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SUMMARY 

Anthropogenic activities, such as introduction of non-native species, is considered as one of 

the most significant causes for declining biodiversity, since such introduction may destabilise 

ecological barriers to gene flow between native populations. In the 1960s a salmonid fish, 

vendace, was introduced to the upper parts of Pasvik watercourse and during the early 1990s 

it invaded the entire watercourse, including the lakes studied in this project/thesis. These lakes 

harbour an eco-morph pair of European whitefish that has diverged in sympatry in post-

glacial times. The vendace, being a competitively superior planktivore to the densely rakered 

eco-morph, relegated this eco-morph from its native pelagic habitat into the non-native littoral 

habitat, which is mainly occupied by the large sparsely rakered eco-morph. These 

observations have inspired this PhD thesis to study the phenotypic, genetic, and genomic 

consequences of the vendace invasion on native sympatric European whitefish eco-morphs. 

Using neutral microsatellite markers, the study documented that the introduction and invasion 

of vendace have induced speciation reversal in the eco-morph pair. The comparison of the 

number of gill rakers from the pre- and post-invasion periods revealed merging of two peaks 

of distribution of number of gill rakers following the invasion suggesting reduction in 

discreteness of phenotypes. Population genomic analyses, using genome-wide coverage of 

SNP markers obtained by sequencing of restriction site associated DNA libraries (RADseq), 

revealed an unpredicted outcome of speciation reversal at the genomic and functional 

phenotypic levels. This was attributed to a change in the selective forces during speciation 

reversal. The introgression patterns at genomic regions of adaptive importance, showed that 

speciation reversal have unpredictable consequences on introgression. Overall, this PhD study 

concludes that anthropogenic activities have wide-ranging and stochastic effects for species 

undergoing speciation reversal. 
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2. INTRODUCTION  

2.1. Barriers to gene flow 

One of the important questions in evolutionary biology is how new species are formed. 

Speciation is a continuous and ongoing process (Coyne and Orr 2004) and it is defined as the 

divergence of an ancestral lineage into descendent lineages that are genetically differentiated 

and reproductively isolated (Nosil et al. 2009b). Genetic differentiation and reproductive 

isolation between descendent lineages will evolve as barriers to gene flow build-up. Barriers 

to gene flow are biological features of the diverging populations that impede the exchanges of 

genes between them (Coyne and Orr 2004). In ecological speciation, a special case of 

speciation, barriers to gene flow evolve between populations as a result of ecologically based 

divergent selection (Schluter 1996, Rundle and Nosil 2005, Via 2009). 

 

Barriers to gene flow are classified based on their presence during the life history of the 

diverging populations (before mating, fertilization and/or after fertilization). Pre-mating 

isolation barriers are barriers that impede the gene flow before the transfer of gametes to 

members of other species or populations. They can be intrinsic or extrinsic (Coyne and Orr 

2004). Intrinsic pre-mating isolation involves incompatibility in reproductive organs or in 

mating behaviour (sexual selection) (Seehausen et al. 1997, Boughman 2001), whereas 

extrinsic factors include variability in time and place of spawning (Svärdson 1979, 

Vonlanthen et al. 2009, Klemetsen 2010), and selection against immigrants (Nosil et al. 

2005), which prevents heterospecific encounters. 

 

Ecological and behavioural inviability forms the extrinsic post-zygotic barriers to gene 

flow. In ecological inviability, hybrids are less likely to survive in the parental habitats. This 

is caused by the lack of intermediate niches or reduced feeding efficiency due to non-optimal 
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feeding apparatus, asynchronous hatching time, and larval emergence (Hatfield and Schluter 

1999, Woods et al. 2009), whereas in behavioural inviability fertile intermediate phenotypes 

render unattractive and fail to obtain mates (Stelkens et al. 2008). Intrinsic post-zygotic 

isolation barriers include hybrid inviability and hybrid sterility, and are characterised by 

developmental deformities (causing mortality) and reproduction related defects (Coyne and 

Orr 2004). These defects may arise due to accumulation of unfavourable allelic combinations 

leading to Bateson–Dobzhansky–Muller (BDM) incompatibilities (Seehausen et al. 2014). 

