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Abstract

Background: Group VA cytosolic phospholipase A2 (cPLA2a) plays an important role in tumorigenesis and
angiogenesis. It is overexpressed in basal-like breast cancer (BLBC), which is aggressive and usually triple-negative,
making it unresponsive to current targeted therapies. Here, we evaluated the anti-angiogenic effects of a specific
cPLA2a inhibitor, AVX235, in a patient-derived triple-negative BLBC model.

Methods: Mice bearing orthotopic xenografts received i.p. injections of AVX235 or DMSO vehicle daily for 1 week
and then every other day for up to 19 days. Six treated and six control mice were terminated after 2 days of
treatment, and the tumors excised for high resolution magic angle spinning magnetic resonance spectroscopy
(HR MAS MRS) and prostaglandin E2 (PGE2) enzyme immunoassay (EIA) analysis. A 1-week imaging study was
performed on a separate cohort of mice. Longitudinal dynamic contrast enhanced (DCE)-MRI was performed
before, after 4 days, and after 1 week of treatment. The mice were then perfused with a radiopaque vascular casting
agent, and the tumors excised for micro-CT angiography. Subsequently, tumors were sectioned and stained with lectin
and for Ki67 or a-smooth muscle actin to quantify endothelial cell proliferation and vessel maturity, respectively. Partial
least squares discriminant analysis was performed on the multivariate HR MAS MRS data, and non-parametric univariate
analyses using Mann-Whitney U tests (a = 0.05) were performed on all other data.

Results: Glycerophosphocholine and PGE2 levels, measured by HR MAS MRS and EIA, respectively, were lower in
treated tumors after 2 days of treatment. These molecular changes are expected downstream effects of cPLA2a
inhibition and were followed by significant tumor growth inhibition after 8 days of treatment. DCE-MRI revealed that
AVX235 treatment caused a decrease in tumor perfusion. Concordantly, micro-CT angiography showed that vessel
volume fraction, density, and caliber were reduced in treated tumors. Moreover, histology showed decreased
endothelial cell proliferation and fewer immature vessels in treated tumors.
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Conclusions: These results demonstrate that cPLA2a inhibition with AVX235 resulted in decreased vascularization and
perfusion and subsequent inhibition of tumor growth. Thus, cPLA2a inhibition may be a potential new therapeutic

option for triple-negative basal-like breast cancer.

Keywords: Angiogenesis, Breast cancer, Choline metabolism, Cytosolic phospholipase A2, Dynamic contrast enhanced

MRI, Micro-CT, Prostaglandin E2, Targeted therapy

Background

Basal-like breast cancer (BLBC), which represents ~15 %
of all breast cancers [1], is an aggressive molecular sub-
type of the disease associated with poor prognosis [1, 2].
Most BLBCs are triple-negative [3] (lacking expression
of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2) and thus unrespon-
sive to currently available targeted therapies. Hence, new
molecular targets for treatment are called for. Inter-
estingly, it has been shown that BLBC patient samples
and patient-derived xenografts overexpress the gene
PLA2G4A [4, 5], which encodes group IVA cytosolic
phospholipase A2 (cPLA2a), indicating increased ac-
tivity and an important functional role of the enzyme
in this subtype.

There is growing evidence of the involvement of
cPLA2a in tumorigenesis and angiogenesis in various
types of cancer [6, 7], and cPLA2a inhibition has been
shown to reduce tumor development and growth in
several animal models [8—11]. Cytosolic PLA2a is the
only PLA2 with specificity for arachidonic acid (AA)-
containing phospholipids [12]. Upon activation, cPLA2«
cleaves such membrane phospholipids to release AA and
lysophospholipids. These molecules and their metabo-
lites can produce a plethora of biological effects, such as
transcriptional regulation, remodeling of phospholipid
metabolism, inflammation, and angiogenesis. Lysopho-
sphatidylcholine is a lipid second messenger that can ac-
tivate Akt and mitogen-activated protein kinase and
induce endothelial cell proliferation by transactivation of
vascular endothelial growth factor (VEGF) receptor 2
[13-15]. Eicosanoids, enzymatic metabolites of AA, are
bioactive lipid signaling molecules that act in an auto-
crine and paracrine manner. One of the principal eicosa-
noids resulting from cPLA2« activation, prostaglandin E2
(PGE2), is a pro-inflammatory, mitogenic, anti-apoptotic,
and pro-angiogenic molecule [16]. The importance of in-
creased PGE2 levels in various cancer types [17], including
breast cancer [18—-20], has been established.

