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ABSTRACT 

In recent years, the scientific attention regarding methane has increased due to its effect on the 

global climate. Understanding modern methane seep environments gives a better 

understanding of fossil seep environments, related chemical processes and associated fauna. 

Different proxies are being used to investigate methane seepage sites, and in this thesis I focus 

on two different proxies: methane-derived authigenic carbonate (MDAC) crusts, and the tests 

of foraminifera occurring in the crusts. 

MDAC crusts from four seepage sites at the Loppa High in the southwestern Barents Sea, and 

one seepage site at Hola, off Vesterålen in the Norwegian Sea, have been investigated, with 

the main focus of understanding if and how the tests of benthic and planktonic foraminifera 

occurring in the crusts could serve as nucleation centers for the precipitated carbonates. 

Polished thin sections (dimensions 50mm*75mm) obtained from the crusts were provided by 

NGU, and in this thesis they were analyzed mainly using Scanning Electron Microscope 

(SEM), equipped with and energy-dispersive X-ray (EDS) detector - BSE-images obtained 

with the SEM together with EDS-analysis were investigated for petrographic and elemental 

characterization of biogenic components, detrital sediments and associated authigenic MDAC. 

The results of my investigation indicate that there were no differences in alteration of the tests 

between benthic or planktonic foraminifera -tests, or between species. The main carbonate 

phase occurring in the crusts was aragonite, but minor Mg-calcite was also present. It is 

proposed that precipitation of Mg-calcite could use the foraminifera tests as nucleation 

centers, but for aragonite which has a different crystal structure than the calcite tests, they will 

not serve as templates for precipitation.  
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1 Introduction 

1.1 Objectives 

The aim of this study is to investigate the methane-derived carbonate crusts and describe 

diagenetic carbonate phases that associate with foraminifera within MDAC crusts and to 

assess if foraminifera serve as nucleation templates during AOM (anaerobic oxidation of 

methane) in the SMTZ (sulfate methane transition zone). 

 

1.2 Gas hydrates 

 

Fig 1.1: Worldwide distribution of gas hydrates, the Arctic region is located within the light blue area at 66°N. The blue 

diamonds are locations where gas hydrate has been recovered. The red circles are inferences of gas, most often based on 

discovery of a seismic interface (BSR, Bottom Simulating Reflector). Map edited from “USGS Gas Hydrates Project”.  

Gas hydrates or gas clathrates are naturally occurring ice-like substrates consisting of light 

hydrocarbons and water; most commonly methane, but also ethane, propane, normal butane, 

nitrogen, dioxide and hydrogen sulfide, which are entrapped by a rigid cage of water 

molecules (Sloan, 1998). Gas hydrates are distributed along many continental margin settings 

and in onshore permafrost or offshore relict permafrost (Fig 1.1). Gas hydrates can be found 

in environments with high pressure and low temperature, they are typically stored in the pore 

space of the uppermost zone within sediments at high latitude and on continental margins 

(Hustoft et al., 2009; Kvenvolden, 1993).   
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The hydrates formed in nature can be found in different shapes, from small nodules (<12 cm), 

small lenses or they can form layers that are several meters thick (Makogon, 2010).  

Formation of gas hydrates requires adequate 

natural gas and water existing at very 

specific pressure and temperature 

(Kvenvolden, 1988). The zone where the 

gas hydrates are stable is situated between 

the sediment water interface, and the sub-

bottom depth where the geothermal 

transects the methane-hydrate-water 

equilibrium curve, (Fig 1.2) (Kvenvolden, 

1988). Due to these restricted conditions the 

gas hydrates are confined to the upper few 

hundred meters of sediments, called the 

gas hydrate stability zone (GHSZ) (Hustoft 

et al., 2009). Settings determining the GHSZ thickness are the temperature of the ocean 

bottom waters, geothermal gradient, salinity of the formation water, gas composition and 

varying sea level (Bunz & Mienert, 2004; Sloan, 1990). 

 In Arctic regions gas hydrates occur in deep-sea sediments or shallow seafloor, they are an 

enormous potential seepage source (Milkov et al., 2004). Methane originates from free gas 

below the BSR (bottom-simulating reflectors) or by being released from gas hydrate 

dissociation (due to e.g. climatic warming, sea level fall) (Paull et al., 1991). 

On seismic profiles the presence of gas hydrates creates an anomalous seismic reflector, 

referred to as bottom-simulating reflectors (BSR), where the base mimics the seafloor but 

with a polarity reversal (Hustoft et al., 2009; Kvenvolden, 1988). The BSR generally 

corresponds to the base of the GHZS and is the result of an acoustic impedance contrast 

between hydrate bearing sediments and free gas trapped in the sediments underneath gas 

hydrates (Hustoft et al., 2009; Kvenvolden, 1988). As a result of its pressure-temperature 

dependence the BSR often mimics the seafloor thereby crosscutting stratigraphic horizons 

(Chand & Minshull, 2003).  

Fig 1.2: Schematic diagram showing the gas hydrate stability 

field in Polar Regions, this example is from offshore Norway 

(Chand & Minshull, 2003). Figure from (Chand & Minshull, 

2003) 
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1.3 Methane 

The chemical compound methane, CH4, is the simplest hydrocarbon consisting of one carbon 

atom covalently bound with four hydrogen atoms in a tetrahedron (Wheeler & Stadnitskaia, 

2011). Methane is a strong greenhouse gas, causing 25 times more effect than CO2 but it is 

also important player in the global carbon circle, it is common and widespread beneath the 

seafloor. Due to the large amount of methane stored in the gas hydrates, it is an important 

reservoir for organic carbon (Kvenvolden, 1998). 

Methane is mainly a product of the alteration of organic matter in different temperature 

regimes, termed as biogenic methane (Schoell, 1988). Organic matter, made up by hydrogen 

and carbon molecules is a product formed during photosynthesis, and later enters the marine 

food chain. When the organism dies the organic matter is decomposed by microbial decay, to 

simpler hydrocarbon compounds near the seabed and this process produces microbial methane 

(Judd et al., 2002). Generation of hydrocarbons and formation of thermogenic methane is a 

result of thermal break-down of buried organic matter, depending on the depth of burial. The 

microbial and thermogenic methane have a specific stable carbon isotopic composition, which 

is used when distinguishing the source of the methane (Schoell, 1988).  

1.3.1 Microbial methane 

Microbial methane is a product of the process where methanogenic archaea decompose the 

organic matter involving a consortium of diverse microorganisms. It occurs mainly at 

relatively shallow depths within sediments where sulfate levels have been depleted by the 

activities of sulfate-reducing bacteria (Judd et al., 2002). Biogenic methane is highly 

fractionated and has δ13C ranging from= -50‰ to -110‰ (Whiticar, 1999).  

1.3.2 Thermogenic methane 

The thermogenic methane is generated when organic matter is buried deep enough and 

experience temperatures from 80-150°C. The organic matter is altered by high pressure and 

high temperature and is transformed into methane (Kvenvolden, 1988). Thermogenic methane 

is isotopically less fractionated than biogenic methane, and has  δ13C ranging from= -20‰ to -

50‰ (Whiticar, 1999) 

After the formation, the methane starts migrating towards the sediment surface because of 

buoyancy. The gas could be present in solution in the pore water, or as free gas phase 

(bubbles), both phases are lighter than normal pore water and therefore they will start 

ascending to the surface (Park et al., 1990). 
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1.3.3 Cold seeps 

It has become clear that the migration of fluids (most significantly methane) is a very 

important and ongoing geological process (Judd et al., 2002). Features such as shallow gas 

accumulations, pockmarks, seeps, mud volcanoes and gas hydrates, often associated with cold 

seep communities and methane-derived authigenic carbonate (MDAC), are present in a world 

wide variety of environments; nearshore, continental shelf to the deep ocean (Judd et al., 

2002).  

Hydrocarbon-rich fluids are referred to as cold seeps to separate them from hot and CO2-rich 

hydrothermal vents found at mid-ocean ridges and at sites of submarine volcanic activity. 

Cold methane-rich seeps occur at passive continental margins and slopes, up to water depths 

of 3.000 m (Judd & Hovland, 2007). Chemosynthesis-based benthic communities are found in 

the cold seep environments, as the fluids are the principal source of energy for the species 

(Sibuet & Olu, 1998) 

1.3.4 SMTZ – sulfate-methane transition 

zone 

The sulfate-methane transition zone (SMTZ) is 

a horizon within the sediments, where sulfate-

reducing bacteria (SRBs) and the 

methanotrophic archaea in consortium utilize 

the upward diffusing methane from deeper 

sources (Borowski et al., 1996; Peckmann & 

Thiel, 2004). The depth of the SMTZ and 

sulfate-profile are regulated by the intensity of 

the upward methane flux, if the sediment characteristics and sulfate diffusion from seawater 

into the sediment are considered constant, see Fig 1.3 (Consolaro et al., 2015).  This microbial 

consortium causes methane oxidation generation of carbonate alkalinity that in turn results in 

precipitation of authigenic carbonates in situ, referred to as methane-derived authigenic 

carbonates (MDAC) (Peckmann et al., 1999; Ritger et al., 1987).  

 

1.3.5 Methane-derived authigenic carbonates 

Within the SMTZ there is a phenomenon resulting in the precipitation of methane-derived 

authigenic carbonates (MDAC) (Reeburgh, 1980); the combined effect of anaerobic oxidation 

Fig 1.3: Schematic diagram showing how the depth of the 

SMTZ varies with the intensity of the methane flux. Figure 

modified from (Borowski et al., 1996). 
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of methane (AOM) and sulfate reduction in these anoxic sediments facilitates the precipitation 

of carbonates.  The process is not fully understood but it is accepted that the coupling of 

microbial activity where methane oxidizing archea and sulfate-reducing bacteria utilize the 

upward flux of methane (CH4) and sulfate (SO4) from downward diffusing seawater, which 

increases the alkalinity and results in carbonate precipitation (Niewöhner et al., 1998; 

Peckmann & Thiel, 2004). The following net reaction given by (Devol & Ahmed, 1981; 

Devol et al., 1984; Reeburgh, 1980) showing this coupled sulfate-methane reaction and the 

increase of carbonate alkalinity by the production of bicarbonate (HCO3
-). 

CH4+SO4
2-→HCO3

-+HS-+H2O (Equation 1) 

Which favors the precipitation of authigenic carbonates: 

2HCO3
-+Ca2+ ↔ CaCO3+CO2+H2O (Equation 2) (Feng & Roberts, 2011).  

MDAC are common features of methane seeps at any water depth (Judd & Hovland, 2007) 

where there is, a relatively slow but pervasive upwards flow of methane-charged fluids (Luff, 

Roger et al., 2004). The microbes in the SMTZ can consume up to 90% of the methane in the 

sediments (Niewöhner et al., 1998). The MDAC occur as slabs, crusts and lumps in cold seep 

environments, both within the seafloor sediments or at the seafloor surface (due to erosion of 

the surrounding sediments). The MDAC comprise normal seafloor sediments cemented by the 

precipitated carbonate minerals (mainly calcite and aragonite, but dolomite is also found), and 

can also contain diagenetic pyrite (Judd & Hovland, 2007). MDAC are typically characterized 

by negative δ13C values indicating that a significant source of carbon is the methane-derived 

dissolved inorganic carbon (DIC), from the AOM (Aloisi et al., 2002; Ritger et al., 1987). 

The carbon in MDAC can also include other sources than methane, resulting from mixing 

with seawater or with DIC from other sources during the migration of the fluids to the seep 

site (Ritger et al., 1987). The magnitude of the 13δC-depletion reflects the source of methane, 

either microbial (-110 to -50 ‰) or thermogenic methane (-50 to -20 ‰) (Schoell, 1988; 

Whiticar, 1999). 

The cementation, or growth of inorganic calcite crystals can occur in different crystal sizes, 

from micron-scale rhombs (overgrowths) filling the sediment pore space to a much larger 

scale (infilling cavities) (Sexton, P. F. et al., 2006). Judd and Hovland (2007) also observed 

that the occurrences of MDAC were closely associated with the evidence of seafloor fluid 

flows, such as pockmarks. The MDAC mainly occur as centimeter-to-decimeter thick crusts, 

formed at very shallow depth in the sediments, but exposed to the seabed due to erosion or 
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gravitational processes (Luff, Roger et al., 2004). The formation of the crusts are dependent 

on several parameters; sufficient amount of dissolved methane in the fluids and its flux rate, 

low bioturbation, and low sedimentation rates (Luff, Roger et al., 2004). A several cm thick 

crusts can be formed within a few hundred years (100-500), due to clogging of the sediment 

and suppression of AOM the crust will prevent its own growth (Luff, Roger et al., 2004).  

