenced to 7.20 ppm) or a Varian Inova spectrometer (600MHz) equipped with a cryogenically cooled inverse triple-resonance probe in 1,1,2,2-tetrachloroethane-*d*₂ (CDCl₂-CDCl₂, referenced to 5.91ppm). ¹⁹F NMR spectra (376 MHz) were recorded at 298-333K on a Mercury Plus Varian spectrometer and referenced to 2,2,2-trifluoroethanol-*d*₃ (δ = -77.8 ppm). Electrospray ionization mass spectra were recorded on an LTQ Orbitrap XL spectrometer.

General Procedure for the Synthesis of Copper Undecaarylcorroles. The syntheses were carried essentially according to the procedure reported by Ghosh and coworkers. Into a 50mL three-necked round-bottomed flask equipped with a magnetic stirring bar and a reflux condenser were introduced Cu[Br₈Me₃], the arylboronic acid of choice (40 equiv), potassium carbonate (40 equiv), and Pd₂(dba)₃·CHCl₃ (0.1 equiv). After degassing with argon, dry toluene (10 mL) was added. After purging with argon for 10 min, the suspension was stirred at 100–105 °C under argon for 1–2 days. Progress of the reaction was monitored by mass spectrometry. When product formation appeared to have stabilized, the reaction mixture was cooled to room temperature, diluted with 10 mL of CH₂Cl₂, and washed with saturated aqueous NaHCO₃ and then with distilled water. The CH₂Cl₂ phase was dried with anhydrous Na₂SO₄, filtered, and evaporated. The brown residue obtained was chromatographed on a silica gel column with hexane/CH₂Cl₂ as eluent. The product eluted as a dark brown band, which was collected and evaporated to dryness. The residue was purified by preparative thin-layer chromatography (PLC), as detailed below for each corrole.

Synthesis of Copper 2,3,7,8,12,13,17,18-octakis(4-fluorophenyl)-*meso*-tris(*p*methylphenyl)corrole, Cu[F₈Me₃]. The reaction employed 0.025 mol (32 mg) of Cu[Br₈TMePC] and was complete after ~2 days (45 h). Both the column chromatography and subsequent PLC were carried out with 3:1 hexane/CH₂Cl₂ as eluent. The pure product Cu[F₈Me₃] (26.6 mg, 76%) eluted as the most intense brown band. UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻¹): 448 (3.56), 644 (0.32). ¹H NMR (CDCl₃, 400 MHz, δ in ppm): δ 6.87 (d, *J*=8.0 Hz, 2H, 10*o*, 4-CH₃Ph), 6.80-6.74 (m, 4H, 2,18-*o*, 4-FPh; 4H, 5,15-*o*, 4-CH₃Ph), 6.57-6.51 (m, 4H, 3,17-*o*, 4-FPh; 4H, 2,18-*m*, 4-FPh), 6.47-6.26 (m, 4H, 8,12-*o*, 4-FPh; 4H, 7,13-*o*, 4-FPh; 4H, 3,17-*m*, 4-FPh; 4H, 5,15-*m*, 4-CH₃Ph; 4H, 7,13-*m*, 4-FPh; 4H, 8,12-*m*, 4-FPh; 2H, 10-*m*, 4-CH₃Ph), 2.02 (s, 6H, 5,15-*p*, 4-CH₃Ph), 1.91 (s, 3H, 10-*p*, 4- CH₃Ph). ¹⁹F NMR (CDCl₃): δ -116.31 to -116.39 (m, 2F), -118.08 to -118.21 (m, 4F), -118.62 to -118.70 (m, 2F). MS (HR-ESI major isotopomer): M⁺ = 1380.34 (expt), 1380.34 (calcd).

Synthesis of Copper 2,3,7,8,12,13,17,18-Octakis(4-trifluoromethylphenyl)-5,10,15tris(4-methylphenyl)corrole, Cu[(CF₃)₈Me₃]. The reaction employed 0.020 mol (25 mg) of Cu[Br₈TMePC] and was complete after 24 h. Both the column chromatography and subsequent PLC were carried out with 3:1 hexane/CH₂Cl₂ as eluent. The pure product Cu[(CF₃)₈Me₃] (18.4 mg, 52%) eluted as the most intense brown band. UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻¹): 454 (4.34), 642 (0.44), 841 (0.59). ¹H NMR (CDCl₃, 600 MHz, δ in ppm): δ 7.09 (d, *J*=4.0 Hz, 4H, 2,18-*o*, 4-CF₃Ph), 6.97 (d, *J*=4.0 Hz, 4H, 2,18-*m*, 4-CF₃Ph), 6.94 (d, *J*=4.0 Hz, 4H, 3,17-*o*, 4-CF₃Ph), 6.89 (d, *J*=4.0 Hz, 4H, 7,13-*o*, 4-CF₃Ph), 6.85 (d, *J*=4.0 Hz, 4H, 8,12-*o*, 4-CF₃Ph), 6.81 (d, *J*=8.0 Hz, 2H, 10-*o*, 4-CH₃Ph), 6.75 (d, *J*=4.0 Hz, 4H, 3,17-*m*, 4-CF₃Ph), 6.69 (d, *J*=8.0 Hz, 4H, 5,15-*o*, 4-CH₃Ph), 6.62 (d, *J*=8.0 Hz, 8H, 7,8,12,13-*m*, 4-CF₃Ph), 6.25 (d, *J*=4.0 Hz, 4H, 5,15-*m*, 4-CH₃Ph), 6.19 (d, *J*=8.0 Hz, 2H, 10-*m*, 4-CH₃Ph), 1.93 (s, 6H, 5,15-*p*, 4-CH₃Ph), 1.82 (s, 3H, 10-*p*, 4-CH₃Ph). ¹⁹F NMR (CDCl₃): δ -63.07 (s, 6F), -63.17 (s, 6F), -63.29 (s, 6F), -63.46 (s, 6F). MS (HR-ESI major isotopomer): M⁺= 1780.31 (expt), 1780.32 (calcd).