Based on this, we aimed to characterize the effect of
c¢PLA2« inhibition on tumor growth and vasculature in
a patient-derived BLBC xenograft model [21]. The
cPLA2a-specific inhibitor used, AVX235 (Avexxin AS,
Trondheim, Norway), is a thiazolyl ketone (methyl 2-(2-
(4-octylphenoxy)acetyl)thiazole-4-carboxylate) that was

originally developed as an anti-inflammatory drug [22].
It has previously been tested in a collagen-induced arth-
ritis model, with no adverse effects and an efficacy com-
parable to reference drugs in pertinent doses [22]. In our
study, downstream metabolites of cPLA2 a were quanti-
fied with enzyme immunoassays (EIA) and ex vivo 'H
high-resolution magic angle spinning magnetic reson-
ance spectroscopy (HR MAS MRS) to verify inhibition
of cPLA2a by AVX235, and the tumor growth response
to AVX235 was measured. Longitudinal in vivo magnetic
resonance imaging (MRI) was used to measure changes
in tumor vascular function, and ex vivo micro-computed
tomography (uCT) was used to characterize the effects
on vascular morphology. Immunohistochemistry was
performed to evaluate cancer and endothelial cell prolif-
eration and vessel maturity.

Methods

Animal model

The patient-derived MAS98.12 basal-like/triple-negative
breast cancer xenograft model was established and
maintained as described in [21]. For this study,
MAS98.12 tumor fragments were bilaterally implanted
into the thoracic mammary fat pads of female Hsd:Athy-
mic Nude-Foxn1™ mice. The animals were kept under
pathogen-free conditions. Housing conditions included
temperature between 19 and 22 °C, humidity between
50 and 60 %, 20 air changes/h and a 12 h light/dark
cycle. The animals were fed RM1 diet (Scanbur BK,
Karlslunde, Denmark) and distilled tap water ad libitum.
The drinking water was supplemented with 17-p-
estradiol at a concentration of 4 ug/ml in order to
achieve the same conditions as in [21], although it has
been shown to have no influence on the growth of these
estrogen receptor-negative tumors [23].

Study design

For the tumor growth study, each mouse was randomly
assigned to treatment or control groups when the diam-
eter of the larger of its two tumors reached ~6 mm.
Tumor volume was calculated from caliper measure-
ments as 1/2 x length x width?. The mice received either
30 mg/kg AVX235 dissolved in 50 ul of 100 % DMSO
(treatment groups) or matched volumes of DMSO
(control groups) by intraperitoneal (i.p.) injection for
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2 days (n =6 for each group) or 19 days (1 =6 for each
group). A lower dose was used in the longer tumor
growth study than in the imaging study (see below) due
to a limited supply of the drug and to reduce the risk of
adverse effects. Injections were administered daily for
the first week, then every second day in the 19-day
groups to avoid adverse effects of DMSO. The mice
were weighed at least twice a week and were checked
daily by trained personnel. The length of the study was
limited by the tumor growth rate in the control group.
Animals were euthanized by cervical dislocation after
two or 19 days, or when the humane endpoint of a max-
imum allowed tumor diameter of 12 mm was reached
(day 16 for two mice in the 19-day control group). Im-
mediately after excision, one tumor (or one tumor half,
when only one tumor had established in the animal)
from each animal was preserved in liquid nitrogen for
PGE2 EIA and 'H HR MAS MRS, and the other in neu-
tral buffered formalin (NBF) for subsequent histological
analyses.

For the imaging study, mice were randomly assigned
to treatment or control groups when the long axis of the
larger tumor reached ~8 mm as measured by calipers.
The treatment group (n=9) received 45 mg/kg of
AVX235 daily and the control group (n=8) received
daily volume-matched doses of DMSO (50 pL) by i.p. in-
jections. Animals were weighed daily and imaged with
MRI on days 0 (immediately prior to the first dosing), 4,
and 7. The mice were then euthanized by pentobarbital
overdose and perfusion fixation, and the tumors excised
for uCT imaging and histology. Details of the methods
are provided below.