1.3.6 MDAC and carbonate mineralogy  

Carbonates are made up by the carbonate ion CO3
2- and one or more cations (Fig 1.4). The 

majority of the carbonate minerals form either rhombohedral or orthorhombic crystal 

structures; where smaller cations such as Mg, Fe, Mn, Zn and Cu are favored in the 

rhombohedral structures, and the larger cations such as Sr, Pb, and Ba are favored in the 

larger orthorhombic structure. Calcium can form carbonates of both of the structures; calcite 

(rhombohedral) and aragonite (orthorhombic) (Milliman et al., 2012). Sodium, magnesium, 

calcium, potassium, strontium, chlorine, sulfur (predominantly as sulfate), bromine and 

carbon (primarily as bicarbonate and carbonate) are major elements found in seawater, which 

contributes with more than 99,9% of the total dissolved salts in the ocean (Milliman et al., 

2012). 

. 

 

Fig 1.4: The most usual cations making up carbonate minerals, with their atomic weight and ionic radius. Modified figure 
from (Milliman et al., 2012). 
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The mineralogy of the carbonate crusts is generally dependent on the chemistry of the 

expelled fluids (sulfate concentration, alkalinity, Ca2+/Mg2+ ratios and carbonate saturation 

state) (Aloisi et al., 2004; Burton, 1993) so it varies widely (Ritger et al., 1987). The MDACs 

are composed of the host sediments lithified by carbonate cement (Judd & Hovland, 2007).. 

Authigenic pyrite is also a common feature in the crusts, dissolved iron from detrital minerals 

reacts with hydrogen sulfide (a product from the bacterial sulfate reduction) and precipitates 

pyrite during the AOM in an anoxic environment (Cremiere et al., 2016b; Luff, Roger et al., 

2004; Ritger et al., 1987).  The most common composition of modern carbonate sediments are 

calcite (commonly separated into low-Mg calcite and high-Mg calcite) or aragonite (Aloisi et 

al., 2000; Burton, 1993), but dolomite occurs as well (Peckmann & Thiel, 2004). 

The different carbonate phases reflect changes in the seep environment. Conditions favoring 

precipitation of aragonite over Mg-calcite are when the levels of sulfate concentrations are 

relatively high, in combination with high methane flux in shallow subsurface sediments. Mg-

calcite forms deeper within the sediments where the levels of sulfate are lower and the AOM 

with the following carbonate precipitation are slower (Aloisi et al., 2000; Crémière et al., 

2016). It is also accepted that hydrated Mg2+ ions have an inhibiting effect on the calcite 

structure, which also facilitates precipitation of aragonite (Aloisi et al., 2002; Ritger et al., 

1987). Presence of aragonite will give a peak in strontium concentrations compared to Mg-

calcite (Ritger et al., 1987).  

 

1.4 Foraminifera 

Foraminifera are single celled organisms that belong to the order protozoa; they live either in 

the water column, (planktonic species) or, at the seafloor (benthic species). Foraminifera can 

be found in nearly every marine environment; from fresh water to the deep sea, and from 

tropical to Arctic areas. They have adapted to tolerate different salinities and temperatures, 

they can be found in saltmarshes, shallow brackish water in estuaries, in the deep ocean or on 

the seafloor on the continental shelf (Armstrong & Brasier, 2005). They constitute the most 

diverse group of shelled microorganism and have a spectacular fossil record (Sen Gupta, 

2003). Today most of the foraminifera are benthic species, only 40-50 of the species are 

planktonic (Sen Gupta, 2003). The majority of the species build the tests with calcium 

carbonate, CaCO3 , but there are three different basic wall compositions, organic, agglutinated 

and secreted calcium carbonate (or more rarely silica) (Armstrong & Brasier, 2005). When 
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foraminifera calcify their test, they incorporate chemical and isotopic signals from ambient 

seawater which makes them very useful tools for paleoceanographic studies (Armstrong & 

Brasier, 2005).  

1.4.1 Benthic foraminifera 

Benthic foraminifera are amongst the most abundant and diverse group of shelled 

microorganisms in the marine environment (Sen Gupta, 2003). Benthic foraminifera live at 

the seafloor, either on sand, rocks, mud and plants (epifauna), or in the pore space of the 

(from 1 to 20 cm bsf, below seafloor) sediment (infauna). In marine environment the 

distribution of benthic foraminifera is mainly affected by food availability, substrate type, 

water salinity and temperature and the amount of dissolved oxygen (Murray, 2006).  

Benthic foraminifera can have different kind of tests. Agglutinated foraminifera form the test 

of either random or specific grains (in terms of mineralogy, grain size), or the shells of other 

microorganisms bound together by an organic, calcareous or ferric oxide cement (Armstrong 

& Brasier, 2005).  

Organic-walled forms have tests of  protinaceous mucopolysaccharide i.e. the allogromina 

and do not preserve well in the fossil record (Sen Gupta, 2003) and will not be further 

discussed in this thesis.  

The majority of the foraminifera secrete their tests of calcite, and they are subdivided into 

three main types; microgranular, porcelanous and hyaline (Armstrong & Brasier, 2005). 

Microgranular forms comprises microgranular calcite with mural pores, which gives them a 

fibrous appearance (Armstrong & Brasier, 2005). Porcelanous tests do not contain pores, and 

are distinctively milky white while inspected in reflected light. They comprises small needles 

of high-Mg calcite (Armstrong & Brasier, 2005). Hyaline forms have a characteristic “glassy” 

and perforated look when studied with reflected light, but the clarity could be obscured by 

ornamentation and diagenesis. The tests could either be of low/to high-Mg calcite or aragonite 

(Armstrong & Brasier, 2005).  

1.4.2 Planktonic foraminifera 

Planktonic foraminifera live in the surface layer of the open ocean (0-200 m), the majority are 

found in the photic zone (Sen Gupta, 2003). The mixed layer and the upper thermocline are 

the most densely populated, while virtually no living individuals are found at depths below 

1,000 m (Vincent & Berger, 1981). 
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1.4.3 State of alteration 

The alteration of the tests varies on the different compositions. Agglutinated tests with 

organic cement or loosely attached grains will disintegrate during diagenesis or in many 

sedimentary environments (Sen Gupta, 2003). Both planktonic and benthic types of pristine 

tests are smooth even to a submicrometer scale, cross sections of the test walls have a 

pervasive microgranular structure (Sexton, P. F. et al., 2006). During diagenetic alteration or 

burial within the SMTZ and affected by AOM and carbonate precipitation, the tests could 

experience alterations to the pristine characteristics due to “neomorphism”, a process where a 

particular mineral (in this case biogenic calcite) is replaced by the same mineral but with 

different crystal form (inorganic calcite) (Sexton, P. F. et al., 2006) which will be referred to 

as recrystallized. Another diagenetic process is the addition of new inorganic calcite, or 

cementation. During cementation, growth of inorganic calcite crystals can appear on the 

foraminifer test or as infilling of the chambers (Sexton, P. F. et al., 2006). Both 

recrystallization and overgrowth will overprint the primary stable isotopic values within the 

test. Upon formation of micron-scale overgrowths the pristine “glassy” appearance of the tests 

will be altered to a “frosty” look (Drury et al., 2014; Sexton, P. F. et al., 2006) when viewed 

under the microscope. The term “glassy” is based on the appearance of the test seen in the 

living as well as in the unaltered tests of the majority of the foraminifera. The “glassy” test is 

translucent (under a reflected light microscope) and retain the smooth test walls as well as the 

primary microstructure. Whereas the “frosty” test appears opaque (when viewed in a reflected 

light microscope) due to inorganic calcite crystals overgrowth on the inner and outer test 

walls (Drury et al., 2014; Sexton, P. F. et al., 2006). 

1.5 Foraminifera and methane 

Several species have adapted to live in extreme natural environments, such as habitats near 

bacterial mats at hydrocarbon vents, not as exotic species but they are recruited from the 

“normal” surrounding areas (Sen Gupta, 2003). Bacterial mats within the seep area provide an 

important food source for the foraminifera (Torres et al., 2003). Benthic foraminifera are 

common in methane seep environments, and it is observed low δ13C values in their tests, due 

to ingested microbes which utilize the dissolved inorganic carbon (DIC) from AOM in the 

surrounding sediments and further incorporated in the secreted tests (Barbieri & Panieri, 

2004; Panieri et al., 2009). In methane seep environments, the carbon isotopic signature of 

DIC in sediment pore waters and sometimes overlying seawater is dramatically 13C-depleted 
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(δ13CDIC can be lower than -40‰) (Torres et al., 2003) relative to the normal marine 

environment (-1‰ to 1‰) (Ravelo & Hillaire-Marcel, 2007).  

Because the planktonic foraminifera live in the surface layers in the ocean, they are normally 

unaffected by the methane seepages. If the flux of methane is high enough to escape the 

seafloor; it will be consumed by methanotrophic aerobic microbes near the seafloor or in the 

adjacent water column (Niemann et al., 2006). For that reason, planktonic foraminifera do not 

usually show negative, methane-related δ13C value. But both planktonic and benthic tests can 

be altered when the tests are deposited and buried through the SMTZ, and the AOM process 

leads to precipitation of diagenetic carbonates, which induces MDAC and can cause carbonate 

overgrowth on the tests of the foraminifera (Fig 1.5) (Consolaro et al., 2015; Panieri et al., 

2009).   

 

Fig 1.5: Schematic diagram showing a scenario where both planktonic and benthic show low δ13C values. When the methane 

flux is low and the downward flux of sulfate encounters the upward flux of methane within the SMTZ, the AOM generated 

bicarbonate will induce precipitation of MDACs and carbonate overgrowth on the tests of the foraminifera (Consolaro et al., 

2015). Edited figure from (Consolaro et al., 2015) 

 

1.5.1 Recent studies 

In the recent years, the scientific attention regarding methane has increased due to its effect on 

the global climate. The total emissions of methane add up to ~600Tg Ch4/year globally where 
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5-10% of the current atmospheric input origins from geologic reservoirs on the seafloor 

(Milkov, 2004; Torres et al., 2010). Studies of ancient seep environments and fossils have 

shown that these chemosynthesis-based paleoenvironments have been diverse and variable, in 

terms of both geologic settings and taxonomic compositions through more than 3 billion years 

(Campbell, 2006). Understanding modern seep environments gives a better understanding of 

fossil seep environments and its fauna (Campbell, 2006; Panieri et al., 2012). Proxies using 

foraminifera as methane release indicators have been developed and calibrated; including the 

“biotic” record based on incorporation of methane-derived DIC by foraminifera; and the 

“abiotic” record found in methane-derived authigenic carbonates (Torres et al., 2010). 

Precipitated carbonates from AOM in seep environments exhibit negative δ13C signatures 

(δ13CDIC can be lower than -40‰) (Campbell, 2006; Peckmann & Thiel, 2004). 

Benthic foraminifera are useful proxies of local methane emissions (Barbieri & Panieri, 2004; 

Panieri et al., 2012; Panieri et al., 2009). Whereas living planktonic foraminifera rarely 

experience the direct effects from methane seeps, because the methane is predominantly 

utilized by microbes before it reaches the water column (Niemann et al., 2006). Post 

depositional alteration by formation of high-Mg calcite overgrowth on both planktonic and 

benthic tests also reflects the influences of methane seepages (Consolaro et al., 2015; Torres 

et al., 2010). Several studies aim to reconstruct past marine methane emissions and modern 

methane seepages by examining the carbon isotope composition (δ13C) of the foraminifera 

(Barbieri & Panieri, 2004; Consolaro et al., 2015; Panieri & Sen Gupta, 2008). 

Another proxy for methane emissions are the methane-derived authigenic carbonates (Torres 

et al., 2010). They comprise the seafloor sediments and the biogenic debris lithified with 

carbonate cement (Judd & Hovland, 2007). Because the carbon in the MDAC is derived from 

the metabolic activities of microbes utilizing the methane, the MDAC have negative δ13C 

values (Reeburgh, 1980). The different carbonate phases in MDAC could reflect different 

methane flux rates, with higher flux favoring aragonite as the precipitation occurs close to the 

sediment-water interface under relatively more open, seawater influenced conditions, whereas 

Mg-calcite reflects precipitation at greater depths at reduced methane flux (Cremiere et al., 

2016b). MDAC in the stratigraphic records can be used as an evidence of methane seepage; 

but since they from in the diagenetic environment post-dating the sedimentation, the 

assignment of the MDAC to specific, temporarily constrained seepage episodes may be 

difficult (Torres et al., 2010). 
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2 Study areas 

In this thesis, there are two different study areas, which will be described in the following 

chapters. 

