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Abstract

In 2012, a new method for calculating the Casimir force between compact
objects was developed [14,15], expressing the force in terms of a boundary
integral equation. The case of perfectly conducting objects with Dirichlet
boundary conditions in two dimensions was treated in [14]. The method was
later extended to three dimensions [20].

The contribution of this thesis will be to develop the method in two
dimensions for the case when the objects are perfectly insulating, meaning
von Neumann boundary conditions. A formula for the Casimir force in terms
of a boundary integral problem is derived and shown to correctly predict
the force between two parallel plates, except for a missing factor of 2 that
was also observed for Dirichlet boundary conditions. The developed formula
contains a coefficient that is dependent on the regularization scheme used,
and it is not clear whether this coefficient is geometry-independent.
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Chapter 1

Introduction

1.1 The Casimir effect
In 1948, Hendrik Casimir predicted that there would be an attractive force
between uncharged, parallel conducting metal plates in vacuum at zero
temperature [4]. His prediction was that the force per area at a separation
distance a was

F (a)

A
= − π2

240

h̄c

a4
. (1.1)

In a classical sense, this is a surprising result; the plates are uncharged and
placed in a vacuum, so there is nothing that could produce such forces.

While the Casimir effect usually refers to the quantum physical phe-
nomenon, analogous phenomena occur in different kinds of wave physics.
A similar phenomenon is observed when transverse waves move through a
loaded spring [7], i.e. N beads linked together and allowed to oscillate in
one dimension. It has been shown that placing two beads on a string driven
by transverse oscillations will experience a force akin to the Casimir force,
which can be either attractive or repulsive depending on the frequency of
the waves [13]. Another example is that plates suspended in a medium such
as a water are forced together by acoustic waves in the fluid [9], and it has
even been suggested that ships on a stormy sea will experience Casimir-like
effects [2].

A simplified explanation is that the area between the objects is sheltered
and there is low wave activity there, leading to an external pressure from
the areas where wave activity is high. It seems reasonable that part of the
explanation behind the Casimir effect is a more general wave phenomenon.
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The mystery of the Casimir force is then the question, where do the waves
come from? We are talking about uncharged plates in vacuum, after all. The
typical explanation is that in quantum field theory and quantum electrody-
namics in particular, what we classically think of as "vacuum" is actually
the lowest possible energy state, the ground state, of the electromagnetic
field. There is no such thing as an absolute void, similar to how there is still
water in a lake even when there are no waves. This field has ripples known as
vacuum fluctuations, that occur randomly in accordance with Heisenberg’s
uncertainty principle. When the plates are introduced into this field, they
cause a disturbance in the field, and this interaction is what gives rise to the
Casimir effect.

1.2 History

Casimir and Polder predicted this effect in 1948 [5], describing the interaction
between a perfectly conducting plate and a particle, and between two particles.
Their original interpretation of this force was as a retardation effect on van
der Waals forces. Later the same year, Casimir published a paper discussing
the case of two perfectly conducting plates [4]. The first measurement was
attempted by Sparnaay et al. in 1958, but the errors gave a 100% uncertainty.
They could only conclude that "the observed attractions do not contradict
Casimir’s theoretical prediction" [26].

After this, the 1948 paper went unnoticed for a long time, and started
getting attention in the 1970s. Schwinger described the effect in 1975 in
terms of source theory, thereby explaining it without reference to vacuum
fluctuations [25]. This has interesting metaphysical implications, as it shows
that the vacuum energy of the zero-point fluctuations is not a prerequisite for
the Casimir effect. Conversely, it shows that a measurement of the Casimir
effect is not necessarily evidence of the reality of zero-point fluctuations.

In 1997, S.K. Lamoreaux measured the force between a plate and a sphere,
and found the results to be within 5% of the predicted values [17]. This is
regarded as the first successful measurement, almost 50 years after the first
prediction. Mohideen and Roy also measured the force between a plate and a
sphere in 1998, and the results differed by less than 2% from the theoretical
prediction [21].
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1.3 Applications
Equation (1.1) shows that the force between two plates drops off quickly
as the separation distance increases. On the other hand, making reference
to plates and spheres suggests a macroscopic structure that is not clearly
seen on an atomic level, and moreover, the length scales must be larger than
the penetration depth of the material in the plates. We find that Casimir
forces are significant on length scales of about 0.1-1 µm; on smaller scales,
the van der Waals forces dominate, and on larger scales, the forces become
insignificant.

With nanotechnology on the rise and the development of microscopic
devices such as sensors, routers, atuators, accelerometers and microphones,
the Casimir force is becoming more and more significant in engineering.
One problem of microelectromechanical (MEMS) devices is a phenomenon
called stiction. Moving components of MEMS devices frequently move into
contact with fixed electrodes and stick to them, leading to loss of functionality.
It has been recognized that the Casimir force is a primary cause for this
phenomenon [3]. Better understanding of the Casimir force can help us avoid
this problem.

The repulsive Casimir forces can potentially be taken advantage of, for
example through quantum levitation of objects leading to new devices with
ultra-low static friction [22]. The fact that the Casimir effect can be both
beneficial and harmful demonstrates the importance of understanding it, and
motivates further theoretical and experimental study.

1.4 Calculating the Casimir force
The original way Casimir calculated the energy in his 1948 paper was through
mode summation. The method decomposes the electromagnetic field into an
infinite number of harmonic oscillators called modes, where the nth mode has
frequency ωn. The total energy is found by summing the energies from each
mode,

E =
∑
n

1

2
h̄ωn. (1.2)

This method has evolved since Casimir first applied it, and modern approaches
use methods like the argument principle and zeta function regularization. This
method gives an exact result, but it only works for very special configurations.
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The problem is that one has to find the whole frequency spectrum, {ωn}.
This is difficult at best, and normally impossible to do analytically for all
but the most symmetric cases. Furthermore, the sum generally diverges
and regularization must be used to extract a finite expression for the energy,
and the the mathematical framework for this process is not comprehensive.
Typical examples where mode summation can be used are parallel plates,
coaxial cylinders, and concentric spheres. In the case of concentric spheres,
the applicability of the method is already stretched to its limits. Despite
these drawbacks, the method still has theoretical advantages. In particular,
when developing new numerical methods, it is vital to test the methods by
applying them to configurations where the mode summation has given an
exact answer.

An early method for calculations on non-planar configurations is the
proximity force approximation (PFA). For a long time, this was the only
practical way to calculate the Casimir effect for configurations other than
parallel plates [19]. The idea of this method is to approximate curved surfaces
as flat, and treat interacting objects as a set of pairs of small parallel plates.
The plates are extended to infinity and Casimir’s result is applied to each of
the pairs, then the Casimir energy is found by summing the contributions from
each of the pairs. The major limitation of PFA is that treating interacting
points as a pair of parallel plates is applicable only to very small separations.

Over the last decade, there has been developed methods that don’t require
information about the mode spectrum. One such method is what we refer
to as the functional integral method. The method was first developed by T.
Emig et al. [11] and was further developed by I. Kilen and P. Jakobsen [14],
and is based on Feynman’s idea of integrating over weighted classical paths.
The method relates the Casimir energy to a functional integral of Gaussian,
which expresses the energy in terms of the determinant of a finite matrix.
This method has been very successful for calculating the Casimir energy
in a wide variety of situations. However, since it requires calculation of a
determinant of a matrix that can become very large, it is hard to make an
efficient implementation, and it is not easily parallelized.

In 2006, another numerical approach was introduced, using Green’s func-
tions based on the finite difference time domain method (FDTD) from com-
putational electromagnetics [24]. This method calculates the Casimir force
directly for complex geometries. Since all the aforementioned methods output
the Casimir energy and since energy is related to force via a gradient, two
evaluations of the energy are required to calculate the force vector. However,
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when applying FDTD, the whole space is discretized and the Green’s function
is calculated at each point in space, including space between the objects.
In the end, only the value of the Green’s functions on the surfaces of the
objects is of importance, and this seems to indicate that the method requires
unnecessarily many calculations.

Another method using Green’s functions (and the one we will primarily
work with in this thesis) is the Boundary Integral Method (BIM), introduced
by I. Kilen and P. Jakobsen in 2012 [14] [15], and extended by K. Mikalsen in
2014 [20]. This method applies to arbitrary configurations and is most efficient
when applied on linear equations and piecewise linear material coefficients.
The Casimir pressure is expressed in terms of a boundary integral problem†.
The BIM has an advantage over FDTD in that it only calculates the pressure
on boundaries. Computationally, it is based on filling and solving a set
of linear equations, which is more easily parallelized than FIM. Another
advantage of the BIM is that the integral equations can be regularized in
a geometry-independent fashion, thereby making the results more easily
generalized.

1.5 Notation and governing equations
We begin our discussion with the Lagrangian for a massless scalar field ϕ in
vacuum,

L =
1

2
ηµν∂µϕ∂νϕ. (1.3)

This is the basic principle from which all of our discussion springs; its deriva-
tion is beyond the scope of this thesis. Note that this is a quantum mechanical
phenomenon, as in a classical vacuum there would be no field, i.e. Lclassical = 0.
The Euler-Lagrange equations,

∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0, (1.4)

give us the wave equation
ϕtt −∇2ϕ = 0, (1.5)

which forms the basis for several of the techniques discussed. We will use
natural units throughout, setting h̄ = c = 1.

†A boundary integral problem normally takes the form κf(x) = v(x)+
∫
S
dAK(x)f(x),

where α is constant and V and K are known functions, and asks you to solve forf(x).
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Throughout the thesis we will consider a situation of r disjoint objects in
d-dimensional space. We always denote the volumes filled by these objects by
V1, . . . , Vr, and let Qj = ∂Vj be their boundaries. We use V0 to denote the
exterior of all plates, Q =

⋃r
j=1Qj to denote the total boundary of all the

objects with normals pointing into V0. Integration over Q can in general be
written as ∫

Q

dA =
∑
γ

∫
Qγ

dAγ. (1.6)

Sometimes we also use ∂V0 to indicate the boundary of V0, which is equal to
Q except the normals point into the objects (when unspecified, the surface
normal implicitly points out of the objects).

We will often speak about block matrices. If we say that M is a block
matrix with entries M ij

αβ, we mean that

M =


M11 M12 · · · M1r

M21 M22 · · · M2r
...

... . . . ...
Mr1 Mr2 · · · Mrr

 , Mαβ =


M11

αβ M12
αβ · · · M1N

αβ

M21
αβ M22

αβ · · · M2N
αβ

...
... . . . ...

MN1
αβ MN2

αβ · · · MNN
αβ

 . (1.7)

We say that Mαβ are the matrix entries of M . If the block matrix consists of
a single column where each entry is a column vector, we sometimes refer to it
as a block vector.

For perfectly conductive plates, there should be no field on the boundaries,
i.e.

ϕ|Q = 0. (1.8)

These are called Dirichlet boundary conditions. Kilen first developed BIM for
this case in d = 2 dimensions, and Mikalsen extended it to d = 3 dimensions.
In this thesis, we will consider the case when the plates are perfectly insulating,
which is mathematically expressed as

∂nϕ|Q = 0, (1.9)

where ∂n is the normal derivative at the point on Q. We will develop BIM
for d = 2 dimensions.

An obstacle that always seems to come up when calculating the Casimir
effect is infinite expressions (for example, for the BIM, we find that the
Green’s functions are singular on the boundaries, and often extremely so).
The process of removing these infinities is known as regularization.
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When calculating Casimir energy, one common regularization step is
based on the idea that the free vacuum with no objects already contains
infinite, constant energy E∞. Bringing in objects creates finite fluctuations
Ẽ(x, t), and since the dynamics of the system are described in terms of the
gradient of energy, these fluctuations fully describe the observable physics.
Mathematically, if the total energy is given by E(x, t) = E∞ + Ẽ(x, t), then
∇E = ∇Ẽ. Therefore, a regularization step often consists of calculating the
energy when the boundaries vanish, then subtracting this value from the
original energy.

When working with Casimir forces, a common regularization step is to
recognize that the directly obtained pressure on an object is the sum of two
parts: the interaction pressure arising from the proximity of two objects,
and the self pressure interpreted as an objects pressure on itself. The self
pressure cannot contribute to the net force on an object, as this would violate
conservation of momentum. If the self pressure is infinite and the interaction
pressure is finite, the problem will be about how to extract the interaction
pressure.

1.6 Layout and aims
The main objective of this thesis is to develop the BIM with von Neumann
boundary conditions in two dimensions.

Preliminarily, in Chapter 2 we will look at ways of obtaining exact expres-
sions for the energy. We consider two cases: parallel plates and concentric
circles. As we study these cases, especially the case of concentric circles, the
difficulty of these calculations shall be made apparent. It helps us appreciate
the notion that it is virtually impossible to acquire exact expressions for more
complicated situations, and the necessity for numerical methods.

In Chapter 3 we study the existing functional integral method. Although
a powerful method, the mathematical framework is very complicated.

In Chapter 4, we develop the boundary integral method for von Neumann
conditions. This chapter contains most of the original work of this thesis. We
consider examples of the parallel plates and concentric circles.
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Chapter 2

Special cases with exact solutions

In this section we will calculate exact expressions for the Casimir force for the
two special cases of parallel plates and concentric circles. Developing these
exact expressions will be important later because it provides a baseline for
testing our methods.

The problem we want to solve is

∇2ϕ(x, t)− ϕtt(x, t) = 0 (2.1a)
∂nϕ|Q= 0 (2.1b)

where Q is the boundaries of all the objects. Taking the Fourier transform in
time gives

∇2ϕ(x, t) + ω2ϕ(x, t) = 0. (2.2)
The boundary conditions will give a set of admissible frequencies, {ωn}, and
the energy of the system is given in terms of the positive resonance frequencies
as

E =
1

2

∑
n

ωn. (2.3)

This sum generally diverges, so much of our work will be about regularizing
it.

First we will consider the first special case of two infinitely long parallel
plates at a separation distance a. In d dimensions, we consider the volumes
to be

V0 =
{

(x1, . . . , xd) ∈ Rd
∣∣ 0 < x1 < a

}
V1 =

{
(x1, . . . , xd) ∈ Rd

∣∣x1 < 0
}

V2 =
{

(x1, . . . , xd) ∈ Rd
∣∣x1 > a

} , (2.4)
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with normals pointing into the vacuum between the plates, as shown in
Figure 2.1a. In Section 2.1, Section 2.2 and Section 2.3, we consider three
ways of regularizing this case.

The second configuration we will consider are concentric spheres. The
objects are concentric spheres of radii r1 and r2. The volumes are

V0 =
{
x ∈ Rd

∣∣ r1 < ‖x‖ < r2

}
V1 =

{
x ∈ Rd

∣∣ ‖x‖ < r1

}
V2 =

{
x ∈ Rd

∣∣ ‖x‖ > r2

} (2.5)

as shown in Figure 2.1b. This case is treated in Section 2.4.
Finally in Section 2.5 we will describe a way to calculate pressure from

the energy. In addition to the fact that knowing pressure is useful on its own,
it will be particularly important for us later as BIM gives pressure directly
and we must establish how to compare this to the exact answer.

(a) Parallel plates (b) Concentric circles

Figure 2.1: The configurations of parallel plates and concentric circles. The
shaded area represents the interiors of the objects, and the white areas represent
vacuum.

2.1 Parallel plates using vacuum energy regu-
larization

In this section we study the parallel plates in a fashion similar to the way
first described by Casimir [4]. He treated three dimensional space with

10



perfectly conducting boundaries. Here, on the other hand, we will consider
one-dimensional space with two perfectly insulating plates at a distance a. A
one-dimensional space significantly simplifies the mathematical machinery,
but retains same physical arguments as those Casimir originally gave, enabling
us to highlight the parts that are important for our discussion.

The problem (2.1) in one dimension can be written as

ϕxx − ϕtt = 0 (2.6)
ϕx(0) = ϕx(a) = 0. (2.7)

By Fourier transforming time, we get

ϕ′′(x) + ω2ϕ = 0, (2.8)

which has general solutions

ϕ(x) = A cosωx+B sinωx. (2.9)

The first boundary condition gives B = 0, and then the second boundary
condition becomes

− ωA sinωa = 0. (2.10)

We must have A 6= 0 or ϕ vanishes, so the valid resonance frequencies are

ωn =
nπ

a
. (2.11)

Then the energy is given by

E(a) =
1

2

∞∑
n=1

ωn =
1

2

∞∑
n=1

nπ

a
. (2.12)

This sum is divergent and must be regularized. To do this, we subtract the
energy when the plates are moved to infinite separation E∞. Let ∆ω = π/a,
so that in the limit a→∞, we get

E∞ =
1

2

1

∆ω

∞∑
n=1

∆ω ωn =
a

2π

∞∫
0

dω ω. (2.13)

This integral is also divergent, and another part of our regularization scheme
is to determine how to calculate the difference E = E − E∞.
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The idea is to cut off the high frequency contributions to both sides to
get a finite answer, then take the difference, and finally let the cutoff go to
infinity. As Casimir himself put it, "for very short waves (X-rays e.g.) our
plate is hardly an obstacle at all and therefore the zero point energy of these
waves will not be influenced by the position of this plate." [4]. To do this,
multiply the summands in (2.12) by a function fε(ωn) which is unity for small
ωn, tends to zero as ωn →∞, and that converges to 1 pointwise when ε→ 0.
We shall choose e−εωn . Then (2.12) becomes

Ẽ(a) =
1

2

N∑
n=1

π

a
ne−ωnε. (2.14)

Using the result
∞∑
n=1

ne−cn =
ec

(1− ec)2
(2.15)

and the appropriate Taylor series, it can be shown that

Ẽ(a) =
π

2a

eεπ/a

(1− eεπ/a)2
=

a

2π

1

ε2
− π

24a
+O(ε2). (2.16)

In the limit a→∞, the integral becomes

Ẽ∞ =
a

2π

∫ ∞
0

dω ωe−ωε =
a

2π

1

ε2
, (2.17)

and therefore the regularized energy is

E(a) = lim
ε→0

(
Ẽ(a)− Ẽ∞

)
= − π

24a
. (2.18)

2.2 Parallel plates using zeta function regular-
ization

The problem (2.1) can be written as

ϕxx +∇2
zϕ− ϕtt = 0

ϕx(0, z, t) = ϕx(L, z, t) = 0
(2.19)
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where we view ϕ as a function of the special coordinate x perpendicular to
the plates and the parallel components z = (x2, . . . , xN). That is,

ϕ = ϕ(x, z, t) (2.20)

and the z Laplacian is
∇2
z = x2

2 + · · ·+ x2
N . (2.21)

In the one-dimensional case there are no parallel components. We simply
have ϕ = ϕ(x, t) and ∇2

z = 0.
By Fourier transforming time and the parallel coordinates, the time

derivatives transform as ∂tt → −ω2 and the parallel Laplacian becomes
∇2
z → −k2, where

k = (k2, . . . , kN) (2.22)

is a vector of the spatial frequencies of each coordinate. Then we get

ϕxx + λ2ϕ = 0

ϕ′(0) = ϕ′(a) = 0
(2.23)

where λ2 = ω2 − k2. The general solutions are

ϕ(x) = A sinλx+B cosλx. (2.24)

The boundary condition ϕ′(0) = 0 implies that A = 0. Then the second
condition gives

ϕ′(a) = λB sinλa = 0. (2.25)

If B = 0, then ϕ(x) = 0 for all x, which is inadmissible. Therefore, we must
have sinλa = 0, giving the eigenvalues

λn =
nπ

a
. (2.26)

The time-frequencies are

ωn(k) =

√(nπ
a

)2

+ k2 (2.27)

and so the energy is

E =
1

2

∞∫
−∞

dk2

2π
· · ·

∞∫
−∞

dkd
2π

∞∑
n=1

ωn(k) =
1

2

∫
Rd−1

dk

(2π)d−1

∞∑
n=1

ωn(k). (2.28)
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This expression is divergent, so we have to regularize it. We will use the
Riemann zeta function and analytic continuation to make sense of it.

The Riemann zeta function ζ(z) of a complex argument z is defined as

ζ(z) =
∞∑
n=1

n−z (2.29)

when <(z) > 1, and by analytic continuation elsewhere. By this notion, one
can turn the expression around and associate the sum in (2.29) as the Riemann
zeta function, even when the sum does not converge in the traditional sense.
For example, with z = −1, we get

∞∑
n=1

n = − 1

12
. (2.30)

This is of course perfectly absurd in the usual sense of a sum; we should
understand the left-hand side as a "regularized sum", and try not to think of
it as a limit of the partial sums.†

Write the energy as

E =
π

2a

∫
Rd−1

dk

(2π)d−1

∞∑
n=1

√
n2 +

(
ak

π

)2

. (2.31)

Making the substitution pj = akj/π, so that dk
(2π)d−1 = dp

(2a)d−1 , gives

E =
π

(2a)d

∫
Rd−1

dp
∞∑
n=1

√
n2 + p2. (2.32)

The regularization consists of multiplying the summand by (n2 + p2)−s for
some s that is large enough that the integral converges, then evaluating the
resulting expression at s = 0. This process gives us the energy

Es =
π

(2a)d

∫
Rd−1

dp

∞∑
n=1

(
n2 + p2

) 1
2
−s

=
π

(2a)d

∫
Rd−1

dp

∞∑
n=1

n1−2s

(
1−

(p
n

)2
) 1

2
−s

.