PGE2 EIA

RNA was purified from tumor tissue using a standard
RNA isolation kit (Qiagen RNeasy mini kit, Cat. no.
74104; Qiagen, Limburg, The Netherlands). Tumor sam-
ples of 12+3 mg (mean +SD) were cut from frozen
tumors, added to ice-cold lysis buffer with 10 uM indo-
methacin and 10 pl/ml B-mercaptoethanol, and homoge-
nized using a Precellys 24 (Bertin Corp., Washington,
D.C,, USA) at 5200 rpm for 20 s. Homogenized samples
were treated according to the kit manual. RNA levels
were measured using a Nanodrop 2000 (Thermo
Scientific, Waltham, MA, USA) and used to normalize
PGE2 levels. For PGE2 analysis, the flow-through of the
ethanolic fraction from the RNA isolation kit was col-
lected and stored at -80 °C and at -20 °C prior to use
(less than 3 months at -20 °C). PGE2 levels in the
flow-through samples were determined using a PGE2
EIA kit (Item no. 514010, Cayman Chemical, Ann
Arbor, MI, USA) and a Multiskan Ascent plate reader
(MTX Lab Systems, Inc., Vienna, VA, USA). The
samples were spun at 8000 g for 10 min, and the
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supernatant diluted with assay buffer (typically be-
tween 1:25 and 1:100) to ensure readings were
within the recommended 20-80 % transmittance
range. Any diluted sample that was out of range was
excluded. Two to seven technical replicate measure-
ments of each flow-through sample were acquired.
Biological replicates (different samples from the same
tumor) were analyzed for four tumors. A four-
parameter logistic model was fit to the absorbance
data to determine PGE2 levels. In order to eliminate
errors from weighing of tumor samples and to cor-
rect for necrotic or adipose tissue, PGE2 levels were
normalized to the RNA levels isolated from the same
sample.

HR MAS MRS

For HR MAS MRS, frozen xenograft tissue (6.4 + 3.0 mg
[mean + SD]) from 1 tumor per animal (n = 6 per group)
was cut to fit into 30 ul disposable inserts (Bruker
BioSpin, Ettlingen, Germany) containing 3 pl of 25 mM
sodium formate in D,O. HR MAS MR spectra were ob-
tained using a Bruker AVANCE DRX-600 spectrometer
with a 'H/**C HR MAS probe (Bruker BioSpin). Sam-
ples were spun at 5 kHz at 5 °C, and a Carr-Purcell-
Meiboom-Gill experiment (cpmg, Bruker; acquisition
time = 3.1 s, sweep width =20 ppm, 256 scans) was per-
formed for all samples. Post-processing of spectra in-
cluded 0.3 Hz exponential line broadening and baseline
correction. Data analysis was performed with MATLAB
(Version 7.9.0; The Math Works, Natick, MA, USA).
Spectra were mean normalized to minimize differ-
ences in the sample weight. Supervised partial least
squares discriminant analysis (PLS-DA) was per-
formed (PLS_Toolbox v5.8.3, Eigenvector Research,
Manson, WA, USA) to classify tumor samples as con-
trol or treated based on their spectra, and variable
importance on projection (VIP) scores computed to
determine the influence of each metabolite on the
classification [24, 25].

In vivo MRI

The larger of the bilateral tumors were imaged immedi-
ately prior to the start of treatment (day 0) and again on
days 4 and 7. Imaging was performed on a 7.05 T hori-
zontal bore MRI system (Bruker Biospin) using an
86 mm excitation volume coil and a quadrature receiver
surface coil. The mice were anesthetized with isoflurane
(2-2.5 % in 70 % air/30 % O,) during the MRI experi-
ments. The isoflurane level was adjusted as needed to
maintain a respiration rate of ~50 breaths/min, and body
temperature was maintained at 37 °C using a small ani-
mal monitoring and gating system (Model 1030, SAIIL,
Stony Brook, NY, USA).
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MR images were acquired using the following
sequences:

1. High-resolution 2D rapid acquisition with relaxation
enhancement (RARE): effective echo time (TE ) =
69 ms; repetition time (TR) =1500 ms, RARE
factor = 16, number of averages (NA) = 4; matrix =
256 x 192, zero-padded to 256 x 256.

2. 2D RARE with variable repetition times for baseline
T1 measurement: TE.¢=13 ms; TR =225, 500,
1500, 3000, 6000, 12000 ms; RARE factor = 2;
matrix = 64 x 48, zero-padded to 64 x 64.