 

Fig 2.1: Overview of the study areas Loppa High and Hola marked in each respective red square, edited figure from (Faleide 

et al., 2008). Black dashed line show  a close-up of the sample sites at the study areas, edited figure from (Cremiere et al., 

2016a). 

2.1 Barents Sea 

The Barents Sea is a relatively shallow epicontinental sea with water depths ranging from 

200-500 m, and the average depth is approximately 230 m. It covers an area of 1.3 * 106 km2 

so it represents the largest continental shelf on the globe (Dore, 1995). It is bounded to the 

west and the north by continental slopes, to the east by Novaja Zemlya and to the south by the 

Norwegian mainland and the Kola Peninsula, Fig 2.1.  
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Barents Sea is characterized by relatively shallow banks separated by deep troughs, making 

the bottom topography highly irregular. The present day topography is influenced partly by 

the underlying bedrock, provided by the Caledonian Orogeny, but it is highly affected by a 

complex combination of large-scale plate movements, varying climatic and depositional 

processes and further moulded by late Cenozoic glacial erosion (Faleide et al., 1996).   

The Norwegian mainland located to the south of the Barents Sea is a part of the 

Fennoscandian Shield that consists of Archean and Paleoproterozoic rocks, and also 

Neoproterozoic-Early Paleozoic rocks of the Caledonides, that extend several tens of km 

offshore on the continental shelf (Siedlecka & Roberts, 1996; Sigmond et al., 2002). Seaward-

dipping sedimentary sections of Late Paleozoic and younger age appear further offshore 

(Bugge et al., 1995). The Barents Sea comprises an almost complete sequence of sedimentary 

strata ranging from Late Paleozoic to Quaternary, locally exceeding 15 km in thickness 

(Gudlaugsson et al., 1998).  

One important geological factor is the uplift and erosion during the Cenozoic (Reemst et al., 

1994), the most recent occurred during the glacial period in Pliocene-Pleistocene. The 

glaciation with the following erosion affected the sedimentation and erosion over the entire 

area of the SW Barents Sea (Laberg et al., 2012; Sættem et al., 1991). The grade of uplift 

varied in the different areas of the Barents Sea; the lowest values (<500m) in southwest, (500-

1000 m) on Loppa High, and increasing uplift and erosion towards the north and northwest 

(>2000 m) on the Stappen High (Larsen et al., 2003). The uplift resulted in the removal of 1-2 

km of sedimentary overburden, which led to cooling of source rocks below the shelf as well 

as changes of the flow regime (Henriksen et al., 2011). The uplift also facilitated fluid 

migration from the seafloor subsurface and escaping of fluids into the water column (Nøttvedt 

et al., 1988).  

A glacial erosion surface (Upper Regional Unconformity, URU) separates the sub-horizontal 

Quaternary succession from sedimentary bedrock (Laberg et al., 2012). Glacially derived 

diamictic sediments mainly make up this succession with varying thickness (>10-<200 m) 

(Sættem et al., 1991). The western part of the shelf was ice covered 2-3 times during the Late 

Pleistocene glaciations (Vorren et al., 1988; Winsborrow et al., 2010), and large 

geomorphological features on the seabed were made by the Late Weichselian Ice Sheet 

(Andreassen et al., 2008; Ottesen et al., 2008). 
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2.1.1 Gas in the Barents Sea 

Geological and geophysical studies of the Barents Sea started in the 1970s, in 1980 

hydrocarbon exploration drilling started, and the first gas discoveries were made in 1981 

(Dore, 1995). In 1984 the Snøhvit field was discovered, and it is still the largest gas and oil 

discovery in the Norwegian Barents Sea, it contains mainly gas in reservoir rocks of Middle 

Jurassic age (Dore, 1995). 

During the last glacial maximum (LGM) 18.000-20.000 14C ago, modelling shows that the ice 

cap covering the Barents Sea was at least 1200 m thick (Siegert et al., 2001). Under these 

conditions of glacial loading, the methane hydrate stability zone (MHSZ) would have been 

present over the entire SW Barents Sea to at least 600 m below the present seafloor (Chand et 

al., 2012). It is therefore assumed that the retreat of the glaciers made the gas hydrates that 

formed during the last glaciations unstable and dissociated methane gas lead to fluid seepage 

and expulsion into the water column, which lasted until recently (Chand et al., 2012). 

According to Rise et al. (2014) the shallow gas in the Barents Sea could be of mixed origin; 

both sourced from shallow microbial alternation of organic matter and thermogenic deep 

strata. 

The study area Loppa High is located in the southwestern part of the Barents Sea; which is 

divided into four main basins; Bjørnøya, Tromsø, Hammerfest and Nordkapp, with 

intervening structural highs; Senja Ridge, Loppa High and Veslemøy High (Fig 2.2).  
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2.1.2 Loppa High 

 

Fig 2.2: The main elements of the southern Barents Sea, Loppa High is located within the red rectangle. Modified figure 

from (Worsley, 2008). 

Loppa High is an isolated N-S trending structural high, located on the shelf in the southern 

part of the Barents Sea.  It is one of the main structural elements in the area; others are The 

Hammerfest and Nordkapp Basins, the Finnmark and Bjarmeland Platforms, including several 

other smaller structural elements. Dividing and bordering these elements are a series of 

complex fault zones; Troms-Finnmark, Ringvassøy-Loppa, Bjørnøyrenna, Måsøy, Nysleppen 

and Asterias Fault Complexes (Fig 2.2). 

Loppa High is situated between fault complexes and basins; in the south it is bounded by the 

Hammerfest Basin and the Asterias Fault complex, and by the Tromsø and Bjørnøya basins to 

the west (Gabrielsen et al., 1990). The northeastern limit is defined by the Svalis Dome (a 

major salt structure) and its rim syncline; the Maud Basin (Gabrielsen et al., 1990). 

Loppa High’s geological history is complex; indicated by strong erosional events at several 

stratigraphic levels (Sund, 1984), starting back to the Carboniferous. There have also been 

several phases of uplift/subsidence and subsequent tilting. The Loppa High is a result of late 

Jurassic to early Cretaceous and late Cretaceous-Tertiary tectonism (Gabrielsen et al., 1990).  

Early Carboniferous terrigenous clastics were onlapped by Upper Carboniferous and Permian 

Carbonates which were eroded during Early Triassic (Wood et al., 1989), due to the uplift and 

tilting of Loppa High, and were onlapped by sequences of Lower to Middle Triassic. During 

Late Jurassic to Early Cretaceous the Loppa High experiences another uplift which lead to 



Study areas 

18 

 

erosion of Jurassic sediments (Wood et al., 1989). Loppa High became an island, which led to 

erosion of exposed Jurassic and Triassic sediments. It gradually subsided and the crest was 

onlapped during the Early Paleocene when the Loppa High was submarine again. In Tertiary 

Loppa High again experienced uplift and erosion as a result of a combination of thermal uplift 

due to the evolution of the ocean basin and a general fall in sea level (Haq et al., 1987). The 

erosion formed an unconformity with Tertiary and older sediments below, with overlying 

Quaternary glacio-marine sediments; this was the last stage of the formation of the present 

day structure of Loppa High (Wood et al., 1989). 

2.1.3 Gas in Loppa High 

The Loppa High has a fair potential for oil and gas exploration, in the late 1980s there were 

uncertainties about reservoir rocks and the hydrocarbon migration, but in 2013 there were a 

new discovery of oil and gas in Late Permian carbonate rocks; the Gotha discovery (published 

by Lundin in 2013).   

At the NW flank of the Loppa High pockmarks occur where the water depth exceeds 400 m 

(Chand et al., 2012) 

2.2 The Lofoten-Vesterålen Margin 

Three main segments, each approximately 400-500 m long, comprises the Mid-Norwegian 

margin; Møre, Vøring and Lofoten-Vesterålen (LVM). The Hola trough is situated in the 

Lofoten-Vesterålen margin, see Fig 2.1. Compared to the adjacent areas the LVM is barely 

investigated, because it is not yet opened to petroleum exploration (Færseth, 2012).  

The continental margin off Lofoten, Vesterålen and Troms is an approximately 400 km long 

segment, which possess a great variation of marine landscapes which were largely influenced 

by previous glaciations and oceanographic processes by different water masses (Harris & 

Baker, 2012). It is characterized by a narrow shelf and a steep slope (Faleide et al., 2008) 

On the LVT there are several troughs formed during LGM, separating banks and plains. They 

are generally over-deepened, and when the width are a few km the trough is able to disturb 

the dynamic balances that forces water flow to follow bathymetry contours (Harris & Baker, 

2012). Due to the flow strength in the troughs the most common sediments in the troughs are 

sand and gravelly sand, but some areas in the troughs could be covered by gravelly sand mud, 

or sandy mud as a result of a lower energy environment. On the outer part of the troughs there 

are commonly till/moraine material (Harris & Baker, 2012).  
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According to Rise et al. (2005) the present-day morphology of the mid-Norwegian continental 

shelf is mainly the result of a fast progradation of the shelf during the last 3 million years. 

Compared to wider adjacent shelves off mid-Norway and in the Barents Sea the LV 

continental shelf is narrow (Rise et al., 2013). The shelf width in the south is 90 km and 

becomes progressively narrower towards the north (30 km). The water depths varies, on the 

Lofoten shelf it reaches 100-200 m with locally deeper troughs, but off Vesterålen the banks 

are shallower (50-100 m) intersected by well-defined troughs (Rise et al., 2013), the deepest 

is Hola where the maximum depth reaches 270 m (Boe et al., 2009).  

The Norwegian shelf comprises sediment strata from Triassic to Pliocene (Rokoengen et al., 

1988; Sigmond, 1992). 

The last major shaping of the shelf topography took place during the Late Weichselian 

glaciation, the evidence is geomorphological structures as several types of morainic ridges 

and glacial lineations (Ottesen et al., 2005). The ice retreated towards the coastal areas 13.000 

years ago and the topography has remained nearly unchanged, except from places where 

major slides occurred (Aarseth, 1997).  
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2.2.1  Hola 

 

Fig 2.3: Map of the Hola trough located between Vesterålsgrunnen and Eggagrunnen, the location is shown on the overview 

map within the red square. Location and bathymetry of the Hola trough. Situated offshore of the Coast of Vesterålen, North 

Norway. Edited map from Mareano/Kartverket. 

The study area is located on the continental shelf about 20 km from Vesterålen, and 25 km 

from the shelf break (Fig 2.3). Compared to the Barents Sea that has been an interest for the 

petroleum industry for many years, this area is barely investigated. The Hola trough is 

confined by the shallower banks; Vesterålsgrunnen to the NE and Eggagrunnen to the SW, 

see Fig 2.3. The trough was formed during the last ice age. The water depth varies from 75 m 

to 270 m, and the seafloor is relatively flat (Boe et al., 2009). Other interesting 

geomorphological features located in the trough are two moraine ridges, four major sand 

wave fields, and the presence of more than 300 coral reefs making a positive relief to the 

rather flat seafloor (Boe et al., 2009). Mareano has also located several gas seeps with relating 

carbonate crusts and bacterial mats. Troughs in general have strong currents and areas with 

sand in motion, this results in scarce fauna (Harris & Baker, 2012). 

2.2.2 Gas in the Hola area 

During Mareanos autumn cruise onboard G.O. Sars, 2007, echosounder data were collected 

from Hola. In an area with corals there were also gas bubbles ascending in the water column. 

The origin of gas leaking from the seafloor here is not known, but results from shallow drilled 
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wells has shown potential Jurassic reservoir and source rocks. Some of the rocks contains 

high organic content which may produce gas and oil (Hovland, 2008). According to (Boe et 

al., 2009) there have been mapped large faults in the subsurface, where the gas could possibly 

migrate along this faults where open cracks may occur.  