(2.33)

†This result is rather infamous, and is especially associated with S. Ramanujan who
presented it in his letter to G. H. Hardy in 1913 [23].
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Change the order of the sum and integration, and let qj = pj/n to get

Es =
π

(2a)d

∞∑
n=1

nd−2s

∫
Rd−1

dq (1 + q2)
1
2
−s. (2.34)

This separates the sum from the integral, and we can solve each separately.
If 2s > d+ 1, then the sum evaluates to

∞∑
n=1

n−(2s−d) = ζ(2s− d). (2.35)

Thus, our regularized energy in d dimensions is

E = lim
s→0

Es =
π

(2a)d
lim
s→0

ζ(2s− d)

∫
Rd−1

dq
(
1 + q2

) 1
2
−s
. (2.36)

We will now evaluate this in the particular cases with 1, 2 and 3 dimensions.

2.2.1 One dimension

In 1 dimension, there is no integral and the energy is simply

E =
π

2a
ζ(−1) = − π

24a
. (2.37)

2.2.2 Two dimensions

In two dimensions, we must evaluate the integral
∞∫

−∞

dy (1 + y2)
1
2
−s. (2.38)

This integral converges for sufficiently large s, where its value is√
π

4

Γ(s− 1)

Γ(s− 1
2
)
. (2.39)

Now, Γ(−1
2
) = −

√
4π, but lim

s→0
Γ(s − 1) is infinite. However, ζ(−2) = 0, so

the energy might still be finite in the limit. Inserting this in (2.36),

E = − π

8a2
lim
s→0

ζ(2s− 2)Γ(s− 1). (2.40)
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The limit is
lim
s→0

ζ(2s− 2)Γ(s− 1) =
ζ(3)

2π2
(2.41)

so the energy is

E = − ζ(3)

16πa2
. (2.42)

2.2.3 Three dimensions

In three dimensions, the integral to be evaluated is

∞∫
−∞

dy

∞∫
−∞

dz
(
1 + (y2 + z2)

) 1
2
−s
. (2.43)

Changing to polar coordinates, r2 = y2 + z2 with dy dz = dr 2πr, and using
the substitution u = r2, the integral becomes

∞∫
0

dr 2πr
(
1 + r2

) 1
2
−s

= π

∞∫
0

du (1 + u)
1
2
−s = π

[
(1 + u)

3
2
−s

3
2
− s

]∞
0

. (2.44)

This converges for s > 3
2
, to

− π

s− 3
2

. (2.45)

Using analytic continuation, we therefore evaluate the integral to be −2π
3

in
the limit s→ 0. Also ζ(−3) = 1

120
. Therefore, the energy as given by (2.36)

is

E =
π

8a3
· 1

120
·
(
−2π

3

)
= − π2

1440a3
. (2.46)

2.3 Parallel plates using the argument princi-
ple

We now consider two parallel plates separated by a distance a lying perpen-
dicular to the x-direction. We consider the wave equation with wave speed
c(x),

c2∇2ϕ− ϕtt = 0, (2.47)
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where c(x) is constant inside and outside the plates,

c(x) =

{
c0, x ∈ (0, a),

c1, otherwise.
(2.48)

We write the wave equation as

c2ϕxx + c2∇2
zϕ− ϕtt = 0, (2.49)

where we view ϕ = ϕ(x, z, t) as a function of the special component x
perpendicular to the plates and the parallel components z = (x2, . . . , xd), and
the z Laplacian is

∇2
z = x2

2 + · · ·+ x2
d. (2.50)

Taking the Fourier transform in time and in each parallel dimension, we get

ϕxx +

(
ω2

c2(x)
− k2

)
ϕ = 0, (2.51)

where k = (k2, . . . , kN ) are the wave numbers of each parallel dimension. We
can write this as

ϕ′′ + λ2(x)ϕ = 0, (2.52)

where
λ2(x) =

ω2

c2(x)
− k2. (2.53)

The general solutions to (2.52) are

ϕ(x) =


A1e

iλ1x +B1e
−iλ1x, x < 0

A2e
iλ0x +B2e

−iλ0x, 0 < x < a

A3e
iλ1x +B3e

−iλ1x, a < x

(2.54)

where

λj =

√
ω2

c2
j

− k2. (2.55)

If ω2/c2
1 > k2 then λ1 is real. In this case, the terms containing e+λx

represent waves moving in positive direction along the x-axis, and the e−λx-
terms represent waves moving in the negative direction. For x < 0, there
are no sources that could produce waves moving in positive x-direction,
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and this implies that A1 = 0. Similarly, for x > a there are no sources
that could produce waves moving in the negative x-direction, so B3 = 0.
Next, if ω2/c2

0 < k2 then λ1 is purely imaginary. In this case, we must have
A1 = B3 = 0 in order to avoid exponential growth in the limit x → ±∞.
Thus, for all values of λ1 we have

A1 = B3 = 0. (2.56)

We require that the field and its time derivative are continuous everywhere.
In particular, this gives us boundary conditions at x = 0 and x = a, namely

B1 = A2 +B2, (2.57a)
A2e

iλ0a +B2e
−iλ0a = A3e

iλ1a. (2.57b)

A second boundary condition comes from requiring that no energy should be
deposited into the boundaries. This can be expressed as saying the normal
component of the energy flux

S = −c2ϕt∇ϕ (2.58)

must be continuous. Using the fact that the normal is in the x-direction and
that ϕt is continuous, this means that −c2ϕx is continuous,

c2
1ϕx(0

−) = c2
0ϕx(0

+),

c2
0ϕx(a

−) = c2
1ϕx(a

+).
(2.59)

That is,

−λ1c
2
1B1 = λ0c

2
0A2 − λ0c

2
0B2, (2.60a)

λ0c
2
0A2e

iλ0a − λ0c
2
0B2e

−iλ0a = λ1c
2
1A3e

iλ1a. (2.60b)

At this point, we drop the subscripts on A2 and B2, and write B1 = A+B and
A3e

iλ1a = Aeiλ0a + Be−iλ0a. Then (2.57) and (2.60) gives the two boundary
conditions

−γ1A− γ1B = γ0A− γ0B, (2.61a)
γ0Ae

iλ0a − γ0Be
−iλ0a = γ1Ae

iλ0a + γ1Be
−iλ0a, (2.61b)

where
γj = λjc

2
j = cj

√
ω2 − k2c2

j . (2.62)
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This can be written on the matrix form

Mb =

[
γ1 + γ0 γ1 − γ0

(γ1 − γ0)eiλ0a (γ1 + γ0)e−iλ0a

] [
A
B

]
= 0. (2.63)

Nontrivial solutions occur when the determinant of the matrix is zero,

detM = (γ1 + γ0)2e−iλ0a − (γ1 − γ0)2eiλ0a = 0. (2.64)

Dividing through by γ2
1 we get the condition

(1 + r)2e−iλ0a − (1− r)2eiλ0a = 0, (2.65)

where

r =
γ0

γ1

=
c0

c1

√
ω2 − k2c2

0

ω2 − k2c2
1

. (2.66)

The possible frequencies ω are those that satisfy this relation. Defining

g(ω, k) = −eiλ1a
(
(1 + r)2e−iλ0a − (1− r)2eiλ0a

)
, (2.67)

the possible frequences are ωn such that g(ωn, k) = 0. The factor eiλ1a will
become useful later.

The energy of the system is

E =
1

2

∫
Rd−1

dk

(2π)d−1

∑
n

ωn(k). (2.68)

We will evaluate the sum using the argument principle, which says that if h
is an analytic function with no poles inside a positively oriented contour C
and f is a meromorphic function with no poles or zeroes on C, then

1

2πi

∮
C

dz h(z)
d

dz
log f(z) =

∑
n

mnh(zn), (2.69)

where zn are the locations of zeroes and poles of f inside the contour, and
mn are their multiplicities, positive for zeroes and negative for poles.

Choosing h(z) = z and f(z) = g(z, k), having zeroes at z = ωn(k), this
means that ∑

n

ωn(k) =
1

2πi

∮
C

dz z
d

dz
log g(z, k). (2.70)
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Figure 2.2: Integration curve

We use the contour C = IR ∪ CR, where

IR = {iy | y ∈ [−R,R]}
CR =

{
Reiθ

∣∣ θ ∈ [−π/2, π/2]
} (2.71)

as shown in Figure 2.2. Then

E =
1

2i(2π)d

∫
Rd−1

dk lim
R→∞

 iR∫
−iR

+

∫
CR

 dω ω d

dω
log g(ω, k). (2.72)

These integrals are divergent, and in order to regularize them, we will subtract
the contribution from high frequencies.

So far we have assumed that no waves will penetrate the plates. In reality,
this will not be the case. For high frequencies, the waves will penetrate the
plates and act as though they were not there. This means that the speed of
light in the medium c(x) is actually also a function of frequency, and that
c(x)→ 1 as ω →∞. In this limit we find that r → 1.

Inserting this in (2.67), the (1 + r) term dominates and we get that the
dominating contribution to g for high frequencies is

g∞(ω, k) = −(1 + r)2ei(λ1−λ0)a, (2.73)
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and the corresponding high-frequency contribution to energy is

E∞ =
1

2i(2π)d

∫
Rd−1

dk lim
R→∞

 iR∫
−iR

+

∫
CR

 dω ω d

dω
log g∞(ω, k). (2.74)

We define the regularized energy as the difference between these two,

E = E − E∞. (2.75)

In the integral over CR in (2.72), ω is large, meaning the integrand is essentially
log g∞(ω, k). This part cancels completely when subtracting the infinite
contribution. What remains is

E =
1

2i(2π)d

∫
Rd−1

dk lim
R→∞

iR∫
−iR

dω ω
d

dω
log

g(ω, k)

g∞(ω, k)
. (2.76)

A partial integration and substituting substituting ω = iy gives

E =
1

2

1

(2π)d

∫
Rd−1

dk

∞∫
−∞

dy log
g(iy, k)

g∞(iy, k)
. (2.77)

Here,
g(iy, k)

g∞(iy, k)
= 1− (1− r)2

(1 + r)2
e2iλ0a

∣∣∣
ω=iy

. (2.78)

For our case, consider materials such that c0 = 1 and c1 = 0.† Note that
inserting this in (2.59) gives von Neumann conditions for ϕ between the plates.
In this limit, r →∞ and λ0 →

√
ω2 − k2, and we have

g(iy, k)

g∞(iy, k)
= 1− e2ia

√
(iy)2−k2 = 1− e−2a

√
y2+k2 . (2.79)

Recall that k2 = k2 + · · ·+ k2
d. Renaming y to k1, we can write the energy as

E =
1

2

1

(2π)d

∫
Rd
dk log

(
1− e−2a‖k‖) . (2.80)

†E.g. vacuum between the plates gives c0 = 1. If the materials are insulating, then
waves cannot propagate in them, suggesting c1 = 0.
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In polar coordinates, the integral becomes

E =
1

2

1

(2π)d

∞∫
0

dr Sd(r) log(1− e−2ar)

=
1

2dπ
d
2 Γ(d

2
)

∞∫
0

dr rd−1 log(1− e−2ar)

(2.81)

where

Sd(r) =
2rd−1π

d
2

Γ(d
2
)

(2.82)

is the surface area of a sphere of radius r in d dimensions. Evaluating this for
instance in d = 2 dimensions gives the Casimir energy

E =
1

2π

∞∫
0

dr r log(1− e−2ar) = − ζ(3)

16πa2
. (2.83)

2.4 Concentric circles
In this section we will calculate the Casimir energy for two concentric circles
in two dimensions. This chapter will rely heavily on the Bessel functions
described in Appendix B.

Consider problem (2.1) when the boundaries are two concentric circles in
two dimensions, with radii r1 and r2 such that r1 < r2, and normals pointing
into the area between the circles. In polar coordinates, (2.1) takes the form

∇2ϕ− ϕtt = 0 (2.84a)
ϕr(r1, θ) = ϕr(r2, θ) = 0. (2.84b)

Taking the Fourier transform in the time domain,

∇2ϕ+ ω2ϕ = 0. (2.85)

In polar coordinates, the Laplacian is

∇2 =
1

r
∂r(r∂r) +

1

r2
∂θθ = ∇2

r +
1

r2
∇2
θ. (2.86)
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where ∇2
r = 1

r
∂rr∂r and ∇2

θ = ∂θθ.
Using separation of variables, we look for solutions on the form

ϕ(r, θ) = R(r)Θ(θ). (2.87)

Inserting this in (2.85) and using the polar form of the Laplacian, we get

Θ∇2
rR +

1

r2
R∇2

θΘ + ω2RΘ = 0. (2.88)

with the boundary condition

R′(r1) = R′(r2) = 0, (2.89)

as well as the periodicity condition,

Θ(θ + 2π) = Θ(θ). (2.90)

Multiply this equation by r2/RΘ to get

r2∇2
rR

R
+
∇2
θΘ

Θ
+ ω2r2 = 0. (2.91)

Having separated the equation into terms depending only on r or only on θ,
we know that these terms must be constant,

r2

(
ω2 +

∇2
rR

R

)
= −∇

2
θΘ

Θ
= λ2. (2.92)

for some constant λ, possibly complex. We now have the set of equations,

∇2
rR =

(
λ2

r2
− ω2

)
R, R′(r1) = R′(r2) = 0,

∇2
θΘ = −λ2Θ, Θ(θ + 2π) = Θ(θ).

(2.93)

The angular equation can be written as

Θ′′ + λ2Θ = 0, (2.94)

which has general solutions

Θ(θ) = Aeiλ(θ−ϕ). (2.95)
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The periodicity condition Θ(θ + 2π) = Θ(θ) is thus

Aeiλ(θ−ϕ+2π) = Aeiλ(θ−ϕ). (2.96)

This is equivalent to e2πiλ = 1, which can be satisfied by λ = n. Let Θn and
Rn refer to the solutions with that particular n.

The radial equation is

∇2
rRn =

(
n2

r2
− ω2

)
Rn. (2.97)

With
∇2
rRn =

1

r
∂rr∂rRn =

1

r
∂r(rR

′
n) = R′′n +

1

r
R′n, (2.98)

this equation can be written as

r2R′′n + rR′n +
(
ω2r2 − n2

)
Rn = 0. (2.99)

We recognize this as Bessel’s differential equation (B.1) with x = ωr and
order n, so by definition the solutions are

Rn(r) = anJn(ωr) + bnYn(ωr) (2.100)

where Jn and Yn are the Bessel functions of first kind and second kind
respectively. The boundary conditions are

R′n(ωr1) = R′n(ωr2) = 0. (2.101)

The first condition gives

anJ
′
n(ωr1) + bnY

′
n(ωr1) = 0 (2.102)

which is satisfied if
bn = −an

J ′n(ωr1)

Y ′n(ωr1)
. (2.103)

With this bn the second boundary condition gives

anJ
′
n(ωr2)− anY ′n(ωr2)

J ′n(ωr1)

Y ′n(ωr1)
= 0 (2.104)

or
J ′n(ωr2)Y ′n(ωr1)− J ′n(ωr1)Y ′n(ωr2) = 0. (2.105)
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This imposes a condition on ω.
Let ωjn represent the jth solution to (2.105) for that specific n. The

resonance frequencies are precisely these ωjn, which we enumerate as ωn for
n = 1, 2, . . .. Then the Casimir energy is given by†

E =
1

2

∑
n

ωn. (2.106)

We will evaluate this sum using the argument principle, which says that for a
meromorphic function f(z) with no poles or zeroes on the contour C and a
function h(z) that is analytic inside C,

1

2πi

∮
C

dz h(z)
d

dz
log f(z) =

∑
n

mnh(zn), (2.107)

where zn are the locations of zeroes and poles of f(z) inside the contour and
mn are their multiplicities, viewing poles as zeroes with negative multiplicity.
The function

f(ω) =
∏
n

(J ′n(ωr2)Y ′n(ωr1)− J ′n(ωr1)Y ′n(ωr2)) (2.108)

satisfies the condition f(ωn = 0 for all n, and h(z) = z means the right-hand
side of (2.107) is exactly the sum in the expression for the Casimir energy.
For the contour C, select a semicircle centred at the origin with radius R in
the right half plane, and its diameter. We must move in a small semicircle
of radius ε around the origin, since this is a branch point of log f(z). The
contour is shown in Figure 2.3, and can be described as

C = CR ∪ Iε,R ∪ Cε ∪ I−ε,−R, (2.109)

where

Ia,b = {iy | y ∈ [a, b]}
Cr =

{
reiθ

∣∣ θ ∈ [−π/2, π/2]
}
,

(2.110)

the Casimir energy can be written as

E =
1

4πi
lim
R→∞

∮
C

dz z
d

dz
log f(z). (2.111)
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Figure 2.3: The contour C

This integral diverges, and we regularize it by subtracting the high frequency
contribution.

We need the properties

J ′n(ix) = in−1I ′n(x),

Y ′n(ix) = inI ′n(x)− 2

π
i−(n+1)K ′n(x),

(2.112)

which can be derived from (B.8). It follows that

J ′n(ia)J ′n(ia) = in−1I ′n(a)

(
inI ′n(b)− 2

π
i−n−1K ′n(b)

)
= i2n−1I ′n(a)I ′n(b)− 2

π
i−2I ′n(a)K ′n(b)

=
2

π
I ′n(a)K ′n(b)− i(−1)nI ′n(a)I ′n(b).

(2.113)

†Finding all the ωn explicitly is hard, which is why we use the argument principle
instead of doing it in a way similar to what was described in Section 2.1.
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Evaluating f(z) at z = iy, we get

f(iy) =
∏
n

(J ′n(iyr2)Y ′n(iyr1)− J ′n(iyr1)Y ′n(iyr2))

=
∏
n

(
2

π
I ′n(yr2)K ′n(yr1)− i(−1)nI ′n(yr1)I ′n(yr2)

− 2

π
I ′n(yr1)K ′n(yr2) + i(−1)nI ′n(yr2)I ′n(yr1)

)
=
∏
n

2

π
(I ′n(yr2)K ′n(yr1)− I ′n(yr1)K ′n(yr2)) .

(2.114)

According to (B.14), in the limit of large x, the asymptotic from of the product
I ′n(ax)K ′n(bx) is

I ′n(ax)K ′n(bx) ∼ − 1

2x
e(a−b)x, (2.115)

which will be dominated by I ′n if a > b and in this case grow exponentially,
and it will be dominated by K ′n and vanish exponentially if a < b. Since
r2 > r1, this means that for large values of y,

f(iy) ∼ f∞(iy) =
∏
n

2

π
I ′n(yr2)K ′n(yr1). (2.116)

By using an analytic continuation, replace y = −iz to get

f∞(z) =
∏
n

2

π
I ′n(−izr2)K ′n(−izr1). (2.117)

The argument leading to (2.116) only works when y is real. Therefore,
applying analytic continuation like this should be regarded as a regularization
that is not strictly rigorous. Taking the limit of the Hankel function H(1)

α (x)
as α tends to some positive integer n, it can be shown that

H(1)
n (x) = 2Jn(x). (2.118)

This together with the relation

K ′α(x) = −π
2
iαH(1)

α

′
(ix), −π < arg x ≤ π

2
(2.119)
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from (B.7), and with (2.112), allows us to rewrite

f∞(z) =
∏
n

2

π
I ′n(−izr2)K ′n(−izr1)

=
∏
n

2

π

(
i1−nJ ′n(−zr2)

) (
−π

2
inH(1)

n

′
(−zr1)

)
=
∏
n

−2iJ ′n(zr1)J ′n(zr2).

(2.120)

We define the infinite contribution of the energy E∞ as the energy ac-
quired when substituting f∞ for f in (2.111), then regularize the energy by
subtracting the infinite part of the energy:

E = E − E∞ =
1

4πi

∮
C

dz z
d

dz
log

f(z)

f∞(z)
. (2.121)

We shall split this integral into four pieces, one over each segment. Using
the fact that f(−z) = f(z) and a partial integration, we can thus write the
energy as

E =− 1

2π

∞∫
0

dy log
f(iy)

f∞(iy)

− 1

4π
lim
ε→0

π/2∫
−π/2

dθ εeiθ log
f(εeiθ)

f∞(εeiθ)

+
1

4π
lim
R→∞

π/2∫
−π/2

dθ Reiθ log
f(Reiθ)

f∞(Reiθ)
.

(2.122)

We will now treat each of these integrals one by one.
The first integral is
∞∫

0

dy log
f(iy)

f∞(iy)
=

∞∫
0

dy log
∏
n

I ′n(yr2)K ′n(yr1)− I ′n(yr1)K ′n(yr2)

I ′n(yr2)K ′n(yr1)

=
∑
n

∞∫
0

dy log

(
1− I ′n(yr1)K ′n(yr2)

I ′n(yr2)K ′n(yr1)

)
.