3. Dynamic contrast enhanced (DCE)-MRI (2D RARE):
TEes="7.5 ms; TR = 300 ms; RARE factor = 4;
matrix = 64 x 64; temporal resolution = 4.8 s, 200
images. An intravenous bolus injection of 0.3 mmol/
kg of gadodiamide (Omniscan, GE Healthcare, Oslo,
Norway) was administered via the tail vein after the
tenth baseline image.

All scans were acquired with the same geometry: field
of view = 20 x 20 mmy; slice thickness = 0.6 mm, interslice
gap = 0.3 mm, 4 coronal slices.

Tumor regions of interest were manually drawn on
the high-resolution RARE images and then down-
sampled to the resolution of the other images to mask
out non-tumor tissue from the analysis. Maps of the ini-
tial area under the curve during the first minute after
contrast injection (AUCi,;,) and the relative signal
intensity (normalized to pre-contrast values) at 1 min
post-contrast (RSI;,;,) were calculated voxel-wise from
the dynamic signal enhancement time curves. To ensure
that only perfused, viable tumor was included in the
analysis, non-enhancing voxels in which RSIj;, < 1.5
were excluded. The fraction of enhancing voxels (FEV)
was calculated for each tumor at each time point.

Ex vivo pCT

Immediately after the final MRI examination, the mice
were euthanized by pentobarbital overdose followed by in-
tracardial perfusion with 20 ml each of saline, NBF, and fi-
nally Microfil® (Flow Tech, Inc., Carver, MA; USA). After
allowing the Microfil to cure for 60 min, the tumors were
excised and stored in NBF at 4 °C for 48 h. The tumors
were then immersed sequentially in 30, 50, and 70 % etha-
nol at 4 °C for 24 h each. Then the tumors were imaged
on a Bruker Skyscan 1176 pCT system (Bruker microCT,
Kontich, BE) using the following parameters: 50 kV,
400 pA, 0.5 mm Al filter, 1020 ms exposure, 0.36° rotation
step, 8 averages, 9 um isotropic voxels. Images were re-
constructed using the Feldkamp filtered back-projection
algorithm. After pCT, the tumors were cut in half approxi-
mately along the planes of the in vivo MRI slices and then
embedded in paraffin for histological analysis.
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Blood vessels were segmented from the native uCT
images in Fiji [26], an open-source image processing
package, using a Hessian-based filtering method de-
scribed in [27]. Tumor fractional blood volumes (FBV)
were calculated by dividing the volumes of the segmented
vessels by the tumor volumes. The Local Thickness plugin
in Fiji (R. Dougherty, OptiNav, Inc., Bellevue, WA, USA)
was used to compute vessel calibers (VC). The Exact
Euclidean Distance Transform (3D) plugin in Fiji was used
to calculate the distance between each non-vessel voxel in
the tumor and the nearest vessel, i.e., to generate “distance
to nearest vessel” (DNV) maps.

Histology

Sections 4 pum thick were cut from the center of each
tumor. Sections were double stained using lectin
(Griffonia simplicifolia lectin 1, Vector Laboratories,
Burlingame, CA, USA) for endothelial cells and either
anti-Ki67 (monoclonal rabbit anti-human Ki67 [SP6] with
cross-reactivity to mouse; Abcam, Cambridge, United
Kingdom) as a proliferation marker or anti-a-smooth
muscle actin (monoclonal mouse anti-human «-SMA;
Dako, Glostrup, Denmark) as a pericyte marker.

For each lectin/Ki67-stained section, non-overlapping
random fields were acquired across the viable regions of
the entire section at 40x on an Olympus BX41 micro-
scope and saved as RGB TIFF images. Using a custom
MATLAB script, the RGB images were converted to
HSV (hue, saturation, value), and Ki67-positive and
lectin-positive areas were segmented based on hue and
saturation using the same manually determined set of
thresholds for every image. The segmented images were
used to count the number of Ki67-positive proliferating
cells and compute the lectin-positive vessel area fraction.
Overlapping Ki67-positive nuclei were separated using
marker-based watershed segmentation. Proliferating
endothelial cells were defined as Ki67-positive nuclei
found within a lectin-positive vessel. For each field, the
number of proliferating endothelial cells was normalized
to the lectin-positive vessel area. A pathologist and a re-
searcher experienced in evaluating such double stained
sections were consulted to ensure that the automated
algorithm was consistent with visual evaluation.

