
Faculty of Science and Technology
Department of Computer Science

A distributed remote presence system for latency criticalhuman-to-human and human-to-computer interaction
—
Giacomo Tartari
Ph.D. dissertation in Computer Science

“E quindi uscimmo a riveder le stelle.”
–Dante Alighieri, Inferno XXXIV, 139

Abstract
In a computer-based distributed stage performance, such as a theater play
or opera, the actors and the audiences are spread among different stages
in different locations. Actors in different cities can be on the same virtual
stage and perform in front of an audience that can enjoy a whole consistent
performance.

A distributed stage performance raises a set of challenges both of a principled
and of a practical nature. Traditional plays taking place on a single physical
stage have a number of characteristics. These include very low delays between
actors observing what others are doing, all actors and the audience see all
events in the same order, and actors as well as the stage are modified through
costumes, props, make-up and light changes. A computer-based system for
distributed stage performances has to handle these aspects in principle.

In practice, a system for distributed stage performances has to implement
a number of functionalities. The actors need a representation of themselves
on each of the stages, referred to as a remote presence. The remote presence
will represent the actors to a varying degree of accuracy. The virtual remote
presence is dressed in a virtual costume. It substitutes, in part or entirely, the
costumes and make-up of the actor. A distributed performance can need remote
actuation to interact with remote physical realities. To achieve this is needed
a functionality to detect and analyze actor’s movements, translate them into
gestures and translate the gestures into local and remote actions. Both remote
actuation and the remote presence need functionality to detect the state of the
stages. The state must be shared among all the stages comprising the show.
However, the distance between stages and speed of light result in a non-zero
time from when an event happens on a stage until it can be observed on the
other stages. This results in the individual stages perceiving an inconsistent
state of the virtual stage, potentially hampering the show.

Typically, existing approaches have one or more limitations. The remote pres-
ences that they provide targets teleconferencing, not distributed stage shows.
There is no masking of the effects of delays, instead traffic-shaping, encoding,
and compression are used to reduce latency. Data streams are not separated

iv ABSTRACT

on a per-actor basis. Stages may need to do significant processing on the state
to extract information about individual actors. Such information can be the
gestures performed by the actor. It could also be the position of the actors on
stage, allowing to produce remote presences in different layouts from where
they are acquired. While some systems provide a state stream per user, they
employ many sensors rigged in special cage-like structures. This can limit the
user’s mobility and make the devices not easily portable. Increased resource
usage usually results in acquisition rates around 10 − 15 Hz.

This dissertation presents MultiStage, a system for distributed performances.
MultiStage has functionalities to detect the state of the stages including possible
gestures from actors, distribute the state among the stages, and to create remote
presences. A local stage can customize the appearance and location of each
remote presence. Modifying the appearance of remote presences results in
what we term amplified interaction.

The design partitions MultiStage into a local side and a global side. The local
side produces local per-actor state streams. It creates remote presences from
local and incoming streams from other stages. The global side receives and
distributes state from and to the local side applying a publish subscribe model.
The MultiStage prototype is comprised of a number of systems implemented
as processes and threads in Go, Python, and C. At each stage at least three
computers are used. At each stage four 3D cameras configured into a close
to 360 degree in a back to back configuration are used to acquire the state
of four actors. The MultiStage sensor suite is a compact and portable device
comprised of four 3D cameras and two Mac mini computers, the actors are
located around the sensor suite and each camera acquires one actor.

A set of experiments were conducted on MultiStage to document its perfor-
mance characteristics including CPU utilization, memory and bandwidth usage.
Three stages were used, each had two computers for state detections and one
for creating remote presences. The global side had one computer for distribu-
tion of state. The global side computer was either located at one of the stages
or external to the stages across the Internet. All the computers were using
less than 50% of the available CPU and 2 GByte of memory. While each stage
produced 7 MByte of data per second.

Having separate state streams per actor is advantageous to the local stages
because they can individually manipulate the remote presences with regards to
amplification, location on the virtual stage and gesture detection. MultiStage
uses cheap 3D cameras at each stage to create such state at very low processing
cost and low delays. The state streams based on 3D cameras are also used to
detect gestures at low processing cost and low delays. The trade-off is that a
limited number of gestures can be detected. The quality of the remote pres-

ABSTRACT v

ence created by MultiStage is a compromise between quality of visualization
and smoothness. MultiStage visualizes remote presence at 30 fps, from the
detection of the state to the rendering on display.