Synthesis of Copper 2,3,7,8,12,13,17,18-octaphenyl-5,10,15-tris(4-

methylphenyl)corrole, Cu[H₈Me₃]. The reaction employed 0.021 mol (27 mg) of Cu[Br₈TMePC] and was complete after 48 h. Column chromatography was carried out with hexane/CH₂Cl₂ as eluent, while 3:1 *n*-hexane/CH₂Cl₂ was used for the PLC. The pure product Cu[H₈Me₃] (12.1 mg, 46%) eluted as the most intense brown band. UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻¹): 448 (6.17), 544 (0.77), 645 (0.49). ¹H NMR (CD₂Cl₂, 600 MHz, δ in ppm): δ 6.86 (d, *J*=8.4 Hz, 2H, 10-*o*, 4-CH₃Ph), 6.85-6.82 (m, 4H, 2,18-*o*, Ph; 2H, 2,18-*p*, Ph), 6.80-6.76 (m, 4H, 2,18-*m*, Ph), 6.74 (d, *J*=7.8 Hz, 4H, 5,15-*o*, 4-CH₃Ph), 6.72-6.68 (m, 2H, 3,17-*p*, Ph), 6.65-6.63 (m, 4H, 3,17-*o*, Ph; 4H, 3,17-*m*, Ph), 6.62-6.58 (m, 2H, 7,13-*p*, Ph; 4H, 7,13-*m*, Ph), 6.58-6.57 (m, 2H, 8,12-*p*, Ph), 6.57-6.54 (m, 4H, 8,12-*m*, Ph; 4H, 8,12-*o*, Ph), 6.54-6.52 (m, 4H, 7,13-*o*, Ph), 6.19 (d, *J*=7.2 Hz, 4H, 5,15-*m*, 4-CH₃Ph), 6.16 (d, *J*=7.8 Hz, 2H, 10-*m*, 4-CH₃Ph), 1.80 (s, 3H, 10-*p*, 4- CH₃Ph). MS (HR-ESI major isotopomer): M⁺= 1237.42 (expt), 1237.42 (calcd).

Undecaarylisocorrole H₂[F₈Me₃(5-OH)]. Into a 50 mL round-bottomed flask was placed 25 mg (0.018 mmol) of Cu[F₈Me₃] and dissolved in 3 mL of CH₂Cl₂. Subsequently, 3 mL of concentrated H₂SO₄ (95-97%, Merck) was added. The mixture was then stirred and sonicated at room temperature. Progress of the reaction was monitored by ESI mass spectrometry. After 2 h, the reaction mixture was carefully poured into 300 mL of distilled H₂O and then extracted with CHCl₃. The organic phase was washed once with distilled water and twice with saturated aqueous NaHCO₃. Upon washing with NaHCO₃, the color of the organic phase changed from brown to green. The organic phase was then dried with anhydrous Na₂SO₄, filtered, and the filtrate rotary-evaporated to dryness. The residue obtained was chromatographed on a silica gel column with CH₂Cl₂/1%-MeOH. The product was further purified by PLC with 2:3 *n*-hexane/CH₂Cl₂; upon completion of the PLC, the pure product H₂[F₈Me₃(5-OH)] (14.4 mg, 60%) was obtained as the most intense green band in the middle of the plate. UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻

¹): 433 (3.37), 683 (0.69). ¹H NMR (C₆D₆, 600 MHz, δ in ppm): δ 8.05 (d, J = 8.1 Hz, 2H, 5-o, 4-CH₃Ph), 7.01 (d, J = 8.3 Hz, 2H, 5-m, 4-FPh), 6.81 (d, J = 8.1 Hz, 1H, 10-o, 4-CH₃Ph), 6.80 (d, J = 8.6 Hz, 2H, 3-o, 4-FPh), 6.70 (d, J = 8.0 Hz, 1H, 7-o, 4-FPh), 6.69 (t, J = 7.6 Hz, 1H, 7-m, 4-FPh), 6,60 (d, J = 8.6 Hz, 2H, 2-o, 4-FPh), 6.55 (t, J = 8.5 Hz, 2H, 3-m, 4-FPh), 6.44 (overlapping, 1H, 7-o, 4-FPh), 6.42 (o, 12-o, 4-FPh), 6.36 (o, 1H, 7-m, 4-FPh), 6.33 (o, 1H, 10-m, 4-CH₃Ph), 6.29 (o, 1H, 8-m, 4-FPh), 6.25 (t, J = 8.8 Hz, 2H, 2-m, 4-FPh), 6.20 (o, 1H, 8-o, 4-FPh), 6.11 (o, 1H, 8-m, 4-FPh), 6.07 (d, J = 8.4 Hz, 1H, 10-o, 4-CH₃Ph), 6.02 (t, J = 8.5 Hz, 0.5H, 12-m, 4-FPh), 5.65 (d, J = 7.8 Hz, 1H, 10-m, 4-CH₃Ph), 2.29 (s, 1H, -OH), 2.05 (s, 3H, 5-p, 4-CH₃Ph), 1.86 (s, 3H, 15-p, 4-CH₃Ph), 1.72 (s, 3H, 10-p, 4-CH₃Ph). ¹⁹F NMR (CDCl₃): δ -115.96 to -116.08 (m, 1F), -116.25 to -116.36 (m, 1F), -116.45 to -116.59 (m, 1F), -117.38 to -117.49 (m, 1F), -117.79 to -117.88 (m, 1F), -117.95 to -118.09 (m, 2F), -118.25 to -118.35 (m, 1F). MS (HR-ESI major isotopomer): M⁺ = 1337.44 (expt), 1337.44 (calcd).

Undecaarylisocorroles $H_2[(CF_3)_8Me_3(5-OH)]$ and $H_2[(CF_3)_8Me_3(10-OH)]$. Into a 50 mL round-bottomed flask, 20 mg (0.0112 mmol) of Cu[(CF₃)₈Me₃] was added and dissolved in 4 mL of CH₂Cl₂. Subsequently, 2 mL of concentrated H₂SO₄ (95-97%, Merck) was added. The mixture was stirred and sonicated at room temperature. The progress of the reaction was monitored by ESI mass spectrometry. After 4 hours the reaction was quenched by pouring the mixture into 300 mL distilled H₂O and then extracted with CHCl₃. The brown organic phase was washed once with distilled water and once with saturated aqueous NaHCO₃. Upon washing with NaHCO₃ the color of organic phase changed from brown to green. The organic phase was dried with anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue obtained was chromatographed on a silica gel column with 2:1 *n*-hexane/CH₂Cl₂. The product was further purified by PLC with 2:1 *n*-hexane/CH₂Cl₂. The most intense green band in the middle of the plate was pure H₂[(CF₃)₈Me₃(10-OH)] (3.7 mg, 19%). X-ray quality crystals of H₂[(CF₃)₈Me₃(5-OH)] were grown by slow diffusion of *n*-heptane into the benzene solution. Analytical data for the two isomers are as follows.