For each lectin/a-SMA-stained tumor section, non-
overlapping random fields were acquired across the
viable regions of the entire section at 10x, and a-SMA-
positive and lectin-positive areas were segmented from
the HSV images as described above. Lectin-positive
vessels that were at least 5 um away from the nearest o-
SMA-positive pixel were identified, and the ratio of the
area of these a-SMA-negative vessels to the total lectin-
positive vessel area was computed for each tumor
section. This lectin®*™4~ area fraction was used as a
measure of vessel immaturity.
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Statistical analysis (Ctrl): 0.046 £0.011 vs. 0.077£0.009 pg PGE2/ng
A permutation test was performed (1000 permutations) RNA, p=0.041 (Fig. 1la). However, at day 19, there
to evaluate the significance of the PLS-DA model [28].  was no difference in PGE2 levels between the treated and
Two-tailed Mann—Whitney U tests were performed to  control groups (0.046 +0.017 vs. 0.044 + 0.002, p = 0.589),
compare the control and treated tumors based on the and 19-day controls contained significantly less PGE2 than
following: 1) normalized tumor volume, 2) PGE2/RNA  2-day controls (p = 0.026).

ratio, 3) tumor-wise median values of DCE-MRI param- Cytosolic PLA2a is a mediator of choline metabolism,
eters; 4) pCT-measured FBV, VC, and DNV; and 5) so 'H HR MAS MRS was performed to measure relative
immunohistochemistry-derived measures of proliferation  levels of choline-containing compounds to further verify
and vessel maturity. For all tests, a=0.05. Values are that AVX235 inhibited cPLA2a activity. A clear separ-

presented as median + median absolute deviation. ation of treatment and control groups after 2 days of
AVX235 treatment was demonstrated by the PLS-DA
Ethics approval scores plot (Fig. 1b), with a specificity and sensitivity of

All procedures and experiments involving animals were 83 %, and p = 0.004 by a permutation test. The loadings

approved by the Norwegian Animal Research Authority —plot and VIP scores show that these changes were

and carried out according to the European Convention for =~ mainly attributed to higher phosphocholine (PCho,

the Protection of Vertebrates used for Scientific Purposes. ~ 3.23 ppm) and lower glycerophosphocholine (GPC,
3.24 ppm) levels in treated samples (Fig. 1c). After

Results 19 days of treatment, significant differences between the

AVX235 reduces levels of cPLA2a downstream products groups did not persist, although a trend of lower GPC

The levels of PGE2 in tumor tissue were measured by  was observed in treated tumors (data not shown).

EIA as a downstream biomarker of cPLA2a inhibition

by AVX235 [22]. After 2 days of treatment, there  AVX235 inhibits tumor growth

were significantly lower PGE2 levels in tumor tissue = Tumor volumes were calculated from caliper measure-

from the treated mice (Tx) compared to controls ments for up to 19 days to assess the effect of cPLA2a
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inhibition on the growth of BLBC tumor xenografts.
Before the start of treatment, the median tumor vol-
ume was 69 +23 mm?® in the treatment group (1 =11)
and 79 +52.5 mm® in the control group (n=10, p=
0.173 treatment vs. control at day -1). After 8 days of
treatment, the tumor volumes normalized to day -1
values were significantly smaller in the treated group
than in the control group (p =0.029, Fig. 2). The differ-
ence in tumor volume between the groups remained
significant throughout the study. After 19 days of treat-
ment, the median treated tumor volume was 239 +
91 mm® compared to 626 + 392 mm?® (1=7) for controls
(p=0.017). The corresponding normalized volumes were
5.09+2.02 and 8.00+3.91 (p=0.020). Two mice in the
control group were terminated on day 16 due to unaccept-
able tumor burden (tumor diameter > 12 mm). No adverse
effects (weight loss, physical appearance, or behavior) of
AVX235 administration were observed.