 

2.2.3 Geological history 

Interpretation of commercial seismic data by (Boe et al., 2009), has shown that the 

sedimentary rock succession offshore Vesterålen comprises (from base upwards);  

- a) Precambrian basement 

- b) 100 m of Lower-Middle Jurassic sandstones with coal layers, 

- c) 200 m of Upper Jurassic, sandy and calcareous mudstones 

- d) And 2000 m of Lower-Upper Cretaceous claystones, siltstones, mudstones and 

sandstones with organic rich interval 

Several glacial cycles have deposited Quaternary sediments covering the bedrock (Ottesen et 

al., 2005). The upper glacigenic sequence consists mainly of muddy diamicton or silty sandy 

clay with scattered gravel. Commonly the diamicton is overconsolidated, and in the bank 

areas there is a thin cover (<1m) of sand/gravel, in the deepest troughs the cover is finer 

grained; 1-5 m of m of clay/silt/sand (Hald et al., 1990; Vorren et al., 1989). The formation of 

this cover occurred mainly during the deglaciation after 15.000 14C BP, after the ice retreated 

at c. 10.000 14C BP only small volumes of sediments have been deposited (Hald et al., 1990).  

2.2.4 Present day topography and sediment distribution  

The topography in the Hola trough strongly affects the distribution of the sediments covering 

the seabed; on the ridges and shallow bank areas coarse sediments, and lag deposits occur, in 

the deeper areas there are finer-grained sediments (Boe et al., 2009). No mud is deposited in 

the Hola trough at present.  According to Boe et al. (2009), there are two moraine ridges 

crossing the Hola trough, where the location is partly controlled by the underlying bedrock.  

The seafloor mapping by MAREANOs cruise in 2007 onboard G.O. Sars revealed that the 

seafloor sediments mainly consisted of sand and gravel. They also reported that the area 

differs from deep basins and fjords where the currents are not so strong. In the southern part 

of the Hola trough (location of the sand waves) the direction of the currents are mainly 

towards the Norwegian mainland, the current direction is opposite in the northern part of the 



Study areas 

22 

 

trough, where the coral reefs have sediment tails pointing in the current direction (Buhl-

Mortensen & Buhl-Mortensen, 2007).  

2.2.5 Currents 

According to Boe et al. (2009) the dominating currents in the area are; the Norwegian Coastal 

Current (NCC) and the Norwegian Atlantic Current (NWAC). The NCC follows the coast 

from the SW before turning eastwards into the Barents Sea. According  to (Ersdal, 2001) the 

velocity of the NCC is variable and surface current speeds exceeding 1 m/s are frequently 

observed. The NWAC, which constitutes the main part of the North Atlantic Current (NAC), 

moves along the continental slope NE to Tromsøflaket, where it splits; one branch running 

towards N to Spitsbergen the other branch, travels eastwards into the Barents Sea. The large-

scale topography of the continental shelf strongly influences the direction of the NWAC, 

which follows the 500 m contour with a maximum speed of 1.17m/s (Gjevik, 2000). Typical 

current speeds are 0.2-0.4 m/s (Gjevik, 1996).  
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3 Previous work on MDAC crusts in this thesis 

Previous work on carbonate crusts studied in this thesis has been published in the recent 

paper; “Timescales of methane seepage on the Norwegian margin following collapse of the 

Scandinavian Ice Sheet” (Cremiere et al., 2016a).  

During the Last Glacial Maximum (LGM) the Norwegian continental shelf and the Barents 

Sea were covered by the Scandinavian Ice Sheet (SIS) (Landvik et al., 1998; Svendsen et al., 

2004). Results of the Glacial loading were several; the GHSZ was extended up to 600 m 

below the sea floor on both of the study areas, and it reactivated widespread basement-

penetrating fault systems which enhanced the migration of gas from Triassic and Jurassic 

source rocks and hydrocarbon reservoirs (Henriksen et al., 2011). According to (Cremiere et 

al., 2016a) the conditions during the LGM enabled the formation of wide spread gas hydrate 

accumulations on the seafloor, when the SIS retreaded it led to gas hydrate dissociation and 

release of methane, see Fig 3.1.   

 

Fig 3.1: Schematic sketch from (Cremiere et al., 2016a). 

Since the precipitation of methane-derived authigenic carbonates are a result of AOM in areas 

with intense methane fluxes over 100-1000 years (Bayon et al., 2009). Cremiere et al. (2016a) 

dated the crusts with U-Th dating for information of the methane fluxes (Fig 3.2).  

The results revealed that the release of methane (17.5 ± 0.7ka) was coincident with the retreat 

of the SIS (~ 18-16 ka) and deglaciation-induced pressure release and thinning of the GHSZ, 

and the efflux of methane continued for 7-10 kyr (Cremiere et al., 2016a). 
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Fig 3.2: A detailed image of U-Th ages(in ka ± 2σ)  from the crust P1210002 on representative cross sections, edited figure 

from (Cremiere et al., 2016a) 

Carbon isotope compositions were measured, and the carbonate δ13C values ranges from - 

43.1 to – 13.0‰ Vienna Pee Dee Belemnite (VPDB), averaging – 32.3 ± 4.3‰ VPDB, 

suggesting that the principal source of methane is thermogenic due to the less depleted 13C 

values than microbial methane (Cremiere et al., 2016a).  
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4 Material and Methods 

4.1 Thin sections 

 

Fig 4.1:  Overview of the crust sample locations. Four different locations from the Loppa High area, and one from the Hola 

area. Figure modified from (Cremiere et al., 2016a).  

Thin sections (dimensions 50mm*75mm) of methane-derived authigenic carbonate (MDAC) 

crusts from four seepage sites at the Loppa High in the southwestern Barents Sea and one 

seepage site at Hola, off Vesterålen in the Norwegian Sea (Fig 4.1). The crust samples have 

been collected by remotely operated vehicle (ROV) during cruises in 2011 (Hola) and 2012 

(Loppa High). Loppa High sample collection includes 18 specimens of MDAC crust (up to 30 

cm thick) whereas the Hola sample set includes two MDAC crusts. Up to seven polished thin 

sections per crust to cover the entire stratigraphy of the specimen were prepared at the 

laboratory at NGU. A complete list of the studied MDAC crust specimens and thin sections is 

provided in the appendix.  

 

4.2 Methods 

The thin sections of the carbonate crusts were analyzed using optical microscope, Wilde 

Heerbrugg M 400, and Scanning Electron Microscope Hitachi Analytical TableTop 
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Microscope/benchtop SEM TM3030 equipped with an energy-dispersive X-ray (EDS) 

detector by Bruker Nano GMbH, for petrographic characterization and elemental analyses of 

the biogenic components (foraminiferal shells, small needle-like structures, and biogenic 

debris) and associated carbonates that comprise authigenic carbonates and detrital sediments. 

4.2.1 Scanning electron Microscope, “TM3030”.  

The TM3030 is a scann“A tabletop microscope operating under the principle of low-vacuum 

observation, a narrowly focused electron beam is directed onto the specimen, the resulting 

backscattered electrons are detected and minute parts of the specimen are enlarged for 

observation. High-magnification beyond the reach of an optical microscope” (Hitachi, 2013). 

 

 

Fig 4.2: A simplified figure of how the different signals are produced when scanning a sample with a finely converged 

electron beam. This process takes place in a low-vacuum chamber within the SEM. Figure modified from (Hitachi, 2013) 

Scanning Electron Microscope or SEM is an instrument, which produces images of a sample 

by scanning it with a beam of high-energy electrons in a vacuum. The different atoms in the 

sample interacts with the electrons, generating secondary electrons, backscattered electrons 

and characteristic X-ray photons (Fig 4.2). This reveals various information about the sample; 

morphology, chemical composition and crystalline structure.  

When the sample is irradiated with the electron beam different signals are produced; 

secondary electrons (produced near the sample surface) forming an image with fine 
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topographical structure of the sample and backscattered electrons illustrating the contrasts in 

composition. The electron backscattering depends on the composition of the sample (average 

atomic number, crystal orientation etc.). The different elements have their respective atomic 

number based on the density, so materials with higher atomic number it will result in a higher 

backscatter response and brighter color on the backscatter image, and opposite applies for 

materials having a lower atomic number. The signals received from secondary electrons and 

the backscattered electrons are utilized to form the image present on the monitor screen 

(Bruker, 2010; Hitachi, 2013).    

The SEM used in this thesis was equipped with an EDS (Energy Dispersive X-ray Analyzer), 

for elemental analysis, revealing the elements present in the sample by utilizing the X-rays 

generated by the electron beam. Artificial colors are chosen to generate element distribution 

map.  

4.2.2 Element mapping 

The element map is an image showing the spatial distribution of elements in a sample. It is 

produced by progressively rastering the electron beam point by point over an area of interest. 

The resolution is a result of beam size, and relative response of each element is determined by 

how long the beam dwells on each point, and the actual concentration (Bruker, 2010).  

In comparison to backscatter images, the element maps show the true spatial distribution of 

each element of interest. They are shown in false colors to help the human eye distinguish 

subtle variations. The brighter the color on the element map, the higher the abundance of the 

specific element (Bruker, 2010).  

4.2.3 Procedure 

The thin sections were cleaned with ethanol and dried with the help of an air compressor prior 

to the work with the SEM. This was to reduce the risk of contamination by unwanted particles 

in the chemical analysis. The thin section was placed on a specimen holder where the working 

distance was set to approximately 8.5 mm. The working distance is the distance from the 

backscattered electron detector to the specimen, the right distance gives the most correct 

results when working with EDS and chemical analyses. The (SEM work undertaken in a low-

vacuum mode) using un-coated thin sections. The systematic examination of thin sections 

started in the uppermost left corner, and to cover the whole section the observations were 

conducted side to side downwards. This procedure was followed for each of the studied thin 

sections.  



Material and Methods 

29 

 

Electron backscatter (BSE) images, element maps and EDS points analyses were obtained 

from areas of interest, primarily from areas containing foraminifera. For a good quality EDS 

spectrum sufficient acquisition time was needed, minimum five minutes for each target. 

Element maps and EDS spectra were further analyzed with the help of the software “Bruker”, 

where the element maps were made. 
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5 Results 

This chapter focuses on the observations of authigenic carbonates associated with 

foraminifera that are based on several BSE-images, supported by EDS-analysis. The 

authigenic carbonates in studied MDAC crusts occur as cements filling the pore space of mud 

to sand size detrital sediments and biogenic debris (including foraminifera) and as cavity fills. 

The latter occurrence consist typically of rather impurity free clean carbonate. The 

characteristic examples of foraminifera embedded in authigenic carbonates are illustrated and 

described with detail in the following chapter whereas the further examples are presented in 

the appendix.  

The MDAC crusts for this thesis were collected from four locations (PR1, PR3, PR4, PR5) at 

the Loppa High, southwestern Barents Sea and from the Hola site (Hola) - off Vesterålen in 

the Norwegian Sea. See Fig 4.1 for an overview map of the areas, and Table 1 for coordinates 

and water depths for each of the crust specimens. 

Table 1 Coordinates and water depths for each crust. 

 

Area Sample Latitude N 

(WGS84) 

Longitude W 

(WGS84) 

Water Depth 

(m) 

Loppa High:     

PR1     

 P1210001 72° 09’ 28.5'' 19° 43’ 38.5'' 319 

 P1210002 72° 09’ 28.1'' 19° 43’ 37.7'' 320 

PR3     

 P1210010 72° 35’ 20.4'' 20° 35’ 10.8'' 403 

 P1210011 72° 35’ 18.9'' 20° 35’ 11.0'' 403 

PR4     

 P1210017 72° 34’ 03.8'' 20° 52’ 21.0'' 391 

PR5     

 P1210032 71° 59’ 12.4'' 20° 28’ 40.5'' 393 

 P1210036 71° 59’ 12.6'' 20° 28’ 41.3'' 393 

Hola     

 Hola 68° 55’05.8 14° 17’ 02.6'' 218 
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5.1 Interpretation of the electron backscatter-images (BSE), elemental maps and the 

EDS point-analyses 

The BSE images allow to obtain an overview of compositional variability of carbonate phases 

on the surface of the thin section, which can be further verified using results of elemental 

mapping and EDS point-analysis. Following is an example of how the backscatter images 

combined with EDS-analysis were interpreted.  
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Fig 5.1: A backscatter electron image of a test Cibicides sp. embedded in authigenic carbonates from crust P1210032, and 

representative EDS spectra with positions shown on the image. The BSE intensity, combined with EDS analyses allows 

recognizing three carbonate phases. The lowest BSE response (darkest phases on the image) characterizes the Mg-
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containing carbonate phase (spectra 1 and 2) occurring as filling and/or overgrowth linings within test chambers. This phase 

has minor Mg peak in addition to the more intense Ca peak in the EDS spectra and is interpreted to represent Mg-calcite. 