Genomic incompatibilities may trigger the reactivation of transposable elements (Dion-Cote 

et al. 2014), and mis-expression of genes related to growth in hybrids (Renaut et al 2011). The 

role of natural selection is well established in the development of reproductive isolation 

between diverging populations (Nosil 2012). Population level approaches are now gaining 

popularity in studies of speciation, especially in cases where evolutionarily young eco-morphs 

undergo divergence fuelled by natural selection. Natural selection enables the interaction 

between ecology, phenotypes, and genetics. Hence, identifying the loci showing signatures of 

divergent selection will form a good starting point to unravel mechanisms by which the 

reproductive isolation forms (“the magnifying glass approach” as suggested by Via (2009)). 

 

2.2. Hybrid zones 

Hybrid zones are geographical regions where two genetically distinct populations meet and 

reproduce. They have been called “natural laboratories” for evolutionary studies (Hewitt 

1988) and enable studies of the effects of natural selection on non-parental (hybrid) 

individuals. Hybrid zones also act as ‘selective filters’, where hybrids effectively filter gene 

flow by preventing introgression of genomic regions responsible for the reproductive isolation 

(and/or adaptation) and let other genomic regions introgress freely (Martinsen et al. 2001). 

Quantification of the strength of reproductive isolation can be done by assessing the 
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introgression of foreign alleles into non-native genetic backgrounds (Gompert and Buerkle 

2009).  

 

2.3. Speciation reversal and the role of anthropogenic activities 

“It is becoming clear that human activities have a more profound effect on biodiversity than 

was previously believed, particularly in the animal kingdom, by inhibiting the process of 

species divergence within certain ecosystems”- Philip Hunter (2006). 

A large part of the world’s species biodiversity is evolutionarily young and has evolved 

as a by-product of divergent adaptation to heterogeneous environments (Seehausen 2006). 

Various natural and anthropogenic activities such as climate change, habitat destruction, and 

introduction of non-native species can destabilise these heterogeneous environments. This 

will weaken the reproductive barriers between diverging species and ultimately lead to the 

formation of hybrid swarms. This process has been termed “speciation reversal” or 

“speciation in reverse” (Coyne and Orr 2004). Exemplary cases of this process have been 

reported in various study systems such as alpine whitefish (Coregonus spp), cichlids 

(Pundamilia spp), ciscoes (Coregonus spp), European whitefish (Coregonus lavaretus), and 

three-spined sticklebacks (Gasterosteus acculeatus) (Seehausen et al. 2006, Todd and 

Stedman 1989, Taylor et al. 2006, Vonlanthen et al. 2012, Paper I).  

 

2.4. Genomic consequences of hybridisation and introgression 

A considerable interest exists in understanding the genetic architecture behind local 

adaptation and barriers to gene flow (Wu 2001, Coyne and Orr 2004, Hoekstra and Coyne 

2007, Vonlanthen et al. 2012). The theory of speciation with gene flow predicts that the 

genetic difference between the two populations will increase as the process of divergence 

proceeds (Feder et al. 2012). Many empirical studies have shown that the genome is 
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semipermeable to gene exchange and hence show variable level of genetic differentiation 

across the genome (Nosil et al. 2009a, Feder et al. 2012). As suggested by Feder et al. (2012), 

divergent selection drives genetic differentiation at certain genomic locations across the 

genome in the initial phase of population divergence (DS). These regions with elevated 

differentiation are termed “genomic islands of divergence” (Nosil et al. 2009a). As the 

process of genomic divergence continues, divergent hitchhiking (DH) overtakes direct 

selection (DS). In the divergent hitchhiking stage, genomic islands grow in number and size 

as the recombination rate decreases. As the gene flow at unlinked loci is reduced, genome 

hitchhiking (GH) supersedes the effect of DH and will ultimately result in a reduction of the 

total genome-wide recombination rate leading into the final post-speciation stage. When two 

species have reached the final post-speciation stage, they can rarely hybridise, and if they do, 

it leads to mal-adapted phenotypes in the hybrids. However, when populations that are in 

early stage of divergence come into secondary contact, it may result in increased hybridisation 

and introgression, as the genomic divergence has not reached the final post-speciation stage.  