Undecaarylisocorrole H₂[(**CF**₃)₈**Me**₃(**5-OH**)]. UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻¹): 435 (4.19), 683 (0.92). ¹H NMR (C₆D₆, 600 MHz, δ in ppm): δ 7.95 (d, J = 8.0 Hz, 2H, 5-o, 4-CH₃Ph), 7.22 (d, J = 8.0 Hz, 1H, 7-m, 4-CF₃Ph), 7.05 (d, J = 8.0 Hz, 2H, 3-m, 4-CF₃Ph), 7.03 (d, J = 8.1 Hz, 2H, 5-m, 4-CH₃Ph), 6.87 (d, J = 7.9 Hz, 2H, 3-o, 4-CF₃Ph), 6.75 (d, J = 8.4 Hz, 1H, 7-m, 4-CF₃Ph), 6.72 (d, J = 8.0 Hz, 1H, 7-o, 4-CF₃Ph), 6.68 (o, 1H, 10-o, 4-CH₃Ph), 6.61 (d,

 $J = 8.6 \text{ Hz}, 1\text{H}, 8-m, 4-\text{CF}_3\text{Ph}), 6.61 \text{ (o, } 2\text{H}, 12-m, 4-\text{CF}_3\text{Ph}), 6.61 \text{ (o, } 1\text{H}, 15-m, 4-\text{CH}_3\text{Ph}), 6.6 \text{ (o, } 2\text{H}, 2-m, 4-\text{CF}_3\text{Ph}), 6.66 \text{ (o, } 2\text{H}, 2-o, 4-\text{CF}_3\text{Ph}), 6.57 \text{ (o, } 1\text{H}, 15-m, 4-\text{CH}_3\text{Ph}), 6.53 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}, 8-m, 4-\text{CF}_3\text{Ph}), 6.44 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}, 7-o, 4-\text{CF}_3\text{Ph}), 6.37 \text{ (broad, } 1\text{H}, 15-o, 4-\text{CH}_3\text{Ph}), 6.35 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{H}, 8-o, 4-\text{CF}_3\text{Ph}), 6.26 \text{ (b, } 1\text{H}, 15-o, 4-\text{CH}_3\text{Ph}), 6.17 \text{ (d, } J = 7.9 \text{ Hz}, 1\text{H}, 10-m, 4-\text{CH}_3\text{Ph}), 6.13 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}, 8-o, 4-\text{CF}_3\text{Ph}), 5.93 \text{ (d, } J = 7.8 \text{ Hz}, 1\text{H}, 10-o, 4-\text{CH}_3\text{Ph}), 5.48 \text{ (d, } J = 7.8 \text{ Hz}, 1\text{H}, 10-m, 4-\text{CH}_3\text{Ph}), 2.07 \text{ (s, } 3\text{H}, 5-p, 4-\text{CH}_3\text{Ph}), 1.97 \text{ (s, } 1\text{H}, -\text{OH}), 1.86 \text{ (s, } 3\text{H}, 15-p, 4-\text{CH}_3\text{Ph}), 1.68 \text{ (s, } 3\text{H}, 10-p, 4-\text{CH}_3\text{Ph}). 1^{9}\text{F} \text{NMR} (\text{C}_6\text{D}_6, 60^{\circ}\text{C}): \delta - 62.58 \text{ (s, } 3\text{F}), -62.72 \text{ (s, } 9\text{F}), - 62.88 \text{ (s, } 3\text{F}), -63.06 \text{ (s, } 3\text{F}), -63.32 \text{ (s, } 3\text{F}). \text{MS} (\text{HR}-\text{ESI major isotopomer}): \text{M}^+ = 1738.42 \text{ (expt)}, 1738.42 \text{ (calcd)}.$

Undecaarylisocorrole H₂**[(CF**₃)₈**Me**₃(**10-OH**)**].** UV-vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹ cm⁻¹): 458 (1.86), 658 (0.26). ¹H NMR (C₆D₆, 600 MHz, δ in ppm): δ 7.46 (d, *J* = 8.3 Hz, 2H, 10*o*, 4-CH₃Ph), 6.95 (d, *J* = 8.1 Hz, 4H, 12-*m*, 4-CF₃Ph), 6.80 (d, *J* = 8.2 Hz, 4H, 18-*m*, 4-CF₃Ph), 6.77 (d, *J* = 8.1 Hz, 2H, 10-*m*, 4-CH₃Ph), 6.72 (d, *J* = 8.3 Hz, 4H, 18-*o*, 4-CF₃Ph), 6.68 (d, *J* = 8.0 Hz, 4H, 17-*m*, 4-CF₃Ph), 6.68 (b, 12-*o*, 4-CF₃Ph), 6.62 (d, *J* = 8.0 Hz, 4H, 13-*m*, 4-CF₃Ph), 6.40 (d, *J* = 7.9 Hz, 4H, 17-*o*, 4-CF₃Ph), 6.30 (d, *J* = 8.0 Hz, 4H, 13-*o*, 4-CF₃Ph), 6.28 (d, *J* = 7.9 Hz, 4H, 15-*o*, 4-CH₃Ph), 5.86 (d, *J* = 7.8 Hz, 4H, 15-*m*, 4-CH₃Ph), 2.39 (s, 1H, -OH), 1.98 (s, 3H, 10*p*, 4-CH₃Ph), 1.80 (s, 6H, 5,15-*p*, 4-CH₃Ph). ¹⁹F NMR (CDCl₃): δ -63.06 (s, 6F), -63.15 (s, 6F), -63.19 (s, 6F), -63.54 (s, 6F). MS (HR-ESI major isotopomer): M⁺= 1738.42 (expt), 1738.42 (calcd).

Single-crystal X-ray diffraction analysis of Undecaarylisocorrole H₂[(CF₃)₈Me₃(5-OH)]. X-ray data for H₂[(CF₃)₈Me₃(5-OH)] were collected on beamline 11.3.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory. Samples were mounted on MiTeGen[®] kapton loops and placed in a 100(2) K nitrogen cold stream provided by an Oxford Cryostream 700 Plus low temperature apparatus on the goniometer head of a Bruker D8 diffractometer equipped with a APEX-II CCD detector. Diffraction data were collected with synchrotron radiation monochromated using silicon(111) to a wavelength of 0.7749(1)Å. An approximate fullsphere of data was collected using a ω scans with scan rates of 3 seconds per 0.5 degree with 2 θ = -36°. The structures were solved by intrinsic phasing (SHELXT) and refined by full-matrix least squares on F^2 (SHELXL-2014). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were geometrically calculated and refined as riding atoms. The hydrogen atoms on the nitrogen and oxygen atoms were found in the Fourier difference map and allowed to ride on their respective N or O atoms. Additional crystallographic information has been summarized in Table

1 and full details can be found in the crystallographic information file provided in the Supplementary Information.