(2.123)
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Using the asymptotic forms of In and Kn in (B.12) we see that

lim
y→0

I ′n(yr1)K ′n(yr2)

I ′n(yr2)K ′n(yr1)
=

(
r1

r2

)2n

, (2.124)

and (B.14) indicates that this term drops off exponentially as y →∞. With
log(1− x) = −x+O(x2), this indicates that each integral converges and is
of order (r1/r2)

2n, and thus the sum converges at a rate comparable to a
geometric sum. Therefore, when evaluating this sum numerically, we choose
a cutoff after n terms and assume the error will be of order

e ∼ (r1/r2)2n

1− r1/r2

. (2.125)

The second integral is

lim
ε→0

π/2∫
−π/2

dθ εeiθ log
f(εeiθ)

f∞(εeiθ)

= lim
ε→0

∑
n

π/2∫
−π/2

dθ εeiθ log

(
J ′n(zr2)Y ′n(zr1)− J ′n(zr1)Y ′n(zr2)

−2iJ ′n(zr1)J ′n(zr2)

)

= lim
ε→0

∑
n

π/2∫
−π/2

dθ εeiθ log

(
iY ′n(zr1)

2J ′n(zr1)
− iY ′n(zr2)

2J ′n(zr2)

)

= lim
ε→0

∑
n

π/2∫
−π/2

dθ εeiθ Log

∣∣∣∣ Y ′n(εr1e
iθ)

2J ′n(εr1eiθ)
− Y ′n(εr2e

iθ)

2J ′n(εr2eiθ)

∣∣∣∣ ,

(2.126)

where Log indicates the function on the principal branch. We also get some
constant terms from log, but they vanish when ε→ 0. From (B.12),

J ′0(x) = −1

2
x, Y ′0(x) =

2

π

1

x
,

J ′n(x) =
nxn−1

2nΠ(n)
, Y ′n(x) = −2nΠ(n)

πxn+1
.

(2.127)
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Then for n = 0,∣∣∣∣ Y ′0(εr1e
iθ)

2J ′0(εr1eiθ)
− Y ′0(εr2e

iθ)

2J ′0(εr2eiθ)

∣∣∣∣ =

∣∣∣∣∣
2
π

1
εr1eiθ

εr1eiθ
−

2
π

1
εr2eiθ

εr2eiθ

∣∣∣∣∣ =
2

ε2π

(
1

r2
1

− 1

r2
2

)
.

(2.128)
and for n 6= 0,∣∣∣∣ Y ′n(εr1e

iθ)

2J ′n(εr1eiθ)
− Y ′n(εr2e

iθ)

2J ′n(εr2eiθ)

∣∣∣∣
=

∣∣∣∣− 2nΠ(n) · 2nΠ(n)

π(εr1eiθ)n+1 · n(εr1eiθ)n−1
+

2nΠ(n) · 2nΠ(n)

π(εr2eiθ)n+1 · n(εr2eiθ)n−1

∣∣∣∣
=

22nΠ2(n)

πnε2n

(
1

r2n
1

− 1

r2n
2

)
.

(2.129)

In both of these cases, there is a power relation with ε. Hence, when we take
the logarithm we will get integrands proportional to ε or ε log ε. As ε→ 0,
these vanish, so this integral term is zero.

Note however that as n increases, the terms grow without bounds. This
means the sum in (2.126) does not actually converge unless we take the limit
first. Therefore, summing the limits instead of taking the limit of the sum
should be regarded as a regularization step. Then we have

− 1

4π
lim
ε→0

π/2∫
−π/2

dθ εeiθ log
f(εeiθ)

f∞(εeiθ)
= 0. (2.130)

The final integral is

lim
R→∞

π/2∫
−π/2

dθReiθ log
f(Reiθ)

f∞(Reiθ)
. (2.131)

Unfortunately, when we try to evaluate this integral, we will find that it
diverges in the limit! This mean we would need another regularization step.
However, suppose we were to find it to be zero. Then the energy would be

E = − 1

2π

∑
n

∞∫
0

dy log

(
1− I ′n(yr1)K ′n(yr2)

I ′n(yr2)K ′n(yr1)

)
. (2.132)
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Kilen similarly removed an infinite term and showed that the remaining term
matched his numerical solution [14]. With this knowledge, we feel reassured
that (2.132) gives the correct energy, despite not having a satisfactorily
rigorous explanation.

2.5 The relation between energy and pressure
This section describes how to relate the Casimir energy to the force. The
force on a small surface element dA on one of the objects is given by

dF = −np dA, (2.133)

where n is the outwards-pointing normal and p is the pressure at that point.
By displacing this surface element by a distance dr, we perform a work equal
to

dW = dF · dr. (2.134)

Integrating the contributions from all surface elements yields

dE = −
∫
Q

dA · p dr. (2.135)

On the other hand, the energy of a configuration E depends on a set of ν
variables (for example the radii of two concentric circles),

E = E(q1, . . . , qν). (2.136)

Let
γ(s) = γ(q1(s), . . . , qν(s)) (2.137)

be a curve in parameter space. Then the differential of E in terms of s is

dE(γ(s)) = ∇E · γ′(s) ds. (2.138)

Thus the energy is related to the pressure according to

∇E · γ′(s) = −
∫
Q

dA · p dr
ds
. (2.139)

The factor dr
ds

can be thought of as the velocity of a point on Q as the
configuration changes along γ.
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Example: Parallel Plates

Consider the case of two parallel plates in two dimensions. The positions x1

and x2 of the plates are the parameters of our configuration. As we vary the
position of the leftmost plate, select γ(s) = (s, a) to be our curve through
parameter space. Then the change in energy in terms of s is

dE

ds
= ∇E · γ′(s) = (∂x1E, ∂x2E) · (1, 0) =

∂E

∂x1

. (2.140)

For a given s, we parametrise the left curve as

r1(s, y) = (s, y). (2.141)

The derivative is
dr1

ds
= (1, 0). (2.142)

We parametrise the right curve as r2(s, y) = (a, y), which does not vary with
respect to s. With constant pressure, we then get

−
∫
Q

dA · pdr
ds

= −
∫
Q1

dA p = −Lp. (2.143)

Equating (2.140) and (2.143) gives the pressure in terms of energy per unit
length,

p1 =
∂E

∂x1

. (2.144)

Proceeding similarly for p2 we find p2 = −∂x2E. Since a = x2 − x1, this gives

p1 = p2 = −∂E
∂a

. (2.145)

The exact Casimir energy for two infinitely long parallel plates in two dimen-
sions was found to be

E = − ζ(3)

16πa2
, (2.146)

so the pressure is

p1 = p2 = − ζ(3)

8πa3
. (2.147)

The same procedure can be used to show that (2.145) is valid for any number
of dimensions. for example for one dimension,

p(1D) = − ∂

∂a

(
− π

24a

)
= − π

24a2
. (2.148)
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Example: Concentric Circles

For two concentric circles, the with radii r1 and r2 are the parameters of our
configuration. Treating the inner circle first, we choose the curve in parameter
space γ(s) = (s, R), where R is constant. Then

dE

ds
= ∇E · γ′(s) =

∂E

∂r1

. (2.149)

Parametrise the inner circle as

r1(s, t) = (s cos t, s sin t) = sn(t). (2.150)

The derivative of r1 with respect to s is n. We also have r2(s, t) = Rn(t),
which does not change as s changes. Thus,

−
∫
Q

dA · pdr
ds

= −
∫
Q1

dA · np = −2πr1p. (2.151)

We have used the fact that pressure must be constant due to rotational
symmetry. Combining (2.149) and (2.151) gives

p1 = − 1

2πr1

∂E

∂r1

. (2.152)

A similar process for the outer circle gives

p2 =
1

2πr2

∂E

∂r2

. (2.153)

From mode expansion (2.132), we found that

E = − 1

2π

∑
k

∞∫
0

dy log

(
1− I ′k(yr1)K ′k(yr2)

I ′k(yr2)K ′k(yr1)

)
, (2.154)

so for example, the pressure on Q1 is

p1 = − 1

4π2r1

∑
k

∞∫
0

dy
∂

∂r1

log

(
1− I ′k(yr1)K ′k(yr2)

I ′k(yr2)K ′k(yr1)

)
. (2.155)
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Chapter 3

The functional integral method

In this section, we present the functional integral method, as applied to
objects with von Neumann boundary conditions. This is based on the work by
T. Emig et. al., in particular on [10], and on the procedure used by Kilen [14]
and Mikalsen [20].

Section 3.1 will give a preliminary introduction to the functional integral.
Here we discuss the notion of a functional integral, and techniques for how
to evaluate them. Then in Section 3.2, we express the Casimir energy as a
functional integral. Section 3.3, Section 3.4 and Section 3.5 will rewrite this as
a Gaussian integral which can be evaluated, each section concerning different
aspects of the integral. The evaluation itself is discussed in Section 3.6.

In Section 3.4 we will find that there is a hole in our argument. This
lapse is also found in [10]. We will present some heuristic points to justify
the conclusion, but we will not give a rigorous proof. Finally, in Section 3.7
we will present a way to avoid this problem, but at a severe increase in
computation cost.

3.1 Functional Integrals

Before we begin, let us take a moment to look at what the end result might
look like. We will express the Casimir force in terms of a functional integral,∫

DϕF [ϕ], (3.1)
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where F is a functional, mapping a function to a number, e.g. the integral
functional

I[ϕ] =

∞∫
−∞

dxϕ(x). (3.2)

The functional integral means an integral over a domain of all possible
functions, instead of a regular integral over numbers. That is, if ϕ : R→ R,
the functional differential Dϕ can be thought of as

Dϕ =
∏
x

dϕ(x), (3.3)

meaning a multiple integral, each integral with respect to the function value
ϕ(x) at the point x. This means an infinite number of integrals - and in fact,
even an uncountably infinite number. It is certainly not immediately obvious
how to evaluate such an integral.

One way to make sense of the functional integral is by decomposing ϕ as

ϕ(x) =
∑
n

ϕnψn(x), (3.4)

where {ψn} is a complete set of functions, and interpreting the integral as∫
DϕF [ϕ] =

∫
dϕ1

∫
dϕ2 · · · F̂ (ϕ1, ϕ2, . . .), (3.5)

where F̂ is now a normal function of an infinite number of variables. This
is still an infinite number of integrals, but at least now it is countable. This
kind of integrals were described by P. J. Daniell [8] who showed how it
can be evaluated for certain functions F̂ . For example, if we integrate over
the functions defined on [0, 1], we can use the finite Fourier transform to
decompose them in the basis

ψn(x) = e2πinx. (3.6)

The integral functional becomes

I[ϕ] =

1∫
0

dxϕ(x) =
∑
n

ϕn

1∫
0

dx e2πinx = ϕ0, (3.7)
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so in fact, Î(ϕ0, ϕ1, . . .) = Î(ϕ0) is actually just a function of the first variable
ϕ0. Then the functional integral of I is∫

DϕI[ϕ] =

∫
dϕ0 ϕ0 ·

∫
dϕ1

∫
dϕ2 · · · . (3.8)

If we have two functionals F and G that are functions of only the first variable,
F̂ = F̂ (ϕ0) and Ĝ = Ĝ(ϕ0), then the trailing integrals cancel and the ratio
between the two functional integrals can be understood as∫

DϕF [ϕ]∫
DϕG[ϕ]

=

∫
dϕ0 F̂ (ϕ0)∫
dϕ0 Ĝ(ϕ0)

. (3.9)

When calculating the Casimir force, a common regularization is to subtract
the contribution of high frequencies. Mathematically, if we have the basis
(3.6), this interpretation follows from setting ϕm = 0 for all m larger than
some N , and the regularizations eventually yield integrals on the form∫

dϕ0 · · ·
∫
dϕN F̂ (ϕ0, · · · , ϕN). (3.10)

This process can be regarded as a form of discretization, and is discussed
again in Section 3.6.

In our case, the kind of functionals we will encounter yield Gaussian
integrals. We will now give a short introduction to Gaussian integrals and
derive the important result that we will need later. Start by considering the
one-dimensional Gaussian integral

I =

∞∫
−∞

dx e−
1
2
λx2 , λ > 0. (3.11)

By squaring and introducing polar coordinates, we can write this as

I2 =

∞∫
−∞

dx e−
1
2
λx2

∞∫
−∞

dy e−
1
2
λy2 =

∞∫
−∞

∞∫
−∞

dx dy e−
1
2
λ(x2+y2)

=

2π∫
0

dθ

∞∫
0

dr re−
1
2
λr2 = 2π

∞∫
0

du

λ
e−u =

2π

λ
,

(3.12)
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which implies that

I =

∞∫
−∞

dx e−
1
2
λx2 =

√
2π

λ
. (3.13)

Next we move on to complex arguments. Observe that

e−
1
2

(x2+y2) = e−
1
2

(x+iy)(x−iy). (3.14)

Let
z =

1√
2

(x+ iy), z∗ =
1√
2

(x− iy). (3.15)

The differentials become dx dy = −idz dz∗, and we see from (3.12) that∫
C

dz dz∗

2πi
e−λ|z|

2

=

∫
C

dz dz∗

2πi
e−λzz

∗
=

1

λ
. (3.16)

Now let D = (dij) be an n× n diagonal matrix with elements λj along the
diagonal, such that D is positive definite, i.e. all λj > 0. Then

〈z, Dz〉 =
∑
i,j

z∗i dijzj =
∑
j

λj|zj|2, (3.17)

and the determinant of D is given by

detD =
∏
j

λj. (3.18)

Abbreviating

[dz dz∗] =
∏
j

dzj dz
∗
j

2πi
(3.19)

and using these results, we can solve the Gaussian integral∫
Cn

[dz dz∗] e−〈z,Dz〉 =

∫
Cn

[dz dz∗] e−
∑
j λj |zj |2

=
∏
j

∫
Cn

dzj dz
∗
j

(2πi)n
e−λj |zj |

2

=
∏
j

1

λj
=

1

detD
.

(3.20)
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Let A be a positive definite, Hermitian matrix. There exists a unitary matrix
U such that

U∗AU = D (3.21)

for some diagonal matrix D consisting of the eigenvalues of A. Since A
is positive definite and Hermitian, these eigenvalues are real and positive.
Introduce the change of variables z = Uz′. Then∫

Cn
[dz dz∗] e−〈z,Az〉 =

∫
Cn

[d(Uz′) d(Uz′)∗] e−〈Uz
′,AUz′〉

=

∫
Cn

[
dz′ dz′

∗]
(detU detU∗)e−〈z

′,U∗AUz′〉

=

∫
Cn

[
dz′ dz′

∗]
e−〈z

′,Dz′〉 =
1

detD
.

(3.22)

Using the property that

detD = det(U∗AU) = detA · det(UU∗) = detA, (3.23)

this means that ∫
Cn

(∏
j

dzj dz
∗
j

2πi

)
e−〈z,Az〉 =

1

detA
(3.24)

for any positive definite, Hermitian matrix A.

3.2 Energy as a Functional Integral
Consider the massless scalar field ϕ(x, t), described by the Langrangian

Lϕ =
1

2
ϕ2
t −

1

2
(∇ϕ)2. (3.25)

Performing a canonical quantization on ϕ yields a quantum operator ϕ̂ that
is related to the classical field via the eigenstate equation

ϕ̂(x) |ϕ〉 = ϕ(x) |ϕ〉 . (3.26)

In the Heisenberg picture, time dependency is introduced through the equation
of motion,

− ih̄∂tϕ̂ =
[
Ĥ, ϕ̂

]
, (3.27)
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and the time dependence of the eigenstates is given by

|ϕ, t〉 = eitĤ |ϕ〉 . (3.28)

The amplitude of a transition between two states can be written as

〈ϕ1, t1|ϕ0, t0〉 =
〈
ϕ1

∣∣∣e−i(t1−t0)Ĥ
∣∣∣ϕ0

〉
. (3.29)

This transition amplitude can be written as a functional integral (see [12])
according to 〈

ϕ1

∣∣∣e−i(t1−t0)Ĥ
∣∣∣ϕ0

〉
=

∫
DϕeiS[ϕ], (3.30)

where the integration is over all fields satisfying the boundary conditions
ϕ(t0) = ϕ0 and ϕ(t1) = ϕ1, and S is the action,

S[ϕ] =

∫ t1

t0

dt

∫
Rd
dxLϕ(x, t). (3.31)

We will study the case with the conditions ϕ(x, 0) = ϕ(x, T ) = 0. That is,
we are interested in the vacuum to vacuum transition after a time period
T = t1 − t0. This constraint means that the fields will be T -periodic. The
amplitude for this transition is then given by the partition function

ZQ(S, T ) =

∫
DϕC,T e

iS[ϕ]. (3.32)

The integration variable DϕC,T indicates that the integration is over all
T -periodic fields that are subject to boundary conditions C, given by

C : ∂nϕ
∣∣∣
Q

= 0, (3.33)

on the space-time surface Q = Q× [0, T ].
Let |α〉 be a complete set of energy eigenstates, i.e. Ĥ |α〉 = Eα |α〉 with

〈α|β〉 = δαβ, and let |0〉 be the state of the vacuum. Then the vacuum to
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vacuum transition can be written as

ZQ(S, T ) =
〈

0
∣∣∣e−i(t′−t)Ĥ∣∣∣0〉

= 〈0|
∑
α

|α〉 〈α| e−iT Ĥ
∑
β

|β〉 〈β|0〉

=
∑
α,β

〈0|α〉 〈β|0〉
〈
α
∣∣∣e−iT Ĥ∣∣∣β〉

=
∑
α,β

〈0|α〉 〈0|β〉∗ 〈α|β〉 e−iTEβ

=
∑
α

|〈0|α〉|2 e−iTEα .

(3.34)

In order to obtain a convergent series, we perform a Wick rotation, T = −is
where s is real. Then

ZQ(S, T ) =
∑
α

|〈0|α〉|2 e−sEα . (3.35)

For large s, we can approximate

ZQ(S, T ) ≈ |〈0|α0〉|2 e−sE0 , (3.36)

where E0 is the lowest energy state and |α0〉 is the corresponding eigenvector.
We can solve this for E0:

E0 ≈
2

s
log |〈0|α0〉| −

1

s
logZQ(S,−is). (3.37)

In the limit s→∞, the second term dominates and we have

E0 = − lim
s→∞

1

s
logZQ(S,−is). (3.38)

This quantity is infinite and must be regularized.
Let E∞ be the energy and Z∞ be the partition function obtained when the

objects have been moved to infinite separation. It follows the same relation,

E∞ = − lim
s→∞

1

s
logZ∞(−is). (3.39)

This can be viewed as the ground state energy of the vacuum when there are
no objects, the free vacuum energy. Introducing objects creates a fluctuation
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in this energy, and this is what gives rise to the Casimir forces. Since the
forces are related to the gradient of the energy and not its actual value, we
argue that the energy E0 can be regularized by subtracting the free vacuum
energy E∞,

E = E0 − E∞ = − lim
s→∞

1

s
log

ZQ(S,−is)
Z∞(−is)

. (3.40)

This quantity will turn out to be finite.
In summary, we have an expression for E in terms of ZQ and Z∞. We must

now derive expressions for ZQ(S, T ) and Z∞(T ). Finding Z means evaluating
the integral

ZQ(S, T ) =

∫
DϕC,T e

iS[ϕ], (3.41)

where the integral is over all curves ϕ that satisfy ∂nϕ|Q = 0 and that are
T -periodic. We will approach this integral using the methods described in
Section 3.1. First, in Section 3.3, we modify this integral to implement the
conditions in the integrand using an analogy for the Dirac δ function and
Fourier transforms, so that the integration will be unconstrained over all
functions. This will introduce a new function ρ and an integral

∫
Dρ. In

Section 3.4 we resolve the integral over Dϕ, and in Section 3.5 we rewrite the
integral over Dρ as a Gaussian integral. Finally we discretize it in Section 3.6
and assign to it a value.

3.3 Implementing Conditions

The delta functional is the functional analogy to the Dirac delta function. It
has the property ∫

Dϕδ[Aϕ|C ]F [ϕ] =

∫
DψF [ψ], (3.42)

where the integral on the right hand side is over all functions that satisfy

Aψ|C= 0. (3.43)

In Appendix A we argue that the delta functional can be defined as

δ[Aϕ|C ] =

∫
Dρ ei

∫
C dx ρ(x)Aϕ(x). (3.44)
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Using this, we can implement our boundary condition

∂nϕ
∣∣∣
Q

= 0 (3.45)

in terms of the delta functional δ[∂nϕ|Q]. That is,

Z =

∫
DϕC,T e

iS[ϕ] =

∫
DϕT Dρ e

i
∫
Q dA

∫ T
0 dt ρ(x,t)∂nϕ(x,t)eiS[ϕ]. (3.46)

Since the integral only concerns ρ(x, t) for t ∈ [0, T ], we can assume ρ is
periodic with period T . Then we can expand ϕ and ρ into Fourier series,

ϕT (x, t) =
∞∑

n=−∞

ϕn(x)e2πint/T

ρ(x, t) =
∞∑

n=−∞

ρn(x)e2πint/T .