There is also a Si peak present in all spectra that is derived from surrounding silicates (primarily quartz (spectrum 9)), 

unrelated to carbonates. Intermediate BSE characterizes the foraminifera test itself consisting of Ca-carbonate (spectrum 3) 

representing calcite. The highest BSE response (brightest phases on the image) characterizes the most common carbonate 

phase occurring typically as a cement around the test, but is also present within the chambers of foraminifera. The EDS 

results (spectra 4-6) show that this phase consists largely of Ca-carbonate, but minor Sr is also evident on some of the 

spectra suggests that this phase is aragonite. Due to close proximity of Si and Sr peaks in the EDS spectra and generally low 

Sr abundance in aragonite, the identification of Sr is not always conclusive. In some analytical spots a distinct Sr peak is 

observed (spectrum 5) whereas in other spots the presence of Sr is interpreted based on an occurrence of a shoulder on the 

higher energy side of the Si peak (spectra 4, 6). The EDS data are consistent with variable BSE intensity; among the three 

carbonate phases Mg-calcite has the lowest average atomic number (BSE darker than calcite and aragoinite) and Sr-bearing 

aragonite has the highest average atomic number (BSE brightest) whereas the average atomic number of calcite is in 

between Mg-calcite and aragonite.  

From Fig 5.1 it is established that there are carbonate phases with three different BSE 

intensities in studied samples; 

- Calcite; rather pure Ca-carbonate which is seen in the foraminifera test. On the EBS-

images the calcite appears brighter than Mg-calcite, but darker than aragonite. 

- Mg-calcite; Mg-containing calcite, occurs as overgrowths or coatings on the 

foraminiferal test, or as chamber fills. 

- Aragonite; Ca-carbonate with minor content of Sr, occurs as cement between the 

grains. Aragonite appears brighter than Mg-calcite and due to the SR content also 

brighter than calcite on EBS images. Aragonite is the most common authigenic 

carbonate phase in all crusts.  

 

Presented below are the most common examples of microfossils and their respective 

occurences within the carbonate cement in the MDACs. From tests with pristine 

characteristics just embedded in the surrounding cement (Fig 5.2), to tests with Mg-calcite 

overgrowths (Fig 5.3) and to the completely recrystallized tests with overgrowths of bigger 

Mg-calcite crystals on the inner and outer test walls (Fig 5.4).  
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Fig 5.2: BSE-image with supplementary EDS-spectra with positions shown on the image, example from the crust P1210002. 

The benthic foraminifera Cibicides sp. occurring in the carbonate cement exhibits pristine test, with no signs of Mg-calcite 

overgrowths, or recrystallization. The test is embedded in aragonite cement, (spectrum 1), this cement fills many of the 

foraminiferal chambers, cement infill (spectrum 2) shows a similar composition as the surrounding cement. The calcite test 

(spectrum 3) shows a smooth surface.  
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Fig 5.3: BSE-image of  benthic foraminifera Bolivina sp., from the Hola crust, with darker Mg-calcite coatings on the inner 

and outer test walls (spectrum 2). The test of the foraminifera shows a relatively smooth surface (spectrum 1). The 

surrounding cement is seen as fibrous aragonite crystals, (spectrum 3), larger aragonite crystals occur in the chambers of 

the test. Pyrite is also present in several parts of the test, seen as the bright white spots, the EDS-spectra in point 4 shows a 

larger content of S and Fe, which results in the bright color in the BSE-image.  
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Fig 5.4: This BSE-image is of a Cassidulina sp. from the crust P1210001, which represents one of the most recrystallized 

tests, found within the crusts. The test shows overgrowth of big crystals on the inner chamber walls and smaller crystals on 

the outer test wall, both having elevated Mg content and represent Mg-calcite (spectra 2, 4). The carbonate cement 

(spectrum 1) contains Sr and has a bright color in the BSE-image, representing the aragonite phase. Compared to the 

previous example in P1210032 (Fig 5.1), this test has no smooth surfaces, but rather a “frosty” appearance. EDS-analysis 

(spectrum 3) shows that the test is composed of calcite.  
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Fig 5.5: BSE-image and EDS spectra of siliceous microfossils (spectrum 1) embedded in aragonite cement (spectrum 2) 

observed within the crusts, this example is from P1210002.  

In all of the crusts from the study area Loppa High, there occur circular, needle-shaped 

siliceous structures (Fig 5.5). In some parts of the crusts, they are dominant among 

microfossils present in the carbonate cement, as well as in the sediments found within the 

cavities.  
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5.2 Loppa High 

Crusts from four different sample sites were collected from study area Loppa High, further 

information is given in Table 1. 

5.2.1 PR1 

Following are the crusts studied from the sample site PR1 located on the southwestern part of 

the Loppa High. The sample site are the shallowest for the Loppa High crusts; water depth 

320 m.  

P1210001: 

As seen in Fig 5.6 the 

dimensions of the crust is 

approximately 40 cm *15 cm at 

the most. Six thin sections 

were made from P1210001. 

 P1210001 comprises mainly 

fine-grained and well-sorted 

sediments; from mud to sand 

lithified with carbonate 

cement. The dominating 

carbonate phase is aragonite.  

The biogenic component found 

within the carbonate cemented 

sediments are comprised of different organisms, but mostly bivalves, benthic foraminifera and 

siliceous microfossils. The P1210001 is variably cemented; in parts of the crust with less 

cement and in the cavities where the cement is largely absent there is a high content biogenic 

debris. The composition of biogenic debris in these weakly cemented areas is similar to the 

cemented areas, but the foraminiferal assemblage is dominated by benthic species. 

-  Thin sections P1210001A, C and D:  most of the foraminifera were observed within 

weakly cemented sediments. 

- Thin section P1210001B: Several foraminifera tests, both planktonic and benthic 

species have authigenic overgrowths.  

Fig 5.6: Overview image of the crust P1210001, the red rectangles indicates the 

location of the polished thin sections A-F. The smallest squares in the white 

grid lines indicates 1 cm * 1 cm.  
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- Thin section P1210001E: Dominated by bivalves and fragments of bivalves within the 

carbonate cement.  

- Thin section P1210001F: Fragments of bivalves, areas with high abundance of pyrite. 

Some benthic species.  

 

Fig 5.7: One of the planktonic species occurring within the fibrous aragonite cement. One area with primary pores still 

intact (1). Overgrowth of Mg-calcite crystals on the inner chamber wall (2). Bigger crystals of aragonite within the chamber 

(3). Overgrowth of Mg-calcite on the outer test wall (4) with a different structure and color than the surrounding cement. 

 

Authigenic carbonate precipitation has variable alteration of test of both planktonic and 

benthic foraminifera. Some examples of the different alteration and preservation of original 

features are given in Fig 5.7 and Fig 5.8.  
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The alteration state of the tests varied within 

the crust, but some of the most altered 

examples of foraminifera tests were found 

within thin section P1210001B. All tests have 

a “frosty” appearance and there are no 

smooth surfaces left on the test walls.  

Other examples of benthic species with 

altered tests show that the smooth surfaces 

have been overprinted by authigenic crystals. 

The overgrowths of Mg-rich crystals are 

observed on all the inner chamber walls as 

well as the outer test wall. The crystals on the 

inner chambers are similar in size and larger 

compared to the crystals on the outer wall 

(Fig 5.8). 

 

Fig 5.8: Some of the recrystallized benthic species found within 

the crust. A.) Cassidulina sp. with recrystallized test and 

overgrowth on inner and outer test walls. The crystals on the 

inner walls are bigger in size compared to the outer. B.) 

Unidentified species with recrystallized test and overgrowth  
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Fig 5.9: An overview of the crust P1210002. 

P1210002: 

Dimension of the crust is approximately 35 cm * 27 cm (longest and thickest part), and it is 

the biggest crust studied in the thesis (Fig 5.9). Seven thin sections are made from the crust. 

The uppermost part of the crust (thin sections P1210002A and P1210002D) contains 

sediments that are more poorly sorted than the sediments in the lower part of the crust. The 

size of the sediment grains range from silt to coarse sand and they are a mix of rounded to 

angular. 

The biogenic components consists of several broken parts of bivalves in different size ranges, 

foraminifera of planktonic and benthic species. Several circular and needle-shaped structures 

of microfossils were also observed. In some areas, they are the dominating biogenic 

components of the crust. EDS-analyses showed that these needle- and circular shaped 

structures were siliceous. The main foraminiferal tests found within the cement were benthic 

species, but some planktonic species were observed.  

The majority of the foraminifera were affected by variable state of alternation and have 

authigenic Mg-calcite overgrowths, examples are shown in Fig 5.10 where A.) and B.) 

represent the major alternation state of the tests. Recrystallized tests as seen in C.) did not 

dominate, but it occurred as well.   
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Fig 5.10: A.) Benthic foraminifera within the carbonate cement, the detailed BSE image reveals a darker coating on one of 

the inner chamber walls, interpreted to be Mg-calcite, confirmed by EDS-analysis. B.) A test of a benthic foraminifer 

interpret to be a Buliminella sp., no signs of overgrowth on the outer test wall, or recrystallization of the test. Whereas on all 



Results 

43 

 

of the inner chamber walls there are overgrowth of well developed rhombohedral Mg-calcite crystals. C.) A Cibicides sp. 

with overgrowth on the inner and outer walls. The close-up image within the blue square shows a part of the test with 

recrystallization of the test.  

 

- P1210002A: Benthic foraminifera with different 

alternation states, and fragments of bivalves. 

- P1210002B: A few benthic species, with Mg-

calcite coating on the outer test wall. Predominant 

biogenic components within the thin section are 

siliceous microfossils.  

- P1210002C, D, E, F, and G: Several benthic 

species and a few planktonic species within the 

carbonate cement. With different states of 

alternation, but mainly with a coating of Mg-calcite 

either on inner or outer test wall. Other biogenic 

components comprised siliceous circular structures, 

and bivalves.  

Some examples of the siliceous microfossil are 

given in Fig 5.11, they had a wide range of different 

sizes. 

 

 

 

  

Fig 5.11: Examples of circular and needle shaped 

siliceous structures of microfossils in the carbonate 

cement. A.) Aragonite crystals (200µm) radiating out 

from one of the siliceous structures. B.) Several 

structures in a variety of sizes.  
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5.2.2 PR3 

The sampling site PR3 are located at the NE part of the Loppa High, the water depth is 403 m, 

which is the deepest of all Loppa High sites. Two crusts were examined from this site; 

P1210010 and P1210011, they comprised finer grained and better sorted detrital sediments 

compared to the other crusts.   

P1210010: 

Dimension of the crust is 

approximately 22 cm* 10 

cm at the longest and 

thickest part; three thin 

sections were made from 

this crust (Fig 5.12). The 

sediments are well sorted, 

mainly mud/silt with a 

small amount of fine-

grained sand in some areas. 

The biogenic debris that 

however is not abundtant 

consists mainly of foraminifera. The majority of the species represent benthic species 

- P1210010A: Benthic species with Mg-calcite overgrowth and recrystallized tests. 

- P1210010B: A few benthic species present, all with Mg-calcite crystals on outer test 

walls.  

- P1210010C: Planktonic and benthic species with different alternation states.  

 

Fig 5.12: The crust P1210010, the red rectangles indicates where the polished thin 

sections A-C are from. The white grid lines indicates squares in the dimension 

1cm*1cm.  
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Fig 5.13: Overview of different examples of foraminifera from the crust. A.) A Miliolida sp. with overgrowth on the outer 

test wall, the crystals are quite uniform in shape and size. The test has a smooth surface. B.) A benthic foraminifera with 

slightly more overgrowth, the Mg-crystals on the inner chamber walls are uniform in size and shape, but slightly bigger 

compared to the crystals on the outer test wall. C.) A benthic foraminifera which is completely recrystallized, the overgrowth 

of Mg-crystals are located on the outer test wall. The secondary crystallization of the test seems to have crystals radiating out 

from the chambers, seen in the blue square. D.) A recrystallized planktonic foraminifera, where the secondary crystals 

radiates out from the chambers, seen in the blue square.  