Undecaarylisocorrole H₂[H₈Me₃(5-OH)]. Into a 50 mL round-bottomed flask, 12 mg (0.0097 mmol) of Cu[H₈Me₃] was added and dissolved in 2 mL of CH₂Cl₂. Subsequently, 2 mL of concentrated H₂SO₄ (95-97%, Merck) was added. The mixture was stirred and sonicated at room temperature. The progress of the reaction was monitored by ESI mass spectrometry. After 2 hours the reaction was quenched by pouring the mixture into 300 mL distilled H₂O and then extracted with CHCl₃. The brown organic phase was washed once with distilled water and once with saturated aqueous NaHCO₃. Upon washing with NaHCO₃ the color of organic phase changed from brown to green. The organic phase was dried with anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue obtained was chromatographed on a silica gel column with CH₂Cl₂/5%-MeOH. The product was further purified by PLC with 1:2 *n*-hexane/CH₂Cl₂. The olive-green band at the bottom of the plate was pure H₂[H₈Me₃(5-OH)]. Yield: 5.6 mg, 48%. UVvis (CH₂Cl₂): λ_{max} , nm ($\epsilon \ge 10^{-4}$, M⁻¹ cm⁻¹): 439 (0.69), 689 (0.15). ¹H NMR (C₆D₆, 600 MHz, δ in ppm): δ 8.22 (d, J = 7.8 Hz, 2H, 5-*o*, 4-CH₃Ph), 7.07 (d, J = 7.2 Hz, 2H, 3-*o*, Ph), 7.04 (d, J = 8.1 Hz, 2H, 5-*m*, 4-CH₃Ph), 7.03 (o, 7-*o*, Ph), 7.0 (b, 1H, 10-*o*, 4-CH₃Ph), 6.94 (d, *J* = 7.2 Hz, 2H, 2*o*, Ph), 6.94 (o, 7-*p*, Ph), 6.86 (t, *J* = 7.5 Hz, 2H, 3-*m*, Ph), 6.81 (d, *J* = 7.2 Hz, 1H, 3-*p*, Ph), 6.77 (o, 7-*m*, Ph), 6.73 (o, 7-*m*, Ph), 6.66 (o, 7-*o*, Ph), 6.56 (t, *J* = 6.8 Hz, 2H, 2-*m*, Ph), 6.56 (o, 15-*o*, 4-CH₃Ph), 6.55 (o, 8-m, Ph), 6.51 (12-m, Ph), 6.48 (o, 15-m, 4-CH₃Ph), 6.43 (o, 8-m, Ph), 6.37 (b, 1H, 10-m, 4-CH₃Ph), 6.23 (b, 1H, 10-o, 4-CH₃Ph), 5.56 (b, 1H, 10-m, 4-CH₃Ph), 2.52 (s, 1H, -OH), 2.08 (s, 3H, 5-p, 4-CH₃Ph), 1.82 (s, 3H, 15-p, 4-CH₃Ph), 1.68 (s, 3H, 10-p, 4-CH₃Ph). MS (HR-ESI major isotopomer): M^+ = 1193.52 (expt), 1193.52 (calcd).

Undecaarylisocorrole H₂[(CF₃)₈H₃(5-OH)]. To a solution of Cu[(CF₃)₈H₃] (25 mg, 0.014 mmol) in CH₂Cl₂ (7.0 mL) was added dropwise 1 mL H₂SO₄ (95-97%) and the resulting suspension was stirred for 30 min. The mixture was poured into cold, distilled water and extracted with CH₂Cl₂. The green organic phase was washed once with distilled H₂O and once with saturated aqueous NaHCO₃, dried with anhydrous Na₂SO₄, and filtered. After concentration to a minimum volume, the organic phase was chromatographed on a silica gel column with 1:1 hexane/CH₂Cl₂, whereupon the isocorrole isomers eluted as a green band. PLC with 3:2 hexane/CH₂Cl₂ yielded the 5-OH-isocorrole (17mg, 0.01, 71.6%) as the first intense green band. Free base H₃[(CF₃)₈H₃] (1.8 mg, 7%) followed as a second, thinner green band, closely followed by a third, bright green band containing the 10-OH-isocorrole (2.5 mg, 11%). The latter two

products were not fully characterized because of the small quantities obtained so analytical data are only reported for the 5-OH isomer. UV-Vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹cm⁻¹): 433 (4.30), 681 (0.98). ¹H NMR (C₆D₆): δ 8.0 (d, 2H, 5-o, Ph), 7.20 (m, 1H, 7-m, 4-CF₃Ph), 7.15 (t, 2H, 5-m, Ph); 7.05 - 7.0 (m, 3H, 5-p, Ph and 3-m, 4-CF₃Ph), 6.82 (d, 2H, 3-o, 4-CF₃Ph), 6.75 (d, 1H, 10-o, Ph), 6.75 - 6.56 {m, 7-m (1H, 4-CF₃Ph), 2-o, m (4H, 4-CF₃Ph), 8-m (1H, 4-CF₃Ph), 7-o (1H, 4-CF₃Ph), 15-m (2H, Ph)}, 6.54 (d, 1H, 8-m, 4-CF₃Ph), 6.42 (d, 1H, 7-o, 4-CF₃Ph), 6.40 – 6.25 {m, 15-p (1H, Ph), 10-m (1H, Ph), 8-o (2H, 4-CF₃Ph), 15-o (2H, Ph)}, 6.20 (t, 1H, 10-p, Ph), 6.10 (d, 1H, 8-o, 4-CF₃Ph), 6.0 (d, 1H, 10-o, Ph), 5.65 (t, 1H, 10-m, Ph). ¹⁹F NMR (C₆D₆)2: δ -62.88 (s, 3F), -63.02 (s, 3F), -63.41 to -63.46 (m, 3F), -63.48 (s, 6F), -63.53 (s, 3F), -63.61 (s, 3F), -63.71 to -63.76 (m, 3F). HRMS (ESI⁺, major isotopomer): [M + H]⁺ = 1696.3692 (expt), 1696.3708 (calcd). Elemental analysis. Found (calcd) : C, 65.86 (65.88); H, 3.20 (2.97), N, 3.27 (3.30).