(3.47)

The crucial advantage here is that while ϕT (x, t) is constrained to be peri-
odic in time, the coefficients ϕn(x) are completely free. The corresponding
differentials are

DϕT =
∞∏

n=−∞

Dϕn

Dρ =
∞∏

n=−∞

Dρn.

(3.48)

These substitutions do also include a Jacobian, but this will cancel when we
regularize, hence we might as well leave it out right away.

We will now look at how the two factors in (3.46) change when we Fourier
expand ϕ and ρ. First, we consider the integral over ρ. Each term changes as∫
Q
dt ρ(x, t)∂nϕ(x, t) =

∫
Q

dx

T∫
0

dt
∑
m

ρme
2πimt/T∂n

∑
n

ϕne
2πint/T

=

∫
Q

dx
∑
m,n

ρm∂nϕn

T∫
0

dt e2πi(m+n)t/T

= T
∑
n

∫
Q

dx ρ−n∂nϕn,

(3.49)
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where we have used
T∫

0

dt e2πi(m+n)t/T = Tδ−nm . (3.50)

The action is

S[ϕ] =

∫
Rd
dx

T∫
0

dtL[ϕ] =
1

2

∫
Rd
dx

T∫
0

dt
(
ϕ2
t − (∇ϕ)2

)
=

1

2

∫
Rd
dx
∑
m,n

[((
2πim

T
ϕm

)(
2πin

T
ϕn

)

−∇ϕm · ∇ϕn
) T∫

0

dt e2πi(m+n)t/T

]

= T
∑
n

1

2

∫
Rd
dx

[(
2πn

T

)2

ϕnϕ−n −∇ϕn · ∇ϕ−n

]
.

(3.51)

Making these substitutions in (3.46), we get

ZQ(S, T ) =

∫ ( ∞∏
n=−∞

DϕnDρn

)
exp

(
iS[ϕ] + i

∫
Q
dx ρ∂nϕ

)

=
∞∏

n=−∞

∫
DϕnDρn e

iT S̄n[ϕn,ρn],

(3.52)

where

S̄n[ϕn, ρn] =
1

2

∫
Rd
dx

((
2πn

T

)2

ϕnϕ−n −∇ϕn · ∇ϕ−n

)
+

∫
Q

dx ρ−n∂nϕn.

(3.53)
Taking the logarithm,

logZQ(S, T ) =
∞∑

n=−∞

∫
DϕnDρn e

iT S̄n . (3.54)

We will now let T →∞ in order to treat non-periodic functions, and we
wish to change the sum in (3.54) into an integral. Let

kn =
2πn

T
, (3.55)
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and let ∆k = 2π/T . We can write

logZ =
T

2π

∑
n

∆k log

∫
DϕknDρ kne

iT S̄kn . (3.56)

As T → ∞, kn becomes a continuous variable k and ∆k → 0, and this
becomes a Riemann sum. That is,

logZ → T

2π

∞∫
−∞

dk log

∫
Dϕ(k)Dρ (k)eiT S̄(k). (3.57)

We henceforth drop the argument (k) for the differentials. Split the inte-
gral over k into positive and negative parts. Since ϕ and ρ are real, the
eigenfunctions come in complex conjugate pairs, e.g. ϕ−k = ϕ∗k. Therefore,

logZ =
T

2π

∞∫
0

dk log

∫
DϕDρ eiT S̄(k)

+
T

2π

∞∫
0

dk log

∫
Dϕ∗Dρ ∗eiT S̄(−k)

=
T

2π

∞∫
0

dk log ΠQ(k),

(3.58)

where
ΠQ(k) =

∫
DϕDϕ∗DρDρ∗ eiT Ŝ(k), (3.59)

and the effective action Ŝ is

Ŝ(k) = S̄(k) + S̄(−k)

=

∫
Rd
dx
(
k2|ϕ|2−|∇ϕ|2

)
+

∫
Q

dA (ρ∗∂nϕ+ ρ∂nϕ
∗) .

(3.60)

Similarly, we find that

logZ∞ =
T

2π

∞∫
0

dk log Π∞(k), (3.61)

45



where the subscript ∞ indicates that the separation distance between bound-
aries is infinite.

In order to find the Casimir energy, let T = −is. We also perform a Wick
rotation, k = iκ. Inserting this in (3.40) yields

E = − lim
s→∞

1

s
log

ZQ(S,−is)
Z∞(−is)

= − lim
s→∞

1

2π

∞∫
0

dκ log
ΠQ(iκ)

Π∞(iκ)
(3.62)

3.4 Classical Equations of Motion
We now have ΠQ in terms of a functional integral over ϕ and ρ. In this
section, we will resolve the integral over ϕ. The idea is to decouple ϕ and ρ
so that ΠQ can be written as a functional integral over ϕ multiplied by one
over ρ. The integral over ϕ will be the same for both ΠQ and Π∞, and will
thus cancel when we divide those.

First we shift ϕ as
ϕ = φ+ ϕ̃, (3.63)

where φ is the classical solution as found through the principle of least action,
and ϕ̃ is a fluctuating part. The classical action is

Ŝcl =

∫
Rd
dV
(
k2φφ∗ −∇φ · ∇φ∗

)
+

∫
Q

dA (ρ∗∂nφ+ ρ∂nφ
∗) . (3.64)

Consider a small variation δφ∗ in the field. The variation in the action is

δŜcl =

∫
Rd
dV
(
k2φδφ∗ −∇φ · ∇δφ∗

)
+

∫
Q

dA (ρ∂nδφ
∗) . (3.65)

According to Green’s first identity,

−
∫
V

dV ∇φ · ∇δφ∗ =

∫
V

dV δφ∗∇2φ−
∫
∂V

dA δφ∗∂nφ. (3.66)

Adding the cases when V is the interior or exterior of the objects and using
the fact that

∫
∂V0

dA = −
∫
Q
dA, we get

−
∫
Rd
dV ∇φ · ∇δφ∗ =

∫
Rd
dV δφ∗∇2φ−

∫
Q

dA
(
δφ∗−∂nφ− − δφ∗+∂nφ+

)
,

(3.67)
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where the notation means

φ±(x) = lim
ε→0

φ(x± εn), x ∈ Q. (3.68)

This gives the variation in the classical action

δŜcl =

∫
Rd
dV
(
k2φ+∇2φ

)
δφ∗

+

∫
Q

dA
(
ρ ∂nδφ

∗ − (δφ∗−∂nφ− − δφ∗+∂nφ+)
)
,

(3.69)

In order for the first integral to vanish, we must have

k2φ+∇2φ = 0, (3.70)

since δφ is arbitrary. With this relation, the variation becomes

δŜcl =

∫
Q

dA
(
ρ∂nδφ

∗ − (δφ∗−∂nφ− − δφ∗+∂nφ+)
)
. (3.71)

The next step is to derive conditions on ∆φ and ∆∂nφ, where ∆ means the
jump in the vector field as we move from the outside to inside an object,

∆φ = φ− − φ+. (3.72)

Selecting δφ to be continuous across the boundary, we write this as

δŜcl[δφ
∗] =

∫
Q

dA (ρ∂nδφ
∗ − δφ∗∆∂nφ) . (3.73)

This integral must also be zero for all variations δφ.
This is where we run into problems. There are in fact configurations where

requiring the integral to be zero imposes conditions on ρ. As an example,
consider a configuration where Qα is a circle with radius R centred at the
origin,† and select the variation in polar coordinates to be

δφ(r, θ) =
R

2π
sin

(
2πr

R

)
δϑ(θ), (3.74)

†While this is a very special case of configuration consisting on a circle, it serves as a
counter-example illustrating that there is a problem here, and it is no stretch to claim the
result can be generalized.
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where δϑ is an arbitrary variation that depends only on θ. Note that on Qα,
we have δφ(R, θ) = 0 and

∂nδφ(R, θ) = δϑ(θ), (3.75)

so δŜcl becomes

δŜcl[δφ
∗] =

∫
Q

dAρ(θ) δϑ∗(θ). (3.76)

But since δϑ(θ) is arbitrary it means that, in order for δŜcl to be zero for all
variations δφ∗, we must actually have ρ(θ) = 0 everywhere! This issue does
not arise for the Dirichlet case, where the integral corresponding to (3.73) is

δŜDirichlet =

∫
Q

dA (ρ δφ∗ −∆∂nφ δφ
∗) , (3.77)

which is zero for any ρ and all δφ∗ if ∆∂nφ = ρ. In [10], it is claimed
that (3.60) is indeed the correct expression for the effective action, and the
equations of motion for the classical action is derived by analogy with the
Dirichlet case and through comparing the two cases to electrostatics. What
we have found in this section suggests that if we want to keep ρ unconstrained,
there is no classical action that satisfies δŜcl/δφ∗ = 0, and hence, that the
analogy with the Dirichlet case is not sound.

One way to proceed is to disallow variations that place conditions on ρ.†
If we select the variation to be continuous and such that ∂nδφ∗ = 0 on Q,
(3.71) becomes

δŜ[δφ∗] =

∫
Q

dA (∂nφ− − ∂nφ+)δφ∗ = 0, (3.78)

which implies that
∂nφ− − ∂nφ+ = ∆∂nφ = 0, (3.79)

which gives a condition on ∆∂nφ. Before we continue, we need to discuss
how to interpret derivatives of functions at points where they have jump
discontinuities.

Suppose the function f(x) has a jump discontinuity of size ∆f(a) at x = a,
and that it is continuous for x 6= a. We can then write

f ′(x) = δ(x− a)∆f(a) + f ′r(x), (3.80)
†It is not really clear what variations we allow and which ones we do not, but the

following will require heuristic arguments anyway, so we accept some leniency.
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where δ is the Dirac delta function, and fr is the regular part of f that has
the jump singularity removed, i.e.

fr(x) = f(x)−∆f(a) θ(x− a), (3.81)

where θ(x) is the step function. This is illustrated in Figure 3.1. Note that if
f−(a) = f+(a), we have ∆f(a) = 0, and f(x) = fr(x) everywhere.

With this, (3.79) implies that ∂nφ− = ∂nφ+ = ∂nφr, and we can write
(3.71) as

δŜ =

∫
Q

dA (ρ∂nδφ
∗ −∆δφ∗∂nφr) . (3.82)

We want to apply (3.80) to ∂nδφ∗. The jump as we move across the border in
the direction of n is −∆δφ∗, due to the way we defined ∆ in (3.72). In order
to avoid the actual delta function, suppose the function increases rapidly by
an amount ∆δφ∗ in the direction of the normal over a small interval I of
radius 1/2δ0, where δ0 is very large. Then similarly to (3.80), we have

∂nδφ
∗ = −δ0∆δφ∗ + ∂nδφ

∗
r, (3.83)

where ∂nδφ∗r is the derivative just outside the interval I. As δ0 → ∞, the
interval I becomes a single point and the gradient essentially becomes the
Dirac delta function. Selecting δφ∗ such that ∂nδφ∗r = 0 (i.e. it is flat except
for a jump discontinuity) and inserting this in (3.82), we get

δŜcl =

∫
Q

dA (−ρδ0∆δφ∗ −∆δφ∗∂nφr)

=

∫
Q

dA (−ρδ0 − ∂nφr) ∆δφ∗ = 0,

(3.84)

which implies
∂nφr = −δ0ρ, (3.85)

since ∆δφ∗ is arbitrary. Again, we have run into a problem: as δ0 → ∞,
it seems as φr has a jump discontinuity across the border. However, φr is
defined as the regular part of φ so it cannot have jump discontinuities! In
fact, this seems to again suggest ρ = 0.

In order to make further progress, we observe that if we replace φr by φ,
(3.85) becomes

∂nφ = −δ0ρ. (3.86)
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Figure 3.1: The graph of f(x) = sinx + 0.5 θ(x − 0.8). It has a jump
discontinuity of size ∆f = 0.5 at x = 0.8, so f ′(x) = 0.5 δ(x− 0.8) + cosx. The
regular part fr(x) = sin(x) has the jump discontinuity removed.

As this is the same form as (3.83), and it suggests that

∆∂nφ = ρ. (3.87)

The argument leading up to this point has been shaky at best, but this last
jump does at least appears more reasonable than jumping from the Dirichlet
case to the von Neumann case just through analogy. It is possible that
applying the full theory of generalized functions will enable us to make this
argumentation rigorous. Another way of dealing with this will be presented
in Section 3.7.

For now, we accept that the equations of motion are

∇2φ+ k2φ = 0, x 6∈ Q, (3.88a)
∆φ = ρ, x ∈ Q, (3.88b)

∆∂nφ = 0, x ∈ Q, (3.88c)

and similarly for φ∗. This is what was given in [10], except (3.88b) was
∆φ = −ρ there. In [10] it was said, in the context of Dirichlet boundary
conditions, that "The classical theory defined by S[φ, ρ], describes a complex
scalar field coupled to a set of sources on the surfaces, and is a generalization
of electrostatics. By analogy with electrostatics, the field φ is continuous
throughout space, but its normal derivative jumps by ρα(x) across Σα." (p.
7). Later, it says that "Neumann boundary conditions are implemented by
replacing φ(x) by ∂nφ(x) ... Like the Dirichlet case, this case also has an
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analogy to electrostatics, namely, a complex field coupled to a set of surface
dipole densities ρα(x)" (p. 19). It seems as [10] is unclear about the nature
of ρ in their case. If it is regarded as a dipole of magnitude ρ pointing out
of the surface, it is equivalent to a dipole of magnitude −ρ pointing into the
surface. It is possible that [10] has interpreted ρ differently than we have, and
this is the source of the inconsistency. It is possible that it is just a difference
in convention, but that it still describes the same physics.

With these equations of motion, the classical action can be written as a
function of only ρ. We need the result that

−
∫
Rd
dV ∇φ · ∇φ∗ =

∫
Rd
dV φ∇2φ∗ −

∫
Q

dA
(
φ−∂nφ

∗
− − φ+∂nφ

∗
+

)
=

∫
Rd
dV φ∗∇2φ−

∫
Q

dA
(
φ∗−∂nφ− − φ∗+∂nφ+

)
.

(3.89)

Using the equations of motion (3.88), we have ∂nφ− = ∂nφ+ and φ−−φ+ = ρ,
and thus

φ−∂nφ
∗
− − φ+∂nφ

∗
+ = ρ ∂nφ

∗. (3.90)

With this, we get

−
∫
Rd
∇φ · ∇φ∗ =

1

2

∫
Rd
dV
(
φ∇2φ∗ + φ∗∇2φ

)
− 1

2

∫
Q

dA (ρ∂nφ
∗ + ρ∗∂nφ) .

(3.91)
Inserting this for the classical action (3.64) gives

Ŝcl =
1

2

∫
Rd
dV
(
k2φ+∇2φ

)
φ∗ +

1

2

∫
Rd

(
k2φ∗ +∇2φ∗

)
φ

+

∫
Q

dA (ρ∗∂nφ+ ρ∂nφ
∗)− 1

2

∫
Q

dA (ρ∂nφ
∗ + ρ∗∂nφ)

=
1

2

∫
Q

dA (ρ∗∂nφ+ ρ∂nφ
∗) .

(3.92)

Now, back to the effective action. Inserting ϕ = φ+ ϕ̃ in (3.60),

Ŝ[φ+ ϕ̃, ρ] =

∫
Rd
dV
(
k2(φ+ ϕ̃)(φ∗ + ϕ̃∗)−∇(φ+ ϕ̃) · ∇(φ+ ϕ̃)

)
+

∫
Q

dA (ρ∂n(φ∗ + ϕ̃∗) + ρ∗∂n(φ+ ϕ̃)) .
(3.93)
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The terms that are constant in ϕ̃ correspond to the classical action. The
terms linear in ϕ̃ will vanish due to the equations of motion (3.88), and only
the quadratic terms will remain,

Ŝ = Ŝcl +

∫
Rd
dV
(
k2|ϕ̃|2−|∇ϕ̃|2

)
. (3.94)

Inserting this in (3.59), we get

ΠQ(k) =

∫
DρDρ∗esŜcl

∫
Dϕ̃Dϕ̃∗es

∫
Rd dV (|ϕ̃|2−|∇ϕ̃|2). (3.95)

The second integral is completely geometry-independent, and will also appear
as a factor in Π∞(k). This means that it will cancel in (3.62). Thus, in
practice,

ΠQ(k) =

∫
DρDρ∗e

1
2

∫
Q dA(φ∗∂nρ+φ∂nρ∗). (3.96)

3.5 Scattering Solutions
Let

ρ =
r∑

α=1

ρα, (3.97)

where ρα are functions that are zero everywhere except on Qα. Then let

ϕcl =
∑
α

ϕα, (3.98)

where ϕα is the function satisfying (3.88) when ρβ = 0 for all β 6= α. Also let

Ŝcl =
1

2

∑
α,β

Sαβ, (3.99)

where
Sαβ =

∫
Qα

dA
(
ρα∂nϕ

∗
β + ρ∗α∂nϕβ

)
. (3.100)

When the separation distance becomes infinite, only the terms Sαα represent-
ing the self-interaction terms will remain, and in this case, the classical action
becomes

Ŝcl,∞ =
1

2

∑
α

Sαα. (3.101)
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Let G be the Green’s function satisfying

(∇2 + k2)G(x; ξ) = δ(x− ξ). (3.102)

The important property of the Green’s function is that

ϕβ(xα) =

∫
Qβ

dξβ ρβ(ξβ)∂nGαβ(xα; ξβ), (3.103)

meaning that ∂nϕβ can be written as

∂nϕβ(xα) =

∫
Qβ

dξβ ρβ(ξβ)∂nnGαβ(xα; ξβ)

=

∫
Qβ

dξβ ρβ(ξβ)Hαβ(xα; ξβ),

(3.104)

where H = ∂nnG.
Introduce a complete set of functions, {ψnα} on each of Qα. We can expand

H and ρα as
Hαβ(xα; ξβ) =

∑
j

Hj
αβ(ξβ)ψjα(xα) (3.105)

and
ρα(xα) =

∑
i

ρiαψ
i
α(xα). (3.106)

Using these expansions,

∂nϕβ(xα) =

∫
Qβ

dξβ
∑
j

ρjβψ
j
β(ξβ)

∑
i

H i
αβ(ξβ)ψiα(xα)

=
∑
i,j

ρjβψ
i
α(xα)

∫
Qβ

dξβH
i
αβ(ξβ)ψjβ(ξβ)

=
∑
i,j

ψiα(xα)H ij
αβρ

j
β,

(3.107)

where

H ij
αβ =

∫
Qβ

dξβH
i
αβ(ξβ)ψjβ(ξβ). (3.108)
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Integrating the second term in (3.100),∫
Qα

dAρ∗α∂nϕβ =

∫
Qα

dA
∑
k

ρk∗α ψ
k∗
α (xα)

∑
i,j

ψiα(xα)H ij
αβρ

j
β

=
∑
i,j,k

H ij
αβρ

j
βρ

k∗
α

∫
Qα

dAψk∗α (xα)ψiα(xα)

=
∑
k,j

ρk∗α H
kj
αβρ

j
β,

(3.109)

where

Hkj
αβ =

∑
i

H ij
αβ

∫
Qα

dAψk∗α ψ
i
α =

∑
i

〈
ψkα, ψ

i
α

〉
H ij
αβ. (3.110)

If {ψnα} is an orthonormal set of functions, then Hkj
αβ = Hkj

αβ, but for some
configurations it might be convenient to choose a more general function basis.
Then

Sαβ =
∑
k,j

(
ρk∗α H

kj
αβρ

j
β + ρkαH

kj∗
αβ ρ

j∗
β

)
. (3.111)

Now the action is

Ŝcl =
1

2

∑
α,β

∑
k,j

ρk∗α H
kj
αβρ

j
β +

∑
α,β

∑
k,j

ρkαH
kj∗
αβ ρ

j∗
β . (3.112)

For the second term, we can swap the dummy indices k and j as well as α
and β to get

Ŝl =
1

2

∑
α,β

∑
k,j

ρk∗α

(
Hkj
αβ +Hjk∗

βα

)
ρj∗β =

1

2

∑
α,β

∑
k,j

ρk∗α U
kj
αβρ

j
β, (3.113)

where
Ukj
αβ = Hkj

αβ +Hjk∗
βα . (3.114)

3.6 Discretization and Evaluation
Having Ŝcl on the form (3.113), we see that it can actually be written in terms
of the inner product,

Ŝcl = 〈ρ, Uρ〉 , (3.115)
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where U is an infinite matrix with entries U ij
αβ. We also view Ŝcl,∞ as an inner

product,
Ŝcl,∞ =

∑
α

Sαα =
∑
α

ρk∗α U
kj
ααρ

j
β = 〈ρ, U∞ρ〉 , (3.116)

where U∞ is a block matrix with matrix entries (U∞)αβ = Uαβδαβ, i.e. only
the matrices on the diagonal of U . Thus ΠQ becomes

ΠQ =

∫
DρDρ∗e−

1
2
s〈ρ,Uρ〉, (3.117)

and similarly for Π∞.
The matrix U is a block matrix with matrix entries Uαβ for α, β = 1, . . . , r,

but matrices Uαβ are infinite matrices, as they have one row for each function
in the complete set {ψnα}, which is infinite in general. In order to perform
numerical calculations, we must discretize our system and turn these matrices
into finite matrices. That is, we will find a finite set of functions {ψnα}Nn=1 and
approximate the matrix elements as a linear combination. We shall now give
two examples of how his can be done.