 

Genome-wide analyses of introgression across the animal and plant kingdoms have 

suggested variable porosity to foreign alleles across the genome (Payseur et al. 2004, Turner 

et al. 2005). Introgression has been shown to lead to de novo chromosomal rearrangements 

(Lai et al. 2005), to recombination suppression at chromosomes (Ostberg et al. 2013), and 

meiotic breakdown (Dion-Cote et al. 2015). Interspecific recombination at chromosomes, 

promoted by hybridisation and introgression, may also facilitate the breakdown of co-adapted 

gene complexes, resulting in outbreeding depression (Gharrett et al. 1999, Gilk et al. 2004). In 

contrast, when recombination is suppressed at these co-adapted gene complexes, it may result 

in heterosis that provide a fitness advantage for the hybrid individuals. With the advancement 

in understanding of the genomics of speciation and hybridisation, it has been suggested that 
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some parts of the genome are more resistant (or more prone) to introgression, than others 

(Gompert and Buerkle 2009, Nolte et al. 2009a, Payseur 2010). In hybrids, the introgression 

pattern (e.g. neutral, negative and positive introgression) at individual loci is a consequence of 

the fitness effect of genotype combinations. Hence, contrasting the introgression pattern of 

markers situated across the genome permits identification of loci or genomic islands that 

impart local adaptation and/or reproductive isolation (Gompert and Buerkle 2010). 

 

 

3. THE STUDY SYSTEM 

Post-glacial lakes in the Northern hemisphere are relatively young in evolutionary terms 

(11,000-12,000 ybp) and exist as replicates across the Fennoscandian landscape. This PhD 

thesis includes samples from Lake Skrukkebukta and Lake Vaggetem situated in the Pasvik 

watercourse in northern Norway. The study lakes are characterised by low species abundance 

and many vacant niches enabling adaptive divergence of different eco-morphs. This provides 

an excellent situation for studies of ecological speciation (Østbye et al. 2006, Klemetsen 

2010, Præbel et al. 2013b). European whitefish (Coregonus lavaretus L.) is a polymorphic 

species in Fennoscandia and commonly occurs as sympatric eco-morphs that are characterised 

by differences in morphology and number of gill rakers (Amundsen et al. 2004, Siwertsson et 

al. 2010, Siwertsson et al. 2012). The number of gill rakers is associated with trophic 

specialization and has an important role in the adaptive radiation of coregonids (Bernatchez 

2004, Præbel et al. 2013b). It has also been suggested that the number of gill rakers has an 

additive genetic component (Svärdson 1952, Bernatchez 2004). The pelagic eco-morph 

(densely rakered whitefish, DR) is a zooplankton feeder and is characterised by long, thin and 

densely situated gill rakers, whereas the littoral eco-morph (large sparsely rakered whitefish, 

LSR) is a littoral feeder, having short, thick and sparsely placed gill rakers (Amundsen et al. 
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2004). Throughout the synopsis, I will use DR eco-morph for DR whitefish and LSR eco-

morph for LSR whitefish.  

 

Analyses using two mitochondrial DNA segments, suggested that a single ancestral 

clade colonized the region from eastern refugia of glacial lakes (Østbye et al. 2005a). 

Repeated sympatric divergence of the DR eco-morph from the LSR eco-morph has been 

shown using microsatellite loci and morphological analyses and these analyses revealed a 

small, but significant, genetic differentiation between them indicating partial reproductive 

isolation (Østbye et al. 2005b, Østbye et al 2006, Præbel et al. 2013b). In the 1960’s vendace 

(Coregonus albula), a salmonid, was intentionally introduced into the tributaries of Lake Inari 

to enhance the commercial fishery in the lake (Mutenia and Salonen 1992, Præbel et al. 

2013a). Lake Inari forms the headwater for the Pasvik watercourse and during the 1990’s 

vendace invaded the whole watercourse including the study lakes (Amundsen et al. 1999). 