Synthesis of gold β -octakis(*p*-trifluoromethylphenyl)-*meso*-triphenylcorrole, Au[(CF₃)₈H₃]. Gold(III) acetate (11 mg, 5 equiv) was added to a green solution of a mixture of the isomeric isocorroles H₂[(CF₃)₈H₃(5/10-OH)] (15 mg, 0.009mmol) pyridine (5.0 mL). After overnight stirring, the resulting reddish-brown suspension was evaporated and the residue eluted through silica gel with 7:3 hexane/CH₂Cl₂, yielding the gold undecaarylcorrole as the first red band (7 mg, 41.5%). Vapour diffusion of hexane into a CH₂Cl₂ solution yielded tiny rectangular needles of x-ray quality in approximately a month. UV-Vis (CH₂Cl₂): λ_{max} , nm (ε x 10⁻⁴, M⁻¹cm⁻¹): 434 (6.08), 544 (0.58). 580 (2.0). ¹H NMR (600 MHz, (CDCl₂)₂): δ 7.29 (d, J = 8.2 Hz, 4H, 2,18*o*,4-CF₃Ph), 7.15 (d, 4H, 5, 15-*o*, Ph), 7.09 (d, 2H, 10-*o*, Ph), 7.05 (d, *J* = 8.1 Hz, 4H, 3,17-*o*, 4-CF₃Ph), 7.02 (d, *J* = 8.1 Hz, 4H, 2,18-*m*,4-CF₃Ph), 6.96 (d, *J* = 7.9 Hz, 4H, 3,17-*m*, 4-CF₃Ph), 6.93 – 6.89 (m, 8H, 7, 8, 12,13-m, 4-CF₃Ph), 6.87 (d, J = 8.0 Hz, 4H, 7,13-o, 4-CF₃Ph), 6.82 (d, J = 7.9 Hz, 4H, 8,12-*o*, 4-CF₃Ph), 6.74 (t, *J* = 7.7 Hz, 2H, 5,15-*p*, Ph), 6.65 (t, *J* = 7.6 Hz, 1H, 10-*p*, Ph), 6.49 (t, J = 7.7 Hz, 4H, 5,15-*m*, Ph), 6.41 (t, J = 7.7 Hz, 2H, 10-*m*, Ph). ¹⁹F NMR (CDCl₃): δ -63.31 (s, 12F); -63.42 (s, 6F); -63.49 (s, 6F). HRMS (ESI⁺, major isotopomer): $[M]^+ = 1873.3112$ (expt), 1873.3110 (calcd). Elemental analysis. Found (calcd) : C, 59.90 (59.63); H, 2.77 (2.53), N, 3.11 (2.99).

Single-crystal X-ray diffraction analysis of the gold undecaarylcorrole Au[(CF₃)₈H₃]. X-ray data for Au[(CF₃)₈H₃] were collected on beamline 11.3.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory. A red tablet with dimensions 50 x 40 x 15 μ m³ was mounted on a MiTeGen[®] kapton loop and placed in a 100(2) K nitrogen cold stream provided by an Oxford Cryostream 700 Plus low temperature apparatus on the goniometer head of a Bruker D8 diffractometer equipped with a PHOTON100 CMOS detector operating in shutterless mode. Diffraction data were collected with synchrotron radiation monochromated using silicon(111) to a wavelength of 0.7749(1) Å. An approximate full-sphere of data was collected using a combination of ϕ and ω scans with scan speeds of 1 second per degree for the ϕ scans, and 1 and 3 seconds per degree for the ω scans at $2\theta = 0$ and -45°, respectively. The structures were solved by intrinsic phasing (SHELXT) and refined by full-matrix least squares on F^2 (SHELXL-2014). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were geometrically calculated and refined as riding atoms. Additional crystallographic information has been summarized in Table 1 and full details can be found in the crystallographic information file provided in the Supporting Information.

Supporting information. UV-vis, ¹H NMR, and high-resolution mass spectra (42 pages); crystallographic information files for H₂[(CF₃)₈Me₃(5-OH)] and Au[(CF₃)₈H₃].

Acknowledgement. This work was supported by the of the Research Council of Norway (FRINATEK project 231086, AG) and the Advanced Light Source, Berkeley, California (CMB, KJG). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

[2] For more specialized reviews on metallocorroles, see:

- (b) J. H. Palmer, Struct. Bond. 142 (2012) 49–89.
- (c) H. L. Buckley, J. Arnold, Dalton Trans. 44 (2015) 30–36.
- [3] C. Capar, K. E. Thomas, A. Ghosh, J. Por. Phthalocya. 12 (2008) 964–967.
- [4] F. Mandoj, S. Nardis, G. Pomarico, R. Paolesse, J. Por. Phthalocya. 12 (2008) 19–26.
- [5] H. Y. Liu, L. Chen, F. Yam, H. Y. Zhan, X. Ying, X. L. Wang, H. F. Jiang, C. K. Chang,
- Chin. Chem. Lett. 19 (2008) 1000–1003.
- [6] T. H. Ngo, W.Van Rossom, W. Dehaen, W. Maes, Org. Biomol. Chem. 7 (2009) 439-443.

^[1] For a review on applications of corroles, see: I. Aviv-Harel, Z. Gross, Chem. Eur. J. 15 (2009) 8382–8394.

⁽a) K. E. Thomas, A. B. Alemayehu, J. Conradie, C. M. Beavers, A. Ghosh, Acc. Chem. Res. 45 (2012) 1203–1214.

- [7] (a) C. Capar, L.-K. Hansen, J. Conradie, A. Ghosh, J. Por. Phthalocya. 14 (2010) 509–512.
 (b) J. Capar, J. Conradie, C. M. Beavers, A. Ghosh, J. Phys. Chem. A 119 (2015) 3452–3457.
- [8] J. Capar, S. Berg, K. E. Thomas, C. M. Beavers, K. J. Gagnon, A. Ghosh, J. Inorg. Biochem. 153 (2015) 162–166.
- [9] Synthesis of gold octabromocorroles:
- (a) A. Alemayehu, A. Ghosh, J. Por. Phthalocya. 15 (2011) 106–110.
- (b) E. Rabinovitch, I. Goldberg, Z. Gross, Chem. Eur. J. 17 (2011) 12294–12301.
- [10] Synthesis of diboron octabromocorroles: A. M. Albrett, K. E. Thomas, S. Maslek, A.

Młodzianowska, J. Conradie, C. M. Beavers, A. Ghosh, P. J. Brothers, Inorg. Chem. 53 (2014) 5486–5493.

- [11] S. Berg, K. E. Thomas, C. M. Beavers, A. Ghosh, Inorg. Chem. 51, (2012) 9911–9916.
- [12] D. Gao, G. Canard, M. Giorgi, T. S. Balaban, Eur. J. Inorg. Chem. (2012) 5915–5920.
- [13] D. Gao, G. Canard, M. Giorgi, P. Vanloot, T. S. Balaban, Eur. J. Inorg. Chem. (2013) 279– 287.
- [14] J. I. Setsune, A. Tsukajima, J. Watanabe, Tetrahedron Lett. 47 (2006) 1817–1820.
- [15] G. Pomarico, X. Xiao, S. Nardis, R. Paolesse, F. R. Fronczek, K. M. Smith, Y. Fang, Z. Ou,
- K. M. Kadish, Inorg. Chem. 49 (2010) 5766–5774.
- [16] D. L. Flint, R. L. Fowler, T. D. LeSaulnier, A. C. Long, A. Y. O'Brien, G. R. Geier, J. Org. Chem. 75 (2010) 553–563.
- [17] R. Costa, G. R. Geier, C. J. Ziegler, Dalton Trans. 40 (2011) 4384–4386.
- [18] S. Nardis, G. Pomarico, F. R. Fronczek, M. G. H. Vicente, R. Paolesse, Tetrahedron Lett. 48 (2007) 8643–8646.
- [19] D. Sakow, D. Baabe, B. Böker, O. Burghaus, M. Funk, C. Kleeberg, D. Menzel, C.
- Pietzonka, M. Bröring, Chem. Eur. J. 20 (2014) 2913–2924.
- [20] M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, Chem. Soc. Rev. 40 (2011) 340–362.
- [21] M. Stefanelli, J. Shen, W. Zhu, M. Mastroianni, F. Mandoj, S. Nardis, Z. Ou, K. M. Kadish,
- F. R. Fronczek, K. M. Smith, R. Paolesse, Inorg. Chem. 48 (2009) 6879–6887.
- [22] P. Świder, A. Nowak-Król, R. Voloshchuk, J. P. Lewtak, D. T. Gryko, W. Danikiewicz, J. Mass Spectrom. 45 (2010) 1443–1451.
- [23] J. Wojaczyński, M. Duszak, L. Latos-Grazyński, Tetrahedron 69 (2013) 10445–10449.
- [24] C. Tardieux, C. P. Gros, R. Guilard, J. Heterocycl. Chem. 35 (1998) 965–970.