As explained in Section 3.1, one way is to select a Fourier basis. In two
dimensions,

ψnα(θ) =
1√
2π
einθ, θ ∈ [0, 2π). (3.118)

This is useful if the configuration is rotationally symmetric. A more general
approach is to approximate the object Qα by a piecewise linear curve with N
segments labelled Inα . Let Lnα be the length of that segment. Select the basis

ψnα(x) =

{
1/
√
Lnα, x ∈ Inα ,

0, otherwise.
(3.119)

This basis means we approximate the functions to be constant on each interval.
Note that in both these cases, the discretization essentially suppresses high
frequencies. In the former case, we explicitly cut off the high frequencies, and
in the latter case, the assumption that the functions are constant on each line
segment is good unless they contain wavelengths that are smaller than the
intervals.

With this choice of basis, we can write ΠQ as

ΠQ = J
∫ ( N∏

n=1

dρn dρ
∗
n

)
e−〈ρ,Aρ〉, (3.120)
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where

A = −1

2
sU (3.121)

and J is the Jacobian corresponding to the change of variables Dρ →
dρ1 · · · dρN . The J also captures the integration over the trailing variables
that were removed through discretization, as described in (3.8). From (3.24),
we know that this evaluates to

ΠQ =
J

detA
. (3.122)

Similarly, we have

Π∞ =

∫
DρDρ∗e−〈ρ,A∞ρ〉 =

J
detA∞

, (3.123)

where

A∞ = −1

2
sU∞. (3.124)

The Jacobian J is the same here since we did the performed the same change
of variables. Inserting this in (3.62) gives us an expression for the Casimir
energy,

E = − lim
s→0

1

2π

∞∫
0

dκ log
ΠQ(iκ)

Π∞(iκ)
=

1

2π

∫ ∞
0

dκ log
detA(iκ)

detA∞(iκ)
. (3.125)

Using the relation
detA

detB
= det(B−1A), (3.126)

we get the final expression for the energy,

E =
1

2π

∞∫
0

dκ log detM(iκ), (3.127)

where M = A−1
∞ A.
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Summary

Define
Ukj
αβ = Hkj

αβ +Hjk∗
βα (3.128)

for k, j = 1, . . . , N , where

Hkj
αβ =

N∑
i=1

〈
ψiα, ψ

k
α

〉 ∫
Qβ

dξβH
i
αβ(ξβ)ψjβ(ξβ), (3.129)

and H i
αβ are the coefficients in the expansion of H = ∂nnG,

H(xα; ξβ) = ∂nnG(xα; ξβ) =
∑
j

Hj
αβ(ξβ)ψiα(xα), (3.130)

where G is the Green’s function satisfying

(∇2 + k2)G(x; ξ) = δ(x− ξ), (3.131)

evaluated at k = iκ. Then let the matrix M be a block matrix with matrix
elements

Mαβ = U−1
ααUαβ, (3.132)

and the Casimir energy is given by

E =
1

2π

∞∫
0

dκ log detM. (3.133)

3.7 FIM with a Gradient Field
In Section 3.4 we found that there are many inconsistencies in deriving the
classical equations of motion under von Neumann boundary conditions. The
essence of the problem is that in the variation of the classical action,

δŜcl[δφ
∗] =

∫
Q

dA (ρ∂nδφ
∗ − δφ∗∆∂nφ) , (3.134)

δφ∗ and ∂nδφ∗ can be made to vanish separately, thus placing conditions on
ρ. This does not occur with Dirichlet boundary conditions, as the variation
only appears as δφ∗.
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One approach to this problem is to introduce

v = ∇ϕ, (3.135)

giving the boundary condition

n · v = 0, (3.136)

which now takes the form of a Dirichlet condition. The Lagrangian for v is

Lv =
1

2
v2
t − (∇v)2. (3.137)

The square of the gradient refers to the Frobenius product or the component-
wise inner product ∇v : ∇v, which for two matrices A and B is defined
as

A : B =
∑
i,j

AijBij. (3.138)

The partition function becomes

ZQ(S, T ) =

∫
DvC,T,G e

iS[ϕ], (3.139)

where the subscript G indicates the condition that v must be a gradient field.
This is equivalent to saying it has zero curl everywhere,† which we implement
this using the delta functional

δ[∇×v|Rd ] =

∫
Dπ ei

∫
Rd dV

∫ T
0 dtπ·∇×v. (3.140)

Proceeding as in Section 3.3, the partition function is

logZ =
T

2π

∞∫
0

dk log ΠQ(k) (3.141)

†In three dimensions, this refers to the usual curl. In two dimensions, we can regard the
field as a three-dimensional field with zero z component that is constant in the z-direction,
i.e. v(x, y, z) = (vx(x, y), vy(x, y), 0). This field has curl ∇×v = (∂xvy − ∂yvx)ẑ, giving
the condition ∂xvy − ∂yvx = 0. In the following discussion, we assume the dimension is
d = 2 or d = 3.
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where

ΠQ(k) =

∫
Dv δ[n · v|Q] δ[∇×v|Rd ] e−iS[ϕ]

=

∫ (∏
n

DvDv∗DρDρ∗DπDπ∗

)
eiT Ŝ(k)

(3.142)

and the effective action is

Ŝ =

∫
Rd
dV
(
k2v · v∗ −∇v : ∇v∗

)
+

∫
Q

dA · (ρ∗v + ρv∗)

+

∫
Rd
dV (π∗ · ∇×v + π · ∇×v∗) .

(3.143)

We translate v as v = u+ ṽ, where u is the classical field satisfying δŜcl/δu =
0. Analogous to (3.67) it can be shown that∫

Rd
dV ∇u : ∇δu∗ = −

∫
Rd
dV δu∗ · ∇2u+

∫
Q

dA δu∗ ·∆∂nu, (3.144)

assuming that δu∗ has no jump across the boundary. Next, using the property

a · ∇×b = b · ∇×a−∇·(a× b) (3.145)

and Gauss’ theorem, we have∫
Rd
dV π · ∇×δu∗ =

∫
Rd
dV δu∗ · ∇×π −

∫
Q

dAn · (∆π × δu∗). (3.146)

Next, using the property

n · (a× b) = (n× a) · b (3.147)

and assuming δu∗ is continuous across the boundary, the second integral
becomes ∫

Q

dAn · (π × δu∗) =

∫
Q

dA δu∗ · (n×∆π). (3.148)
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Then the variation in the classical action is

δŜcl =

∫
Rd
dV
(
k2u+∇2u+∇×π

)
· δu∗

+

∫
Q

dA (nρ−∆∂nu− n× δπ) · δu∗.
(3.149)

This yields the equations of motion,

∇2u+ k2u = −∇×π, x 6∈ Q, (3.150a)
∆u = 0, x ∈ Q, (3.150b)

∆∂nu = nρ− n×∆π, x ∈ Q. (3.150c)

This resolves the issue we had before, since ∂nδu∗ does not appear in (3.149).
Using the equations of motion, the classical action can be simplified to

Ŝcl =
1

2

∫
Rd
dV u∗ · ∇×π +

1

2

∫
Q

dA (nρ− n×∆π) · u∗ + c.c., (3.151)

where c.c. indicates the complex conjugate of the preceding terms. The
effective action can be written as

Ŝ = Ŝcl +

∫
Rd
dV
(
|ṽ|2−|∇ṽ|2

)
. (3.152)

The second integral is geometry-independent and will vanish when we regu-
larize. It is also possible to extract the parts containing π, leaving only ∆π.
If we let j = ∆π, we can write

ΠQ(k) =

∫
DπDπ e

1
2
s
∫
Rd dV (u∗·∇×π+u·∇×π∗)∫

DρDρ∗DjDj∗ e
1
2
s
∫
Q dA (nρ−n×j)·u∗+c.c..

(3.153)

Again, the first integral is geometry-independent and will be found as a factor
in Π∞ as well, meaning it will cancel. In practice, we end up with

ΠQ(k) =

∫
DρDρ∗DjDj∗ esŜeff (3.154)

where
Ŝeff =

1

2

∫
Q

dA (nρ− n× j) · u∗ + c.c. (3.155)

60



We have solved the issue we had before, but at a cost. Since we now have
a vector equation, the Green’s function G becomes a matrix. Furthermore,
the fact that we now have the inhomogeneous Helmholtz equation means the
integral identities we derive to express v in terms of G will contain integrals
over all Vα. Consequently, we must evaluate a d-dimensional integral, unlike
for the Dirichlet case where we had a (d−1)-dimensional integral. This causes
a massive increase in computation cost.
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Chapter 4

The boundary integral method

In this chapter we will develop the boundary integral method with von
Neumann boundary conditions. In Section 4.1 we will show that the pressure
at a point x on the boundary Qα can be written as

p(x) = lim
x′→x

∞∫
0

dω

2π

(
∂tt′ + ω2

)
D(x,x′, ω), (4.1)

where D is the Green’s function satisfying

(∇2 + ω2)D(x,x′, ω) = δ(x− x), (4.2)

with boundary conditions

n · ∇xD(x,x′, ω) = 0, x ∈ Qα,

n′ · ∇x′D(x,x′, ω) = 0, x′ ∈ Qα.
(4.3)

This integral applies for general dimensions, but for the rest of the section,
we will limit the discussion to two-dimensional space. In Section 4.2 find
an equation for D in terms of a boundary integral problem. In Section 4.3
we discretize these equations, turn them into a system of linear equations.
During this work we introduce the notion of self-interaction, which is discussed
more closely in Section 4.4. In Section 4.5 and Section 4.6 we show how this
is applied to parallel plates and concentric circles respectively. Then we
will in Section 4.7 look at how the computations can be simplified through
symmetries. Finally, in Section 4.8 we study the simplified case of one-
dimensional space.
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For someone unacquainted with the boundary integral method, it might
be wise to start with Section 4.8, which presents a simplified version of BIM.
Next I recommend starting from Section 4.2 and skipping Section 4.1 as this
section contains rather complicated calculations that are not important for the
rest of the discussion. The important result from Section 4.1 is the integral
(4.1), and most of the discussion will be about finding the Green’s function
D.

4.1 The force integral

From the introduction, the Lagrangian is given by

L =
1

2
ηµνϕµϕν . (4.4)

In developing the boundary integral method, we will also need the stress
energy tensor,

T µν =
∂L

∂(∂µϕ)
∂νϕ− δµνL. (4.5)

Noether’s theorem says that this is conserved,

∂µT
µν = 0. (4.6)

This gives us a further set of equations. The case ν = 0 corresponds to con-
servation of energy, and the cases ν = 1, 2, 3 each correspond to conservation
of one component of momentum. Explicitly, the conservation of momentum
can be written as

∂tp+∇·S = 0, (4.7)

where
p = ϕt∇ϕ (4.8)

is the momentum density and

S = −∇ϕ∇ϕ+
1

2
Tr(∇ϕ∇ϕ)I − 1

2
ϕ2
t I (4.9)

is the momentum flux.
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Force is defined as the time derivative of momentum. Using this fact, the
equation of momentum conservation (4.7) and the divergence theorem, we
can write the force on object α as

Fα = ∂t

∫
Vα

dV p(x, t) = −
∫
Vα

dV ∇·S(x, t) = −
∮
Qα

dAn · S(x, t), (4.10)

where n is the normal on the surface Qα.
We will now quantize he scalar field ϕ̂. The quantized field follows the

canonical commutation relations

[ϕ̂(x, t), ϕ̂(x′, t)] = 0,

[ϕ̂t(x, t), ϕ̂t(x
′, t)] = 0,

[ϕ̂t(x, t), ϕ̂(x′, t)] = iδ(x− x′).
(4.11)

Now, we presciently perform a Wick rotation, transforming to imaginary
time s = it. The time derivative changes as ∂t = ds

dt
∂s = i∂s. The canonical

commutation relations become

[ϕ̂(x, s), ϕ̂(x′, s)] = 0,

[ϕ̂s(x, s), ϕ̂s(x
′, s)] = 0,

[ϕ̂s(x, s), ϕ̂(x′, s)] = δ(x− x′).
(4.12)

Observe that the stress tensor can be written as

S(x, s) =

(
−∇∇+

1

2
Tr(∇∇)I +

1

2
∂2
sI

)
ϕ(x, s)ϕ(x, s)

=

(
−∇∇+

1

2
Tr(∇∇)I +

1

2
∂2
sI

)
1

2
{ϕ(x, s), ϕ(x, s)}

(4.13)

where {A,B} = AB +BA is the anti-commutator.
We define the quantum stress tensor Sq by the point separation method [6].

This method evaluates one of the fields at some nearby point (x′, s′) and
lets it approach (x, s). The corresponding time and gradient operators are
replaced by ∂s′ and ∇′ respectively. Then

Sq(x, s) = lim
x′→x
s′→s

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
∂s∂s′I

)
1

2
〈{ϕ(x, s), ϕ(x′, s′)}〉

= lim
x′→x
s′→s

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
∂s∂s′I

)
1

2
D(1)(x, s,x′, s′),

(4.14)
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where D(1)(x, s,x′, s) is the Hadamard’s Green’s function.
Consider the Heaviside step function

θ(x) =


0, x < 0
1
2
, x = 0

1, x > 0

(4.15)

This has the property θ(x) + θ(−x) = 1. Using this property, we can write
D(1) as

D(1)(x, s,x′, s) = (θ(s− s′) + θ(s′ − s)) 〈{ϕ̂(x, s), ϕ̂(x′, s′)}〉
= 2 (θ(s− s′) 〈ϕ̂(x, s)ϕ̂(x′, s′)〉+ θ(s′ − s) 〈ϕ̂(x′, s′)ϕ̂(x, s)〉)
− θ(s− s′) 〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉
+ θ(s′ − s) 〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉

= 2D(x, s,x′, s′)−DR(x, s,x′, s′)−DA(x, s,x′, s′),

(4.16)

where

DR(x, s,x′, s′) = θ(s− s′) 〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉 (4.17)
DA(x, s,x′, s′) = −θ(s′ − s) 〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉 (4.18)

are the retarded and advanced Green’s functions respectively, and

D(x, s,x′, s′) = θ(s− s′) 〈ϕ̂(x, s)ϕ̂(x′, s′)〉+ θ(s′ − s) 〈ϕ̂(x′, s′)ϕ̂(x, s)〉
= 〈T (ϕ̂(x, s)ϕ̂(x′, s′)〉 ,

(4.19)

where T represents time-ordering. Because of the commutation relations
(4.12), DR and DA vanish in the limit (x′, s′)→ (x, s). Thus,

Sq(x, s) = lim
x′→x
s′→s

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
∂s∂s′

)
D(x, s,x′, s′). (4.20)

We will now derive some properties for D and show that it is a Green’s
function. This is known as the basic Green’s function, and we will refer to
this as the Green’s function. Assume that the quantum field is in thermal
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equilibrium. For an operator Â in this state, it is known that 〈Â〉 = Tr(ρ̂Â),
where the density matrix ρ̂ is

ρ̂ =
1

Z
e−βĤ , (4.21)

where β = 1/T , T is temperature, Z = Tr
(
e−βĤ

)
is the partition function

and Ĥ is the Hamiltonian. Then the Green’s function can be written as

D(x, s,x′, s′) =
1

Z
Tr
(
e−βĤT (ϕ̂(x, s)ϕ̂(x′, s′))

)
. (4.22)

In the following, we study properties pertaining to the time domain so for
simplicity we abbreviate

D(s, s′) = D(x, s,x′, s′). (4.23)

Let

D+(s, s′) = 〈ϕ̂(x, s)ϕ̂(x′, s′)〉
D−(s, s′) = 〈ϕ̂(x′, s′)ϕ̂(x, s)〉 ,

(4.24)

and note that the Green’s function can be written as

D(s, s′) =

{
D+(s, s′), s > s′

D−(s, s′), s < s′
. (4.25)

We will first show that the Green’s function is dependent only of s− s′.
In the Heisenberg picture, ϕ̂ satisfies the equation of motion

d

ds
ϕ̂(x, s) = [Ĥ, ϕ̂]. (4.26)

Assuming the conductors are stationary so that Ĥ is stationary, this has the
solution

ϕ̂(x, s) = esĤϕ̂(x)e−sĤ , (4.27)

where ϕ̂(x) = ϕ̂(x, 0). Using this property, we observe that

D+(s+ β, s′) =
1

Z
Tr
(
e−βĤe(s+β)Ĥϕ̂(x)e−(s+β)Ĥϕ̂(x′, s′)

)
=

1

Z
Tr
(
esĤϕ̂(x)e−sĤe−βĤϕ̂(x′, s′)

)
=

1

Z
Tr
(
ϕ̂(x, s)e−βĤϕ̂(x′, s′)

)
.

(4.28)
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Using the property of matrices

Tr(ABC) = Tr(BCA) = Tr(CAB), (4.29)

we get

D+(s+ β, s′) =
1

Z
Tr
(
e−βĤϕ̂(x′, s′)ϕ̂(x, s)

)
= D−(s, s′). (4.30)

Furthermore,

D+(s, s′) =
1

Z
Tr
(
e−βĤϕ̂(x, s)ϕ̂(x′, s′)

)
=

1

Z
Tr
(
e−βĤesĤϕ̂(x)e−sĤes

′Ĥϕ̂(x′)e−s
′Ĥ
)
.

(4.31)

Again using (4.29),

D+(s, s′) =
1

Z
Tr
(
e−s

′Ĥe−βĤesĤϕ̂(x)e−sĤes
′Ĥϕ̂(x′)

)
=

1

Z
Tr
(
e−βĤe(s−s′)Ĥϕ̂(x)e−(s−s′)Ĥϕ̂(x′)

)
=

1

Z
Tr
(
e−βĤϕ̂(x, s− s′)ϕ̂(x′, 0)

)
= D+(s− s′, 0).

(4.32)

Similarly, it can be shown that

D−(s, s′ + β) = D+(s, s′) (4.33)

and
D−(s, s′) = D−(s− s′, 0). (4.34)

(4.30) and (4.33) are known as the Kubo-Martin-Schwinger (KMS) boundary
conditions [16] [18]. Based on these properties, we define

D(s) =

{
D+(s, 0), s > 0

D−(s, 0) s < 0
(4.35)

and note that D(s, s′) = D(s− s′). Also note that with this convention, the
stress tensor becomes

Sq(x, s) = lim
x′→x
s→0

(
−∇∇′ + 1

2
Tr(∇∇′)I − 1

2
∂ss

)
D(x,x′, s), (4.36)
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and in particular note that the partial derivative has changed as ∂s∂s′ → −∂ss.
Next, let |n〉 be a complete set of eigenstates for Ĥ,

Ĥ |n〉 = En |n〉 . (4.37)

For s > 0 we have

D+(s, 0) =
1

Z
Tr
(
e−βĤesĤϕ̂(x)e−sĤϕ̂(x′)

)
=

1

Z

∑
n

〈
n
∣∣∣e−βĤesĤϕ̂(x)e−sĤϕ̂(x′)

∣∣∣n〉
=

1

Z

∑
n,n′

〈
n
∣∣e−βEnesEnϕ̂(x)

∣∣n′〉 〈n′∣∣e−sEn′ ϕ̂(x′)
∣∣n〉

=
1

Z

∑
n,n′

e−(β−s)Ene−sEn′ 〈n|ϕ̂(x)|n′〉 〈n′|ϕ̂(x′)|n〉 .

(4.38)

Notice that the terms grow without bound when s > β, so D(s) exists only
for s ≤ β. Similarly, for s < 0,

D−(s, 0) =
1

Z

∑
n,n′

e−(β+s)Ene−sEn′ 〈n|ϕ̂(x)|n′〉 〈n′|ϕ̂(x′)|n〉 , (4.39)

which imposes the restriction s ≥ −β. Thus D(s) exists only for s ∈ [−β, β].
Applying the KMS conditions gives

D(s+ β) = D+(s+ β, 0) = D−(s, 0) = D(s), (4.40)

which shows that D(s) is determined by only its values on [−β, 0]. We
therefore extend the definition of D(s) by letting it be D−(s, 0) on [−β, 0],
and β-periodic elsewhere.

Finally we will show that D(s) is a Green’s function for the operator
∂ss +∇2. First we write

D(s) = θ(s) 〈ϕ̂(x, s)ϕ̂(x′, 0)〉+ θ(−s) 〈ϕ̂(x′, 0)ϕ̂(x, s)〉 , (4.41)

where θ is the Heaviside step function. Using θ′(s) = δ(s),

D′(s) = δ(s) 〈ϕ̂(x, s)ϕ̂(x′, 0)〉 − δ(s) 〈ϕ̂(x′, 0)ϕ̂(x, s)〉
+ θ(s) 〈∂sϕ̂(x, s)ϕ̂(x′, 0)〉+ θ(−s) 〈ϕ̂(x′, 0)∂sϕ̂(x, s)〉 .