The zooplanktivorous vendace is competitively superior to the DR eco-morph and a rapid 

increase in population density of vendace have destabilised the whole ecosystem of the study 

lakes (Bøhn and Amundsen 1998, Bøhn and Amundsen 2001). Ecological studies have 

documented the competitive relegation of the DR eco-morph from its preferred pelagic habitat 

into the littoral zone (Amundsen et al. 1999, Bøhn et al. 2008). Based on reports of increased 

catches of the DR eco-morph in littoral habitat (Amundsen 1999), this study assumes that the 

habitat relegation of DR eco-morphs has increased the probability of encounters between the 

DR and LSR eco-morphs. 
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4. OBJECTIVES 

The main objective of this thesis has been to elucidate the phenotypic, genetic, and genomic 

consequences of the vendace invasion in the Pasvik watercourse on the native sympatric 

whitefish eco-morphs.  

Specific questions raised were: 

1. What is the effect of the vendace invasion on the reproductive isolation between 

sympatric eco-morphs of European whitefish and does it promote “speciation 

reversal”? (Paper I) 

2. What is the genome-wide consequences of speciation reversal in European 

whitefish eco-morphs and are these genomic consequences predictable? (Paper II) 

3. How does speciation reversal affect introgression at putatively adaptive loci in 

European whitefish? (Paper III) 

 

 

5. MATERIALS AND BRIEF SUMMARY OF DATA  

The samples used for Paper I consisted of gill arches from DR and LSR eco-morphs from 

two sampling years; at the arrival of vendace (1993) and after its invasion and establishment 

(2008) in Lake Skrukkebukta. In Paper II and Paper III, samples from Lake Vaggetem 

collected early/pre- (1993) and post-invasion (2007) was included along with the Lake 

Skrukkebukta samples. As it is difficult to identify the hybrids of DR and LSR eco-morphs in 

the field, the individuals were classified into two populations, either DR or LSR eco-morphs, 

based on the overall gill raker and body morphology following Amundsen et al. (2004). Pure 

DR and LSR eco-morphs and their hybrids were subsequently identified genetically through 

Bayesian analyses using the software STRUCTURE v2.3 (Pritchard et al. 2000). In Paper I, 

individuals were genotyped at 16 microsatellite loci for the genetic analysis and the number of 
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gill rakers was used for the phenotypic analysis to elucidate whether the eco-morphs showed 

signatures of speciation reversal. In Paper II, a subset of the individuals from Paper I were 

genotyped at 6156 SNPs (Single Nucleotide Polymorphisms) obtained from sequencing RAD 

(Restriction site Associated DNA) libraries in order to identify the signatures of speciation 

reversal at the genome-wide level. Paper III used the same individuals as in Paper II and a 

subset of SNPs that showed high genetic differentiation between the eco-morphs, to elucidate 

how speciation reversal affects the introgression patterns at these SNPs.  

 

 

6. SUMMARY OF THE PAPERS  

6.1 Speciation reversal in European whitefish eco-morphs (Paper I) 

The comparison of gill raker numbers revealed two discrete distributions pre-invasion, 

whereas the peaks of these distributions had grown closer post-invasion, suggesting a 

reduction of distinctiveness in phenotypes. Genetic analyses of the pre-invasion samples 

suggested that two gene pools were present, as compared to only a single gene pool in the 

post-invasion samples. The association between number of gill rakers and genotypic data 

were strong and significant in the pre-invasion samples, whereas a weak and non-significant 

association was observed in the post-invasion samples. Altogether, these findings suggested 

that the vendace invasion has triggered breakdown of reproductive isolation between the two 

eco-morphs of whitefish leading to speciation reversal. 

 

6.2 Genomic consequences of speciation reversal (Paper II) 

In both study lakes, the genome-wide patern of genetic differentiation, measured as Fst per 

SNP locus, showed a significant reduction post-invasion. This suggested a weakening of 

reproductive isolation between the eco-morphs post-invasion. Moreover, the study revealed a 
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genome-wide increase of heterozygosity and linkage disequilibrium in the putatively adaptive 

genomic regions post-invasion. This was mainly observed for the DR eco-morph, suggesting 

a more pronounced genome-wide introgression from LSR into DR eco-morph, than in the 

other direction. In both study lakes, divergent selection targeted new biological functions and 

in addition, mostly new SNPs in already existing biological functions post-invasion. The 

study showed that speciation reversal has genome-wide consequences for the eco-morph pair 

in both study lakes and that changes in selective forces may mediate unpredictable outcomes 

of speciation reversal at the functional phenotypic and genomic levels.  