Example of an element map as shown in Fig 5.14 shows that the highest amount of Mg-calcite 

is concentrated along the crystal overgrowth occurring on the outer test, but there is also an 

enrichment internally in the test. 
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Fig 5.14: From the same foraminifera seen in Fig 5.13C), but here with an element map of Ca and Mg. Note that the highest 

concentrations of Mg follows the rim of overgrowth on the outer test wall. 

P1210011: 

Dimension of the crust is 

approximately 25 cm * 

12 cm at the longest and 

thickest part; three thin 

sections are made from 

the crust (Fig 5.15). The 

crust consists of well-

sorted and very-fined 

grained sediments, 

mainly mud/silt. The 

carbonate cement is not 

as dominating as in many of the other crusts.  

The foraminifera are relatively rare, and the assemblage was almost entirely represented by 

benthic. The majority of the foraminifera have overgrowth of Mg-calcite crystals on the outer 

test wall and the chambers are typically free of authigenic precipitates (Fig 5.16 A.). Several 

of the tests also have larger Mg-calcite overgrowths and large aragonite crystals on the inner 

walls of the chamber as seen in (Fig 5.16 B.).  

Fig 5.15: The crust P1210011, the polished thin sections A-C are indicated with the red 

rectangles.  
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Fig 5.16: Examples of how the majority of the foraminifer tests occur within the crust P1210011. A.) A benthic foraminifera 

(100 µm), with a smooth test, but overgrowth of Mg-calcite of the same size on the outer test. B.) Overgrowth of Mg-calcite 

on the outer wall of the test, larger aragonite crystals grows on the inner walls of every chamber of the test, but the test itself 

seems to be smooth with no signs of recrystallization. Pyrite is indicated in the upper left corner.  

5.2.3 PR4 

The sample from Loppa High site PR4 is from a water depth at 391 m. Only one crust from 

this sample site was studied. 

P1210017: 

Dimension of the crust is 

approximately 17 cm * 8 cm at the 

longest and thickest part; two thin 

sections are made from this crust 

(Fig 5.17). The sorting of the 

sediments are moderate to well, not 

much fine grained sediments as they 

range from very coarse sand to 

gravel. In the middle part of the crust 

there is a large cavity filled with 1-2 

cm thick layered aragonite.  

The content of biogenic debris is relatively low, only a few examples of benthic species were 

found. As shown in (Fig 5.18) the thin sections are made from the areas with a high level of 

cavity fill. As observed in other crusts, those cavity fills consisting of impurity-free aragonite 

Fig 5.17: An overview of the crust P1210017, with the thin sections A-B 

indicated in the red rectangles.  
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usually do not contain a lot of biogenic material. A few species were observed, but no 

generalization were made by those observations.  

 

Fig 5.18: A.) Backscatter image of an area with several aragonite layers (indicated by the black arrows) representing 

different episodes of precipitation. No biogenic components observed in this layered aragonite. B.) A benthic species (60 

µm). The surrounding carbonate cement is represented by Mg-calcite with pyrite to a clean aragonite to the right (border 

marked with dotted blue line). C.) Another benthic species (80 µm), the test is surrounded by aragonite cement and there is 

no visible overgrowth. It seems that the aperture (indicated by the black arrow) has induced carbonate precipitation to the 

chamber of the test.  
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5.2.4 PR5 

The samples from Loppa High site PR5 are from a water depth at 393 m. The crusts from this 

sample site comprised of poorly sorted coarse-grained sediments. They were almost 

completely barren of foraminifera, the main components of biogenic debris were fragments of 

shells or bivalves.  

P1210032: 

 

Fig 5.19: An overview of P1210032, one thin section made from the crust.  

Dimension of the crust is approximately 8 cm * 6 cm, measured at the longest and thickest 

part of the crust (Fig 5.19). One thin section made from the crust, P1210032A. The sediments 

ranges in size from very fine sand to pebble and are poorly sorted.  

The content of biogenic components is very low, only a few benthic foraminifera were 

observed. Some siliceous circular remnants of microfossils were also observed. 
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P1210036: 

Dimension of the crust is approximately 

13 cm * 12 cm, measured at the longest 

and thickest part of the crust (Fig 5.20). 

Two thin sections are made from the 

crust. The sediments are poorly sorted, a 

mix of grain sizes ranging from coarse 

sand to gravel and some grains in the 

pebble size.  

The content biogenic components are 

low, mainly bivalves or broken bivalves 

(Fig 5.21). Completely barren of 

foraminifera.  

 

5.2.5 Short summary of the 

Loppa High sections 

The observations of the crusts sampled 

from four Loppa High reveals that there 

are similarities between the crusts, but 

mostly it is a big variation both within 

the crusts and compared to each other. 

Crusts from PR4 and PR5 consisted of 

sediments which were less sorted and 

the sediment grains were bigger 

compared to the crusts from the other 

sampling sites, they were also almost 

completely barren of foraminifera.  

The biogenic component were a mix of bivalves, foraminifera and siliceous remnants of 

microfossils. The amount of occurring foraminifera varied and was mainly dominated by 

benthic species. Mg-calcite overgrowths only occurred on the tests of foraminifera, both 

planktonic and benthic.  

Fig 5.20: Overview of the crust P1210036, with indicated polished 

thin sections; A-B. 

Fig 5.21: BSE-image of a part of a bivalve from thin section 

P1210036A, where the blue dotted line indicates the border between 

the shell and the carbonate cement.  
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5.3 Hola 

 

Fig 5.22: Overview of the Hola crusts, with eight thin sections (marked with blue) CS-11-1 to CS-11-8.  

The Hola sample (Fig 5.22) area is located off the coast of Vesterålen, amongst all studied 

sites, it is the shallowest sampling site with the water depth 218 m. The sediment grains in the 

crust are angular to sub-rounded and mostly in the same size range, which makes it well 

sorted. The precipitated carbonate cementing the sediments consists of small needle like 

crystals, whilst the cavities are infilled with larger needle like crystals.  

 

The foraminiferal assembly is almost entirely made up by benthic species, very few to none 

planktonic species were observed. Even though the specimens are barren of planktonic 

species, there are several benthic foraminifera present; ranging from 100 µm to over 500 µm 

in size. Cibicides sp. is the dominating species in all thin sections. The foraminifera in the 

crust exhibited different stages of both recrystallization and overgrowth see Fig 5.24, from the 

pristine smooth appearance of the test to a completely recrystallized test without any 

preservation of the smooth pristine appearance. The majority of the foraminifera in the 
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seemed to still behold the pristine characterizations of the test, surrounded by cement (Fig 

5.23), needle like crystals were also observed growing in the chambers of several of tests,  

 

Fig 5.23: Overview of a larger area in one of the Hola crusts. The red arrows indicates benthic species, Cibicides sp.. In the 

lower part of the image there is an area with a variety of benthic foraminifera where the carbonate cement is less abundant 

compared to the upper part of the image.  

No examples of strongly altered tests as observed in several of the Loppa High sections were 

found within the Hola crust. The recrystallized tests if found within the Hola crust had a 

crumbled appearance, with dark rims of small Mg-calcite on surrounding the outer and inner 

walls. This dark rim of consists of very small crystals of microcrystalline size. The typical 

foraminifera found within the Hola crust are represented in Fig 5.24. EDS-analysis revealed 

that several of pristine smooth tests often had a small Mg-enrichment on some of the inner 

chamber walls.   
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Fig 5.24: Overview of different stages of recrystallization and overgrowth of the benthic species found in the Hola crust A.) 

A benthic species where the test has a smooth appearance and original pores are still intact. B.) Miliolida sp. with thin Mg-

calcite-overgrowths on the inner chamber walls and on the outer test wall. One of the chambers have a small infill of bigger 
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radiating aragonite, which are brighter on the BSE image compared to the test and Mg-calcite overgrowths. C.) A benthic 

foraminifera, probably a Miliolida sp. where the test is recrystallized and rhombohedral Mg-calcite crystals are present in the 

chambers. Compared to the tests in A.) and B.) this appears darker on the BSE image. 

 

5.4 Summary and comparison  

Following is a short summary and comparison of the two study areas based on the 

observations. In general the MDAC crusts are comprised of two different materials; mud to 

gravel-size detrital glacial sediments lithified with carbonate cement. The dominating 

carbonate cement was aragonite, whilst Mg-calcite occurred on the tests of foraminifera as 

overgrowths, whilst calcite represented the foraminifera tests.  

The crust from Hola had a uniform authigenic carbonate content and appearance compared to 

the crusts from Loppa High. The benthic assemblage is mainly represented of Cibicides sp.. 

No circular/needle-shaped siliceous microfossils occurred in the Hola crusts. The occurrence 

of planktonic species were scarce. 

 

Fig 5.25: An overview image of a benthic species showing the typical alteration states of the foraminiferal tests (black scale 

bar: 60 µm). A.) A pristine test with aragonite infill of chambers. B.) Thin coating of Mg-calcite on outer test wall. C.) Mg-

calcite overgrowths on both inner and outer test wall.  

The different alteration states of foraminifera tests were mainly the same in both study areas, 

where the typical states are indicated in Fig 5.25. 
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6 Discussion 

In this chapter the combined observations of BSE-images and EDS-analysis will be 

summarized and interpreted. The main purpose of the petrographic investigation of the 

methane-derived authigenic (MDAC) crusts was to document the nature of the biogenic 

debris capsuled in the crusts. Assessment was made if the precipitated authigenic carbonates 

used the tests of the foraminifera as nucleation templates by addressing the following 

questions:  

- Is there any difference in the secondary carbonate overgrowth on biogenic debris/ are 

there overgrowths always when authigenic carbonate formation occurs? 

- Is there any differences between the foraminifera species in their response to 

authigenic precipitation; does the precipitation affect preferentially benthic of 

planktonic species. 

 

The petrographic investigations are further listed. 
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6.1 Sediments within the MDACs 

 

Fig 6.1: BSE-image (black scale-bar: 60 µm, EDS-spectra obtained by scanning the whole area (BSE-image) with its 

respective elemental maps. Sub-rounded to angular detrital sediment grains (5- 150 µm), a foraminiferal test and aragonitic 
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carbonate cement (BSE-image). The Si map indicates that many detrital grains contain Si, but the abundance (the brighter 

the color on the element map, the higher the abundance), is variable amongst different Si-containing grain. Grain with 

highest Si abundance represent quartz (SiO2). Whereas the lower Si abundance correlates with high Al and, -either K or Na 

representing f-feldspar and plagioclase respectively. Ca map tracks the aragonite cement and the calcite test of the 

foraminifera. Mg occurs within the Mg-calcite overgrowths on the foraminifera test.  

Carbonate crusts represent carbonate cemented mud to gravel-size detrital 

glacial/glaciomarine sediments, the latter being mainly comprised quartz, feldspars and clay 

(Fig 6.1).   

The formation of the MDAC occurs at the SMTZ within the subsurface of the seafloor, where 

the precipitated carbonate forms a cement lithifying the host sediments. Quartz and feldspars 

are resistant against weathering, after the grains were derived from the parent rock, glacial 

processes have transported and deposited the grains on the shelves offshore Norway. Clay 

minerals rich in  Al, K and Na are common constituents of marine sediments, derived from 

the continent (Nichols, 2009). The depositional regime at the respective study areas is best 

described by grain size distributions and sorting.  

The Hola crusts are constituted by a uniform size range of sand particles; generally, the sand 

is indicative of a indicating a higher energy environment. This is supported by 

geomorphological features as big sandwave fields, and elongated coral reefs aligned towards 

the main current in the Hola area, as described in (Boe et al., 2009; Buhl-Mortensen et al., 

2012). Strong currents will prevent the deposition of finer grains of silt and mud size, 

resulting in a better sorted sediment size distribution (Nichols, 2009). Which supports the 

observations of sediments observed in the Hola crust. 

Detrital particles in the Loppa High crusts are in general less sorted, comprising grains from 

mud to gravel size, the coarsest and less sorted sediments were found within the crusts from 

areas PR4 and PR5, indicating a higher energy environment compared to the other study areas 

PR1 and PR3. The amount of foraminifera decreased with the increased grain-size of 

sediments. 
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6.2 Authigenic pyrite 

 

Fig 6.2 Authigenic pyrite occurring in different parts of the crusts, and in different shapes and sizes (black scale-bar: 50 µm, 

white scale-bar: 5 µm).  