(4.42)
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Then the commutation relations (4.12) lead to

D′(s) = θ(s) 〈ϕ̂s(x, s)ϕ̂(x′, 0)〉+ θ(−s) 〈ϕ̂(x′, 0)ϕ̂s(x, s)〉 . (4.43)

A second differentiation gives

D′′(s) = δ(s) 〈ϕ̂s(x, s)ϕ̂(x′, 0)〉 − δ(s) 〈ϕ̂(x′, 0)ϕ̂s(x, s)〉
+ θ(s) 〈∂sϕ̂s(x, s)ϕ̂(x′, 0)〉+ θ(−s) 〈ϕ̂(x′, 0)∂sϕ̂s(x, s)〉 .

(4.44)

Here the property δ(s)f(s) = δ(s)f(0) lets us use the commutation relation
[ϕ̂s(x, 0), ϕ̂(x′, 0)] = δ(x− x′). Furthermore, ϕ̂(x, s) satisfies the Helmholtz
equation,

∂ssϕ(x, s) +∇2ϕ(x, s) = 0. (4.45)

Then
∂ssD(x,x′, s) +∇2D(x,x′, s) = δ(s)δ(x− x′), (4.46)

which shows that D is indeed a Green’s function for (4.45).
Our boundary conditions on ϕ̂ are ∂nϕ̂|Q = 0. Using this in the definition

of D, (4.19), we see that

∂nD(x,x′, s) = 0, x ∈ Q
∂n′D(x,x′, s) = 0, x′ ∈ Q,

(4.47)

where ∂n and ∂n′ are the derivatives in the direction of the normal of Q at
points x and x′ respectively.

We showed that D is periodic with period β = 1/T . In this thesis we
are concerned with the case T → 0 or β →∞, so D(x,x′, s) can be Fourier
transformed in s. We obtain the equation

∇2D(x,x′, ω)− ω2D(x,x′, ω) = δ(x− x′) (4.48a)
∂nD(x,x′, ω) = 0, x ∈ Q (4.48b)
∂n′D(x,x′, ω) = 0, x′ ∈ Q. (4.48c)

We have found that the force on object α is

Fα =

∫
Qα

dA ·
∞∫

−∞

dω

2π
Sq(x, ω) (4.49)
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where Sq is the stress tensor

Sq(x, ω) = lim
x′→x

(
−∇∇′ + 1

2
Tr(∇∇′) +

1

2
ω2

)
D(x,x′, ω) (4.50)

and D is the Green’s function of L = ∇2 − ω2 satisfying the boundary
conditions.

In two dimensions, the gradient can be decomposed into normal and
tangential components near the surface Q,

∇ = n ∂n + t ∂t. (4.51)

In terms of these partial derivatives, the trace of the gradients is

Tr(∇∇′) = ∂nn′ + ∂tt′ . (4.52)

Because of the boundary condition, terms containing ∂n vanish on the bound-
ary. The stress tensor is then

Sq(x, ω) = lim
x′→x

(
tt′ ∂tt′ +

1

2
∂tt′ +

1

2
ω2

)
D(x,x′, ω) (4.53)

The product n · tt′ = 0, and so the force can be written as

Fα = −
∫
Qα

dAn · 1

2

∞∫
−∞

dω

2π
(∂tt′ + ω2)D(x,x, ω), (4.54)

where we have dropped the limit and interpret ∂t′ as working on the second
argument of D. As we shall see, D depends only on the absolute value of ω,
and thus we can rewrite this as

Fα = −
∫
Qα

dAn

∞∫
0

dω

2π
(∂tt′ + ω2)D(x,x, ω) = −

∫
Qα

dA p(x), (4.55)

where

p(x) =

∞∫
0

dω

2π
(∂tt′ + ω2)D(x,x, ω) (4.56)

is interpreted as the Casimir pressure. We will now find D(x,x, ω).

71



4.2 The boundary integral equation
To simplify notation, we write D(x,x′) = D(x,x′, ω). Our approach is based
on Green’s second identity,∫

V

dV
(
ψ∇2ϕ− ϕ∇2ψ

)
=

∫
∂V

dA (ψ∂nϕ− ϕ∂nψ) . (4.57)

This identity also holds if we replace ∇2 with the operator L = ∇2 − ω2, as
the terms corresponding to ω2 will cancel on the left hand side. Let D0 be
the free Green’s function of L,

LD0(x,x′′) = δ(x− x′′). (4.58)

In two dimensions, this equation has the solution

D0(x,x′′) = − 1

2π
K0(ω‖x− x′′‖) (4.59)

where K0 is the modified Bessel function of second kind (see Appendix B).
The normal derivative on some surface with normal vector n is

∂nD0(x,x′′) = −n · ω
2π
K ′0(ω‖x− x′′‖)∇‖x− x′′‖

=
ω

2π
K1(ω‖x− x′′‖)n · x− x

′′

‖x− x′′‖
.

(4.60)

Letting ϕ = D and ψ = D0 in (4.57) and integrating over the exterior space
V0, ∫

V0

dV (D0(x,x′′)LD(x,x′)−D(x,x′)LD0(x,x′′))

=

∫
∂V0

dA (D0(x,x′′)∂nD(x,x′)−D(x,x′)∂nD0(x,x′′))

=

∫
Q

dξD(ξ,x′)∂nD0(ξ,x′′).

(4.61)

In the last step we used the fact that ∂nD = 0 on Q, and that
∫
∂V0

= −
∫
Q
.

On the other hand, if x′,x′′ ∈ V0,∫
V0

dV (D0(x,x′′)LD(x,x′)−D(x,x′)LD0(x,x′′))

=

∫
V0

dV (D0(x,x′′)δ(x− x′)−D(x,x′)δ(x− x′′))

=D0(x′,x′′)−D(x′′,x′).

(4.62)
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Taken together, this gives

D(x′′,x′) = D0(x′,x′′)−
∫
Q

dξD(ξ,x′)∂nD0(ξ,x′′). (4.63)

We are interested in calculating D(x′,x′′) for x′ and x′′ on the surfaces. When
deriving (4.63), we required that x′,x′′ ∈ V0, so in order to evaluate this on
the surfaces, we must specify a limiting process.

First we shall let x′′ approach the surface of object α. Specifically, denote a
point on Qα by xα, and let x′′ → xα. The emerging issue is that ∂nD0(ξα,xα)
is singular at ξα = xα. There are no problems on other surfaces, so we isolate
the issue by writing

D(xα,x
′) = D0(x′,xα)−

∑
γ 6=α

∫
Qγ

dξγ D(ξγ,x
′)∂nD0(ξγ,xα)

− lim
x′′→xα

∫
Qα

dξαD(ξα,x
′)∂nD0(ξα,x

′′).

(4.64)

In order to evaluate the second integral, we first split it into two parts,∫
Qα

dξαD(ξα,x
′)∂nD0(ξα,x

′′) =

[∫
Sε

+

∫
Cε

]
dξαD(ξα,x

′)∂nD0(ξα,x
′′)

(4.65)
where Cε is a small section around xα with radius ε, and Sε is the remainder
of the curve. As ε→ 0, the part over Sε becomes a principal value integral.
For the part over Cε, we start by assuming that D is approximately constant
on the interval and can thus be brought outside the integral:∫

Cε

dξαD(ξα,x
′)∂nD0(ξα,x

′′) ≈ D(xα,x
′)

∫
Cε

dξα ∂nD0(ξα,x
′′). (4.66)

Inserting this in (4.64) gives us the equation

D(xα,x
′) = D0(x′,xα)−

∑
γ

PVxα

∫
Qγ

dξγ D(ξα,x
′)∂nD0(ξα,xα)

−D(xα,x
′) lim
ε→0

∫
Cε

dξα ∂nD0(ξα,xα).

(4.67)
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Let†

E(x,x′) = ∂n′D0(x′,x) = − ω

2π
K1(ω‖x− x′‖) n′ · x− x

′

‖x− x′‖
(4.68)

where n′ = n(x′), and write (4.67) as

κD(xα,x
′) = D0(xα,x

′)−
∑
γ

PVxα

∫
Q

dξE(xα, ξ)D(ξ,x′), (4.69)

where the principal value becomes relevant only when γ = α, and

κ = 1 + lim
ε→0

∫
Cε

dξα ∂nD0(ξα,xα). (4.70)

The evaluation of this integral is an interesting point. In the Dirichlet case, a
corresponding integral was evaluated to zero using the technique of changing
the integral path to move along small semicircle around xα [14] [20]. In that
case, the integrand was D0 instead of ∂nD0, which has a weaker singularity.
If we use the same regularization technique here we find κ = 1/2. However,
another technique gives κ = 1, and in fact we found this to yield numerical
answers that matched the exact values. This point is discussed in much detail
in Section 5.3. For now, let us keep κ as an unknown constant.

Moving on, the next step is to let x′ approach the surface of object β.
For β 6= α, this is no problem. However, in the limit xβ → xα, D0 blows
up. We approach this problem by introducing the function Dα, representing
the Green’s function if α had been the only object. According to (4.69) the
equation for Dα must be

κDα(xα,x
′) = D0(xα,x

′)− PVxα
∫
Qα

dξαE(xα, ξα)Dα(ξα,x
′). (4.71)

We shall refer to Dα as the self-pressure. Next, let

P (xα,x
′
β) = D(xα,x

′
β)− δαβDβ(xα,x

′
β). (4.72)

Importantly, for the case α = β, P does not have the aforementioned singular-
ity from D0. Furthermore, we claim that if we replace D by P in (4.55), the

†Be aware that order of the arguments are swapped here. This will simplify notation
later. The arguments of D0 are swapped as well in (4.69), but this does not change its
value.
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contribution from Dα must be zero. Otherwise, if α was truly the only object,
there would be a nonzero net force on it, which would cause an acceleration
that contradicts conservation of momentum.

There still appears to be a problem in (4.71), namely that D0(xα,x
′)

still blows up around x′ = xα. This means that Dα might exhibit singular
behaviour here. However, Dα only appears inside an integral, so this will not
be a problem if the singularity is integrable. We shall come back to this point
in Section 4.4, where we argue that it is indeed integrable. Until then, this
issue will not invalidate the rest of our discussion.

For α 6= β, inserting (4.72) in (4.69) gives

κP (xα,xβ) = D0(xα,xβ)− PVxα
∫
Q

dξE(xα, ξ)D(ξ,xβ)

= D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)D(ξβ,xβ)

−
∑
γ 6=β

PVxα

∫
Qγ

dξγ E(xα, ξγ)P (ξγ,xβ).

(4.73)

But D(ξβ,xβ) = Dβ(xβ,x
′
β) + P (ξβ,xβ), so

κP (xα,xβ) = D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)Dβ(ξβ,xβ)

−
∑
γ

PVxα

∫
Qγ

dξγ E(xα, ξγ)P (ξγ,xβ).
(4.74)

For α = β, we have

κP (xα,x
′
α) = D0(xα,x

′
α)− PVxα

∫
Q

dξE(xα, ξ)D(ξ,x′α)

−
[
D0(xα,x

′
α)− PVxα

∫
Qα

dξαE(xα, ξα)Dα(ξα,x
′
α)

]
= −

∑
γ 6=α

∫
Qγ

dξγ E(xα, ξγ)P (ξγ,xα)

−
∫
Qα

dξαE(xα, ξα) (D(ξα,x
′
α)−Dα(ξα,x

′
α))

= −
∑
γ

PVxα

∫
Qγ

dξγ E(xα, ξγ)P (ξγ,xα).

(4.75)
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Then for general α and β, we can write

κP (xα,xβ) = V (xα,xβ)− PVxα
∫
Q

dξE(xα, ξ)P (ξ,xβ), (4.76)

where

V (xα,xβ) = D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)Dβ(ξβ,xβ) (4.77)

when α 6= β and zero otherwise.

4.3 Discretization
We will now discretize the surfaces in order to turn the integral equation into
a set of linear equations.

We approximate each surface as piecewise linear curve. The surface Qα is
divided into line segments I iα for i = 1, . . . , N . Let xiα be the midpoint on I iα
and let Liα be the length of that segment. We can then split the integral in
(4.76) as∫

Q

dξE(xα, ξ)P (ξ,xβ) =
∑
γ

N∑
k=1

∫
Ikγ

dξγ E(xα, ξγ)P (ξγ,xβ). (4.78)

Assuming that P (ξγ,xβ) varies little on Ikγ , it can be brought outside the
integral and evaluated at ξγ = xkγ:∫

Ikγ

dξγ E(xα, ξγ)P (ξγ,xβ) = P (xkγ,xβ)

∫
Ikγ

dξγ E(xα, ξα). (4.79)

We will calculate the pressure at the midpoints, i.e. at xα = xiα and xβ = xjβ.
Let P ij

αβ = P (xiα,x
j
β), and similarly define

V ij
αβ = D0(xiα,x

j
β)−

∫
Qβ

dξβ E(xiα, ξβ)Dβ(ξβ,x
j
β). (4.80)

In this manner we discretize (4.76), turning it into the set of equations

κP ij
αβ = V ij

αβ −
∑
γ

N∑
k=1

P kj
γβ PVxiα

∫
Ikγ

dξγ E(xiα, ξγ). (4.81)
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Since E(xiα, ξγ) contains a factor on the form n(ξγ) · (xiα− ξγ), the integrand
vanishes on I iα where this factor is zero. The other integrals are well-behaved,
and can be evaluated for example with the midpoint rule,∫

Ikγ

dξγ E(xiα, ξγ) ≈ LkγE(xiα,x
k
γ). (4.82)

Finally, if we let

M ik
αγ = κδαγδik + (1− δαγδik)LkγE(xiα,x

k
γ), (4.83)

we can write this set of equations as

∑
γ

N∑
k=1

M ik
αγP

kj
γβ = V ij

αβ. (4.84)

This discretizes our equation into a system of equations. For fixed β and j,
this represents a set of Nr linear equations.

To write it even more compactly, we can let P , V andM be block matrices
with entries P ij

αβ, V
ij
αβ and M ij

αβ respectively (see (1.7)), for α, β = 1, . . . , r and
i, j = 1, . . . , N . Then (4.84) can be written compactly as

MP = V. (4.85)

Each column in this matrix equation represents a set of Nr equations and
unknowns. Thus, to solve for the Green’s function at xjβ, we must first solve

Mp(xjβ) = v(xjβ), (4.86)

where p(xjβ) and v(xjβ) are block vectors with entries P (xiα,x
j
β) and V (xiα,x

j
β)

respectively, for α = 1, . . . , r and i = 1, . . . , N . In finding the Casimir pressure,
we are especially interested in the entry P jj

ββ = P (xjβ,x
j
β) appearing in (4.56).

In the pressure integral (4.56) we have a term ∂t∂t′P (x,x, ω), where the
∂t′ indicates that it should be applied to the second argument. In discretizing,
we must also discretize the operator. To develop a finite difference formula
for this expression, we start from Taylor’s theorem,

f(x+ h+t) = f(x) + h+∂tf(x) +O(h2
+),

f(x− h−t) = f(x)− h−∂tf(x) +O(h2
−).

(4.87)
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Subtracting these, we get

∂tf(x) ≈ f(x+ h+)− f(x− h−)

h+ + h−
. (4.88)

In our particular situation, we have xjα± h±t ≈ xj±1
α when h± is the distance

between xjα and xj±1
α . Applying this, we get

∂tPαβ(xiα,x
j
β) ≈

Pαβ(xi+1
α ,xjβ)− Pαβ(xi−1

α ,xjβ)

‖xi+1
α − xiα‖+ ‖xiα − xi−1

α ‖
=
P i+1,j
αβ − P i−1,j

αβ

h+ + h−
. (4.89)

Next we apply ∂t′ to this expression:

∂tt′Pαβ(xiα,x
j
β) ≈ ∆ijP ij

αβ =
P i+1,j+1
αβ − P i+1,j−1

αβ − P i−1,j+1
αβ + P i−1,j−1

αβ

(h+ + h−)(h′+ + h′−)
.

(4.90)
For shorthand, we have introduced the discrete derivative operator ∆ij , which
can be defined as above or in any other convenient way.

At last the pressure from (4.56) can be written as

p(xjβ) =

∞∫
0

dω

2π
(∆jj + ω2)P jj

ββ, (4.91)

where P jj
ββ implicitly is a function of ω. While the ω integral is not actually

discretized, we assume P jj
ββ as a function of ω is finite, continuous, and

converges to 0 sufficiently fast. Thus, the integral is straightforward to
implement numerically, for example by selecting a cutoff (which might have
to be done a posteriori, after sampling P jj

ββ for a few values of ω) and using a
Gaussian quadrature.

4.4 The self-pressure

In order to calculate the source (4.80), we need to evaluate the integral∫
Qβ

dξβ E(xiα, ξβ)Dβ(ξβ,x
j
β). (4.92)
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Assuming Dβ is well-behaved, we split this integral, then approximate it using
the midpoint rule:∫

Qβ

dξβ E(xiα, ξβ)Dβ(ξβ,x
j
β) =

N∑
k=1

∫
Ikβ

dξβ E(xiα, ξβ)Dβ(ξβ,x
j
β)

≈
N∑
k=1

E(xiα,x
k
β)Dβ(xkβ,x

j
β)

(4.93)

and (4.80) turns into

V ij
αβ = D0(xiα,x

j
β)−

N∑
k=1

E(xiα,x
k
β)Dβ(xkβ,x

j
β) (4.94)

This set of equations for a fixed xjβ can be written as

vα(xjβ) = D0,α(xjβ)−MαβDβ(xjβ), (4.95)

where vα(xjβ) is the vector with entries V (xiα,x
j
β) for i = 1, . . . , N , and we

define D0,α(xjβ) and Dβ(xjβ) similarly.
This means we need to find Dβ(xkβ,x

j
β) for k = 1, . . . , N . (4.71) gives us

the equation

κDβ(xkβ,x
j
β) = D0(xkβ,x

j
β)− PVxkβ

∫
Qβ

dξβ E(xkβ, ξβ)Dβ(ξβ,x
j
β). (4.96)

This immediately presents a problem for k = j, as D0 has a singularity
when xkβ = xjβ. Since (4.96) is linear and the asymptotic behaviour of D0 is
D0 ∼ log ε (see (B.12)), we expect that Dβ also has a singularity proportional
to log ε. This singularity is integrable, and we can evaluate Dβ at x′ close to
xjβ, e.g. at x

′ = xjβ + εn(xjβ). Then, when we insert Dβ(xkβ,x
′) in (4.80), we

expect to see that the integral still converges and is independent of ε as long
as it is small.

Additionally, the fact that the the magnitude of Dβ is similar to the
magnitude of D0, both in maximum value and in shape, has another implica-
tion. When we discretize (4.96), Dβ(ξβ,x

′) will have a peak around ξβ = x′

which is proportional to the peak of D0(x,x+ εn). In order to get a good
approximation that allows us to apply the midpoint rule, we must must have
a sufficiently good resolution of the curve that accurately resolves this peak.
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For a sufficiently large N , we split the integral and bring Dβ outside:

κDβ(xkβ,x
′) = D0(xkβ,x

′)−
N∑
l=1

Dβ(xlβ,x
′)PVxkβ

∫
Ilβ

dξβ E(xkβ, ξβ). (4.97)

Vectorizing as before gives us

MββDβ(x′) = D0,β(x′). (4.98)

where the entries of the matrix Mββ are

Mkl
ββ = κδkl + (1− δkl)LlβE(xkβ,x

l
β). (4.99)

Solving this for Dβ(x′) at some x′ close to xjβ, we can insert it in (4.95) and
get the source term vα(xjβ).

4.5 Example: parallel plates

We now consider a specific case of two parallel plates. Because it is impossible
to treat infinite plates numerically, we make the approximation that there
are two plates of length L at a distance a, where L� a. Near the middle of
these plates, the situation is similar to the one where the plates are infinite,
and we shall view the pressure at this point as representative for the pressure
everywhere on the infinite plates.

Choosing an equidistant discretization, the length of each segment is
Ljβ = L/N . We need to calculate the matrix elements M ij

αβ and viα in (4.86).
Let’s start with M ij

αβ. Since E
ij
αβ contains a factor on the form nβ ·

(
xiα − x

j
β

)
,

we immediately see that M ij
αβ = κδij when α = β, as xiα and xjβ both lie on

the same plate and their difference is perpendicular to n. For α 6= β, M ij
αβ is

readily computable. Let dij = i−j
N
L be the parallel distance between xiα and

xjβ. With the perpendicular distance between the two plates being a, we have

xiα − x
j
β = anβ + dijtβ. (4.100)
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Then (5.8) gives

M ij
αβ = LjβE(xiα,x

j
β) = − L

N

ω

2π
K1(ω‖xiα − x

j
β‖)nβ ·

xiα − x
j
β

‖xiα − x
j
β‖

= − aLω
2πN

K1

(
ω
√
a2 + d2

ij

)
√
a2 + d2

ij

. (4.101)

Next, let us look at v j
αβ. Recalling that the source vanishes for α = β, so

the first term in (4.95) becomes,

D0(xiα,x
j
β) = − 1

2π
K0

(
ω
√
a2 + d2

ij

)
(4.102)

is well-behaved. The self pressure is given by

MββD
j
β = D0,β(x′), (4.103)

but since Mββ = κI, we simply have Dj
β = 1

κ
D0,β(x′).