The scalability of MultiStage prototype is limited by the available bandwidth.
The outbound bandwidth needed for distribution grows with the size of the
data describing the state of each stage, P, and the square of the number of
stages,O(kPn2), where n is the number of stages and k is a factor. A three-stage
configuration will use half of a Gbit/sec link. Six stages will saturate a 2 Gbit/s
network.

Acknowledgements
I would like to thank all the people without whom this dissertation would not
have been possible. Thanks to my advisors Professor Otto Anshus, John Markus
Bjørndalen and Dr. Daniel Stødle: your guidance has been indispensable and
your humor has been refreshing.

Thanks to Otto who believed in me the whole time and supported me in the
moments of dismay.

Thanks to John Markus and Daniel for the many productive discussions and
the many encouraging advices (Daniel if you are reading this I owe you a
beer).

Thanks to Professors Lars Ailo Bongo for all he help, the job opportunities and
the interesting food discussions.

Thanks to my PhD companion Fei Su, who helped me tackling many of the
issues encountered in this project.

Thanks to the head of the department Tore Brox-Larsen for keeping the (life-
saving) espresso machine in proper condition and for the many funny and
interesting discussions.

Thanks to Professor Ha Hoai Phuong, Dr. Bård Fjukstaf and Professor Lars Ailo
Bongo again for the feedback on the dissertation draft.

Thanks to the Institute of Computer Science (IFI) staff leader Svein Tore Jensen
and student advisor Jan Fuglesteg for their efficiency in getting things done
and for their patience in dealing with my clumsy paperwork.

Thanks to the technical staff leader Maria Wulff Haugland, Ken-Arne Jensen,
Jon Ivar Kristiansen, and Kai-Evan Nilsen for their prompt support, organi-
zation of social events and ingenuity in finding solution to our extravagant
problems.

viii ACKNOWLEDGEMENTS

Thanks to my fellow PhD students Lars Tiede, Bård Fjukstad and Joseph Hurley
for your company, the good time and the interesting discussions during these
hard years.

Thanks to my family for being close in spite of the thousands of kilometers,
and to Giorgia Ferrari for being even closer.

Thanks to Nora Nedberg for brightening so many dark days.

Thanks to the Tromsø Klatreklubb and my fellow climbers, because without
the chance of blowing off some steam on the climbing walls I would have gone
mad years ago.

Thanks to Renard Nilsen and to the Java Team One at HelseNord IKT for
assimilating me, even if only for six months.

Thank to my ever changing flat mates, your support in this endeavor of mine
is not forgotten.

Thanks to all my friends in Italy. Yes now I can come home, but I am not sure I
will.

Thanks to everyone else not mentioned here but to whom I still owe a thank
you, I am sorry but this is getting way too long.

Thank you very, very much.

This work was funded in part by the Norwegian Research Council, projects
187828, 159936/V30 and 155550/420, and the Tromsø Research Foundation
(Tromsø Forskningsstiftelse).

Cathryn Primrose-Mathisen provided professional English language assistance
during the preparation of this dissertation. She was not responsible for review-
ing the final version.

Contents
Abstract iii

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Multistage Distributed Performance 2
1.2 Challenges and Solutions 4

1.2.1 Latencies, delays, and their effects 4
1.2.2 Remote Presences 4
1.2.3 User Data Stream 5
1.2.4 Amplified Interaction 5
1.2.5 Gestures . 6

1.3 Contributions . 6
1.3.1 Lessons Learned . 7
1.3.2 Models . 7
1.3.3 Artifacts . 8
1.3.4 Facts . 9

1.4 Publications . 10
1.4.1 MultiStage: Acting across Distance 10
1.4.2 Global Interaction Space for User Interaction with a

Room of Computers 12
1.4.3 Controlling and Coordinating Computers in a Room

with In-Room Gestures 13
1.4.4 Mapping of contribution and publications 14
1.4.5 Mapping of publications and Chapters 15