Pyrite occurs in different shapes and sizes, but generally in the size range of 2-to10 μm, 

commonly associated with the biogenic components as well as concentrated in the pore spaces 

between the grains together with the carbonate cement (Fig 6.2). Framboidal pyrite was often 

occured within the tests of the foraminifera; in the BSE-image pyrite appeared as the brightest 

phase due to the high content of Fe. Formation of authigenic pyrite is induced by the coupled 

process of anaerobic oxidation of methane and sulfate reduction that generates hydrogen 

sulfide, which in turn forms pyrite through reaction with dissolved Fe (Ritger et al., 1987). 
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6.3 Biogenic components 

The biogenic components in carbonate crust comprise shells and remnants of different 

organisms. The main identified biogenic components ant their content are further discussed 

below.   

6.3.1 Siliceous spicules 

In all of the Loppa High MDAC crusts there were abundant siliceous circular/needle-shaped 

structures present. They were very abundant and the size range varied widely. These 

structures are interpreted to be spicules (skeletal elements) of siliceous sponges.  Sponges are 

aquatic, sessile multicellular organisms, which are divided into three classes; Hexactinellida 

(siliceous sponges), Demospongiae (siliceous/sponging sponges) and Calcarea (calcareous 

sponges) (Müller et al., 2009). The siliceous spicules, Hexactinellida and Demospongia are 

composed of amorphous opal (noncrystalline silica) (SiO2*nH2O) (Müller et al., 2009; Müller 

et al., 2008). The siliceous spicules of Demospongiae and Hexactinellida are found in a high 

diversity of shapes and sizes, with lengths varying from micrometers to centimeters, usually 

divided into microscleres and megaslceres (Uriz et al., 2003). The spicules observed 

embedded in the carbonate cement in the crust did not exhibit any recrystallization or 

overgrowths.   

 No spicules occurred in the Hola crust, in agreement with the results of the MAREANO 

mapping of benthic habitats on the seafloor off the coast of Vesterålen. The sponge 

communities occur at banks and plains with water depths between 200-300 m, on muddy 

substrates (Buhl-Mortensen et al., 2012). 
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6.3.2 Bivalve shells 

Shell fragments of bivalves were one of 

the main contributors to the biogenic 

content, observed in all of the crusts 

including the crusts from PR4 and PR5 

where the other organisms rarely occur in 

crust. The fragments of bivalve shells were 

often observed with big crystals radiating 

out from the walls (Fig 6.3). If that was a 

result of the pore space provided by the 

bivalves, or if the carbonate cement 

nucleated on the shell is not closely 

investigated. The authigenic carbonate 

phase forming needle-like crystals 

associated with bivalves is aragonite as 

indicated but BSE-images (aragonite is 

brighter in BSE-images compared to 

bivalve calcite) and by EDS-analysis. 

Therefore, the aragonite crystals radiating 

out from the walls of the bivalves are 

proposed to be results of the provided pore 

spaces.  

  

Fig 6.3: Overview of bivalves observed in different crusts (Bi-

bivalve, black scale-bar: 200 µm). A.) Part of a bivalve with 

aragonite crystals radiating out on one side, on the left side 

there is a cavity with two tests belonging to Cibicides. B.) Shell 

fragments of bivalves in the carbonate cement. C.) Aragonite 

crystals radiating out in pore space within the bivalve. 
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6.4 Foraminifera  

The aim of this study was to investigate if the precipitation of authigenic carbonate cement 

nucleated on the tests of foraminifera, and to assess if the different species responded 

differently to authigenic carbonate precipitation. 

The foraminiferal assemblage in the studied crust is dominated by benthic foraminifera 

species in the size range from 100 µm to 250 µm. In the weakly cemented sediments, the 

foraminiferal assemblage were composed of both planktonic and benthic species, similar to 

the species in the crusts.   

As the tests of the foraminifera occur randomly crosscut in the thin sections, identifying the 

different species was difficult; the main classifications is therefore set by planktonic species 

and benthic species. However, for some specimens it was possible to identify the Genus. 

In the samples, the foraminiferal tests have different state of alteration: some of them are very 

well preserved whereas other show alteration due to the precipitation of methane-derived 

authigenic carbonate on their tests after burial. The main characteristics are listed below: 

- Pristine tests embedded in the cement. 

- Overgrowth of Mg-calcite crystals on test walls.  

- Recrystallization or “neomorphism” of the test. 

- Carbonate cement infill of the chambers either as aragonite crystals or as 

microcrystalline cement. 

6.4.1 Planktonic foraminifera 

The amount of planktonic foraminifera occurring in the crusts were low, and the main 

planktonic assemblage occurs within the weakly cemented areas and in cavities. The 

planktonic foraminifera tests are deposited by “falling” down the water column and onto the 

seafloor, if the currents are too strong the tests will be carried away and deposited at lower 

energy environments. Which is proposed to be the main reason for the low amount of 

planktonic foraminifera occurring in the crust specimens.   

Even though the amount of tests of planktonic foraminifera was low compared to tests of 

benthic foraminifera, the preservation states are similar. The planktonic tests were observed 

with all the main preservations states as earlier listed.   
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6.4.2 Benthic foraminifera 

Benthic foraminifera were the main contributors to the foraminiferal assemblages, they were 

observed in all of the crusts except the crust PR1210036. The coarse grained crust represent 

depositional environment too harsh for the foraminifera, or most likely it could be a result of 

the thin sections not covering the entire crust.   

Based on all the observations there were no indications of some species working as better 

nucleation templates for the carbonate precipitation compared to others. Likewise, there is no 

indication that some specific species are more resistant to alteration than others as all of the 

different species were observed occurring in different alteration/preservation states. The 

majority of the foraminifera have tests composed by calcite, but species belonging to 

Miliolids secrete tests of high Mg-calcite (Sen Gupta, 2003), the Miliolida sp. in the studied 

MDAC crusts did not differ from the rest of the benthic species.  

 The most common species are further discussed below.  
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6.4.3 Cibicides sp. 

One of the most dominant species is interpret to belong to the genus Cibicides. The alteration 

state varied from pristine to recrystallized, but most often occurred with a rather pristine test, 

with minor Mg-calcite coating on some of the inner chambers, and  cement infilling in the 

chambers. Overview of different and characteristic alteration states are seen in Fig 6.4 

 

Fig 6.4: Overview of different preservation states observed within the species Cibicides sp.; examples from both the study 

areas Loppa High and Hola.  A) and B) represent the pristine tests, with no overgrowth or recrystallization. C) The test has 

been altered by recrystallization, but no overgrowth. D) No recrystallization on the test, original pores are still visible but a 

small coating of Mg-calcite crystals covers the outer test wall, seen as a BSE darker rim. E) Test with both recrystallization 

and overgrowth, the crystals on the inner chamber walls are equal in size and bigger than the crystals on the outer test wall. 

F) Test partially recrystallized and some Mg-calcite overgrowth. Most of the overgrowth of Mg-calcite crystals are only seen 

as a BSE darker coating. Carbonate cement within the chambers. Some BSE darker areas internally in the calcite test 

represent an Mg-calcite enrichment within some of the lamellar walls.  (Black scale-bar 60µm).  
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6.4.4 Cassidulina sp. 

Cassidulina sp. is amongst the dominant species observed within the crusts. Similar alteration 

states of the tests compared to the species of Cibicides sp., which are shown in Fig 6.5. Some 

of the most representative examples of recrystallized test with overgrowths on the outer 

chamber walls occurred in species of the Loppa High crusts.  

 

Fig 6.5: Different examples of the species Cassidulina sp. from both the study areas. A.) The test has a smooth appearance 

with primary pores intact, but with Mg-calcite crystals on the outer test wall. Surrounding aragonite cement has a smooth 

appearance but no clear nucleation on the test. B.)A test with overgrowth on the outer walls, and on the inner walls. 

Surrounding cement with a more fibrous appearance. C.) Overgrowth only seen as BSE darker coatings, no recrystallization 

of the test. D.) Overgrowth only on inner chambers. E.) Completely recrystallized test, with overgrowth of big crystals on all 

the inner walls, and smaller crystals on the outer test. Fibrous aragonite cement surrounding the specimen. (White scale-bar 

50µm).  
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6.4.5 Buliminella sp. 

Species interpret to belong to 

the genus Buliminella were 

observed in the crusts from 

both Loppa High and Hola. 

The majority of the 

specimens observed had 

rhombohedral Mg-calcite 

crystals growing the inner 

chamber walls (Fig 6.6). 

  

Fig 6.6: Overview of the most common states found within Buliminella sp.. 

A.)Overgrowth only found on the inner chamber walls of the oldest chambers. B.) 

Overgrowth of rhombohedral crystals seen on all the inner chamber walls. C.) 

Same as B.) but also a dark coating of Mg on the outer test wall. (Black scale-bar:  

30μm. 
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6.4.6 Agglutinated foraminifera 

Agglutinated benthic foraminifera are rare in the benthic foraminiferal assemblage, but some 

species were observed. EDS-analysis revealed that the agglutinated species selected siliceous 

grains, commonly quartz, to build the tests. The cement among the grains in the test was 

aragonite, some examples are given in Fig 6.7. Clearly, the agglutinated tests composed of 

quartz grains did not serve as a template for the precipitated authigenic carbonates, as there 

were no signs of overgrowth or recrystallization, but they often exhibited aragonite cement 

within the chambers.  

 

Fig 6.7: An overview of some of the agglutinated benthic foraminifera (black or white scale-bar: 50 µm). A) A benthic test 

occurring in poorly cemented area of the crust. B) A rather big specimen, which seems to prefer elongated grains of quartz to 

build the test. C) Agglutinated test with quartz grains of similar size and roundness, aragonite crystals within the chambers. 

D) Agglutinated test with chamber infill of aragonite cement.   
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6.5 Cement mineralogy  

 

Fig 6.8: A) Overview of detrital sediments with biogenic components in poorly cemented areas within cavities. B) Fibrous 

aragonite between pore spaces of detrital grains. C) From (Cremiere et al., 2016a), with early-stage cements marked in 

carbonate cemented sediment, and clean radial fibrous aragonite cavity fill.  

The presented observations indicate that aragonite is the dominating phase authigenic 

carbonate cement (Fig 6.8),based on the EBS-image intensity, and the EDS-analysis (contains 

minor Sr). Minor Mg-calcite is also present, commonly occurring as overgrowths on the tests 

of the foraminifera. These carbonate mineralogy observations coincides with the XRD results 

of Cremiere et al. (2016a), shown in Table 2. 

Table 2: Supplementary table, from (Cremiere et al., 2016a) 

Sample Area Carbonate minerals Detrital minerals 

P1210001 PR1 Aragonite Quartz, plagioclase, 

illite/muscovite, chlorite 

P1210002 PR1 Aragonite Quartz, plagioclase, 

illite/muscovite, chlorite 

P1210010 PR3 Aragonite, high-Mg calcite 

(14% mol MgCO3) 

Quartz, plagioclase, chlorite 

P1210011 PR3 Aragonite Quartz, plagioclase, 

illite/muscovite, chlorite 

P1210017 PR4 Aragonite, high-Mg calcite 

(15% mol MgCO3) 

Quartz, plagioclase, 

illite/muscovite, amphibolite, 

chlorite 

P1210032 PR5 Aragonite Quartz, plagioclase, 

illite/muscovite, amphibolite, 

chlorite 

P1210036 PR5 Aragonite, Calcite Quartz, plagioclase, 

illite/muscovite, amphibolite, 

chlorite 

Hola Hola Aragonite Quartz, plagioclase, 

illite/muscovite 
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The main carbonate phases observed within MDACs are authigenic aragonite and Mg-calcite 

(Aloisi et al., 2000; Cremiere et al., 2016b; Peckmann & Thiel, 2004). According to Burton 

(1993), the mineralogy of carbonates in diagenetic environments is controlled by several 

environmental parameters; sulfate concentration, alkalinity, Ca2+/Mg2+ ratios and carbonate 

saturation state. Precipitation of aragonite occurs with high sulfate concentrations under 

conditions of high methane flux, when the thought SMTZ are shallower in the seafloor 

subsurface. Whereas Mg-calcite precipitates at lower sulfate concentration and methane flux, 

deeper in the subsurface (Aloisi et al., 2000; Luff, R. et al., 2005). The dominated aragonite 

phase could be a result of carbonate precipitation occurring in a more open system conditions, 

within subsurface sediments containing sulfate, and Mg-calcite precipitation happens with a 

more diffusive methane seepage flux deeper within the subsurface sediments (Cremiere et al., 

2016b).  

