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3. Introduction 

3.1  Cancer and inflammation 

The theory about the interplay between inflammation and cancer was suggested by Rudolf Virchow 

at the end of the 19th century when he observed the presence of immune cells in tumor samples. 

Virchow supposed that persistent inflammation induces a malignant transformation of the tissues [1]. 

More than a century later, in 2011, a tumor-promoting inflammation was included as an enabling 

characteristic in the monumental work of Hanahan and Weinberg “Hallmarks of Cancer: The Next 

Generation” [2]. Inflammation contributes to tumor angiogenesis, invasiveness and metastatic 

activity by augmentation of the proliferation and inhibition of death signaling in cancer cells (Figure 

1).  

In short, the inflammatory process occurs in a tissue as a response to an injury, and its main role is to 

heal the tissue. Tissue-residing immune cells expressing specific pattern recognition receptors 

(PRRs), which recognize antigens or danger signals released by damaged cells, produce inflammatory 

mediators that form a focus of inflammation and induce the migration of various leukocytes from the 

vessels to the site of the damage. During the sequence of processes, immune cells in cooperation with 

extracellular matrix forming cells (fibroblasts) eliminate the source of danger signals and resolve the 

inflammation. In the case of a “normal inflammation”, associated with wound healing, these 

processes are limited and securely controlled by various growth factors including interleukins, TNF-

α and TGF-β [3-6]. A loss of regulation in inflammation limiting factors leads to the persistence of 

focus, and may result in neoplastic formation 

Generally speaking, the most potent drivers of the chronic inflammatory process associated with 

cancer are the sustained presence of inflammatory immune cells and the subversion of inflammatory 

mediators’ production. 

The typical cells promoting cancer-related inflammation are tumor-associated macrophages (TAMs) 

[7, 8]. Depending on the type of polarization, TAMs may play different roles in inflammation. M1 

(classical) phenotype macrophages eliminate antigens and cancer cells by the production of IL-12, 

IL-23, TNF-α and the recruitment of cytotoxic T cells and NK cells. M2 (alternative) phenotype 

macrophages produce IL-6, IL-10 and TGF-β, thereby resulting in an immune-suppressed response. 

Additionally, TAMs can produce angiogenic growth factors that contribute to tumor progression [9-

15]. [16] 
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Figure 1. Cancer-related inflammation. There are two pathways driving cancer-related inflammation: the 
intrinsic pathway and the extrinsic pathway. The intrinsic pathway is activated by genetic events that cause 
neoplasia including the activation of oncogenes, chromosomal aberrations, and the inactivation of tumor-
suppressor genes. The extrinsic pathway is driven by inflammatory conditions that predispose to cancer. Together 
these pathways activate NF-κB, STAT3, and HIF-1α in tumour cells. These transcription factors initiate the 
production of inflammatory mediators, including cytokines and chemokines, as well as the production of COX-2. 
These factors recruit various leukocytes. All these events lead to an augmented production of inflammatory 
mediators and improved generation of cancer microenvironment.  

Illustration used with permission, copyright 2016 by the American Thoracic Society (ATS) [16]. 
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Tumor-promoting immune cells are not limited by TAMs, as recent data show that dendritic cells, 

neutrophils, mast cells and T cells may also contribute to tumor development, releasing chemokines, 

immunosuppressive cytokines, pro-angiogenic components, ROS and proteases [17-24]. 

Additional evidence of the significance of inflammation in cancer progression is clearly demonstrated 

by studies which show that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduces 

colorectal [25], lung [26, 27], breast [28, 29], esophagus [30] and stomach [31] cancer risks. The 

chemopreventive properties of NSAIDs can be explained by their ability to inhibit cyclooxygenases 

(COX-1 and -2), while COX-2 stimulates the production of prostaglandins from arachidonic acid 

[32]. In turn, prostaglandins promote tumor development by apoptosis inhibition, immune 

suppression, the stimulation of cell proliferation and the activation of pro-survival signaling pathways 

[33-35]. 

 

3.2.1 Pattern recognition receptors and danger signals 

The initial discovery of the immune system originated in the BC era. However, the underlying 

intricate mechanisms of the immune response remained unclear up until the end of the 20th century. 

In 1989, Charles A. Janeway, Jr. proposed the pattern recognition concept that revolutionized the 

field of immunology [36]. Janeway postulated that the initiation of the immune response relies on the 

set of highly conserved receptors called pattern recognition receptors (PRRs) which recognize 

specific ligands of microbial origin (e.g. components  of the bacterial cell wall, bacterial and viral 

nucleic acids, etc.) called pathogen-associated molecular patterns (PAMPs). Janeway also 

emphasized that besides the activation of the innate immunity, PRR-PAMP interactions trigger the 

adaptive response. 

First PRR was described in the middle of the 1990s in a Drosophila model. Lemaitre and co-authors 

showed that flies with the mutant Toll transmembrane protein lack the antifungal immune response 

[37]. Further research revealed a number of additional Toll-related proteins and in 1997 Medzhitov 

and co-authors characterized a human homologue of the Drosophila Toll protein [38]. At present, the 

PRR superfamily consists of a wide variety of receptors with diverse chemical structures and 

signaling mechanisms. Among different species, approximately 500 PRRs are currently known [39]. 

In order to pursue the permanent immune control, PRRs are extensively distributed throughout the 

body. PRRs can reside in cell membranes (Toll-like receptors, C-type lectin receptors) and cytoplasm 

(RIG-I-like receptors, NOD-like receptors), or they can be secreted (complement system proteins, 

pentraxins) (Figure 2). An interaction between PRR and ligands results in the initiation of different 
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signaling pathways, including NF-κB [40, 41], JNKs [42] and p38 [43], thus leading to the 

inflammasome formation and production of pro-inflammatory cytokines and interferons. [44] 

For a long time, the dogma that the immune system distinguishes between the “self” and “non-self” 

has dominated the field, though in 1994, Polly Matzinger outlined a theory which seemed to 

contradict all existing immunology principles [45]. She suggested that the immune response is 

promoted by so-called “danger signals” (later termed damage-associated molecular patterns - 

DAMPs), i.e. host-derived substances released by the cells in response to stress, damage, etc. Despite 

Figure 2. Localization of main classes of PRRs. PRRs can be localized on the cell surface, in the cytoplasm 
and in the membrane of endosomes. 

Illustration used with permission, copyright 2011 by Brazilian Journal of Medical and Biological Research 
[44]. 
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the controversy, this theory could explain phenomena that previous thoughts have failed to 

understand.  

DAMPs are structurally diverse immunostimulatory molecules that can be released from any 

compartment of the cell following tissue damage, trauma, inflammation and neoplastic changes. 

There are several ways to classify DAMPs: 

1. Release mechanism 

a. Actively released (calreticulin (CRT), adenosine triphosphate (ATP)) [46] 

b. Passively released (high-mobility group box 1 protein (HMGB1), s100 proteins, etc.) [47] 

2. Source 

a. Intracellular DAMPs (mitochondrial formylated peptides, including fMLP; nuclear 

HMGB1; s100 proteins) [47, 48] 

b. Exosomal DAMPs (heat shock proteins (HSP)) [49] 

c. Extracellular matrix DAMPs (hyaluronic acid) [50] 

d. Plasma components (complement proteins C3a, C4a, C5a) [51] 

3. Chemical structure 

a. Proteins (HMGB1, HSP, etc.) [50] 

b. Non-proteins (free nucleic acids, ATP, heparan sulfate, etc.) [50, 52, 53] 

 

Released extracellularly, DAMPs bind to PRRs and exhibit their properties including the stimulation 

and regulation of dendritic cells (DCs) maturation, which lead to the induction of CD8+ T-cell 

response [54]. 

Over the last few decades, it has become apparent that the PRR concept and danger theory are not 

mutually exclusive, but instead complementary. PRRs work not only as a primitive bacterial 

recognition machinery, but can also initiate an immune response activated by both foreign antigens 

(PAMPs) and host substances (DAMPs). 