 

6.3 Effect of speciation reversal on the introgression pattern of adaptive genomic regions 

(Paper III) 

We used genomic cline analysis to estimate the introgression patterns of DR alleles into 

hybrids with LSR eco-morph genetic background at highly differentiated individual SNPs. 

Within lakes, a significant proportion of SNPs (~70%) that were introgressing non-neutrally 

prior to speciation reversal were observed to introgress neutrally during speciation reversal. 

The proportion of SNPs showing non-neutral patterns of introgression were not significantly 

different between the hybrid zones during speciation reversal. In addition, the number of 

SNPs influenced by directional selection against homozygous genotypes from the DR eco-

morph and over-dominance of heterozygote genotypes, were not different between the hybrid 

zones. These observations suggest that there is considerable difference in the effects of 

speciation reversal on the action of evolutionary forces at individual loci in two study lakes. 

Taken together, the results of Paper III suggest that speciation reversal, induced by an 

invasion of an ecological competitor, changed the action of selection forces at putatively 

adaptive loci in unpredictable ways. 
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7. DISCUSSION 

The results of this study will be discussed in relation to factors contributing to reproductive 

isolation in sympatric whitefish eco-morphs. I will also discuss the consequences of 

speciation reversal at the genomic level and how the results may provide knowledge for 

speciation research. Finally, I will deliberate how insights from the genomic studies of 

speciation reversal may provide more sustainable conservation actions.  

 

7.1. Barriers to gene flow between DR and LSR eco-morphs: what we know, do not 

know, and predictions from other species 

 The most important requisite to achieve complete speciation is the establishment of robust 

reproductive isolation between diverging taxa (Coyne and Orr 2004). Various pre-zygotic, 

extrinsic and intrinsic post-zygotic barriers to gene flow contribute to the speciation process. 

In the following section, I will discuss factors that may be important for the reproductive 

isolation between the DR and LSR eco-morphs to provide insights into possible mechanisms 

of speciation reversal.  

 

Identifying the barriers to gene flow that drive the formation of eco-morphs in post-

glacial fishes is a daunting task, as it requires detailed ecological, physiological, and genomic 

knowledge. In addition, in situ studies of spawning behaviour (e.g. mate choice) and temporal 

and spatial segregation are needed to complement the other information. In situ studies are 

difficult to conduct in our sub-Arctic and Arctic regions as, for example, whitefish spawn in 

late autumn or during the winter where unsafe lake ice conditions and extreme temperatures 

hamper any field activities. Eco-morphs of Arctic charr (Salvelinus alpinus) in Lake 

Fjellfrøsvatn (Troms, northern Norway), have shown strong spatial and temporal segregation 

in spawning time (Klemetsen 2010), but such information is still lacking for the European 
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whitefish eco-morphs. Studies of other coregonid species have reported similar segregation in 

either time and/or place of spawning as the Arctic charr (Svärdson 1965, Bernatchez et al. 

1996, Vonlanthen et al. 2009). Unpublished observations from two lakes in Finnmark, 

northern Norway, suggest that DR and LSR eco-morphs are likely to have partial overlap in 

breeding seasons but utilize different spawning grounds (Pers. Com. R. Knudsen & K. 

Præbel).  The habitat relegation of the DR eco-morph from its native pelagic zone into the 

littoral zone are expected to have changed the realized habitat conditions (e.g., water 

temperature and food resources) for the DR eco-morph. This would subsequently lead to 

changes in spawning time, increasing the potential for hybridisation (Paper I). This may also 

have affected the development functions, in line with what was observed for the change in 

functional representation of genes related to development and reproduction in Paper II. 