[25] G. R. Geier, J. F. B. Chick, J. B. Callinan, C. G. Reid, W. P. Auguscinski, J. Org. Chem. 69 (2004) 4159–4169.

[26] For an extensive study of free-base corrole conformation, see: J. Capar, J. Conradie, C. M.

Beavers, A. Ghosh, J. Phys. Chem. A. 119 (2015) 3452–3457.

[27] Syntheses of gold corroles:

(a) K. E. Thomas, A. B. Alemayehu, J. Conradie, C. M. Beavers, A. Ghosh, Inorg. Chem. 50 (2011) 12844–12851.

(b) K. E. Thomas, C. M. Beavers, A. Ghosh, Mol. Phys. 110 (2012) 2439-2444.

[28] Gold corroles have found applications as organic solar cells and as reagents for photodynamic therapy of cancer:

(a) S.-L. Lai, L. Wang, C. Yang, M.-Y. Chan, X. Guan, C.-C. Kwok, C.-M. Che, Adv. Func. Mat. 24 (2014) 4655–4665.

(b) R. D. Teo, H. B. Gray, P. Lim, J. Termini, E. Domeshek, Z. Gross, Chem. Comm. 50 (2014) 13789–13792.

[29] Aurophilic interactions of approximately 4.93-4.35 Å have been observed in a crystal structure of a gold triarylcorrole. Feil! Bokmerke er ikke definert.^a

[30] For X-ray structures of Cu and Ag octabromocorroles, see:

(a) A. B. Alemayehu, L.-K. Hansen, A. Ghosh, Inorg. Chem. 49 (2010) 7608–7610.

(b) K. E. Thomas, H. Vazquez-Lima, Y. Fang, Y. Song, K. J. Gagnon, C. M. Beavers, K. M. Kadish, A. Ghosh, Chem. Eur. J. 21 (2015) 16839–16847.

[31] I. H. Wasbotten, T. Wondimagegn, A. Ghosh, J. Am. Chem. Soc. 124 (2002) 8104–8116.

Supporting Information

Demetalation of Copper Undecaarylcorroles: Molecular Structures of a Free-Base Undecaarylisocorrole and a Gold Undecaarylcorrole

Jan Capar,^a Job Zonneveld,^a Steffen Berg,^a Johan Isaksson,^a Kevin J. Gagnon,^b Kolle E. Thomas,^{*,a} and Abhik Ghosh^{*,a}

^{*a*} Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway; Email: thomas.kolle@uit.no; abhik.ghosh@uit.no; ^{*b*} Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229

Table of Contents

A. Copper undecaarylcorroles	
a. UV-vis spectra	S1
b. NMR spectra	S3
c. HR-MS spectra	S9
B. Free base undecaarylisocorroles	S11
a. UV-vis spectra	S11
b. NMR spectra	S14
c. HR-MS spectra	S34
C. Free base undecaarylcorroles	S37
a. UV-vis spectra	S37
b. HR-MS spectra	S38
D. Gold undecaarylcorrole	S39
a. UV-vis spectra	S39
b. NMR spectra	S39

A. Copper undecaarylcorroles

(a) UV-vis spectra of copper undecaarylcorroles

Figure S1. UV-vis spectrum of Cu[F₈Me₃].

Figure S2. UV-vis spectrum of Cu[(CF₃)₈Me₃].

Figure S3. UV-vis spectrum of Cu[H₈Me₃].

(b) NMR spectra of copper undecaarylcorroles

NMR spectra of Cu[F₈Me₃]

Figure S4. Aromatic region in the ¹H NMR spectrum of Cu[F₈Me₃] in CDCl₃.

Figure S5. ¹H, ¹H COSY of Cu[F₈Me₃] in CDCl₃ for the aromatic region.

Figure S6. ${}^{1}H$, ${}^{1}H$ ROESY (300ms, CDCl₃) of Cu[F₈Me₃] for the aromatic region.

Figure S7. ¹⁹F NMR spectrum of Cu[F₈Me₃] in CDCl₃.

NMR spectra of Cu[(CF₃)₈Me₃]

Figure S8. Aromatic region in the ¹H NMR spectrum of Cu[(CF₃)₈Me₃] in CDCl₃.

Figure S9. ¹H, ¹H ROESY (300ms, CDCl₃) of Cu[(CF₃)₈Me₃] for the aromatic region.

Figure S10. ¹H, ¹H ROESY (300ms, CDCl₃) of Cu[(CF₃)₈Me₃] for the aromatic/methyl region.

Figure S11. ¹H, ¹H TOCSY (80ms, CDCl₃) of Cu[(CF₃)₈Me₃] for the aromatic region.

Figure S12. ¹⁹F NMR spectrum of Cu[(CF₃)₈Me₃] in CDCl₃.

NMR spectra of Cu[(Ph)8Me3]

Figure S13. Aromatic region in the ¹H NMR spectrum of Cu[H₈Me₃] in CD₂Cl₂.

Figure S14. ¹H, ¹H ROESY (300ms, CD₂Cl₂) of Cu[H₈Me₃] for the aromatic region.

Figure S15. ¹H, ¹H TOCSY (80ms, CD₂Cl₂) of Cu[H₈Me₃] for the aromatic region.

(c) HR-MS of copper undecaarylcorroles

Figure S16. HR-ESI mass spectrum of Cu[F8Me3].

Figure S17. HR-ESI mass spectrum of Cu[(CF₃)₈Me₃].

Figure S18. HR-ESI mass spectrum of Cu[H8Me3].

B. Free base undecaarylisocorroles

(a) UV-vis spectra of free base undecaarylisocorroles

Figure S19. UV-vis spectrum of H₂[F₈Me₃(5-OH)].

Figure S20. UV-vis spectrum of H₂[(CF₃)₈Me₃(5-OH)].