 

3.2.2 Formyl peptide receptor 1 (FPR1) 

The human formyl peptide receptor 1 (FPR1) is a seven transmembrane domain receptor that belongs 

to the superfamily of G-protein coupled receptors (GPCRs) (Figure 3) [55]. It is expressed at high 

levels on phagocytic leukocytes, and mediates cellular chemotaxis [56]. Human FPR was identified 

in the late 1970s on the surface of neutrophils as a specific receptor for bacterial N-formyl peptide 

formyl-methionine-leucyl-phenylalanine (fMLP) [57, 58]. It has later been shown that the activation 
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of FPR1 by picomolar and nanomolar concentrations of fMLP promotes chemotactic cell motility 

and the mobilization of intracellular Ca2+ [59, 60] 

Upon binding with an agonist, FPR1 activates heterotrimeric Gi protein, which dissociates into α and 

βγ subunits, with the subsequent activation of phospholipase C (PLC) and phosphoinositide 3-kinase 

(PI3K). PLC hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2), resulting in the generation of 

inositol trisphosphate (IP3), which leads to the release of calcium from endoplasmic reticulum and 

the activation of protein kinase C isoforms [61-63]. Main intracellular pathways activated by FPR1 

are PI3K/Akt, MAPK, STAT3, p38 and Hippo pathways [56, 64-66]. All these intracellular events 

lead to an increased chemotactic behavior of cells and the development of pro-inflammatory effects. 

It is known that different types and concentrations of an agonist activate different signaling pathways. 

As with other GPCRs, FPR1 is subject to homologous desensitization. In the presence of high 

concentrations of agonists, FPR1 can be internalized and kept in endosomes during long-term agonist 

exposure, without any signs of degradation [67]. 

Figure 3. Transmembrane disposition of the human FPR1. One-letter amino acid code is used. 

Illustration used with permission, copyright 2009 by The American Society for Pharmacology and 
Experimental Therapeutics (ASPET) [55]. 
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Due to extensive research, the current list of known agonists for FPR1 is significantly broadened. 

Besides the classic fMLP, it includes: 

1. Peptides of bacterial and viral origin: a non-formylated peptide fragment produced by 

Helicobacter pylori, Hp(2–20); T20, T21 peptides of HIV-1 envelope protein gp41 [68-70] 

 

2. Ligands of endogenous origin: formylated peptides of mitochondria proteins fMMYALF, 

fMLKLIV and fMFADRW; peptides  Ac1-26 and Ac9-25 of Annexin I,  a Ca2+-dependent 

phospholipid binding protein [60, 71] 

 

3. Synthetic peptide library derived agonists: WKYMVm, WKGMVm, WKRMVm [72, 73] 

 

First selective antagonists for FPR1, t-Boc-Met-Leu-Phe (Boc1) and t-Boc-Phe-D-Leu-Phe-DLeu-

Phe (Boc2) were synthesized by replacing the formyl group of fMLF with the tertiary 

butyloxycarbonyl group (t-Boc) [74]. Fungal cyclic peptide Cyclosporin H (CyH), bile acids 

deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) are known FPR1 antagonists [75-78]. 

Although FPR1 was initially discovered in phagocytic leukocytes, it is widely expressed in other cell 

types and tissues including dendritic cells, endothelial cells, astrocytes, lens epithelial cells, 

hepatocytes, Kupffer cells, smooth muscles, etc (Table 1). [79] 

 

 

 

 

 

 

 

 

 

 

Cell types Tissues 

Monocytes/macrophages Thyroid 

Neutrophils Adrenal 

Immature DCs Central nervous system 

Endothelial cells Autonomic nervous system 

Platelets Liver 

Hepatocytes Lung 

Astrocytes Spleen 

Microglial cells Heart 

Fibroblasts Uterus 

Vascular smooth muscle cells Ovary 

Lens epithelial cells Placenta 

 Kidney 

 Eye 

 Stomach 

 Bone marrow 

 Colon 

Table 1. Distribution of FPR1 in cells and tissues. Modified from [79]. Table used with permission, 

copyright 2006 by by Elsevier Limited.Therapeutics (ASPET). 
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Accumulating data suggest that FPR1 is involved in a range of diseases and pathologic conditions, 

such as chronic obstructive pulmonary disease (COPD) [80], inflammatory colitis [81], periodontitis 

[82, 83] and several cancer types, including gastric cancer [84, 85], astrocytoma [86], melanoma [87], 

glioblastoma [61, 88], lung alveolar carcinoma [89], hepatocellular carcinoma [90], breast cancer [91] 

and pancreatic carcinoma [92]. 

3.3.1 Chemokines 

Chemokines are a family of small (8-14 kDa) chemotactic cytokines that induce directed migration 

of leukocytes. Based on the position of the primary cysteine residues near the N-terminus of these 

proteins, they are classified into four main subfamilies: C, CC, CXC and CX3C [93]. Chemokines 

exert their functions by binding to corresponding G-protein coupled receptors on target cells [94]. 

This binding activates various downstream signals including PTEN/PI3K/Akt, Jak-STAT and 

MAPK/ERK pathways, hence leading to increased cell motility and proliferation [95-97]. 

Additionally, chemokines can bind to proteoglycans and glycosaminoglycans. This ability allows 

them to accumulate on the surface of endothelial cells, or in an extracellular matrix and form a 

concentration gradient important in migration [98]. 

According to their functions, chemokines can be classified as inflammatory and homeostatic. The 

former induce the migration of immune cells to the site of inflammation, while the latter are involved 

in various stages of organogenesis, stem cell migration and the maintenance of natural leukocyte 

balance [99, 100].  

All immune cells express chemokine receptors, and their migratory potential is dependent on 

chemokines. In general, C chemokines are necessary for T cell migration to the thymus; CC 

chemokines promote the chemotaxis of basophils, DCs, macrophages, monocytes, NK cells, T cells, 

etc.; CXC chemokines attract B- and T- lymphocytes, neutrophils; CX3C chemokines are involved 

in T cell and NK cell infiltration [93, 101]. 

Chemokines have been shown to play an essential role in all stages of tumor development. Cancer 

cells both produce various chemokines and express chemokine receptors. For example, the tumor-

derived chemokines CCL2 and CCL22 recruit TAMs (and intensify their M2 polarizaion) and Tregs 

[102-104]; CXCL12 and CXCL8 upregulate VEGF expression, thus leading to neovascularization 

[105, 106]; CXCR4 expressed on the cancer cells initiate the migration towards its ligand CXCL12 

produced by endothelial cells resulting in epithelial-mesenchymal transition (EMT) and metastasis 

[107-109]. 
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3.3.2 Chemerin 

Chemerin (tazarotene induced gene 2, TIG2; retinoic acid receptor responder 2, RARRES2) is an 18 

kDa chemokine-like protein [110]. It is synthesized as a 163-amino acid inactive isoform that is 

cleaved to 143-amino acid prochemerin and subsequently processed by a variety of extracellular 

inflammation-associated proteases, which remove a C-terminal hexapeptide to liberate the 157- and 

156- amino acid active forms or 154- and 155- inactive forms [111]. First, it was described as a protein 

involved in the regulation of adipogenesis and overexpressed in psoriatic lesions [112-114].  

 

 

 

Structurally, chemerin is distinct from chemokines, but in binding its receptors, chemerin acts in a 

chemokine-like manner, inducing leukocyte chemotaxis (particularly macrophages, NK cells, DCs) 

and the mobilization of intracellular Ca2+ [114, 115]. There are three chemerin receptors described so 

far: chemokine-like receptor 1 (CMKLR1 or chemR23), chemokine CC motif receptor-like 2 

(CCRL2) and G protein-coupled receptor 1 (GPR1) (Figure 4). While CMKLR1 promotes the main 

chemoattractive functions of chemerin, the consequences of binding chemerin to GPR1 are not clearly 

understood. Interestingly, the CCRL2-chemerin complex does not undergo internalization, and it is 

believed that the main function of CCRL2 is to concentrate chemerin locally in order to present it to 

chemR23 more abundantly [110, 111, 114, 115]. There is some evidence demonstrating an 

Figure 4. Overview of the three receptors for chemerin. 

Illustration used with permission, copyright 2011 by Elsevier Limited 
[115]. 
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association between chemerin-induced inflammation and cancer (prostate cancer, esophageal cancer, 

gastric cancer, etc.) [116-118]. 

3.4  Neuroblastoma 

Neuroblastoma (NB) is an embryonal tumor of the peripheral nervous system and is the most common 

and deadly extracranial tumor of the childhood [119]. NB arises from sympathetic ganglia precursor 

cells developing from the neural crest, a transient embryonal population of cells that gives rise to the 

central nervous system, melanocytes, neuroendocrine cells, facial cartilage, etc [120]. 