 

The changes in habitat conditions may either induce or impede extrinsic post-zygotic 

isolation barriers such as ecological inviability. Ecological inviability is attributable mainly to 

the reduced foraging efficiency due to intermediate gill rakers and/or mouth morphology, or 

the absence of appropriate ecological niches for hybrids to feed in (Hatfield and Schluter 

1999). Although this study found signatures of intermediate gill raker numbers in a few 

hybrid individuals collected in the period of speciation reversal, a significant proportion of the 

individuals still carried gill raker numbers within the ranges of the pure parental eco-types 

(Paper I). Adaptive phenotypic traits, such as the number of gill rakers, are likely to be under 

polygenic control and may show different inheritance patterns than a phenotypic trait under 

monogenic control (Hatfield, 1997). As a result, it may require more generations of 

hybridisation to homogenize polygenic phenotypic traits than the 3-4 generations of 

hybridisation in the study system included herein (Paper I). However, the genetic architecture 

of the number of gill rakers remains to be identified. This allows an alternative hypothesis to 



22 

 

be proposed: the low proportion of hybrid phenotypes, despite the significant number of 

hybrid genotypes, may suggest strong selection pressure against hybrid phenotypes. This 

would mean that ecological inviability plays a pivotal role in deciding the fate of hybrids in 

the study lakes, at least in the early stage of speciation reversal.  

 

Intrinsic reproductive isolation is attained when genomes of the diverging populations 

accumulate substantial genomic incompatibilities between them. The genetic basis for barriers 

to gene flow can vary across time, space, and genomes (Harrison and Larson 2014). Genomic 

incompatibilities have been reported as one of the major drivers of reproductive isolation 

between the sympatric normal and dwarf lake whitefish eco-morphs (e.g. Renaut et al 2011, 

Dion-Cote et al. 2014, Dion-Cote et al. 2015). These eco-morphs originate from separate 

glacial lineages that have accumulated considerable genomic differences before coming into 

secondary contact in post-glacial times (Bernatchez and Dodson 1990, Bernatchez and 

Dodson 1991). Genomic incompatibilities may not represent a barrier to gene flow in eco-

morphs of European whitefish in northern Fennoscandia as they have a mono-phylogenetic 

origin and have had relatively short time for divergence (Østbye et al 2005a). On the contrary, 

the present study did reveal presence of a few genomic regions showing signatures of under-

dominance, suggesting that genomic incompatibilities may exists between the eco-morphs 

(Paper III). However, genetic drift and other stochastic processes may also show similar 

introgression patterns, albeit the contribution of genetic drift may be very low in hybrid zones. 

 

7.2. Speciation reversal and genomic divergence 

Differences in habitat conditions, metabolism, reproduction, and spatial subdivisions among 

individuals within populations lead to formation of new species through time. This requires 

presence of allelic combinations that produce phenotypes with fitness advantages in the new 
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habitat (Coyne and Orr 2004). Hybrid zones provide an opportunity to predict and study the 

effect of these new allelic combinations on the fitness of hybrids including the mechanisms 

promoting reproductive isolation (Nolte et al. 2009, Janousek et al. 2012). Hybrid zones 

magnify the effects of various evolutionary processes and their interactions (Hewitt 1988), 

effect of the various forms of natural selection against hybrids (Latour et al. 2014), and allow 

to test intrinsic genomic incompatibilities (FelClair et al. 1996, Turner and Harr 2014). Some 

of these interactions may be created in experimental setups, but creating experimental systems 

that allow for the interaction of processes and forces may be challenging (Kawecki et al. 

2012). The systems used in this study represent an excellent example of a natural local hybrid 

zones, because they have been sampled continuously before, during, and after the invasion of 

vendace. This will allow us to study the evolutionary and genetic mechanisms underlying 

divergence and speciation reversal. 