Figure S21. UV-vis spectrum of H₂[(CF₃)₈Me₃(10-OH)].

Figure S22. UV-vis spectrum of H₂[H₈Me₃(5-OH)].

Figure S23. UV-vis spectra of $H_2[(CF_3)_8H_3(5-OH)]$ and $H_2[(CF_3)_8H_3(10-OH)]$.

(b) NMR spectra of free base undecaarylisocorroles

Figure S24. ¹H NMR spectrum of H₂[F₈Me₃(5-OH)] in benzene-*d*₆.

8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 f1 (ppm)

Figure S26. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[F₈Me₃(5-OH)] for the aromatic region. Conformational exchange peaks (same sign as diagonal) are shown as circles.

Figure S27. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[F₈Me₃(5-OH)] in the aromatic region. Conformational exchange peaks from ROESY are shown as circles.

Figure S28. ¹H, ¹H ROESY (300ms, benzene- d_6) spectrum of H₂[F₈Me₃(5-OH)] for the aromatic/methyl region.

Figure S29. ¹H, ¹H TOCSY (80ms, benzene-*d*₆) of H₂[F₈Me₃(5-OH)] for the aromatic region. Conformational exchange peaks from ROESY are shown in circles.

Figure S30. ¹H, ¹³C HSQC and HMBC spectra (in benzene-*d*₆) of H₂[F₈Me₃(5-OH)] superimposed.

Figure S31. ¹⁹F NMR spectrum of H₂[F₈Me₃(5-OH)] in CDCl₃ at 298K.

NMR spectra of H₂[(CF₃)₈Me₃(5-OH)]

Figure S32. ¹H NMR spectrum of H₂[(CF₃)₈Me₃(5-OH)] in benzene-*d*₆.

8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5 f1 (ppm)

Figure S33. Aromatic region of the ¹H NMR spectrum of H₂[(CF₃)₈Me₃(5-OH)] in benzene d_6 .

Figure S34. Variable temperature ¹H NMR spectra of $H_2[(CF_3)_8Me_3(5-OH)]$ in benzene-*d*₆.

Figure S35. ¹H, ¹H DQFCOSY (benzene- d_6) of H₂[(CF₃)₈Me₃(5-OH)] for the aromatic region. Exchange peaks from ROESY are shown as circles.

Figure S36. ¹H, ¹H ROESY (300ms, benzene-*d*₆) of H₂[(CF₃)₈Me₃(5-OH)] for the aromatic region.

Figure S37. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[(CF₃)₈Me₃(5-OH)] for the aromatic region. Conformational exchange peaks (same sign as diagonal) are shown as circles.

Figure S38. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[(CF₃)₈Me₃(5-OH)] for the aromatic/methyl region.

Figure S39. Superimposed 1 H, 13 C HSQC and HMBC spectra (in benzene- d_6) of H₂[(CF₃)₈Me₃(5-OH)].

Figure S40. ¹⁹F NMR spectrum of $H_2[(CF_3)_8Me_3(5-OH)]$ in benzene-d₆ at 333K.

NMR spectra of H₂[(CF₃)₈Me₃(10-OH)]

Figure S41. ¹H NMR spectrum of H₂[(CF₃)₈Me₃(10-OH)] in benzene-*d*₆.

Figure S42. Aromatic region of the ¹H NMR spectrum of $H_2[(CF_3)_8Me_3(10-OH)]$ in benzene*d*₆.

Figure S43. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[(CF₃)₈Me₃(10-OH)] for the aromatic region.

Figure S44. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[(CF₃)₈Me₃(10-OH)] for the aromatic/methyl region.

Figure S45. ¹H, ¹H TOCSY (80ms, benzene- d_6) of H₂[(CF₃)₈Me₃(10-OH)] for the aromatic region.

H₂[(CF₃) $_{8}$ Me₃(10-OH)].

Figure S47. ¹⁹F NMR spectrum of H₂[(CF₃)₈Me₃(10-OH)] in CDCl₃ at 298 K.

NMR spectra of H₂[H₈Me₃(5-OH)]

PRESAT_pw_sw_benzene_17.12.2014

Figure S48. ¹H NMR spectrum of H₂[H₈Me₃(5-OH)] in benzene-d₆.

Figure S49. Aromatic region of the ¹H NMR spectrum of H₂[H₈Me₃(5-OH)] in benzene-d₆.

S26

Figure S50. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[H₈Me₃(5-OH)] for the aromatic region. Conformational exchange peaks (same sign as diagonal) are shown as circles.

Figure S51.¹H, ¹H ROESY (300ms, benzene-*d*₆) of H₂[H₈Me₃(5-OH)]. Conformational exchange peaks from ROESY are shown as circles.

Figure S52. ¹H, ¹H ROESY (300ms, benzene- d_6) of H₂[H₈Me₃(5-OH)] for the aromatic/methyl region.

Figure S53 1 H, 1 H DQFCOSY (benzene-*d*₆) of H₂[H₈Me₃(5-OH)]. Conformational exchange peaks from ROESY are shown as circles.

Figure S54. ¹H, ¹H TOCSY (80ms, benzene- d_6) of H₂[H₈Me₃(5-OH)]. Conformational exchange peaks from ROESY are shown as circles.

Figure S55. Superimposed ¹H,¹³C HSQC and HMBC (in benzene-*d*₆) spectra of H₂[H₈Me₃(5-OH)].

NMR spectra of H₂[(CF₃)₈H₃(5-OH)]

Figure S56. ¹H NMR spectrum of $H_2[(CF_3)_8H_3(5-OH)]$ in benzene-*d*₆.

Figure S57. Variable temperature ¹H NMR spectra of H₂[(CF₃)₈H₃(5-OH)]in benzene-*d*₆.

Figure S58. ¹H, ¹H DQFCOSY (in benzene-*d*₆) of H₂[(CF₃)₈H₃(5-OH)]. Conformational exchange peaks from ROESY are shown as circles.

Figure S59.¹H, ¹H ROESY (300ms, benzene-*d*₆) of H₂[(CF₃)₈H₃(5-OH)].

Figure S60.¹H,¹H ROESY (300ms, benzene-*d*₆) of H₂[(CF₃)₈H₃(5-OH)]. Conformational exchange peaks are shown in circles.

Figure S61. Superimposed 1 H, 13 C HSQC and HMBC spectra (in benzene-*d*₆) of H₂[(CF₃)₈H₃(5-OH)].

Figure S62.¹⁹F NMR spectrum of $H_2[(CF_3)_8H_3(5-OH)]$ in benzene-*d*₆.

(c) HR-MS of free base undecaarylisocorroles

Figure S63. HR-ESI mass spectrum of H₂[F₈Me₃(5-OH)].

Figure S64. HR-ESI mass spectrum of H₂[(CF₃)₈Me₃(5-OH)].