At this point, all the unknowns in (4.86) are defined, and we can solve the
system to get P ij

αβ. To approximate the situation for infinite plates, we will

evaluate this at the middle, i.e. at x = x
N
2
α . Since plates are translationally

invariant, ∂tt′D = 0. Then, according to (4.56), the pressure is given by

p(x
N
2
α ) =

∞∫
0

dω

2π
ω2P

N
2
N
2

ββ . (4.104)

Figure 4.1 shows the calculated pressure p as a function of a, together with
the exact pressure,

pexact = − ζ(3)

8πa3
. (4.105)

The X’es indicates the points computed by BIM multiplied by a factor 2,
and match the exact solution well. Apart from this factor, the geometry
dependence is correct. Kilen and Mikalsen found this same factor was found
to be missing for Dirichlet cases in both 2 and 3 dimensions [14] [20]. This
observation suggests the factor is also missing for von Neumann boundary
conditions. This point will be discussed in depth in Section 5.4.
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Figure 4.1: The Casimir pressure between two parallel plates at a separation
distance a as computed by BIM, together with the exact value from mode
expansion. The X’es mark values computed by BIM multiplied by 2, which
match the exact solution. The functions were sampled for 0.7 < a < 2.2
with steps 0.1. The plates from BIM were approximated by finite plates of
length L = 10. The resolution used was N = 100, and the integral over ω was
computed using Simpson’s rule with 20 points.

4.6 Example: concentric circles
Consider a specific case of two concentric circles Q1 and Q2 with radii r1 and
r2, with r1 < r2.

To calculate the pressure numerically, discretize the circles according to

xjβ =

[
rβ cos(2πj/N)
rβ sin(2πj/N)

]
. (4.106)

The normals point into the space between the circles,

nj1 =

[
cos(2πj/N)
sin(2πj/N)

]
, nj2 = −

[
cos(2πj/N)
sin(2πj/N)

]
. (4.107)

Using these parametrizations, we can find M ij
αβ and vjβ according to (4.83)

and (4.95) and solve (4.86). Due to rotational symmetry, the pressure will be
the same on the whole circle. Thus, we only need to calculate the pressure at
one point on each circle, and moreover, ∂tt′D = 0 in (4.56).

The numerical calculations performed by the author did not give an answer
that matched the exact pressure given in (2.155). This worrisome fact is
discussed more closely in Section 5.2.
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4.7 Symmetry reductions

Lastly we will look at how symmetries can be used to reduce the number of
points required for the computations. We already used symmetries in our
examples of parallel plates and concentric circles to reduce the number of
points where the pressure must be calculated. In those cases we used ad hoc
arguments, and we now generalise that notion.

Let h be an isometry that preserves Q. An isometry means that all lengths
are invariant under the action of this function, i.e. ‖x− x′‖ = ‖hx− hx′‖
for all x and x′. The isometries in Rn are translations, rotations, reflections,
and compositions of these. The isometries form a group under composition.

When we say it preserves Q, we mean that h(Q) = Q. This means that h
essentially permutes the surfaces Q1, . . . , Qr, or in other words, for every α
there is an α′ such that

h(Qα) = Qα′ . (4.108)

Throughout, we shall use this convention that α′ is the index of the surface
such that h(Qα) = Qα′ . If two objects are related through an isometry, we
say that the two objects are congruent.

Recall that the equation for P is

κP (xα,xβ) = V (xα,xβ)− PVxα
∫
Q

dξE(xα, ξ)P (ξ,xβ). (4.109)

What we wish to show is that

P (hx,x′) = P (x, h−1x′). (4.110)

To do this, let R(x,x′) = P (hx, hx′). If R(x,x′) = P (x,x′), it implies
(4.110). We shall prove this by showing that

κR(xα,xβ) = V (xα,xβ)− PVxα
∫
Q

dξE(xα, ξ)R(ξ,xβ), (4.111)

i.e. that R solves (4.109), entailing P = R by uniqueness.
Isometries preserve norms and scalar products, so

D0(x,x′) = D0(hx, hx′), (4.112)
E(x,x′) = E(hx, hx′), (4.113)
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because they only depend on ‖x− x′‖ and n · (x − x′). Processing the
integral, first substitute ξ′ = hξ. Since h is an isometry, it preserves areas so
dξ′ = dξ, and the integration domain Q is invariant under h. The principal
value of the new integral should be taken at hxα. Then

PVxα

∫
Q

dξE(xα, ξ)R(ξ,xβ) = PVxα

∫
Q

dξE(xα, ξ)P (hξ, hxβ)

= PVhxα

∫
Q

dξ′E(xα, h
−1ξ′)P (ξ′, hxβ)

= PVhxα

∫
Q

dξ′E(hxα, ξ
′)P (ξ′, hxβ).

(4.114)

This same way of transforming the integral will be used several times in the
subsequent discussion. Next, consider

V (xα,xβ) = D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)Dβ(ξβ,xβ). (4.115)

As mentioned, D0 and E are invariant under h. The self-pressure is defined
by the equation

κDβ(xβ,x
′) = D0(xβ,x

′)− PVxβ
∫
Qβ

dξβ E(xβ, ξβ)Dβ(ξβ,x
′). (4.116)

Note that

κDβ′(hxβ, hx
′) = D0(hxβ, hx

′)− PVhxβ
∫
Q′β

dξβ′ E(hxβ, ξβ′)Dβ′(ξβ′ , hx
′)

= D0(xβ,x
′)− PVxβ

∫
Qβ

dξβ E(xβ, ξβ)Dβ′(hξβ, hx
′)

(4.117)

is the exact same form as (4.116), so Dβ′(hx, hx
′) is another solution to this

equation. By uniqueness,

Dβ′(hx, hx
′) = Dβ(x,x′). (4.118)

This result on its own is rather interesting†, as it means knowing the self-
pressure on one object allows us to easily find the self-pressure on all congruent

†Though it is not very surprising. The self-pressure should only depend on the geometry
of the object itself, which is the same for the two congruent objects Qβ and Qβ′ .
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objects. With this result, we have

V (hxα, hxβ) = D0(hxα, hxβ)−
∫
Q′β

dξβ′ E(hxα, ξβ′)Dβ′(ξβ′ , hx
′)

= D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)Dβ(ξβ,x
′)

= V (xα,xβ).

(4.119)

Finally it should be mentioned that we have assumed κ is constant. While
we have not actually shown this in the thesis, we know that κ depends only
on ∂nD0 (see (4.70)), so at least it will be invariant under h. Now we have

κR(xα,xβ) = κP (hxα, hxβ)

= V (hxα, hxβ)− PVhxα
∫
Q

dξ′E(hxα, ξ
′)P (ξ′, hxβ)

= V (xα,xβ)− PVxα
∫
Q

dξE(xα, ξ)R(ξ,xβ),

(4.120)

which is what we wanted to show. Therefore,

P (hx,x′) = P (x, h−1x′). (4.121)

As an example, consider a configuration of two concentric circles with radii
r1 and r2. Parametrise these circles in terms of polar coordinates, designating
points on Q1 and Q2 as x1(θ) and x2(θ) respectively for θ ∈ [0, 2π). Isometries
are all the rotations around the centre, hϕxγ(θ) = xγ(θ + ϕ), as well as all
reflections over any axis passing through the centre. Suppose we have found
P (x1(0),xγ(θ

′)) for all θ′ ∈ [0, 2π). Then we can easily find P (x1(θ),xγ(θ
′))

for any θ and θ′, according to

P (x1(θ),xγ(θ
′)) = P (hθx1(0),xγ(θ

′)) = P (x1(0),xγ(θ
′ − θ)), (4.122)

whose value we already know. Similarly, knowing P (x2(0),xγ(θ
′)) enables us

to easily find P (x2(θ),xγ(θ
′)) for all θ.

More specifically, if H is the group of all isometries that preserve Q and
S is a subset of Q that generates Q under the action of H, i.e. H(S) = Q,
then it is sufficient to find P (x,x′) for x ∈ S and x′ ∈ Q. In the example of
concentric circles above, one point on each circle is enough to generate the
whole system under rotations.
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There is another way to simplify further. Suppose xβ is a fixed point for
g ∈ H, i.e. gxβ = xβ, for instance a reflection where xβ lies on the axis. Let
G ⊂ H be the subgroup containing all such isometries, and suppose that
there is a subset T ⊂ Q such that G(T ) = Q. Then the integral in (4.109)
can be reduced from an integral over Q to an integral over T , reducing the
number of points in our discretization. As a more explicit example, suppose G
is generated by {g1, . . . , gn} and that Tj = gj(T ) such that T1 ∪ · · · ∪ Tn = Q
and Ti ∩ Tj = ∅ for i 6= j. Then∫

Q

dξE(xα, ξ)P (ξ,xβ) =
∑
j

∫
Tj

dξj E(xα, ξj)P (ξj,xβ)

=
∑
j

∫
T

dξE(xα, gjξ)P (gjξ,xβ)

=

∫
T

dξEG(xα, ξ)P (ξ,xβ),

(4.123)

where
EG(x, ξ) =

∑
j

E(x, gjξ). (4.124)

This reduces the number of necessary discretization points when solving
(4.109) by a factor of n. Although the number of evaluations of E increases
by a factor n, the reduction in number of points improves the computation
time by a factor n2, leading to an overall net improvement by a factor n.
This is especially relevant for three-dimensional cases; for example, for two
concentric spheres, G is all the rotations around the axis through xβ, and T
becomes a meridian - essentially, this reduces the integration domain from a
two-dimensional surface to a line segment.

4.8 The one-dimensional case

In this section we will study the case of zero-dimensional plates in one-
dimensional space. We will consider the situation of two plates located at the
points x = 0 and x = a, similar to what we did in Chapter 2. The purpose
is to study how the method behaves in one dimension, which might give us
insights such as verifying that the pressure integral is correct. In addition, it
can be illustrative for understanding the method, and those who are unfamiliar
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with the boundary integral method might want to read this section first before
moving on to the more complicated treatment in Section 4.2 and onwards.

From (4.56) we have that the pressure on the plate at position x in
one-dimensional space is

p(x) =

∞∫
0

dω

2π
ω2D(x, x, ω). (4.125)

The tangential derivative from (4.125) vanishes because there are no perpen-
dicular dimensions. The Green’s functionD(x, x′) of the operator L = ∂xx−ω2

satisfies

∂xxD − ω2D = δ(x− x′), (4.126a)
∂xD(0, x′) = ∂xD(a, x′) = 0 (4.126b)
∂x′D(x, 0) = ∂x′D(a, x′) = 0. (4.126c)

What we need to do is to find this Green’s function, in particular we wish to
find D(0, 0) and D(a, a), which is where our plates are located.

Introduce the free Green’s function

D0(x, x′′) = − 1

2ω
e−ω|x−x

′′| (4.127)

satisfying LD0 = δ(x− x′′). We shall also need its derivative,

D′0(x, x′′) =
1

2
sign(x− x′′)e−ω|x−x′′|. (4.128)

For x′, x′′ ∈ (0, a) we have

a∫
0

dx (D(x, x′)LD0(x, x′′)−D0(x, x′′)LD(x, x′))

=

a∫
0

dx (D(x, x′)δ(x− x′′)−D0(x, x′′)δ(x− x′))

= D(x′′, x′)−D0(x′, x′′).

(4.129)
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On the other hand, we also have

a∫
0

dx
[
D(x, x′)LD0(x, x′′)−D0(x, x′′)LD(x, x′)

]

=

a∫
0

dx
d

dx

[
D(x, x′)D′0(x, x′′)−D0(x, x′′)D′(x, x′)

]
=
[
D(x, x′)D′0(x, x′′)−D0(x, x′′)D′(x, x′)

]x=a

x=0

= D(a, x′)D′0(a, x′′)−D(0, x′)D′0(0, x′′),

(4.130)

where in the last step we have used the boundary condition

D′(0, x′) = D′(a, x′) = 0. (4.131)

Equating these two and rearranging gives†

D(x′′, x′) = D0(x′, x′′)−D′0(0, x′′)D(0, x′) +D′0(a, x′′)D(a, x′). (4.132)

We are interested in the limits as x′ and x′′ tend to the boundaries 0 and
a. This gives four equations for the four variables D(0, 0), D(a, 0), D(0, a)
and D(a, a). Note, however, that the pair variables D(0, 0) and D(a, 0) is
decoupled from the other two; that is, if we for instance select x′ = 0, it gives
two equations, one for x′′ = 0 and one for x′′ = a, which we write on matrix
form as[

1 +D′0(0, 0+) −D′0(a, 0)
D′0(0, a) 1−D′0(a, a−)

] [
D(0, 0)
D(a, 0)

]
=

[
D0(0, 0)
D0(0, a)

]
. (4.133)

If we select x′ = a, it gives two similar equations for D(0, a) and D(a, a).
In taking the limits, pay special attention to D′0 as it is discontinuous

when x′′ → x. To resolve this, we keep in mind that x′, x′′ ∈ (0, a), and always
use this to determine the direction of the limit. There is a term D0(x

′, x′′)
containing both x′ and x′′, but since D0 is continuous, it does not matter
which limit we take first. Thus there is no ambiguity in (4.133). Writing this

†Compare this to Section 4.2 - there, we got an integral equation, but the zero-
dimensional case simplifies enormously as here we have a regular equation.
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all out, we have

D0(0, 0) = − 1

2ω
,

D0(0, a) = − 1

2ω
e−aω,

D′0(0, 0+) = −D′0(a, a−) = −1

2
,

D′0(0, a) = −D′0(a, 0) = −1

2
e−aω.

(4.134)

Inserting this in (4.133), we get[
1 −e−aω

−e−aω 1

] [
D(0, 0)
D(a, 0)

]
=

[
− 1
ω

− 1
ω
e−aω

]
, (4.135)

which is straightforward to solve for D(0, 0), giving

D(0, 0) = − 1

ω

e2aω + 1

e2aω − 1
. (4.136)

However, inserting this in (4.125), we get

p(0) = − 1

2π

∞∫
0

dω ω
e2aω + 1

e2aω − 1
, (4.137)

which does not converge! To regularize the integral, we will subtract the high
frequency contribution.

In the limit ω →∞, the exponential factors in (4.135) become insignificant,
and the system becomes[

1 0
0 1

] [
D∞(0, 0)
D∞(a, 0)

]
=

[
− 1
ω

0

]
, (4.138)

giving the high-frequency contribution

D∞(0, 0) = − 1

ω
. (4.139)

Subtracting this from the pressure, the regularized pressure becomes

p(0) =
1

2π

∞∫
0

dω ω2 (D(0, 0)−D∞(0, 0))

= − 1

2π

∞∫
0

dω
2ω

e2aω − 1
= − π

24a2
,

(4.140)
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This matches the pressure in (2.148) found through mode expansion.
Note that this gives exactly the correct answer, although in Section 4.5

when we calculated the pressure on plates in two dimensions, we found that
the numeric result differed from the correct solution by a factor of 1/2. This
suggests that the source of the erroneous factor does not show up in the
one-dimensional case. We elaborate on this point in Section 5.4.
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Chapter 5

Results

5.1 BIM with von Neumann boundary condi-
tions

In Chapter 4 we found an expression for the Casimir pressure, in terms of a
Green’s function given by a fully regularized boundary integral. The results
have been tested numerically only for parallel plates, and there is indication
that some piece might be missing for other configurations. In this section, we
will state the result.

We are given a set of objects with surfaces Q1, . . . , Qr. Let Q be the union
of all surfaces, and let

D0(x,x′) = − 1

2π
K0(ω‖x− x′‖), (5.1)

E(x,x′) = − ω

2π
K1(ω‖x− x′‖)n(x′) · x− x

′

‖x− x′‖
. (5.2)

where Kα is the modified Bessel function of second kind, of order α (see
Appendix B). The Casimir pressure at a point is given as

p(x) =

∞∫
0

dω

2π
(∂t∂t′ + ω2)P (x,x′, ω)

∣∣∣
x′=x

(5.3)

The regularized Green’s function P (xα,xβ) on the boundary (with xα ∈ Qα

and xβ ∈ Qβ) is given by the boundary integral equation

κP (xα,xβ) = V (xα,xβ)− PVxα
∫
Q

dξγ E(xα, ξγ)P (ξγ,xβ), (5.4)
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where the source V is

V (xα,xβ) = D0(xα,xβ)−
∫
Qβ

dξβ E(xα, ξβ)Dβ(ξβ,xβ) (5.5)

when α 6= β and zero when α = β, and the self-pressure Dβ is found by
solving the boundary integral equation

Dβ(xβ,x
′) = D0(xβ,x

′)− PVxβ
∫
Qβ

dξβ E(xβ, ξβ)Dβ(ξβ,x
′). (5.6)

The term D0 has a singularity at x′ = xβ, but this singularity is integrable,
so it will suffice to select x′ close to xβ.

We can discretize each object Qα into N segments, I1
α, . . . , I

N
α . Let Liα be

the length of I iα, and let xiα be its midpoint. Let P be a block matrix with
entries P ij

αβ = P (xiα,x
j
β). Then P is given by the matrix equation

MP = V, (5.7)

where M is a block matrix with entries

M ij
αβ = κδαβδij + (1− δαβδij)LjβE(xiα,x

j
β), (5.8)

and V is a block vector with vector entries V ij
αβ = (1− δαβ)V (xiα,x

j
β).

5.2 Failed numerical calculations
The most severe problem with our result is that it has not been shown to work
in practice, except for the special case of parallel plates. An implementation for
concentric circles was attempted, but the results did not match the predicted
values from mode expansion.

Perhaps the most glaring issue is the coefficient κ. We were not able to
determine this coefficient unambiguously, and we did in fact find that using
the methods that were used in the Dirichlet case, we got the wrong result. It
is possible that this coefficient is dependent on the curvature of the objects,
which is why it chanced to give us the right answer for parallel plates. This
point is discussed in much more detail in Section 5.3.

It is undeniably possible that the explanation is simply that the numerical
implementation was incorrect. The procedure outlined in Section 5.1 is not
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straightforward to implement as there are several details to pay attention to,
such as the vectorizing procedure outlined in Section 4.4. In addition, running
the code takes quite long time, making the process of testing it tedious, and
it is difficult to test individual parts as we have no way of validating the
intermediate results. It might be wise to design a source test to verify that
the solution does indeed satisfy the Helmholtz equation. Such a source test
was used by Kilen [14].

Another error source could be insufficient resolution N . Again, running
time is an obstacle here, as a large resolution makes it very slow to compute
our results. A reasonable approach would be to run the code with a low
resolution to confirm that the result resembles the expected result at all, then
use a supercomputer to work with higher resolution or more complicated
geometries. It is also possible to consider an adaptive resolution: that is, to
increase the resolution especially near the singular values of the functions,
without increasing the resolution elsewhere.

5.3 The coefficient κ
In Section 4.2 we introduced the coefficient

κ = 1 + lim
ε→0

∫
Cε

dξα ∂nD0(ξα,xα), (5.9)

where the integral is written out as

I = lim
ε→0

∫
Cε

dξα ∂nD0(ξα,xα)

= lim
ε→0

ω

2π

∫
Cε

dξαK1(ω‖ξ − xα‖)n(ξα) · ξα − xα
‖ξα − xα‖

(5.10)

and the integration path Cε is a small interval around xα with radius ε. As
K1(x) is singular at x = 0, this integral must be regularized, and how this
should be done has not been made perfectly clear in this thesis.

In the Dirichlet case, a similar integral,

lim
ε→0

∫
Cε

dξαD0(ξα,xα), (5.11)

is encountered [14] [20]. In this case, the integral was regularized by modi-
fying the path of the integral to exclude Cε, and instead integrate along a
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semicircular cavity with radius ε around xα (see Figure 5.1). This method
was also used by Casimir and Polder in their original paper [5]. The integral
was found to be of order O(ε log ε) and tends to 0 as ε→ 0. We can try to
apply the same technique: along the semicircle, let

d = ξα − xα = −εn(ξα). (5.12)

Then
ω

2π
K1(ω‖d‖)n(ξα) · d

‖d‖
= − ω

2π
K1(ωε). (5.13)

Using the expansion K1(x) ≈ 1
x

+O(x), we can thus write the integral (5.10)
as

I = lim
ε→0
− ω

2π
K1(ωε)

∫
Cε

dξα

= lim
ε→0
− ω

2π

(
1

ωε
+O(ε)

)
· πε = −1

2
.

(5.14)

Inserting this in (5.9) suggests that

κ =
1

2
. (5.15)

This procedure was indeed performed at first in the numerical computations.
However, when doing so, it was found that the results did not match the
exact solution!