The median age at diagnosis is 17-18 months [121, 122]. It has been shown that NB is slightly more 

common among boys than among girls [123] with the global incidence of NB being approxmately 1 

case per 8,000 – 10,000 births [122]. In the Norwegian population, the incidence is equal to 0.92 

cases per 100,000 (Wesenberg F, Monge O, Nygård JF, Lie HK, Småstuen M. Årsrapport 2009 Norsk 

Barnekreftregister). Survival in NB depends on the age of diagnosis and the genetic profile of the 

disease, but the overall survival is approximately 55% [124]. 

Anatomically, NB can arise at any part of the sympathetic nervous system, but it predominantly 

occurs in the adrenal medulla. Clinical manifestation of NB depends on the location of primary tumor. 

The most common sites of NB metastasis are regional lymph nodes, bones and bone marrow and the 

liver (Figure 5) [125]. The diagnosis is established by histological findings from tumors or metastases 

biopsies, various imaging techniques (CT, MRI, MIBG) and biochemical analysis of blood and urine 

(elevated levels of catecholamines and their metabolites are frequently presented) [119].  

The causes of NB are not known but two germline mutations in PHOX2B (paired-like homeobox 2b) 

and ALK (anaplastic lymphoma kinase) genes have been described to be involved in inherited forms 

of the disease [126, 127]. Familial NB accounts for 1-2% of newly diagnosed cases [128]. 

The expression of MYCN, a member of the MYC transcription factors family, is found in ~25% of 

NB cases. Immediately after its discovery in the 1980s, it has been confirmed to correlate with poor 

patient survival [129]. MYCN amplification is associated with a number of pro-tumorigenic processes 

that determine the development of high-risk NB, including increased metastatic activity, augmented 

angiogenesis, the inhibition of apoptosis and the stimulation of cell proliferation and pluripotency 

[129-131]. To date, MYCN amplification is a biomarker used for risk evaluation in NB patients. 

Disease prognosis and risk stratification are based on the following characteristics: age at diagnosis, 

localization of tumor, presence of metastases, histology of tumor, MYCN amplification, DNA ploidy, 

1p, 11q, and 17q chromosomal aberrations [120, 124, 125].  
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Treatment depends on the stage of the disease and includes all the existing modalities of modern 

cancer management (i.e., surgery, radiation therapy, chemotherapy and immunotherapy). 

 

The chemokine receptor repertoire of NB is poorly described. There is evidence that CXCR4 

expressed by tumor cells promotes non-invasive tumor growth being stimulated by CXCL12 

produced within the tumor microenvironment [132]. Airoldi et al. demonstrated that CXCR5+ NB 

cells migrate to the bone marrow in response to CXCL13 synthesis [133]. Additionally, it has been 

demonstrated that MYCN non-amplified high risk NB tumors can release CCL2, and by doing so 

attract iNKT cells that kill monocytes involved in tumor elimination processes [134].   

Figure 5. Clinical presentations of neuroblastoma. NB can arise anywhere along the sympathetic nervous 
system. The most common sites are the adrenal medulla, abdominal sympathetic ganglia, and mediastinum. 
Primary tumors in the neck or upper chest can cause Horner's syndrome (ptosis, miosis, and anhidrosis). 
Tumors along the spinal column can cause cord compression, with resulting paralysis. Higher-stage tumors 
often infiltrate local organ structures, surround critical nerves and vessels such as the celiac axis. NB typically 
metastasize to regional lymph nodes and to the bone marrow. NB also can metastasize to the liver.  

Illustration used with permission, copyright 2010 by Massachusetts Medical Society [125]. 
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3.5  Hepatic clearance of danger signals 

The elimination of pathogens and substances produced by damaged cells from the circulation is the 

essential function of the liver. In order to prevent the unnecessary activation of the entire immune 

system, the evolution of the liver has developed the capability for the local immune response and the 

elimination of pathogens. The initiation of innate immune response in the liver is dependent on 

various subsets of PRRs expressed on the liver-resident immune cells including macrophages 

(Kupffer cells), hepatic dendritic cells, neutrophils, NK cells and regulatory T cells [135, 136]. 

Liver sinusoidal endothelial cells (LSECs) are a notable type of liver cells forming the border between 

the blood and hepatocytes. The main feature of these cells is the formation of fenestrae, multiple pores 

which provide the opportunity for LSECs to literally filtrate the blood. LSECs are essential cells of 

liver metabolism. Through fenestrae, they uptake different substances, such as plasma proteins, 

albumin and lipoproteins [137]. The high endocytic potential of LSECs makes them a very important 

class of scavenger cells that eliminate the danger signals of both host and non-host origin. The 

permanent exposure of LSECs to various pathogens determine their involvement in immunity. There 

are many receptors known to be present on the surface of LSECs (e.g. TLRs, NLRs, RLRs) therefore 

these cells play a crucial role in antigen-presenting mechanisms and immune response activation 

[138]. LSECs contain a set of scavenger receptors (SR-A, SR-B, Stabilin-1 (SR-H1) and Stabilin-2 

(SR-H2)) which allow these cells to internalize and eliminate a tremendous number of foreign 

substances from the blood [136, 137]. Importantly, it has been demonstrated that fluorescein-

conjugated molecules to a great extent are removed from the blood by scavenger receptors of LSECs 

[139]. 
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4. Aims of the thesis   

The specific aims of this thesis were: 

 To study the role of FPR1 in NB development and progression 

 To assess the significance of the CMKLR1/chemerin axis in NB tumorigenesis 

 To study the function of FPR1 in the liver-mediated clearance of formylated peptides from 

the circulation 

 To reveal the difference in the liver uptake of intravenously injected N-formyl peptide 

fNLPNTL and its labeled counterpart FITC-fNLPNTL 
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5. Summary of papers 

Paper I 

Title: The role of formyl peptide receptor 1 (FPR1) in neuroblastoma tumorigenesis. 

In this paper, we studied the role of FPR1, a G protein-coupled receptor with pattern recognition 

properties in NB tumorigenesis. FPR1 is involved in a broad range of host defense mechanisms and 

a variety of host-derived agonists of FPR1 have been identified, including formyl peptides released 

from the disrupted mitochondria of necrotic cells. We demonstrated the expression of FPR1 in seven 

different neuroblastoma cell lines and in primary tumors. Furthermore, FPR1 is expressed at increased 

levels in high stage tumors. The addition of the FPR1 agonist N-formyl-L-methionyl-L-leucyl-L-

phenylalanine (fMLP) to neuroblastoma cells in vitro caused an increase of intracellular calcium 

response and the activation of Akt, p38 and MAPK/ERK signal transduction pathways. All these 

signal transduction events were abrogated by the use of Cyclosporin H, a specific FPR1 antagonist. 

To assess the significance of this receptor in vivo, a set of neuroblastoma cell clones with different 

expression levels of FPR1 was generated. Xenograft models showed that cells with an overexpression 

of the receptor developed tumors significantly faster compared to the control group. Results obtained 

in this paper suggest that FPR1 may play a significant role in neuroblastoma tumorigenesis, and that 

the therapeutic intervention of the FPR1 pathway may be an important clinical strategy in 

neuroblastoma therapy. 

 

Paper II 

Title: CMKLR1/chemerin axis in the neuroblastoma microenvironment. 

In Paper II, we investigated the impact of chemerin receptor CMKLR1 signaling on NB progression. 

Chemerin is an adipokine and immunomodulating factor that promotes the chemotaxis of immature 

DCs, NK cells, macrophages and endothelial cells. Secreted as prochemerin with low activity, it can 

be C-terminally processed by different proteases expressed by a broad range of cell types and tissues. 

The resulting isoforms vary in receptor affinity and biological activity and are natural ligands for the 

G protein-coupled receptors (GPCRs) CMKLR1, GPR1 and CCRL2. To date, the activation of 

CMKLR1 (Chemokine-like receptor 1) by chemerin and its role in metabolism and metabolic 

disorders as well as inflammation is best understood.  

The screening of microarray databases and the analysis of NB expression data showed a correlation 

between a high CMKLR1, GPR1 and CCRL2 expression and a reduction in the overall survival 
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probability. The expression of CMKLR1, GPR1, and chemerin was detected in nine NB cell lines 

using RT-PCR, Western blots and immunocytochemistry. Furthermore, chemerin and CMKLR1 

were detected in NB tumor tissue by immunofluorescence and immunoperoxidase staining. The 

stimulation of NB cell lines with active chemerin induces calcium mobilization and an increased 

phosphorylation of MEK1/2 and ERK1/2, thereby indicating an activation of the MAPK pathway. 