2 MultiStage Overview 17
2.1 Motivation . 17

ix

x CONTENTS

2.2 Ideas of MultiStage . 18
2.3 Concepts . 18

2.3.1 Temporal Causal Synchrony 18
2.3.2 Amplified Interactions and Gestures 20

2.4 Architecture . 21
2.4.1 Alternative Architectures 25

2.5 Design . 28
2.5.1 Discussion . 31

2.6 State of The Art . 33
2.6.1 Landscape/Broad View 33
2.6.2 Distinctive Systems 34
2.6.3 La Serva Padrona 37

3 User Context State Detection 41
3.1 Idea . 41
3.2 Architecture . 42
3.3 Design . 44
3.4 Implementation . 45

3.4.1 Sensor Suite . 46
3.4.2 Software . 46

3.5 Experiments . 49
3.5.1 Design and Configuration 50
3.5.2 Results . 50

3.6 Discussion . 51
3.7 Lessons Learned . 53
3.8 Summary . 53

4 Gestures 55
4.1 Need for actor input . 55
4.2 Architecture . 56
4.3 Design . 57
4.4 Implementation . 60

4.4.1 Point Motion Analysis 60
4.4.2 Regular Expression Engine 62

4.5 Experiments . 63
4.5.1 Latency . 63
4.5.2 Resource Utilization 64

4.6 Discussion . 64
4.7 Lessons Learned . 65
4.8 Summary . 66

5 Remote Presence 67
5.1 Idea . 68
5.2 Architecture . 69

CONTENTS xi

5.3 Design . 70
5.4 Implementation . 70
5.5 Experiments . 72

5.5.1 Configuration . 72
5.5.2 Results . 75

5.6 Discussion . 76
5.6.1 Implementation . 76
5.6.2 Amplified Interactions 77

5.7 Lessons learned . 77
5.8 Summary . 77

6 Global Interaction Space 79
6.1 Idea . 79

6.1.1 Usage patterns . 80
6.2 Architecture . 81
6.3 Design . 82
6.4 Implementation . 83

6.4.1 Visual Feedback to User 86
6.5 Experiments . 87

6.5.1 Configuration . 87
6.5.2 Results . 87
6.5.3 CPU . 88
6.5.4 Memory . 88
6.5.5 Network . 89

6.6 Discussion . 89
6.6.1 Design . 89
6.6.2 Implementation . 90
6.6.3 Limitations . 90
6.6.4 MultiStage Applications 92

6.7 Lessons Learned . 93
6.8 Summary . 93

7 Contributions 95
7.1 Lessons Learned . 95
7.2 Models . 97
7.3 Artifacts . 98
7.4 Facts . 100

8 Discussion 103
8.1 Missing Capabilities . 103
8.2 Limitations . 104
8.3 Technologies . 104
8.4 Architectures . 104
8.5 Tools . 105

xii CONTENTS

8.6 Feasibility . 106
8.7 Scalability . 107

9 Conclusions 113
9.1 Future Works . 114

Appendices 117

A Amplified Interactions 119

B Code 121

C Unexplored Paths: the Coil Gun Display 123

Bibliography 127

Papers 137

List of Figures
1.1 Vision of a distributed stage. 2

2.1 Legend of icons. 23
2.2 Illustration on the architecture. 24
2.3 Light begin point, fat global side, light endpoint. 26
2.4 Light begin point and global, fat endpoint or L-L-F. 27
2.5 Fat begin point light global and endpoint. 28
2.6 Schematic data flow of the Multistage system. 30
2.7 Design of the Multistage system. 31
2.8 Monitoring and Controllable Temporal Synchronization sys-

tems. 32
2.9 Flyer of the play La Serva Padrona, front. 39
2.10 Flyer of the play La Serva Padrona, back. 40

3.1 Architecture of the User Context State Detection. 43
3.2 Design of the User Context State Detection. 45
3.3 The Sensor Suite. 47
3.4 Software implementation of the User Context State Detection. 48
3.5 Memory and CPU usage of the UCSD. 51
3.6 Network traffic generated by the UCSD. 52

4.1 Architecture of the gesture detection system. 57
4.2 Design of the gesture detection system. 58
4.3 User Bounding Box. 59
4.4 The motion dictionary and an example of circular gesture. . 59
4.5 Implementation of the gesture detection system. 61
4.6 Discrimination of motions using normalized vectors. 62
4.7 CPU and memory utilizatoin of the gesture detection system. 64