Figure S65. HR-ESI mass spectrum of H₂[(CF₃)₈Me₃(10-OH)].

Figure S66. HR-ESI mass spectrum of H₂[H₈Me₃(5-OH)].

Figure S67. HR-ESI mass spectrum of H₂[(CF₃)₈H₃(5-OH)].

Free base undecaarylcorroles

(a) UV-vis spectra of free base undecaarylcorroles

Figure S68. UV-vis spectrum of H₃[(CF₃)₈Me₃].

Figure S69. UV-vis spectrum of H₃[(CF₃)₈H₃].

HR-MS of free base undecaarylcorroles

Figure S70. HR-ESI mass spectrum of H₃[(CF₃)₈Me₃].

Figure S71. HR-ESI mass spectrum of H₃[(CF₃)₈H₃].

Gold Corrole

Figure S72. Overlayed UV-vis spectra of copper and gold undecaarycorroles.

NMR spectra of Au[(CF₃P)₈H₃]

Figure S73. ¹H NMR spectrum of Au[(CF₃)₈H₃] in tetrachloroethane-*d*₂.

Figure S74. ¹H, ¹H DQFCOSY spectrum of Au[(CF₃)₈H₃] in (CDCl₂)₂.

Figure S75.¹H,¹H ROESY {300ms, (CDCl₂)₂} spectrum of Au[(CF₃)₈H₃].

Figure S76.¹H, ¹H TOCSY{24ms, $(CDCl_2)_2$ } spectrum of Au[$(CF_3)_8H_3$].

Figure S77.¹⁹F NMR spectrum of Au[(CF₃)₈H₃] in CDCl₃.

Figure S78. HR-ESI mass spectrum of Au[(CF₃)₈H₃].

Supporting Information

Table of Contents

A.	Free-base Octabromocorroles	2
(a)	UV-vis spectra of free-base octabromocorroles	2
(b)	NMR spectra of free-base octabromocorroles	3
(c)	HR-MS spectra of free-base octabromocorroles	8
B.	Iron Octabromocorroles	
(a)	UV-vis spectra of iron octabromocorroles	
(b)	NMR spectra of iron octabromocorroles	

A. Free-base Octabromocorroles

Figure S1. UV-vis spectrum of H₃[Br₈TPFPC].

Figure S2. UV-vis spectrum of H₃[Br₈TDCPC].

(b) NMR spectra of free-base octabromocorroles

Figure S3. ¹⁹F NMR spectrum of H₃[Br₈TPFPC] in CDCl₃.

Figure S4. ¹⁹F NMR spectrum of H₃[Br₈TPFPC] in CDCl₃ (expanded views of the peaks).

Figure S5. ¹⁹F NMR spectrum of H₃[Br₈TPFPC] in CDCl₃ (expanded views of the peaks).

Figure S6. ¹⁹F NMR spectrum of H₃[Br₈TPFPC] in CDCl₃ (expanded views of the peaks).

Figure S7. ¹⁹F, ¹⁹F COSY spectrum of H₃[Br₈TPFPC] in CDCl₃.

Figure S8. ¹H, ¹H COSY spectrum of H₃[Br₈TPFPC] in CDCl₃.

NMR spectra of H₃[Br₈TDCPC]

Figure S9. ¹H NMR spectrum of H₃[Br₈TDCPC] in CDCl₃.

Figure S10. ¹H NMR spectrum of H₃[Br₈TDCPC] in CDCl₃.

Figure S11. ¹H, ¹H COSY of H₃[Br₈TDCPC] in CDCl₃.

(c) HR-MS spectra of free-base octabromocorroles

Figure S12. MS (MALDI-TOF) mass spectrum of H₃[Br₈TPFPC].

Figure S13. HR-ESI mass spectrum of H₃[Br₈TDCPC].

Figure S14. HR-ESI mass spectrum of H₃[Br₈TDCPC] (bottom: theoritical value).

B. Iron Octabromocorroles

(a) UV-vis spectra of iron octabromocorroles

Figure S15. UV-vis spectrum of Fe[Br₈TPFPC]Cl.

Figure S16. UV-vis spectrum of Fe[Br₈TPFPC]NO.

Figure S17. UV-vis spectrum of Fe[Br₈TDCPC]Cl.

Figure S18. UV-vis spectrum of Fe[Br₈TDCPC](py)₂.

Figure S19. UV-vis spectra of Fe[Br₈TDCPC](py)₂, Fe[Br₈TDCPC]Cl, Fe[Br₈TPFPC]NO, FeBr₈[TPFPC]Cl.

(b) NMR spectra of iron octabromocorroles

NMR spectra of Fe[Br₈TPFPC]Cl

Figure S20. ¹⁹F NMR spectrum of Fe[Br₈TPFPC]Cl in CDCl₃.

-134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160 -161 -162 -163 -164 f1 (ppm)

Figure S21. ¹⁹F NMR spectrum of Fe[Br₈TPFPC]NO in CDCl₃.

-136.2 -136.4 -136.6 -136.8 -137.0 -137.2 -137.4 -137.6 -137.8 -138.0 -138.2 -138.4 -138.6 -138.8 -139.0 -139.2 -139.4 -139.6 -139.8 -140.0 -140.2 -140.4 -140.6 f1 (ppm)

Figure S22. ¹⁹F NMR spectrum of Fe[Br₈TPFPC]NO in CDCl₃.

Figure S23. ¹⁹F, ¹⁹F COSY spectrum of Fe[Br₈TPFPC]NO in CDCl₃.

NMR spectra of Fe[Br₈TDCPC]Cl

Figure S24. ¹H NMR spectrum of Fe[Br₈TDCPC]Cl in CDCl₃.

Figure S25. ¹H NMR spectrum of Fe[Br₈TDCPC](py)₂ in CDCl₃.

(c) HR-MS spectra of iron octabromocorroles

Figure S26. MS (MALDI-TOF) mass spectrum of Fe[Br₈TPFPC]Cl (M - Cl⁻).

Figure S27. HR-ESI mass spectrum of Fe[Br₈TPFPC]Cl.

Figure S28. HR-ESI mass spectrum of Fe[Br₈TPFPC]NO.

Figure S29. HR-ESI mass spectrum of Fe[Br₈TPFPC]NO (bottom: theoritical value).

Figure S30. MS (MALDI-TOF) mass spectrum of Fe[Br₈TDCPC]Cl (M - Cl⁻).

Figure S31. HR-ESI mass spectrum of Fe[Br₈TDCPC]Cl (M - Cl⁻).

Figure S32. MS (MALDI-TOF) mass spectrum of Fe[Br₈TDCPC](py)₂ (M - 2py).

Figure S33. HR-ESI mass spectrum of Fe[Br₈TDCPC](py)₂.