 

The theory of genomic divergence predicts that the genome-wide differentiation 

increases as divergence progresses (Feder et al. 2012), mainly due to divergent selection on 

beneficial alleles (e.g. responsible for ecological specialization) and segregation of these 

alleles into adaptive genomic islands (Stephens et al. 1994, Wu 2001). Herein, signatures of 

divergent selection were observed at a few loci, which were directly or indirectly involved in 

local adaptations (Paper II and Paper III). When linkage between genomic regions 

influenced by selection and the nearby surrounding region increases, the size of genomic 

islands grows, representing the second stage of genomic differentiation, called divergent 

hitchhiking. At this stage, one should expect a higher proportion of SNPs under divergent 

selection compared to their proportion at earlier stages of the same speciation process. When 

speciation reverse, interspecific recombination will hamper alleles to segregate into genomic 

islands and, thus, counteract local adaptation and divergence. The current study identified a 
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similar proportion of SNPs under divergent selection before and during speciation reversal, 

but the SNPs were located in different genomic regions (Paper II). Along with this, the study 

also reported a genome-wide decrease in genetic differentiation and an increase in 

heterozygosity and linkage disequilibrium at putative adaptive regions upon speciation 

reversal, indicating possible weakening of DH (Paper II). The changes in the existing 

selective forces after the habitat relegation of the DR eco-morph may have triggered the 

selection to target new or similar important biological functions and/or new SNPs in already 

existing biological functions as observed in Paper II and Paper III.  

 

Studying introgression patterns at genomic regions assists identification of genes 

important for local adaptation and genes involved in reproductive isolation. As expected these 

genomic regions show negative and under-dominance introgression respectively (Raufaste et 

al. 2005, Paper III). Possibly new allelic combinations at loci responsible for local adaptation 

and reproductive isolation may lead to mal-adapted phenotypes in hybrids. This is more 

evident when populations are far in the speciation process and have accumulated a substantial 

amount of genomic incompatibilities (Raufaste et al. 2005, Mallet 2006). In contrast to under-

dominance, signature of over-dominance type of introgression was also observed in a few 

markers in the present study (Paper III). The presence of over-dominance suggests an 

adaptive advantage for the hybrids. This leads to another perspective on how hybridisation 

contributes to maintaining the adaptive radiation and new phenotypes with positive fitness 

that cannot be reached through gradual processes of evolution in either of the diverging 

populations (Abbott et al. 2013, Seehausen et al. 2014). In the wake of constantly changing 

living conditions forced by natural or anthropogenic activities, new genetic variation arising 

through hybrids may be more important and interesting to study than ever before. This 

especially holds true for weakly reproductively isolated populations that are associated with 
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fragile barriers to gene flow. Such populations will experience neutral introgression at once 

moderately differentiated genomic regions as shown in Paper III, suggesting that speciation 

reversal can reverse the effect of divergent hitchhiking. The population genomic analyses of 

genomic regions with adaptive importance further highlight the fragility of the reproductive 

isolation between eco-morphs of post-glacial fishes that are at the early stage of sympatric 

divergence. 

 

7.3. Speciation reversal studies and its implications on management  

Biodiversity is declining at the global scale with serious consequence for the structure and 

functioning of ecosystems (Butchart et al. 2010, Hooper et al. 2012). Hybridisation and 

introgression have led to extinction of various taxa in the animal and plant kingdom, 

pinpointing the importance of understanding these processes (Allendorf et al. 2001). 

Whitefish are reported as being vulnerable in lakes of the U.K and Central Europe (Kottelat 

and Freyhof 2007, Winfield et al. 2010), and alpine whitefish populations have been shown to 

undergo speciation reversal due to industrial eutrophication (Vonlanthen et al. 2012). 

Similarly, the present study showed that a human induced biological invasion has triggered 

speciation reversal in several pairs of once genetically differentiated eco-morphs of European 

whitefish (Paper I, Paper II, and Paper III). Although European whitefish are not regarded 

as endangered in northern Fennoscandia, the homogenisation of once divergent gene pools 

across one of the three major watercourses in Finnmark, cannot be desirable.  