Morover, chemerin stimulation leads to increased NF-κB phosphorylation and translocation to the 

nucleus. The induction of NF-κB mediated signaling was observed by luciferase reporter assay. 

Serum, TNFα and IL-1β increased chemerin protein expression and secretion in NB. α-NETA, a 

small-molecule CMKLR1 inhibitor reduces the clonogenic potential of NB cells in vitro and hampers 

tumor growth in an animal model. Pharmacological interventions that target CMKLR1/chemerin 

signaling pathway may become an important adjuvant therapy for children with NB but further 

preclinical in vivo studies are warranted. 

 

Paper III 

Title: FITC Conjugation Markedly Enhances Hepatic Clearance of N-Formyl Peptides. 

In paper III, we demonstrated that the conjugation of an N-formyl peptide N-Formyl-Nle-Leu-Phe-

Nle-Tyr-Lys (fNLPNTL) with FITC significantly increases its uptake in the liver compared to native 

fNLPNTL. Along with that, we showed that the liver neutralizes circulating N-formyl peptides thus 

preventing the generalization of inflammation. In this study, anatomical distribution was evaluated 

by the intravenous injections of FITC-conjugated fNLPNTL and fNLPNTL, both labeled with 125I. 

The expression of FPR1 was revealed by PCR, WB and immunohistochemistry in both human and 

murine hepatocytes and LSECs, the unique subsets of liver cells that are capable of removing 

dangerous substances from the blood. Competitive studies in vitro showed that FITC-labeled FPR1 

agonist fNLPNTL is taken up in LSECs via both FPR1 and a scavenger receptor. In turn, hepatocytes 

bind FITC-fNLPNTL and fNLPNTL indistinguishably via FPR1. In this work, we proved that the 

chromogen conjugation of intravenously injected substances might transform them into ligands for 

scavenger receptors of the liver. Additionally, we have expanded the knowledge about the role of the 

liver as an organ that removes strong inflammatory signals from the circulation. 
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6. Results and discussion 

It has been proven that functions of various components of the immune system are not limited to 

merely the recognition of pathogens. In this thesis, the role of two “inflammatory” receptors FPR1 

and CMKLR1 in NB development and progression is described. 

Additionally, this work provides two novel findings in the field of liver immunity. 

1. FPR1 expressed by liver cells actively removes circulating formyl peptides that might cause 

systemic inflammatory response syndrome. 

2. Fluorescein-labeled molecules are actively taken up from the blood by scavenger receptors of 

LSECs. Therefore, complicated liver physiology should be taken into account when planning 

research using the intravenous administration of chromogen-conjugated substances. 

 

6.1  Activation of FPR1 and CMKLR1 induces pro-carcinogenic pathways in NB 

in vitro 

FPR1 has previously been described to not only serve as a PRR, but to also participate in a plethora 

of biological events (Figure 6). Recently, its involvement in carcinogenesis has drawn researchers’ 

attention. Interestingly, the impact of FPR1 on tumor formation seems to be tissue- and organ-

specific. The majority of available publications suggest the pro-tumorigenic properties of FPR1 and 

a negative prognostic significance of highly-expressed FPR1 in tumor tissue [56, 85, 87, 88, 92, 140-

143]. However, Prevete and co-authors suggested tumor suppressor functions of FPR1 in gastric 

cancer [84]. Moreover, a work by E. Vacchelli, Y. Ma et al. reported that FPR1 is necessary for the 

formation of chemotherapy-induced antitumor immunity [91]. Notably, some studies do not 

distinguish between FPR1 expressed by tumor cells and the receptor residing on the surface of other 

cells of the tumor microenvironment; consequently discrepancies in the interpretation of the results 

may occur. [144] 
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In turn, CMKLR1 is expressed by iDCs, macrophages, endothelial cells and NKs, with its main 

function to recruit immune cells to the site of inflammation in response to the release of chemerin 

[145]. Besides the immunological functions, chemerin is an essential regulator of adipogenesis, hence 

contributing to the development of obesity and diabetes type 2 [115, 146].  Additionally, CMKLR1-

chemerin interaction has been shown in various conditions, including psoriasis, preeclampsia, 

atherosclerosis, renal diseases, etc. The functional activity of CMKLR1 is dependent on the cleaved 

form of chemerin (described in Introduction 3.3.2) (Figure 7) [112, 113, 147-149].  

The data from the literature describing the role of CMKLR1 in cancer are very limited. Most papers 

focus on the plasma levels of chemerin, and do not pay attention to the expression and functions of 

the receptor. [111] 

 

Figure 6. FPRs in humans. In humans, three FPRs are known. These receptors have been described in myeloid 
cells and later in various tissues and cell types. Depending on the ligand and site of expression, FPRs can initiate 
different processes. 

Illustration used with permission, copyright 2015 by Elsevier Limited [144]. 
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In our work we aimed to establish whether FPR1 (Paper I) and CMKLR1 (Paper II) activation 

influences NB tumorigenesis. As the initial point for these studies, we screened publicly available 

expression datasets [150], and found that NB patients with tumors expressing high levels of the 

receptors have a significantly lower survival probability. In vitro, we tested seven (Paper I) and 10 

(Paper II) NB cell lines, and 27 tumor samples and showed abundant expression of both receptors in 

all specimens. Using specific agonists, we demonstrated that stimulation of the receptors lead to the 

enhanced release of Ca2+ from intracellular stores and the activation of various signaling pathways 

including MAPK/ERK, Akt and P38-MAPK for FPR1 and MAPK/ERK, and NF-κB for CMKLR1. 

ERK1 and ERK2 are extracellular signal-regulated kinases, members of the family of mitogen-

activated protein kinases, transferring diverse extracellular signals to a cell’s interior. The active 

forms of these kinases are detected in approximately one-third of all cancers [151].  Currently, more 

than 160 ERK 1/2 targets regulating cell growth, motility, survival, differentiation and metabolism 

have been identified [152]. The main mechanism of ERK 1/2-mediated tumorigenesis is the 

prevention of apoptosis via the inhibition of BCL-2/MCL-1 complex [153]. 

Figure 7. Functions of chemerin and CMKLR1. Depending on the cleavage site, chemerin might be involved in a 
variety of functions in inflammation, skin, obesity, and cell differentiation. 

Illustration used with permission, copyright 2014 by John Wiley and Sons [111]. 
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The PI3K/Akt/mTOR pathway has been shown to play an important role in the development and 

progression of NB [154]. Being activated, Akt regulates many oncogenic signaling pathways 

associated with tumor growth and survival [155]. In NB setting, it has been demonstrated that 

phosphorylated Akt has a negative prognostic value [156].  

NF-κB is a complex proinflammatory transcription factor that comprehensively controls cell survival 

and the production of cytokines [157]. According to previous studies, its active form is required for 

the progression and drug resistance of high-risk NB [158]  

Intracellular Ca2+ is one of the main drivers and regulators of cell migration, and its liberation by 

GPCRs activation is one of the primary regulatory pathways in cytoplasmic Ca2+ balance [159]. 

Tumor cells can alter Ca2+ signaling in order to increase proliferation and metastatic capability [160]. 

TNFα and IL-1 are inflammatory cytokines that share many biological properties and often work 

cooperatively in order to maintain inflammation [161, 162]. In paper II, we discovered that TNFα and 

IL-1β increase the liberation of chemerin by NB cells and tumor microenvironment. Thus, NB-

associated inflammation contributes to tumor progression via chemerin-CMKLR1 interaction. 

Taken together, our in vitro data from Paper I and Paper II indicate that the inflammatory receptors 

FPR1 and CMKLR1 are functionally expressed by NB cells. Being stimulated by selective agonists, 

these receptors trigger a variety of cellular responses attributed to augmented tumorigenicity. 

Speaking of the source of stimulatory signals for the receptors, we assume that formylated peptides 

are released from the mitochondria of necrotic tumor cells, while chemerin is produced by NB cells 

or other cells within the tumor microenvironment. 