6.6 Carbonate mineralogy of precipitated authigenic carbonates and foraminiferal 

tests 

 

Fig 6.9: Schematic diagram of authigenic carbonate precipitation associated with foraminiferal tests. During conditions of 

low methane flux precipitation of Mg-calcite phase is right, and it occurs on the inner and/or outer walls of the test. A higher 

flux favors the aragonite phase, which does not nucleate on the foraminiferal test due to a different crystal structure. When 

Mg-calcite and aragonite are observed together in the foraminifera tests it is therefore interpreted to reflect changes in the 

intensity of the methane flux. Thick arrow represents high methane flux, thin arrow represents a lower flux. 

Aragonite and calcite are polymorphs, meaning that they have the same chemical formula, but 

the crystal structure is not the same. Whereas calcite and Mg-calcite share the same crystalline 

structure (Burton, 1993; Flugel, 2004). Therefore, the calcite tests of foraminifera could serve 

as nucleation centers for the authigenic Mg-calcite, but this is not true for the authigenic 

aragonites. Which matches the results of the observations, where the occurrences of Mg-

calcite that overgrows could be results of a low methane flux, and a SMTZ located lower in 

the sediment column. Followed by a change in the flux to a higher intensity supporting in a 

rapid precipitation of aragonite carbonate cement embedding and lithifying the sediments and 

biogenic content (Fig 6.9).  
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During the Last Glacial Maximum the Scandinavian Ice Sheet covered the Norwegian shelf 

and the entire Barents Sea, the pressure effects on the seafloor due to ice- sheet loading 

resulted in thickening of the GHSZ. Furthermore, the ice-sheet caused also the reactivation of 

the fault systems enhancing the migration of methane from deeper sources which in turn 

supported the formation of gas hydrates. The retreat of the SIS from the shelf margin began at 

19 ka (Ottesen et al., 2005; Winsborrow et al., 2010), where the unloading of ice led to 

thinning of the GHSZ and gas hydrate dissociation. So the precipitation of Mg-calcite could 

represent the early stages of methane flux due to gas hydrate dissociation. And the aragonite 

phase could be interpreted to have precipitated with further changes in glacial unloading, 

isostatic rebound with seafloor rising and inflow of warmer bottom water, which led to a 

higher methane flux and a shallower SMTZ supporting the rapid aragonite precipitation 

(Cremiere et al., 2016a)    
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6.7 Nucleation centers or not 

Based on the observations of the biogenic components 

within the MDAC crusts, it seems fair to say that the Mg-

calcite overgrowths occur on the calcite tests of 

foraminifera.  Interestingly, however, the overgrowth of 

Mg-calcite crystals was not observed on the bivalves. 

The Mg-calcite masking the primary test is interpreted to 

be most effective under low flux of methane, whereas the 

tests act passively during aragonite precipitation during 

higher intensity of methane flux. It is discussed if 

diagenetic processes equally alters tests of benthic and 

planktonic foraminifera by the means of dissolution, 

recrystallization and overgrowth. Where it has been 

suggested that benthic foraminifera are considered less 

receptive to these processes due to the more heavily 

calcified test compared to planktonic tests (Edgar et al., 

2013; Sexton, Philip F & Wilson, 2009). However the 

observations in this thesis clearly shows diagenetic 

alteration on the tests of benthic foraminifera, which is 

also reported in other studies, e.g. (Consolaro et al., 

2015; Edgar et al., 2013; Sexton, Philip F & Wilson, 

2009). Whether tests of planktonic foraminifera are less 

resistant of diagenetic alterations in relation to the cold 

seep environments is not concluded in this thesis, as there 

is not enough planktonic test observations to make a 

statistically founded conclusion. But it is interpreted that there is no significant differences in 

the alteration states in the occurring tests of both planktonic and benthic foraminifera as well 

as in the different species. The most common preservation states observed are tests with Mg-

calcite either as small overgrowths seen as a darker BSE coating, or as bigger crystals on the 

inner chamber walls of the test and/or on the outer walls, and recrystallization of the calcite 

tests itself. The aragonite cement occurs as embedding the foraminifer test and/or forming 

relatively large crystals within chambers. Aragonite precipitation does not seem to be 

controlled by any specific biogenic template or other components in the crusts as nucleation 

centers rather utilizing the available pore spaces during precipitation, e.g. Fig 6.10.  

Fig 6.10: (Black scale-bar 50 µm). Different 

detrital quartz grains embedded aragonite 

cement, indicated by black arrows.  
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6.8 For further studies using tests of foraminifera related to methane seeps and 

MDAC 

Geochemical analysis of the calcite foraminifer test has increased in paleoenvironmental 

studies. Assuming that the isotopic composition of foraminifera is a function of the 

temperature and the isotopic composition of the ambient water (Poole & Vorren, 1993), the 

different isotopic compositions of oxygen and carbon of foraminifera tests can be used to 

reconstruct different paleoenvironmental parameters such as ice-volume, sea-level, carbon 

cycle, paleocirculation patterns etc. and how these records have varied trough time (Katz et 

al., 2010). Diagenetic alterations of the tests could obscure the primary isotopic values, so it is 

crucial that the calcite tests that are used for paleoenvironmental impretations are well 

preserved (Drury et al., 2014). Because the average chemical composition of the test can be 

affected by secondary recrystallization, overgrowth and authigenic carbonates within 

chambers and/or on the test, with secondary precipitation processes occurring at different 

temperature and geochemical conditions than the water mass in which the foraminifera live 

(Sexton, P. F. et al., 2006). 

The foraminifera tests occurring in the studied MDAC crusts exhibit several different 

alteration states often with secondary alterations induced by authigenic carbonates. If used in 

geochemical studies it is important to bear this in mind. Secondary Mg-calcite overgrowths on 

inner chamber walls as well as aragonite chamber infill would be important to “clean off”, if 

possible, prior to these studies, for most reliable results.  
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7 Summary and conclusions 

Methane-derived authigenic carbonate (MDAC) crusts from four seepage sites at the Loppa 

High in the southwestern Barents Sea, and one seepage site at Hola, off Vesterålen in the 

Norwegian Sea, have been investigated, with the main focus of understanding if and how the 

tests of benthic and planktonic foraminifera occurring in the crusts could serve as nucleation 

centers for the precipitated carbonates, and if so – were there any differences between 

species? 

- The MDAC crusts represent carbonate cemented detrital sediments, mainly 

comprised of quartz, feldspars and clay. 

- Biogenic components in the crusts mainly comprise shells of bivalves, tests of 

foraminifera and siliceous spicules, except for the Hola crusts.   

- Aragonite is the dominating phase of authigenic carbonate cement, but minor Mg-

calcite is also present, commonly occurring as overgrowths on the tests of 

foraminifera. No Mg-calcite overgrowths were observed on the shells of bivalves 

or on the siliceous spicules.  

- Authigenic pyrite are common in MDAC crusts, as they are induced by the 

coupled process of AOM and sulfate reduction generating hydrogen sulfide which 

forms pyrite through reaction with dissolved Fe. 

- Different alteration states of foraminifera tests were observed: pristine tests 

embedded in the carbonate cement, tests with overgrowth of Mg-calcite crystals, 

tests completely recrystallized, and tests where the carbonate fill the chambers. 

- There were no indications of variations of alteration states between neither the 

planktonic- or benthic tests of foraminifera, or between species.  

- Precipitation of Mg-calcite nucleate on the tests of foraminifera, which is interpret 

to occur during low fluxes of methane at SMTZ deeper within the sediments. 

- No indications of aragonite nucleating on the tests, as aragonite and calcite has two 

different crystal structures, but aragonite cement often occurs infill the 

foraminiferal chambers. 

- For geochemical studies it is important to understand the effects of authigenic 

carbonates on foraminifera test, as the primary geochemical record “stored in the 

tests” can be masked with the presence of secondary overgrowth and 

recrystallization.  
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9 Appendix 

A: Scanned images of studied thin sections 

B: EBS-images from PR1 

 B.1: PR1210001 

 B.2: PR1210002 

C: EBS-images from PR3 

 C.1: PR1210010 

 C.2: PR1210011 

D: EBS-images from PR4 

 D.1: PR1210017 

F: EBS-images from Hola 

- F.1: HOLA 
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A: Scanned thin sections 
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B.1 P1210001 

B.1.1 Poorly cemented detrital sediments and biogenic debris (mainly foraminifera which exhibits 

pristine tests), different benthic species in B), E) and F). Planktonic species in C), D) and E).   
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B.1.2 Planktonic species, some with MG-calcite overgrowths (dark coating on tests on images) 

occurring in the aragonite cement. A), B), D), E), F), and G) exhibits thick tests with Mg-calcite on 

outer and inner walls. C) Thinner test but minor overgrowths visible on inner and outer test. 
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B.1.3 Pristine tests of benthic foraminifera embedded in aragonite cement, and in C) there is 

aragonite cement filling in chambers. 

 

B.1.4 Benthic foraminifera tests with Mg-calcite overgrowths embedded in aragonite cement. 

Overgrowths occurs either as crystals ((A), B), C)), or as darker BSE coatings ((D),E)), either on 

inner chamber walls or outer, and/or on both. 
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B.1.5 Recrystallized tests of benthic foraminifera, with Mg-calcite overgrowths embedded in aragonite 

cement. The overgrowths are on outer test wall of all the specimens, but C) lack inner test wall Mg-

calcite overgrowths. D) exhibits aragonite cement infilling of chambers.  
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B.2 P1210002 

B.2.1 Weakly cemented detrital sediments and biogenic components. A) unidentified microfossils. B) 

benthic and planktonic tests of foraminfiera. C) Planktonic foraminifera with pristine ornamentation. 

D) Accumulation of siliceous spicules. E) Radiating aragonite crystals in aragonite cement. 
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B.2.2 Relatively pristine tests without obvious Mg-calcite overgrowths of benthic foraminifera 

embedded in aragonite cement, no chamber infill. 

 

B.2.3 Pristine tests with aragonite cement occurring both outside and inside (chamber infill) of tests. 
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B.2.4 Tests of benthic foraminifera with Mg-calcite overgrowths embedded in aragonite cement A), B), 

D) and E) Mg-calcite overgrowths seen as dark coatings on outer wall. C) Bigger Mg-calcite crystals 

on outer and inner walls, aragonite cement as chamber infill. F) A benthic test with Mg-calcite 

crystals mainly on outer wall and aragonite cement chamber infill. Siliceous spicule occurring in the 

right corner. 
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A) Partly recrystallized test with Mg-calcite on outer and inner walls, and aragonite cement as infill of 

chamber. B), C) and D) Benthic test with Mg-calcite overgrowths seen as dark coatings. E) and F) 

Mg-calcite crystals clearly visible on inner chamber walls. 
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B.2.5 Siliceous spicules in different size ranges and surrounding radial aragonite cement 

 

. 

 

 

 

 

 

 

 

 

 



Appendix 

96 

 

C: PR3 

C.1: P1210010 

C.1.1: Recrystallized (A) and non-recrystallized (B-G) tests with Mg-calcite overgrowth.
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C.1.2 Tests of benthic foraminifera with no Mg-calcite overgrowths embedded in carbonate cement  

 

C.1.3 Tests of planktonic species with Mg-calcite overgrowth embedded in aragonite cement
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C.2: P1210011 

C.2.1: Tests of benthic foraminifera with Mg-calcite overgrowth on outer wall embedded in aragonite 

cement

 

C.2.2: Tests of benthic foraminifera with inner and outer Mg-calcite overgrowths, embedded in 

aragonite cement 
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D.1: PR4 – P1210017 

D.1.2: Benthic foraminifera exhibiting different preservation states in the crust. A), B), D), and E) 

exhibits Mg-calcite overgrowths on outer test. C) Precipitation in chamber induced by aperture. All 

embedded in aragonite cement. Black arrows indicates pyrite. 
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F.1: Hola 

F.1.1: Weakly cemented detrital sediments and biogenic debris. A) Coral and foraminifer tests are 

indicated. B) Foraminifera and shell of bivalve. C) Foraminifera and detrital grains and aragonite 

crystals. D) Coral in aragonite cement.  
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F.1.2: Pristine tests embedded in aragonite cement, and with various degree of aragonite infill of 

chambers. 
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F.1.3: Tests of benthic foraminifera with Mg-calcite overgrowths seen as dark BSE coatings, 

embedded in aragonite cement. 

 

 