In the imaging cohort, median tumor volumes were
192 +20 mm® in the treatment group (n=9) and
176 + 37 mm?® in the control group (n=8) on day 0
(p =0.743). At the end of the 1-week study, the difference
in tumor volumes between treatment and control groups
(374 + 80 mm? vs. 389.5 + 103.5 mm?) remained insignifi-
cant (p = 0.481), as did the difference in normalized tumor
volumes (2.07 + 0.20 vs. 2.54 + 0.18, p = 0.200).

cPLA2a inhibition reduces tumor perfusion
Several cPLA2a-derived molecules such as lysophospho-
lipids and PGE2 are recognized as modulators of
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week, then every second day). The mean normalized tumor volumes
are shown as black dots for control tumors (n = 10) and grey
triangles for treated tumors (n = 11). Error bars represent the
standard errors of the means. * p < 0.05, two-tailed Mann-Whitney U
test, control vs. treated group on the same day

Page 6 of 11

angiogenic signaling [14, 16]. To assess the impact of
AVX235 on tumor vascular function, DCE-MRI was per-
formed to measure tumor perfusion in vivo. Figure 3a
shows slices of the AUC,;, maps from representative
control and treated tumors at each time point. Only en-
hancing voxels of the maps are shown overlaid on their
respective high-resolution anatomical images. The pre-
treatment images show characteristic enhancing tumor
rims and non-enhancing cores. In control tumors, there
was no clear longitudinal trend in the median AUC
(Fig. 3b-c). In the treated group, the median AUC;,

AUC, .. (a.u.)
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Fig. 3 cPLA2a inhibition effects in vivo tumor perfusion measured
by DCE-MRI. a Longitudinal AUC; i, maps from representative
control and treated tumors, overlaid on their corresponding high-
resolution anatomical images. Only enhancing voxels (voxels in
which RSl in > 1.5) are displayed. Scale bar=2 mm. b Group medians
of tumor-wise median AUC; i, values of control (black dots) and
treated (grey triangles) tumors. Error bars indicate interquartile
ranges. ¢ Dot plot of the changes in tumor-wise median AUC; yin
values from day 0 to 4 and from day 4 to 7. Horizontal lines indicate
group medians. d-e Analogous plots for FEV. * p < 0.05, two-tailed

Mann-Whitney U test
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increased from day O to 4 in six of nine tumors and sub-
sequently decreased from day 4 to 7 in all tumors
(Fig. 3c). Similarly, FEV initially increased in six treated
tumors and later decreased in six treated tumors
(Fig. 3e). In contrast, FEV increased from day 4 to 7 in
six of eight control tumors. While there were no signifi-
cant differences in median AUC,,,;, or FEV between
control and treated tumors at any time point (Fig. 3b,d),
the change in AUC,;, from day 4 to 7 was significantly
different between groups (p = 0.011, Fig. 3c).

cPLA2a inhibition decreases tumor vascularization and
vessel caliber

To assess the effects of cPLA2«a inhibition on tumor
vascular morphology, ex vivo pCT was performed after
in vivo MRI on day 7. Figure 4a shows volume render-
ings of the segmented pCT vasculature from 150-slice
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sections of representative control and treated tumors,
with vessels color-coded by VC. As illustrated by the VC
histograms (Fig. 4b), treated tumors had a smaller pro-
portion of large vessels (VC > 150 pum) compared to con-
trol tumors: 0.170 +0.012 vs. 0.263 +0.038, p =0.023.
Concordantly, the 90™ percentile VC in treated tumors
was significantly smaller than that in control tumors:
180.9+10.4 um vs. 204.3 £3.0 pm, p=0.002 (Fig. 4f).
The FBV was also significantly lower in treated vs.
control tumors: 4.29 + 0.86 % vs. 5.89 + 1.63 %, p = 0.031
(Fig. 4e).

Figure 4c shows slices of the DNV maps from the cor-
responding tumors regions shown in Fig. 4a. It is readily
apparent that the treated tumor has larger avascular re-
gions than the control tumor. This is also the case at the
group level, with a significantly larger fraction of tumor
voxels in the treated group being more than 200 pm
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away from the nearest vessel (0.234 +0.030 vs. 0.102 +
0.049, p =0.016, Fig. 4d), which is the upper bound of
the oxygen diffusion limit reported in the literature
[23, 24]. The median and 90" percentile DNV values
were also greater in treated tumors compared to con-
trols: 109.1 £ 11.8 um vs. 92.2 + 8.4 pm, p=0.031; and
3252+49.0 um vs. 221.4+20.5 pm, p=0.003,
spectively (Fig. 4g).

re-

cPLA2a inhibition decreases endothelial cell proliferation
Lectin and Ki67 double staining was done to investigate
the effect of AVX235 on cancer cell and endothelial cell
proliferation. Figure 5a shows a representative 40x field of
a lectin/Ki67 double-stained section, and Fig. 5b shows the
result of the automatic segmentation, with lectin-stained
vessels outlined in white, proliferating nuclei in black, and
proliferating endothelial cell nuclei in red. There was no
significant difference in the number of Ki67-positive prolif-
erating cells between control and treated tumors at any
time point (data not shown). After 7 days of treatment, a
significantly lower number of proliferating endothelial cells
normalized to vessel area was found in treated tumors
compared to controls: 228 + 68 per mm? of vessel vs. 267
+ 32 per mm? of vessel, p = 0.046 (Fig. 5¢).