Let us look at a different regularization scheme. Taking a step back, what
we really wanted to do in the first place was to evaluate the integral (see
(4.64))

lim
x′′→xα

∫
Qα

dξαD(ξα,x
′)∂nD0(ξα,x

′′). (5.16)

That is, we are interested in the limit as x′′ → xα, hence we can reinterpret
(5.10) as

I = lim
ε→0

x′′→xα

∫
Cε

dξα ∂nD0(ξα,x
′′), (5.17)

and it becomes a matter of how to evaluate these limits. If we simply let
ε→ 0 before x′′ → xα, we get I = 0 because the integrand is finite but the
integration path becomes infinitesimal. But let us consider a less trivial case.
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Figure 5.1: The object Qα with a cavity around xα of radius ε

Let x′′ = xα + η(ε)nα, where η(ε) > 0 and η(ε)→ 0 as ε→ 0. Also, in
the limit ε→ 0, we regard the curve Cε as a straight line,

Cε = {xα + stα | s ∈ [−ε, ε]} , (5.18)

where tα is the tangent unit vector at xα. Then the line element is dξα = ds
and

I =
ω

2π
lim
ε→0

x′′→xα

∫ ε

−ε
dsK1(ω‖ηnα − stα‖)nα ·

ηnα − stα
‖ηnα − stα‖

=
ω

2π
lim
ε→0

x′′→xα

∫ ε

−ε
dsK1

(
ω
√
s2 + η2

) η√
s2 + η2

.

(5.19)

Again we use the Taylor expansion of K1. All but the first term will vanish
in the limit, and the integral can be evaluated exactly:

I =
1

2π
lim
ε→0

x′′→xα

∫ ε

−ε
ds

η

s2 + η2
=

1

π
arctan

(
ε

η

)
. (5.20)

Depending on how we choose η(ε), we can make the ratio ε/η converge
to anything we like. E.g. for η =

√
ε it converges to 0, for η = kε it

converges to k, and for η = ε2 it diverges to infinity. Since arctan(0) = 0 and
arctan(x)→ π/2 as x→∞, all we can conclude from this calculation is that
I ∈ [0, 1/2].
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The first method suggested I = 1/2, but in the implementation of the
plates, it was found that I = 0 gave the correct answer. A very important
question is whether I is the same for all configuration, or if it is actually
geometry-dependent? It can be shown that ∂nD0(xα,x

′) is proportional to
the curvature at xα as x′ comes close; could the value of κ also depend on
the curvature? For straight plates with zero curvature, the integrand vanishes
everywhere except exactly at ξα = xα where it is undefined. Introducing the
semicircular cavity instead makes the integrand finite everywhere on Cε. This
point should be studied in more detail, for example by regularizing with a
cavity as in Figure 5.1, then letting the curvature of the cavity change.

5.4 The missing factor 2

In Section 4.5 we calculated the Casimir pressure on parallel plates and found
that the calculated value was one half of the predicted value. The exact
same factor was found by both Kilen and Mikalsen [14] [20], in two and
three dimensions with Dirichlet boundary conditions, and we have now also
observed the same factor in the case of von Neumann boundary conditions.

Interestingly, in Section 4.8, we found an exact expression for the pressure
in one dimension that matched the correct value perfectly. In this section, we
started with the integral for the pressure (4.56), but the subsequent procedure
was different from what we did in the two-dimensional case. This suggests
either that the integral correctly gives the Casimir pressure and that something
was lost in the regularization or discretization, or that the expression for
the integral is in fact wrong, but that the error does not manifest in the
one-dimensional case, for example if the expression was derived based on an
assumption that is only true in one dimension.

In [14], Kilen used a source test to show that his process of finding D
indeed correctly solved the Helmholtz equation. This indicates that the
expression for the integral is wrong. If this is indeed the case, there could
be an assumption that was made in its derivation that is valid only for
one-dimensional space.

One particularity of how we treated the two-dimensional case is that we
regularized by subtracting the self-pressure Dβ. We defined Dβ as the pressure
when β was the only object. The physical interpretation is that objects exert
an infinite pressure on themselves through self-interaction, but that only
mutual interactions give rise to net forces. However, in the one-dimensional
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case (and in several of the mode expansion regularizations), we subtracted
the contribution from high frequencies. The high frequency waves will in
reality penetrate the plates and give no contribution to the energy; to these
waves, there essentially are no objects. This regularization is also based on
the idea that there is an "infinite" amount of energy in the vacuum, and only
the fluctuations give rise to forces. Therefore, since the force is related to
energy through the gradient, subtracting a constant amount will not change
the dynamics of the system. It would be interesting to look into whether
it is possible to regularize the two-dimensional case by subtracting the high
frequency contribution, both to see if this removes the factor 1/2, and more
generally to see if this gives other useful results such as simplified formulae.

Finally it should be noted that if the factor of 1/2 is found to be the same
for all dimensions, configurations and boundary conditions, then it is hardly a
practical issue. Implementations of BIM can simply multiply the result by 2.

5.5 The problem with FIM
T. Emig claimed in [10] that for von Neumann Boundary conditions, the
action is given by

Ŝ[ϕ, ρ] =

∫
Rd
dV (k2|ϕ|2−|∇ϕ|2) +

∫
Q

dA (ρ∗∂nϕ+ ρ∂nϕ
∗) , (5.21)

which is the same result as we got in Section 3.3. Next it was claimed that
the equations of motion for the classical field φ, satisfying δŜcl/δφ = 0, are
given by

∇2φ+ k2φ = 0, x 6∈ Q, (5.22a)
∆φ = −ρ, x ∈ Q, (5.22b)
∆∂nφ = 0, x ∈ Q, (5.22c)

where the ∆ means

∆φ = φ− − φ+, (5.23)
φ±(x) = lim

ε→0
φ(x± εn), (5.24)

for x ∈ Q, and that the corresponding classical action is

Ŝcl =
1

2

∫
Q

dA (ρ∗∂nφ+ ρ∂nφ
∗) . (5.25)
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We did however show in Section 3.4 that there is a major issue with this result:
if the action is indeed (5.21), then δŜcl/δφ implies that ρ = 0 everywhere,
which is inconsistent with the fact that ρ is arbitrary. We also found that
∆φ = +ρ in (5.22b), but this could be because we interpreted ρ differently
from Emig.

The variation in the classical action can be written as

δŜcl[δφ
∗] =

∫
Q

dA (ρ ∂nδφ
∗ − δφ∗∆∂nφ) . (5.26)

This must be zero for all variations δφ∗, by the principle of least action.
However, it is possible that some variations satisfy δφ∗ = 0 on Q, but
δnδφ

∗ 6= 0. For example, if Q is a circle and we select δφ in polar coordinates
as

δφ(r, θ) =
R

2π
sin

(
2πr

R

)
δϑ(θ), (5.27)

where δϑ(θ) is a varation that only depends on θ, we get

δŜcl =

∫
Q

dAρ δϑ(θ) = 0, (5.28)

which suggests ρ = 0 everywhere, since δϑ(θ) is arbitrary. It is not clear
where this problem comes from, but it seems it will inevitably arise from
(5.21). One possibility is it is not possible to use the delta functional δ[∂nϕ|Q]
in this case. Again, it is not clear why this should not be possible, but the
delta functional is not perfectly well understood.

In Section 3.4 we showed that if we disregard these problems and move
on, we can derive a form similar to (5.22). The procedure relied heavily on
the Dirac delta function and step functions, and a more rigorous treatment
should employ the full theory of generalized functions.

In Section 3.7 we showed that by introducing the gradient field v = ∇ϕ,
the boundary conditions become the Dirichlet conditions n · v|Q= 0. This
enabled us to avoid the issue in (5.26) and led us to the equations of motion
for the classical field u,

∇2u+ k2u = −∇×π, x 6∈ Q, (5.29a)
∆u = 0, x ∈ Q, (5.29b)

∆∂nu = nρ− n×∆π, x ∈ Q. (5.29c)
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The price to pay is that the equations of motion now included the inhomo-
geneous Helmholtz equation. This means that v expressed in terms of the
Green’s function G will contain an integral over the the volumes contained
in the objects, thereby greatly increasing the computation cost. It might be
worth mentioning that the field π comes from the condition that v must be
a gradient field. If we lift this condition, the equations of motion become
homogeneous, but it is not clear that they still describe the same physics.
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Chapter 6

Conclusion

In this thesis, we have developed an expression for the Casimir pressure in
terms of the Green’s function D given by a fully regularized integral equation.
We showed that applying this method to a configuration of parallel plates
gives results that match the predicted values. However, it has not shown to
be correct for other configurations.

Attempts were made at implementing the method for concentric circles, but
it did not produce the right values for the pressure. Barring implementation
errors, if the mathematical part is indeed wrong, the primary suspect error
source is the coefficient κ. This coefficient can have different values depending
on which regularization we choose, and it might be the case that it should
not even be constant, e.g. it might depend on the curvature of the objects.

For parallel plates, the computed result was found to differ from the exact
answer by a factor of 1/2. In the Dirichlet case, it was also shown that a
factor of 2 was missing, both for two and three dimensions. We see that this
factor is also missing for the von Neumann case in two dimensions.

Further work

Before BIM for von Neumann boundary conditions can be called done, it must
be shown that the procedure indeed gives results that are consistent with
known values. When looking for error sources, the coefficient κ in particular
should be put to scrutiny.

After developing this part of BIM, there are two natural ways to expand
the method. The first is to apply it to von Neumann boundary conditions
in three dimensions. Comparing the works of Mikalsen and Kilen, it is
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clear that the 3D case is substantially more complicated than 2D due to
stronger singularities that require additional regularization steps, and it is
therefore reasonable to believe that extending the von Neumann case to three
dimensions is also nontrivial. The second extension would be to consider even
more general boundary conditions, such as Robin conditions.

Another interesting question is whether it makes a difference to regularize
BIM by subtracting the high frequency contribution instead of subtracting
the self-pressure. This alternative regularization could help illuminate the
error sources, especially the missing factor 2, as well as providing insight in
other aspects of the method.
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Appendix A

The delta function and the delta
functional

The famous Dirac delta function δ(x) is often defined as

δ(x) =

{
0, x 6= 0

∞, x = 0
(A.1)

This is not a perfectly rigorous definition. In fact, δ(x) is not even really a
function, but rather what is called a generalized function. However, when
working with the delta function, it is common to use heuristics. It can
rigorously be defined as the generalized function with the properties

δ(x) = 0 when x 6= 0 (A.2a)
∞∫

−∞

dx δ(x) = 1. (A.2b)

It can be shown that the generalized function with these properties is unique.
These "axioms" can be used to show many interesting properties for the delta
function, such as

∞∫
−∞

dx δ(x− a)f(x) = f(a) (A.3)
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for any sufficiently well-behaved function f . A common way of writing the
delta function is

δ(x) =
1

2π

∞∫
−∞

dλ eiλx. (A.4)

The delta function can be generalized in several ways. A very common
generalization is to n variables, with the important property∫

Rn
dx δn(x− a)f(x) = f(a). (A.5)

This delta function is often defined as

δn(x− a) = δ(x1 − a1)δ(x2 − a2) · · · δ(xn − an). (A.6)

Another generalization is

δS(x) =

∫
S

ds δn(x− s), (A.7)

where S ⊂ Rn. The important property of this function is∫
Rn
dx δS(x)f(x) =

∫
S

ds f(s), (A.8)

which can be seen by exchanging the order of the integrals.
Intuitively, it might be helpful to think of a delta function as a condition.

When integrating something multiplied by a delta function, we mean we
are really interested in the points singled out by the delta functional. The
definition of δn suggests that a product of delta functions means all the
conditions must be satisfied. That is, the multiplication represents a logical
conjunction of the conditions - an AND operation. Similarly, the definition of
δS suggests that adding delta functions represents logical disjunction, an OR
operation. This intuition will motivate the rest of our discussion.

In this section we will define the delta functional, a functional analogous
to the delta function. Let ϕ be a function and let A be an operator on the
functions. Given a boundary condition

Aϕ|C= 0 (A.9)
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where C is a subset of the domain of ϕ, we define the delta functional δ[Aϕ|C ]
with the property ∫

Dϕδ[Aϕ|C ]F [ϕ] =

∫
DψF [ψ], (A.10)

for any† functional F where the left-hand side is a functional integral over all
functions, and the right-hand side is over functions ψ satisfying the boundary
condition (A.9).

For a single point p1, we define the delta functional as

δ[Aϕ|{p1}] = δ(Aϕ(p1)). (A.11)

where δ(x) is the usual Dirac delta function. For multiple points, the inter-
section of the conditions can be expressed as the product of the respective
delta functions,

δ[Aϕ|{p1,...,pn}] =
n∏
n=1

δ(Aϕ(pn)). (A.12)

This is analogous to the definition of δn. We are interested in what happens
when n→∞.

Assume C is compact. Let {Cn}∞n=1 be a family of subsets of C, such that
|Ci|> |Cj| if i > j, and such that the distance between points in Cn become
smaller as n→∞.‡ The boundary condition Aϕ|C= 0 can be approximated
as

lim
n→∞

Aϕ|Cn= 0, (A.13)

We define the delta functional on a continuum as

δ[Aϕ|C ] = lim
n→∞

δ[Aϕ|Cn ] = lim
n→∞

∏
c∈Cn

δ(Aϕ(c)). (A.14)

The Dirac delta function can be expressed as

δ(x) =

∞∫
−∞

dλ

2π
eiλx. (A.15)

†We assume F is sufficiently well-behaved, but this notion is more intricate for func-
tionals than real functions.

‡Formally, for any point c∗ ∈ C and ε > 0, there is an M > 0 such that for any m ≥M
there is a point cm ∈ Cm with |cm − c∗|< ε.
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Using this formula,

δ[Aϕ|C ] = lim
n→∞

∏
c∈Cn

∞∫
−∞

dλc
2π

eiλcAϕ(c)

= lim
n→∞

∫
R|Cn|

(∏
c∈Cn

dλc
2π

)
exp

[
i
∑
c∈C

λcAϕ(c)

] (A.16)

Let
∆xn =

|C|
|Cn|

(A.17)

where |C| is the length or surface area of C (depending on the dimension),
and let

ρc =
λc

∆xn
(A.18)

to get

δ[Aϕ|C ] = lim
n→∞

∫ (∏
c∈Cn

dρc∆xn
2π

)
exp

[
i
∑
c∈Cn

∆xnρcAϕ(c)

]
. (A.19)

As n → ∞, we replace the product of integration variables by functional
integration variables,

lim
n→∞

∏
c∈Cn

dρc∆xn
2π

= Dρ . (A.20)

The explanation of this process is not very well understood, and this is one
of the theoretical weaknesses of the functional integral method. In the limit,
the sum will be replaced by

lim
n→∞

∑
c∈C

∆xnρcAϕ(c) =

∫
C

dx ρ(x)Aϕ(x). (A.21)

Thus, the delta functional is

δ[Aϕ|C ] =

∫
Dρ ei

∫
C dx ρ(x)Aϕ(x). (A.22)

Two simultaneous conditions on a function,

A1ϕ|C1= 0 and A2ϕ|C2 , (A.23)
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can be written as a product of Dirac delta functionals, since∫
Dϕδ[A1ϕ|C1 ]δ[A2ϕ|C2 ]F [ϕ] =

∫
Dϕ1 δ[A2ϕ|C2 ]F [ϕ] =

∫
Dϕ1,2 F [ϕ],

(A.24)
where the subscripts j on Dϕj indicate that integration should be over all
functions satisfying the boundary condition Ajϕ|Cj= 0. The product of two
delta functionals is

δ[A1ϕ|C1 ]δ[A2ψ|C2 ] =

∫
Dρ1Dρ2 e

i
∫
C1

dx ρ1(x)A1ϕ(x)+i
∫
C2

dx ρ2(x)A2ψ(x)
.

(A.25)
In particular, if the conditions are on the same curve,

δ[A1ϕ|C ]δ[A2ϕ|C ] =

∫
Dρ1Dρ2 e

i
∫
C dx (ρ1(x)A1ϕ(x)+ρ2(x)A2ϕ(x)). (A.26)

A condition on a vector
Av|C= 0 (A.27)

can be viewed as simultaneous conditions on each of the components of Av,
and thus

δ[Av|C ] =

∫
Dρ ei

∫
C dxρ(x)·Av(x). (A.28)
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Appendix B

Bessel functions

The Bessel functions are the canonical solutions to the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (B.1)

where α is a constant, generally any complex number, called the order of the
equation. This equation is called Bessel’s differential equation [1]. Since this
is a second order differential equation, there are two linearly independent
solutions.

B.1 The different types of Bessel functions
One solution to this equation is the Bessel function of the first kind Jα(x).
This can be written as a series as

Jα(x) =
∞∑
k=0

(−1)k

k! Π(m+ α)

(x
2

)2k+α

, (B.2)

where the pi function Π is the generalisation of the factorial. For positive
non-integer α, Jα and J−α are linearly independent, hence their span is the
solution space of (B.1).

If the order is an integer n, the relationship

J−n(x) = (−1)nJn(x) (B.3)

holds, and the pair is no longer linearly independent. In this case, the Bessel
functions of the second kind Yα(x) give another linearly independent solution.
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These are defined by

Yα(x) =
Jα(x) cosαπ − J−α(x)

sinαπ
(B.4)

for non-integer α, and as the limit of this expression for integer α.
Two other linearly independent solutions are the Hankel functions of the

first and second kind,

H(1)
α (x) = Jα(x) + iYα(x),

H(2)
α (x) = Jα(x)− iYα(x).

(B.5)

It might be illuminating to point out the analogy with the trigonometric
functions. cosαx and sinαx are canonical solutions to y′′(x) + α2y(x) = 0.
Another pair of solutions is eiαx and e−iαx. The relationship between the two
pairs is similar to the relationship between the Bessel and Hankel functions,
and Jα and Yα are related to each other similarly to how cos relates to sin.

It is also useful to have the modified Bessel functions of first and second
type, denoted by Iα and Kα respectively. They are defined in terms of the
aforementioned functions as

Iα(x) = i−αJα(ix),

Kα(x) =
π

2

I−α(x)− Iα(x)

sinαπ
.

(B.6)

B.2 Relations between the functions
It can be shown that the modified Bessel function of second kind, Kα, can be
written in terms of the Hankel functions:

Kα(x) =
π

2
iα+1H(1)

α (ix), −π < arg x ≤ π

2
,

Kα(x) =
π

2
(−i)α+1H(2)

α (−ix),
π

2
< arg x ≤ π.

(B.7)

With these equations, along with the definitions of I, K and H, we can solve
for J and Y in terms of I and K:

Jα(ix) = iαIα(x)

Yα(ix) = iα+1Iα(x)− 2

π
iαKα(x).

(B.8)

110



We have thus described how J and Y relates to I and K.
It is also interesting to see how the derivatives of the functions can be

written in terms of the functions themselves. From the definition of Jα it can
be shown that

J ′α(x) =
1

2
(Jα−1(x)− Jα+1(x)) . (B.9)

Using this, it is straightforward to also show

Y ′α(x) =
1

2
(Yα−1(x)− Yα+1(x))

I ′α(x) =
1

2
(Iα−1(x) + Iα+1(x))

K ′α(x) = −1

2
(Kα−1(x) +Kα+1(x)) .

(B.10)

In the special case α = 0, using the relationship J−1(x) = −J1(x) and similar
relationships for the other functions, we can show that

J ′0(x) = −J1(x) Y ′0(x) = −Y1(x)
I ′0(x) = +I1(x) K ′0(x) = −K1(x).

(B.11)

B.3 Asymptotic forms
For small x the functions J , Y , I, and K can be approximated as

J0(x) ≈ 1− 1

2
x2 Y0(x) ≈ 2

π

(
log

x

2
+ γ
)

Jα(x) ≈ 1

Π(α)

(x
2

)α
Yα(x) ≈ −Π(α)

πα

(
2

x

)α

I0(x) ≈ 1 +
1

2
x2 K0(x) ≈ − log

x

2
− γ

Iα(x) ≈ 1

Π(α)

(x
2

)α
Kα(x) ≈ Π(α)

2α

(
2

x

)α
,

(B.12)

where γ ≈ 0.57721... is the Euler-Mascheroni constant and α > 0. In the limit
of large x, the functions J and Y oscillate while I and K have exponential
behaviour. For |arg z|< π,

Jα(z) =

√
2

zπ

[
cos

(
z − 1

4
π(1 + 2α)

)
+ e|=(z)|O(|z|−1)

]
,

Yα(z) =

√
2

zπ

[
sin

(
z − 1

4
π(1 + 2α)

)
+ e|=(z)|O(|z|−1)

]
,

(B.13)
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and on the specified intervals,

Iα(z) =
1√
2z

ez√
π

(
1 +O(z−1)

)
, |arg z|< π

2
,

Kα(z) =
1√
2z

√
π

ez
(
1 +O(z−1)

)
, |arg z|< 3π

2
.

(B.14)

The behaviours of the different functions are represented in Figure B.1.

Figure B.1: The four Bessel functions for order α = 1
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