 

6.2  High expression of FPR1 significantly enhances NB tumorigenesis in vivo 

In Paper I, in order to confirm our hypothesis in vivo, we carried out a xenograft experiment using 

immunodeficient NMRI nu/nu mice. Despite the growing body of publications on different aspects 

of FPR1 biology, there are a very limited number of published studies using animal models. Zhou 

and co-authors in 2005, and Yang and co-authors in 2011, demonstrated that glioblastoma U-87 cells 

with a siRNA knockdown of FPR1 formed tumors more slowly than control cells, and animals with 

wild-type cells had died or had to be sacrificed significantly earlier than animals with depleted FPR1 

[56, 163].  In contrast, Prevete et al. discovered that shRNA silencing of FPR1 in gastric cancer AGS 

and MKN45 cell lines led to an accelerated tumor development [84]. They hypothesized that in gastric 

cancer, FPR1 is a strong inhibitor of angiogenesis; therefore, its silencing induces neovascularization, 

which results in enhanced tumor growth. 
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In our work, in addition to the knockdown FPR1 construct, we developed a cell clone with an 

overexpression of the receptor. The use of doxycycline-inducible constructs allowed us to maintain 

the constant level of the receptor expression during the entire experiment. We observed that animals 

injected with NB cells with an increased expression of FPR1 developed tumors and reached a humane 

endpoint significantly faster compared with other experimental groups. As a result, we demonstrated 

for the first time that FPR1 augments NB tumorigenesis in experimental animal models. 

 

6.3 A small-molecule CMKLR1 inhibitor α-NETA diminishes the clonogenicity of 

NB cells in vitro and tumor growth in vivo 

2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) has been described in the 1980s as a 

selective inhibitor of choline acetyltransferase, the enzyme responsible for the biosynthesis of the 

neurotransmitter acetylcholine [164, 165]. Recently, α-NETA has been demonstrated to be a potent 

CMKLR1 antagonist that inhibits the β-arrestin 2 association with CMKLR1 upon chemerin 

stimulation and decreases chemerin-driven cell migration [166]. 

In Paper II, we were able to show that the incubation of NB cells with α-NETA reduces proliferation 

activity and clonogenicity. In order to study the possible effects of CMKLR1 inhibition on NB in 

vivo, we established subcutaneous xenograft tumor model. Animals were divided randomly into three 

groups: the pre-treatment group, animals receiving s.c. α-NETA injections daily beginning 24 hours 

after xenografting; the treatment group, animals receiving s.c. α-NETA injections daily when a tumor 

reached a volume of ≥ 0.15 ml; and the control group, animals receiving vehicle injections. In this 

experiment, we observed no difference in tumor growth and animals’ survival between treatment and 

control groups, although for the pre-treatment group the delay in tumor formation was statistically 

significant. Hence, CMKLR1 might exert its tumor promoting effect during the initial steps of NB 

development, so the blocking of the receptor could represent a therapy option for the treatment of 

NB. 

 

6.4  Liver is responsible for the removal of formyl peptides from circulation 

The liver collects blood from all the organs in the human body, and constantly encounters pathogens 

and host-released alarmins. Hence, the liver has evolutionary become a major immune organ, broadly 

involved in both the innate and adaptive immune response [135, 167]. The involvement of the liver 

in innate immunity is dependent on the broad network of PRRs and scavenger receptors expressed on 

the surface of hepatocytes and LSECs [137]. 
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Mitochondria-derived formylated peptides released upon massive injury initiate a systemic 

inflammatory response similar to bacteria-induced inflammation. This could lead to systemic 

inflammatory response syndrome (SIRS), thus resulting in sepsis [168, 169]. 

To the best of our knowledge, we found for the first time in Paper III that formyl peptides are actively 

taken up from the circulatory system by LSECs expressing FPR1. In this work, we revealed that FPR1 

is present in the liver cells in both humans and mice, and the incubation of the cells with a FITC-

labeled formylated peptide resulting in the internalization of the peptide. In vivo experiments, in 

which we intravenously injected radioactive-labeled formylated peptide into mice, confirmed our in 

vitro data.  

Interestingly, in analyzing the results of animal experiments, we observed significant differences in 

the uptake between FITC-labeled and unconjugated peptide. We confirmed this finding in vitro by 

the preincubation of LSECs and hepatocytes with unlabeled peptide prior to incubation with a FITC-

labeled counterpart. As a result, we could not observe the fluorescence in hepatocytes because the 

original peptide competitively bound all active FPRs. While we observed the fluorescence in LSECs, 

suggesting that the FITC group converts the protein into a ligand for scavenger receptors apart from 

FPR1. This raises a fundamental concern on the validity of experiments utilizing significantly 

modified small peptides for in vivo injections. 
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7. Concluding remarks 

Despite the recent scientific breakthroughs and modern advances in therapy, NB remains one of the 

most unfavorable pediatric cancers. There is a great need for novel prognostic factors and, drug targets 

in particular. In this thesis, the signaling pathways of the inflammatory receptors FPR1 and CMKLR1 

have been studied in terms of their contribution to NB tumorigenesis. We were able to demonstrate 

that both receptors participate in tumor progression and the development of a highly malignant 

phenotype. Our experimental results supported by survival data obtained from several cohorts may 

provide a foundation for future research aimed at specifically targeting of FPR1 and CMKLR1 in 

NB. Moreover, drugs selectively targeting these receptors could be a novel approach in the treatment 

of patients with NB. 

Additionaly, this thesis expands the knowledge of FPR1 biology, hence revealing the receptor’s 

expression in the liver and identifying its role in hepatic clearance. 

Hopefully, the data on the scavenging of fluorescent substances by the liver will help the research 

community to improve the experimental setup in order to prevent biased results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

8. References 

1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539-45. 
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74. 
3. Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214:149-60. 
4. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-

beta and interleukin-10. Immunity. 2008;28:468-76. 
5. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of 

TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9:447-53. 
6. Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and 

inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 
2014;25:453-72. 

7. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer 
Res. 2006;66:605-12. 

8. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239-52. 
9. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 

2008;8:958-69. 
10. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as 

a paradigm. Nat Immunol. 2010;11:889-96. 
11. Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and 

disease. Immunol Res. 2012;53:11-24. 
12. Mantovani A, Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, 

diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol. 
2013;33:1478-83. 

13. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for 
reassessment. F1000Prime Rep. 2014;6:13. 

14. Ramanathan S, Jagannathan N. Tumor associated macrophage: a review on the phenotypes, traits 
and functions. Iran J Cancer Prev. 2014;7:1-8. 

15. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 
2014;41:49-61. 

16. Conway EM, Pikor LA, Kung SH, Hamilton MJ, Lam S, Lam WL, Bennewith KL. Macrophages, 
Inflammation, and Lung Cancer. Am J Respir Crit Care Med. 2016;193:116-30. 

17. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 
2008;27:5904-12. 

18. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour 
angiogenesis. Nat Rev Cancer. 2008;8:618-31. 

19. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer 
Res. 2011;71:2411-6. 

20. Tesone AJ, Svoronos N, Allegrezza MJ, Conejo-Garcia JR. Pathological mobilization and activities of 
dendritic cells in tumor-bearing hosts: challenges and opportunities for immunotherapy of cancer. 
Front Immunol. 2013;4:435. 

21. Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 
2013;4:36-44. 

22. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. 
Nat Immunol. 2013;14:1014-22. 

23. Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, 
Huang RP. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys 
Acta. 2014;1845:182-201. 

24. Granot Z, Jablonska J. Distinct Functions of Neutrophil in Cancer and Its Regulation. Mediators 
Inflamm. 2015;2015:701067. 

25. Nan H, Hutter CM, Lin Y, Jacobs EJ, Ulrich CM, White E, Baron JA, Berndt SI, Brenner H, Butterbach 
K, et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic 
variants. JAMA. 2015;313:1133-42. 



28 
 

26. McCormack VA, Hung RJ, Brenner DR, Bickeboller H, Rosenberger A, Muscat JE, Lazarus P, 
Tjonneland A, Friis S, Christiani DC, et al. Aspirin and NSAID use and lung cancer risk: a pooled 
analysis in the International Lung Cancer Consortium (ILCCO). Cancer Causes Control. 
2011;22:1709-20. 

27. Olsen JH, Friis S, Poulsen AH, Fryzek J, Harving H, Tjonneland A, Sorensen HT, Blot W. Use of 
NSAIDs, smoking and lung cancer risk. Br J Cancer. 2008;98:232-7. 

28. Huang XZ, Gao P, Sun JX, Song YX, Tsai CC, Liu J, Chen XW, Chen P, Xu HM, Wang ZN. Aspirin and 
nonsteroidal anti-inflammatory drugs after but not before diagnosis are associated with improved 
breast cancer survival: a meta-analysis. Cancer Causes Control. 2015;26:589-600. 