 

Traditionally, conservation studies have relied on phenotypic assessment and a handful 

of neutral genetic markers ranging from allozymes to microsatellites (Allendorf et al. 2001, 

Allendorf et al. 2010, Arif et al. 2011). Phenotypic information has been used extensively to 

identify hybrids until a few decades ago (Allendorf et al. 2001). Detection of hybrids using 
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phenotypic information assumes that hybrids are phenotypically intermediate to parental 

types. However, as discussed above, it may take several generations to accumulate the 

phenotypic signal of speciation reversal as shown by the detection of parental phenotypes in 

genetic hybrids (Paper I). Although microsatellites can be used for classification of species 

and to identify hybrids of coregonid eco-morphs and species (Kahilainen et al. 2011, Præbel 

et al 2013c, Paper I), neutral microsatellite markers will not reveal adaptive and/or genome-

wide differences between sympatric morph-pairs, which is a key component in a recent 

conservation frameworks (Funk et al. 2012). This conservation framework includes adaptive 

genetic information along with phenotypic information and traditional neutral markers to 

predict the management status of populations. In conventional conservation genetics, genetic 

data are mainly used to identify the evolutionary processes such as gene flow and genetic 

drift, to classify conservation units or estimate the minimum population size, and for 

population assignments (McMahon et al. 2014). Genomic approaches, such as analyses of 

thousands of SNPs (Garner et al. 2015, Paper II, and Paper III), can act as promising means 

for conservation practices by scaling up the traditional population genetic inferences and by 

increasing the population genomics resolution (Allendorf et al 2010, Garner et al. 2015, 

Shafer et al. 2015, Paper II).  

 

Identifying traits that contribute to the fitness of populations gives the manager 

information about how the biotic and abiotic factors should be adjusted within a monitored 

ecosystem in order to maintain this fitness. Inclusion of markers that reflect local adaptation 

would also assist in identifying genomic regions that experience the effect of inbreeding 

depression (Hoffman et al. 2014), and in estimating the effect of a changing environment. The 

latter was exemplified in the present study as the habitat change of the DR eco-morphs have 

changed the phenotypic traits targeted by divergent selection (Paper II and Paper III). By 
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considering adaptive genetic information in a conservation and management framework, as 

the one suggested by Funk et al. 2012, it is possible to prioritise among populations and 

identify a candidate population (or species) that may cope well with changing climatic and 

environmental conditions. This information is especially important when establishing refuge 

populations of endangered species or performing supportive stockings to save declining 

populations or species (Etheridge et al 2010). By choosing a source population of similar 

genotype at adaptive loci as the target population, it is possible to avoid outbreeding 

depression (Moritz 1999, Edmands 2007). However, it is important to maintain the balance 

between rescuing an endangered population by performing intentional hybridisation and 

allowing outbreeding depression. Managers can minimize the risk of both, inbreeding and 

outbreeding, by allowing intentional hybridization only for populations clearly suffering from 

inbreeding depression by maximizing the genetic and adaptive similarity between the 

populations.  

 

Conservation strategies have been established for European whitefish and houtings (C. 

oxyrhynchus) in e.g. Denmark (Hansen et al. 2008), Germany (Dierking et al. 2014), and UK 

(Adams et al 2016), but to my knowledge none of these strategies includes the 

implementation of adaptive loci or genome–wide scans. Hence, the genomic information 

obtained in this study and the unpredictable genomic outcomes of hybridisation (Paper II 

and Paper III), can be used in framing the conservation strategies in the future.  

 

 

8. CONCLUDING REMARKS 

This study explored the genome-wide consequences of speciation reversal, by comparing the 

unique set of samples collected within the same systems during divergence and speciation 
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reversal. The results of this study showed that the process of divergence can be reversed, 

especially when populations are weakly reproductively isolated. However, the consequences 

of such a reversal are highly unpredictable at phenotypic and genomic levels. Hence, the 

unpredictability associated with the outcomes of speciation reversal may further stress the 

importance of system specific conservation strategies and need for the inclusion of 

information on adaptive loci and various ecological factors in conservation frameworks. 

 

  

9. FUTURE STUDIES 

Investigating the number of loci shaping the adaptive phenotypes in European whitefish eco-

morphs and their mechansims of action may help in understanding the genetic basis of 

adaptive phenotypic traits and possibly reproductive isolation. This can be done by 

associating the genotypes at SNP loci to phenotypic traits from wild hybrids through a 

mapping technique called “admixture mapping”. The admixture mapping can also be used in 

conjunction with other quantitative genetic tools (such as additive genetic variance and co-

variance matrix) to test the role and fate of hybrids in speciation.   
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