AVX235-treated tumors contain fewer immature vessels
To estimate vessel maturity, we employed an anti-a-
SMA antibody as a marker for perivascular mural cells.
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Figure 5d shows a representative 10x field of a lectin/
a-SMA  double-stained section. The corresponding
segmented composite image (Fig. 5e) shows a-SMA-
positive regions in the red channel, lectin-positive re-
gions in the green channel, and lectin-positive regions
not associated with a-SMA (lectin®>™4") in the blue
channel. After 7 days of treatment, AVX235-treated
tumors contained a lower fraction of lectin-stained
endothelium that was not associated with o-SMA:
0.215 £ 0.053 vs. 0.302 +£0.104, p =0.036 (Fig. 5f). In
other words, control tumors contained more vessels
lacking pericyte coverage. There were no significant
differences between control and treated tumors in the
2-day and 19-day groups.

Discussion

A growing body of evidence implicates cPLA2« in the
development of various cancers. Cytosolic PLA2 inhib-
ition has previously been proven to suppress tumor
growth and angiogenesis in preclinical cancer models
[9, 11, 14]. BLBCs are known to be highly angiogenic
and overexpress cPLA2«, making it a potential thera-
peutic target [4]. In this study, we characterized the
anti-angiogenic effect of cPLA2« inhibition by AVX235
in patient-derived BLBC xenografts [4, 5]. To our know-
ledge, this study is the first to demonstrate therapeutic
efficacy of cPLA2a inhibition in an in vivo breast cancer
model.
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Fig. 5 AVX235 reduces endothelial cell proliferation and targets immature vessels. a 40x image of a lectin- (blue) and Ki67-stained (brown) tumor
section. Scale bar=20 um. b The same image showing the result of the automated segmentation. Lectin-stained blood vessels are outlined in
white, Ki67-positive proliferating nuclei in black, and proliferating endothelial cells (PECs) in red. ¢ Dot plot of the number of PECs per mm? of
blood vessel. Horizontal lines indicate group medians. d 10x image of a lectin- (blue) and a-SMA-stained (brown) tumor section. Scale bar= 100 um.
e Corresponding composite image of the automatically segmented a-SMA-positive (red, pericytes), lectin-positive (green, blood vessels),
and lectin®™™"~ (blue, immature vessels) regions. f Dot plot of the lectin®™™"~ area fraction for each tumor. Horizontal lines indicate group medians.
* p <005, two-tailed Mann-Whitney U test
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PGE2 is produced from AA, which is released from
membrane phospholipids by c¢PLA2a. The early
treatment-induced reduction in tumor PGE2 levels sug-
gests that AVX235 inhibited cPLA2« activity and could
in part explain the effects of ¢cPLA2a inhibition on
tumor angiogenesis and growth.

PCho is a precursor of the cPLA2a substrate phos-
phatidylcholine (PtdCho); cPLA2a converts PtdCho to
lysoPtdCho, which is further metabolized to GPC. The
higher PCho and lower GPC levels in the treated sam-
ples are consistent with decreased cPLA2a activity.
Choline-containing compounds are of special interest in
cancer metabolism, and changes in their concentrations
are associated with treatment response [29]. It was out-
side the scope of this study to determine whether these
changes were directly connected to the anti-angiogenic
response to AVX235, but it is possible that cPLA2a in-
hibition affects metabolic pathways that mediate signals
to vascular cells.

Treatment with AVX235 led to significantly reduced
tumor growth from day 8 onward. A previous study
found a similar response to treatment with bevacizumab,
a monoclonal antibody against VEGEF-A, in the same
model [30]. The bevacizumab-treated tumors displayed
lower microvessel density and fewer proliferating endo-
thelial cells; similarly, we found significantly decreased
vascularization and endothelial cell proliferation in
AVX235-treated tumors. As is commonly observed, sig-
nificant anti-angiogenic effects preceded significant
tumor growth inhibition. Since the proliferation of can-
cer cells was not affected by treatment, while prolifera-
tion of endothelial cells decreased, the growth inhibition
likely resulted from anti-angiogenic, and not direct cyto-
static, effects.