29. de Pedro M, Baeza S, Escudero MT, Dierssen-Sotos T, Gomez-Acebo I, Pollan M, Llorca J. Effect of 
COX-2 inhibitors and other non-steroidal inflammatory drugs on breast cancer risk: a meta-analysis. 
Breast Cancer Res Treat. 2015;149:525-36. 

30. Corley DA, Kerlikowske K, Verma R, Buffler P. Protective association of aspirin/NSAIDs and 
esophageal cancer: a systematic review and meta-analysis. Gastroenterology. 2003;124:47-56. 

31. Wu CY, Wu MS, Kuo KN, Wang CB, Chen YJ, Lin JT. Effective reduction of gastric cancer risk with 
regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. J Clin 
Oncol. 2010;28:2952-7. 

32. Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. 
Expert Rev Clin Immunol. 2009;5:145-65. 

33. Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. 
Prostaglandins Other Lipid Mediat. 2011;96:27-36. 

34. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181-93. 
35. Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: 

promise, perils and pharmacogenetics. Nat Rev Cancer. 2006;6:130-40. 
36. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring 

Harb Symp Quant Biol. 1989;54 Pt 1:1-13. 
37. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene 

cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 
1996;86:973-83. 

38. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll 
protein signals activation of adaptive immunity. Nature. 1997;388:394-7. 

39. Lata S, Raghava GP. PRRDB: a comprehensive database of pattern-recognition receptors and their 
ligands. BMC Genomics. 2008;9:180. 

40. Kaisho T, Tanaka T. Turning NF-kappaB and IRFs on and off in DC. Trends Immunol. 2008;29:329-36. 
41. Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFkappaB 

signalling. Microbiology. 2013;159:2001-13. 
42. Zhong J, Kyriakis JM. Dissection of a signaling pathway by which pathogen-associated molecular 

patterns recruit the JNK and p38 MAPKs and trigger cytokine release. J Biol Chem. 2007;282:24246-
54. 

43. Hedl M, Abraham C. Nod2-induced autocrine interleukin-1 alters signaling by ERK and p38 to 
differentially regulate secretion of inflammatory cytokines. Gastroenterology. 2012;143:1530-43. 

44. Miyaji EN, Carvalho E, Oliveira ML, Raw I, Ho PL. Trends in adjuvant development for vaccines: 
DAMPs and PAMPs as potential new adjuvants. Braz J Med Biol Res. 2011;44:500-13. 

45. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991-1045. 
46. Krysko O, Love Aaes T, Bachert C, Vandenabeele P, Krysko DV. Many faces of DAMPs in cancer 

therapy. Cell Death Dis. 2013;4:e631. 
47. Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, Lotze MT, Tang D. Strange attractors: DAMPs and 

autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4:e966. 
48. Hauser CJ, Sursal T, Rodriguez EK, Appleton PT, Zhang Q, Itagaki K. Mitochondrial damage 

associated molecular patterns from femoral reamings activate neutrophils through formyl peptide 
receptors and P44/42 MAP kinase. J Orthop Trauma. 2010;24:534-8. 

49. Anand PK. Exosomal membrane molecules are potent immune response modulators. Commun 
Integr Biol. 2010;3:405-8. 



29 
 

50. Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. 
J Am Soc Nephrol. 2011;22:416-25. 

51. Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL. Evaluation of the contribution of multiple DAMPs 
and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One. 
2014;9:e104741. 

52. Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern 
(DAMP) signal in plants. Front Plant Sci. 2014;5:446. 

53. Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns 
related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 
2012;2:168. 

54. Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger 
signals. Implications for autoimmunity. Front Immunol. 2013;4:138. 

55. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. 
International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide 
receptor (FPR) family. Pharmacol Rev. 2009;61:119-61. 

56. Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, Wang L, Iribarren P, Salcedo R, Howard OM, et al. 
Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst. 
2005;97:823-35. 

57. Niedel JE, Kahane I, Cuatrecasas P. Receptor-mediated internalization of fluorescent chemotactic 
peptide by human neutrophils. Science. 1979;205:1412-4. 

58. Donabedian H, Gallin JI. Deactivation of human neutrophil chemotaxis by chemoattractants: effect 
on receptors for the chemotactic factor f-Met-Leu-Phe. J Immunol. 1981;127:839-44. 

59. Prossnitz ER, Quehenberger O, Cochrane CG, Ye RD. Transmembrane signalling by the N-formyl 
peptide receptor in stably transfected fibroblasts. Biochem Biophys Res Commun. 1991;179:471-6. 

60. Rabiet MJ, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel 
agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides 
preferentially activate FPR. Eur J Immunol. 2005;35:2486-95. 

61. Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y, Wang JM. G protein-coupled receptor FPR1 as a 
pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol. 
2012;14:283-8. 

62. Lattin J, Zidar DA, Schroder K, Kellie S, Hume DA, Sweet MJ. G-protein-coupled receptor expression, 
function, and signaling in macrophages. J Leukoc Biol. 2007;82:16-32. 

63. Yang SC, Hwang TL. The potential impacts of formyl peptide receptor 1 in inflammatory diseases. 
Front Biosci (Elite Ed). 2016;8:436-49. 

64. Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated 
peptides and formyl peptide receptor 1 in governing neutrophil function during acute 
inflammation. Am J Pathol. 2015;185:1172-84. 

65. Cattaneo F, Guerra G, Ammendola R. Expression and signaling of formyl-peptide receptors in the 
brain. Neurochem Res. 2010;35:2018-26. 

66. Selvatici R, Falzarano S, Mollica A, Spisani S. Signal transduction pathways triggered by selective 
formylpeptide analogues in human neutrophils. Eur J Pharmacol. 2006;534:1-11. 

67. Schneider EH, Weaver JD, Gaur SS, Tripathi BK, Jesaitis AJ, Zelenka PS, Gao JL, Murphy PM. The 
leukocyte chemotactic receptor FPR1 is functionally expressed on human lens epithelial cells. J Biol 
Chem. 2012;287:40779-92. 

68. de Paulis A, Prevete N, Rossi FW, Rivellese F, Salerno F, Delfino G, Liccardo B, Avilla E, Montuori N, 
Mascolo M, et al. Helicobacter pylori Hp(2-20) promotes migration and proliferation of gastric 
epithelial cells by interacting with formyl peptide receptors in vitro and accelerates gastric mucosal 
healing in vivo. J Immunol. 2009;183:3761-9. 

69. Su SB, Gong WH, Gao JL, Shen WP, Grimm MC, Deng X, Murphy PM, Oppenheim JJ, Wang JM. 
T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator 
of human phagocyte N-formyl peptide receptor. Blood. 1999;93:3885-92. 



30 
 

70. Su SB, Gao J, Gong W, Dunlop NM, Murphy PM, Oppenheim JJ, Wang JM. T21/DP107, A synthetic 
leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by 
using G-protein-coupled formyl peptide receptors. J Immunol. 1999;162:5924-30. 

71. Walther A, Riehemann K, Gerke V. A novel ligand of the formyl peptide receptor: annexin I 
regulates neutrophil extravasation by interacting with the FPR. Mol Cell. 2000;5:831-40. 

72. Seo JK, Choi SY, Kim Y, Baek SH, Kim KT, Chae CB, Lambeth JD, Suh PG, Ryu SH. A peptide with 
unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxide 
generation in human neutrophils. J Immunol. 1997;158:1895-901. 

73. Bae YS, Song JY, Kim Y, He R, Ye RD, Kwak JY, Suh PG, Ryu SH. Differential activation of formyl 
peptide receptor signaling by peptide ligands. Mol Pharmacol. 2003;64:841-7. 

74. Freer RJ, Day AR, Radding JA, Schiffmann E, Aswanikumar S, Showell HJ, Becker EL. Further studies 
on the structural requirements for synthetic peptide chemoattractants. Biochemistry. 
1980;19:2404-10. 

75. Chen X, Mellon RD, Yang L, Dong H, Oppenheim JJ, Howard OM. Regulatory effects of deoxycholic 
acid, a component of the anti-inflammatory traditional Chinese medicine Niuhuang, on human 
leukocyte response to chemoattractants. Biochem Pharmacol. 2002;63:533-41. 

76. Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ. Characterization of 
chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide receptors. 
Inflamm Res. 2000;49:744-55. 

77. Stenfeldt AL, Karlsson J, Wenneras C, Bylund J, Fu H, Dahlgren C. Cyclosporin H, Boc-MLF and Boc-
FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide 
receptor. Inflammation. 2007;30:224-9. 

78. de Paulis A, Ciccarelli A, de Crescenzo G, Cirillo R, Patella V, Marone G. Cyclosporin H is a potent 
and selective competitive antagonist of human basophil activation by N-formyl-methionyl-leucyl-
phenylalanine. J Allergy Clin Immunol. 1996;98:152-64. 

79. Migeotte I, Communi D, Parmentier M. Formyl peptide receptors: a promiscuous subfamily of G 
protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 
2006;17:501-19. 

80. Cardini S, Dalli J, Fineschi S, Perretti M, Lungarella G, Lucattelli M. Genetic ablation of the fpr1 gene 
confers protection from smoking-induced lung emphysema in mice. Am J Respir Cell Mol Biol. 
2012;47:332-9. 

81. Farooq SM, Stadnyk AW. Neutrophil infiltration of the colon is independent of the FPR1 yet FPR1 
deficient mice show differential susceptibilities to acute versus chronic induced colitis. Dig Dis Sci. 
2012;57:1802-12. 

82. Gunji T, Onouchi Y, Nagasawa T, Katagiri S, Watanabe H, Kobayashi H, Arakawa S, Noguchi K, Hata 
A, Izumi Y, Ishikawa I. Functional polymorphisms of the FPR1 gene and aggressive periodontitis in 
Japanese. Biochem Biophys Res Commun. 2007;364:7-13. 

83. Zhang Y, Syed R, Uygar C, Pallos D, Gorry MC, Firatli E, Cortelli JR, VanDyke TE, Hart PS, Feingold E, 
Hart TC. Evaluation of human leukocyte N-formylpeptide receptor (FPR1) SNPs in aggressive 
periodontitis patients. Genes Immun. 2003;4:22-9. 

84. Prevete N, Liotti F, Visciano C, Marone G, Melillo RM, de Paulis A. The formyl peptide receptor 1 
exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene. 
2015;34:3826-38. 

85. Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Hua KT, Kuo ML. Formyl Peptide receptor 1 expression is 
associated with tumor progression and survival in gastric cancer. Anticancer Res. 2014;34:2223-9. 

86. Boer JC, Domanska UM, Timmer-Bosscha H, Boer IG, de Haas CJ, Joseph JV, Kruyt FA, de Vries EG, 
den Dunnen WF, van Strijp JA, Walenkamp AM. Inhibition of formyl peptide receptor in high-grade 
astrocytoma by CHemotaxis Inhibitory Protein of S. aureus. Br J Cancer. 2013;108:587-96. 

87. Chakravarti N, Peddareddigari VG, Warneke CL, Johnson MM, Overwijk WW, Hwu P, Prieto VG. 
Differential expression of the G-protein-coupled formyl Peptide receptor in melanoma associates 
with aggressive phenotype. Am J Dermatopathol. 2013;35:184-90. 



31 
 

88. Huang J, Chen K, Chen J, Gong W, Dunlop NM, Howard OM, Gao Y, Bian XW, Wang JM. The G-
protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human 
glioblastoma cells. Br J Cancer. 2010;102:1052-60. 

89. Rescher U, Danielczyk A, Markoff A, Gerke V. Functional activation of the formyl peptide receptor 
by a new endogenous ligand in human lung A549 cells. J Immunol. 2002;169:1500-4. 

90. Zhang L, Wang H, Yang T, Su Z, Fang D, Wang Y, Fang J, Hou X, Le Y, Chen K, et al. Formylpeptide 
receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells. 
Oncoimmunology. 2016;5:e1078055. 

91. Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, 
Semeraro M, et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. 
Science. 2015;350:972-8. 

92. Belvedere R, Bizzarro V, Popolo A, Dal Piaz F, Vasaturo M, Picardi P, Parente L, Petrella A. Role of 
intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma 
cells. BMC Cancer. 2014;14:961. 

93. Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 
2015;7: 

94. Murdoch C, Finn A. Chemokine receptors and their role in vascular biology. J Vasc Res. 2000;37:1-7. 
95. Curnock AP, Logan MK, Ward SG. Chemokine signalling: pivoting around multiple phosphoinositide 

3-kinases. Immunology. 2002;105:125-36. 
96. Soriano SF, Serrano A, Hernanz-Falcon P, Martin de Ana A, Monterrubio M, Martinez C, Rodriguez-

Frade JM, Mellado M. Chemokines integrate JAK/STAT and G-protein pathways during chemotaxis 
and calcium flux responses. Eur J Immunol. 2003;33:1328-33. 

97. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell 
signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563-82. 

98. Proudfoot AE. The biological relevance of chemokine-proteoglycan interactions. Biochem Soc 
Trans. 2006;34:422-6. 

99. Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in 
mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm 
Bowel Dis. 2008;14:1000-11. 

100. Oo YH, Shetty S, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. 
Dig Dis. 2010;28:31-44. 

101. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host 
defense and immunity. Annu Rev Immunol. 2014;32:659-702. 

102. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB. Preferential migration of 
regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. 
Cancer Immunol Immunother. 2008;57:123-31. 

103. Sierra-Filardi E, Nieto C, Dominguez-Soto A, Barroso R, Sanchez-Mateos P, Puig-Kroger A, Lopez-
Bravo M, Joven J, Ardavin C, Rodriguez-Fernandez JL, et al. CCL2 shapes macrophage polarization by 
GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 
2014;192:3858-67. 

104. Colvin EK. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front 
Oncol. 2014;4:137. 

105. Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S. 
CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in 
pancreatic cancer. Int J Cancer. 2009;124:853-61. 

106. Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front 
Physiol. 2013;4:159. 

107. Zhu Y, Yang P, Wang Q, Hu J, Xue J, Li G, Zhang G, Li X, Li W, Zhou C, et al. The effect of CXCR4 
silencing on epithelial-mesenchymal transition related genes in glioma U87 cells. Anat Rec 
(Hoboken). 2013;296:1850-6. 

108. Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS, Richmond A. CXCR4 drives the metastatic phenotype in 
breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol Biol Cell. 
2014;25:566-82. 



32 
 

109. Hu TH, Yao Y, Yu S, Han LL, Wang WJ, Guo H, Tian T, Ruan ZP, Kang XM, Wang J, et al. SDF-1/CXCR4 
promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of 
the Wnt/beta-catenin signaling pathway. Cancer Lett. 2014;354:417-26. 

110. Li L, Ma P, Huang C, Liu Y, Zhang Y, Gao C, Xiao T, Ren PG, Zabel BA, Zhang JV. Expression of 
chemerin and its receptors in rat testes and its action on testosterone secretion. J Endocrinol. 
2014;220:155-63. 

111. Mattern A, Zellmann T, Beck-Sickinger AG. Processing, signaling, and physiological function of 
chemerin. IUBMB Life. 2014;66:19-26. 

112. Nakajima H, Nakajima K, Nagano Y, Yamamoto M, Tarutani M, Takahashi M, Takahashi Y, Sano S. 
Circulating level of chemerin is upregulated in psoriasis. J Dermatol Sci. 2010;60:45-7. 

113. Pfau D, Bachmann A, Lossner U, Kratzsch J, Bluher M, Stumvoll M, Fasshauer M. Serum levels of the 
adipokine chemerin in relation to renal function. Diabetes Care. 2010;33:171-3. 

114. Zabel BA, Kwitniewski M, Banas M, Zabieglo K, Murzyn K, Cichy J. Chemerin regulation and role in 
host defense. Am J Clin Exp Immunol. 2014;3:1-19. 

115. Bondue B, Wittamer V, Parmentier M. Chemerin and its receptors in leukocyte trafficking, 
inflammation and metabolism. Cytokine Growth Factor Rev. 2011;22:331-8. 

116. Zhang J, Jin HC, Zhu AK, Ying RC, Wei W, Zhang FJ. Prognostic significance of plasma chemerin levels 
in patients with gastric cancer. Peptides. 2014;61:7-11. 

117. Wang C, Wu WK, Liu X, To KF, Chen GG, Yu J, Ng EK. Increased serum chemerin level promotes 
cellular invasiveness in gastric cancer: a clinical and experimental study. Peptides. 2014;51:131-8. 