Tumor vasculature is characteristically abnormal, with
irregular, disorganized, and leaky vessels. Anti-angiogenic
therapies have been shown to induce a temporary
normalization of tumor vasculature with an observable in-
crease in perfusion, decrease in vessel permeability, and a
shift towards more normal vessel morphology [31]. An
early improvement in perfusion was seen in most
AVX235-treated tumors, demonstrated by increases in the
DCE-MRI parameters AUC,,;,, and FEV after 4 days of
treatment. While not significantly different from what was
observed in control tumors, this suggests that cPLA2a
inhibition could have resulted in initial vascular
normalization. An earlier study showed that bevacizu-
mab treatment caused a similar initial increase in per-
fusion in the same tumor model [32].

Micro-CT showed that treated tumors contained fewer
large, dilated vessels compared to controls. Reduction in
tumor vessel caliber is a commonly reported response to
anti-angiogenic therapies and also considered a sign of
vascular normalization [33]. However, the decreases in
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AUC i, and FEV between days 4 and 7 in treated tu-
mors, consistent with the lower FBV and larger DNV
(i.e., decreased vessel density) measured by uCT, indicate
significant anti-vascular effects after 1 week of AVX235
therapy.

Improved pericyte coverage is another common nor-
malizing effect of anti-angiogenic therapy [34]. Pericytes
mechanically and functionally stabilize endothelial cells,
and vessels that are not associated with pericytes are
considered to be immature and less functional. There is
no one universal molecular marker that identifies all
pericytes (the definition of which is still debated), as the
expression of the various markers may vary between
pericytes [35]. A limitation of this study is the use of
only one marker, thus some pericytes may not have been
stained. But o-SMA is commonly used as a pericyte
marker, and it is frequently upregulated in tumor peri-
cytes [36]. In our model, we observed fewer immature
vessels (i.e., vessels lacking a-SMA coverage) in AVX235
treated tumors. A previous study showed that cPLA2
may play an essential role in pericyte recruitment,
demonstrated by the absence of a-SMA- and desmin-
positive pericytes around tumor vasculature in cPLA2-
deficient mice [14]. Therefore, it is unlikely that the
reduced number of immature vessels following AVX235
administration was the result of increased pericyte
coverage and vascular maturation, as has been reported
in studies of anti-VEGF and other therapies [37-40]. Ra-
ther, our results imply that immature vessels lacking
pericytes were pruned as a consequence of AVX235
treatment, or possibly that cPLA2a inhibition led to loss
of pericytes with subsequent vessel regression.

The PGE2 levels, vessel density, vessel maturity, and
number of proliferating cancer and endothelial cells all
decreased at later time points independent of treatment
(data not shown), indicating that the tumors changed
phenotype with time, which has been demonstrated pre-
viously [23]. While the use of different cohorts and drug
doses in the tumor growth study and imaging study
complicates comparison between different time points,
this phenotypic evolution may reflect a naturally devel-
oping insensitivity to anti-angiogenic therapy as the tu-
mors become less angiogenic and more necrotic. The
lack of significant metabolic and histological differences
between control and treated tumors at day 19 could be
due to the relatively small group sizes in this study or to
sampling error associated with histological analysis. Al-
ternatively, given that significant molecular differences
were present at earlier time points, the absence of these
same differences at day 19 may more likely be due to: 1)
this particular model’s natural evolution toward a less
angiogenic phenotype as the tumors grow larger [23], or
2) compensatory upregulation of alternative pathways in
the tumors, which is a limitation to almost all targeted
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therapies [41]. Further investigation is necessary to test
this hypothesis.

Conclusions

Collectively, our data shows that AVX235 resulted in in-
hibition of cPLA2a activity, evidenced by decreases in
the levels of key downstream metabolites, and in reduc-
tion in tumor vascularization and perfusion, which led
to long-term tumor growth inhibition. As with other
anti-angiogenic drugs, the therapeutic value of AVX235
in cancer would likely be maximized in a neoadjuvant
setting, or in combination with conventional chemo- or
radiotherapy. Ultimately, this study demonstrates that
cPLA2 inhibitors could help address the need for better
therapies for triple-negative basal-like breast cancer.
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