118. Kumar JD, Holmberg C, Kandola S, Steele I, Hegyi P, Tiszlavicz L, Jenkins R, Beynon RJ, Peeney D, 
Giger OT, et al. Increased expression of chemerin in squamous esophageal cancer myofibroblasts 
and role in recruitment of mesenchymal stromal cells. PLoS One. 2014;9:e104877. 

119. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369:2106-20. 
120. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and 

immunotherapy. Nat Rev Cancer. 2013;13:397-411. 
121. Carlson LM, Rasmuson A, Idborg H, Segerstrom L, Jakobsson PJ, Sveinbjornsson B, Kogner P. Low-

dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of 
neuroblastoma. Carcinogenesis. 2013;34:1081-8. 

122. Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of 
neuroblastoma. Int J Cancer. 2014;135:2249-61. 

123. Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 
2015;66:49-63. 

124. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, Hogarty M, Committee COGN. 
Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer. 
2013;60:985-93. 

125. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202-11. 
126. Perri P, Bachetti T, Longo L, Matera I, Seri M, Tonini GP, Ceccherini I. PHOX2B mutations and 

genetic predisposition to neuroblastoma. Oncogene. 2005;24:3050-3. 
127. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, Kikuchi A, Igarashi T, et al. 

Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455:971-4. 
128. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch 

JE, Perri P, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. 
Nature. 2008;455:930-5. 

129. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3:a014415. 
130. Cotterman R, Knoepfler PS. N-Myc regulates expression of pluripotency genes in neuroblastoma 

including lif, klf2, klf4, and lin28b. PLoS One. 2009;4:e5799. 
131. Chanthery YH, Gustafson WC, Itsara M, Persson A, Hackett CS, Grimmer M, Charron E, Yakovenko S, 

Kim G, Matthay KK, Weiss WA. Paracrine signaling through MYCN enhances tumor-vascular 
interactions in neuroblastoma. Sci Transl Med. 2012;4:115ra3. 

132. Meier R, Muhlethaler-Mottet A, Flahaut M, Coulon A, Fusco C, Louache F, Auderset K, Bourloud KB, 
Daudigeos E, Ruegg C, et al. The chemokine receptor CXCR4 strongly promotes neuroblastoma 
primary tumour and metastatic growth, but not invasion. PLoS One. 2007;2:e1016. 



33 
 

133. Airoldi I, Cocco C, Morandi F, Prigione I, Pistoia V. CXCR5 may be involved in the attraction of 
human metastatic neuroblastoma cells to the bone marrow. Cancer Immunol Immunother. 
2008;57:541-8. 

134. Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, Asgharzadeh S, Groshen S, Wilson SB, Seeger RC. 
Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med. 
2004;199:1213-21. 

135. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43:S54-62. 
136. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14:996-1006. 
137. Sorensen KK, Simon-Santamaria J, McCuskey RS, Smedsrod B. Liver Sinusoidal Endothelial Cells. 

Compr Physiol. 2015;5:1751-74. 
138. Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol 

Immunol. 2016;13:347-53. 
139. van der Sluijs P, Bootsma HP, Postema B, Moolenaar F, Meijer DK. Drug targeting to the liver with 

lactosylated albumins: does the glycoprotein target the drug or is the drug targeting the 
glycoprotein? Hepatology. 1986;6:723-8. 

140. Yao XH, Ping YF, Chen JH, Chen DL, Xu CP, Zheng J, Wang JM, Bian XW. Production of angiogenic 
factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide 
receptor FPR. J Neurooncol. 2008;86:47-53. 

141. Chen DL, Ping YF, Yu SC, Chen JH, Yao XH, Jiang XF, Zhang HR, Wang QL, Bian XW. Downregulating 
FPR restrains xenograft tumors by impairing the angiogenic potential and invasive capability of 
malignant glioma cells. Biochem Biophys Res Commun. 2009;381:448-52. 

142. Xu CP, Zhang HR, Chen FL, Yao XH, Liang ZQ, Zhang R, Cui Y, Qian C, Bian XW. Human malignant 
glioma cells expressing functional formylpeptide receptor recruit endothelial progenitor cells for 
neovascularization. Int Immunopharmacol. 2010;10:1602-7. 

143. Liu J, Li J, Zeng X, Rao Z, Gao J, Zhang B, Zhao Y, Yang B, Wang Z, Yu L, Wang W. Formyl peptide 
receptor suppresses melanoma development and promotes NK cell migration. Inflammation. 
2014;37:984-92. 

144. Prevete N, Liotti F, Marone G, Melillo RM, de Paulis A. Formyl peptide receptors at the interface of 
inflammation, angiogenesis and tumor growth. Pharmacol Res. 2015;102:184-91. 

145. Yoshimura T, Oppenheim JJ. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) 
receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties. Exp Cell Res. 
2011;317:674-84. 

146. Roman AA, Parlee SD, Sinal CJ. Chemerin: a potential endocrine link between obesity and type 2 
diabetes. Endocrine. 2012;42:243-51. 

147. Duan DM, Niu JM, Lei Q, Lin XH, Chen X. Serum levels of the adipokine chemerin in preeclampsia. J 
Perinat Med. 2012;40:121-7. 

148. Xu QL, Zhu M, Jin Y, Wang N, Xu HX, Quan LM, Wang SS, Li SS. The predictive value of the first-
trimester maternal serum chemerin level for pre-eclampsia. Peptides. 2014;62:150-4. 

149. Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH. Chemerin and CMKLR1 
expression in human arteries and periadventitial fat: a possible role for local chemerin in 
atherosclerosis? BMC Cardiovasc Disord. 2014;14:56. 

150. R2: microarray analysis and visualization platform [http://r2.amc.nl] 
151. Roskoski R, Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 

2012;66:105-43. 
152. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse 

cellular functions. Growth Factors. 2006;24:21-44. 
153. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is 

subcellular localization the answer? Cell Cycle. 2009;8:1168-75. 
154. King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel 

therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 2015;37:245-51. 
155. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an 

updated review. Ann Med. 2014;46:372-83. 

http://r2.amc.nl/


34 
 

156. Opel D, Poremba C, Simon T, Debatin KM, Fulda S. Activation of Akt predicts poor outcome in 
neuroblastoma. Cancer Res. 2007;67:735-45. 

157. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect 
Biol. 2009;1:a001651. 

158. Bian X, Opipari AW, Jr., Ratanaproeksa AB, Boitano AE, Lucas PC, Castle VP. Constitutively active 
NFkappa B is required for the survival of S-type neuroblastoma. J Biol Chem. 2002;277:42144-50. 

159. Prevarskaya N, Skryma R, Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat 
Rev Cancer. 2011;11:609-18. 

160. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and 
consequences. J Biol Chem. 2012;287:31666-73. 

161. Saklatvala J, Davis W, Guesdon F. Interleukin 1 (IL1) and tumour necrosis factor (TNF) signal 
transduction. Philos Trans R Soc Lond B Biol Sci. 1996;351:151-7. 

162. Oppenheim JJ, Matsushima K, Yoshimura T, Leonard EJ, Neta R. Relationship between interleukin 1 
(IL1), tumor necrosis factor (TNF) and a neutrophil attracting peptide (NAP-1). Agents Actions. 
1989;26:134-40. 

163. Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, Xu S, Huang J, Mou H, Gong W, et al. Annexin 1 released 
by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide 
receptor 1. Am J Pathol. 2011;179:1504-12. 

164. Sastry BV, Jaiswal N, Owens LK, Janson VE, Moore RD. 2-(alpha-
Naphthoyl)ethyltrimethylammonium iodide and its beta-isomer: new selective, stable and 
fluorescent inhibitors of choline acetyltransferase. J Pharmacol Exp Ther. 1988;245:72-80. 

165. Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central 
nervous system. Pathol Int. 1999;49:921-37. 

166. Graham KL, Zhang JV, Lewen S, Burke TM, Dang T, Zoudilova M, Sobel RA, Butcher EC, Zabel BA. A 
novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS 
One. 2014;9:e112925. 

167. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147-63. 
168. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating 

mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104-7. 
169. Wenceslau CF, McCarthy CG, Goulopoulou S, Szasz T, NeSmith EG, Webb RC. Mitochondrial-derived 

N-formyl peptides: novel links between trauma, vascular collapse and sepsis. Med Hypotheses. 
2013;81:532-5. 

 