5.1 Remote Presence system Architecture. 69
5.2 Remote Presence system design. 70
5.3 Implementation of the remote presence system. 71
5.4 Output on screen of the Remote Presence system. 72
5.5 Hardware and software configuration for the experiment. . . 74

xiii

xiv L IST OF FIGURES

5.6 Remote Presence System CPU and memeory utilization. . . . 75
5.7 Remote Presence system inbound network traffic. 76
5.8 Output on display wall of three virtual stages. 78

6.1 Architecture of the Global Interaction Space. 81
6.2 Design of the Global Interaction Space. 82
6.3 Implementation of the Global Interaction Space. 84
6.4 Visual Feedback of the Local component. 85
6.5 Example of usage and visual feedback to user. 86
6.6 Hardware and software configuration for the experiment. . . 88
6.7 Global Interaction Space CPU and memory utilization. 89
6.8 Possible improvement on the current implementation. 91

7.1 Scalability of Multistage. 102

8.1 Scalability Of Multistage in proportion to a Gbit/s link. . . . 107
8.2 Projection on the bandwidth use with four to six stages. . . . 108
8.3 Projection on the bandwidth use with 10k to 80k points. . . 109
8.4 Scalability overview of MultiStage. 111
8.5 Scalability overview of MultiStage 2. 112

A.1 Output on display wall of three virtual stages. 120

C.1 Coil gun display module. 124

List of Tables
1.1 Map of per paper contributions. 15
1.2 Map of publications and chapters. 15

4.1 Circle gesture latency. 63
4.2 Straigth gesture latency. 64

7.1 Collection of performance measurements. 100
7.2 Summary of Gesture detection latency. 102

xv

List of Acronyms
ADR Action Definition from Room

AE Action Executor

API Application Program Interface

CSP Communicating sequential processes

GAD Gesture to Action Dictionary

GAT Gesture to Action Translator

GIS Global Interaction Space

GSA Global State Analysis

GSM Global State Monitoring

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LSA Local State Analysis

LSM Local State Monitoring

NTP Network Time Protocol

PID Process ID

PMA Point Motion Analysis

PSG Point Stream Generator

xvii

xviii L IST OF ACRONYMS

QoS Quality of Service

RAM Random Access Memory

REGE Regular Expression Gesture Engine

REST Representational State Transfer

RFID Radio-frequency identification

RGB Red-Green-Blue

RGSA Room Global State Analysis

RGSM Room Global State Monitoring

TCP Transmission Control Protocol

UCSD User Context State Detection

UDP User Datagram Protocol

VF Visual Feedback

VGA Video Graphics Array

1
Introduction
Today’s technology has eased communication to such a degree that it is normal
to be always connected and, at least potentially, constantly in touch with our
acquaintances. Different kind of networks, wired and not, have become more
pervasive on the planet, and verbally interacting with friends on different
continents has been a reality for decades. Meeting people in virtual places is
not strange anymore and having a distributed conversation with interlocutors
from different cities is common.

Another form of communication where people interact is stage performances,
such as concerts or plays. Stage performances are usually held in one place even
if a performance can be recorded or transmitted and be remotely available. It is
usual to think of it as happening in one place when audience is present.

In this dissertation, as part of the Verdione project [1], we present our contribu-
tion to bringing a stage performance beyond the boundary of a single stage –
making it distributed. Fig. 1.1 shows the concept of distributed stage discussed
in this dissertation. In the picture there are three stages placed in as many
different cities. The actors are spread on the three stages interacting with each
other through remote presences.

This dissertation describes the architecture, design, and implementation of
some parts of the MultiStage system for supporting low latency interaction
across distance between users. The usage domain is distributed stage shows.
The purpose is to characterize how such a system can be built, and its perfor-

1

2 CHAPTER 1 INTRODUCT ION

Figure 1.1: Vision of a distributed stage. Actors are performing on the same virtual
stage but from different locations.

mance characteristics. This dissertation focuses on the systems for detecting
the visual state of actors on a stage, detecting gestures done by actors, and the
system for creating remote presences of actors.

There are nonetheless technological and physical limits that can render the
implementation of such a system problematic. Delays in communications and
flawed representations of remote actors can be obstacles to a consistent dis-
tributed stage show. There are however means to mitigate these issues or to
take advantage of the limitation to expand the level of interaction. For example
a digital remote presence can be manipulated in ways not possible for an actor.
These manipulations can be activated by the actors on the stage by a gesture
giving them a new level of control on the interaction.

1.1 Multistage Distributed Performance
We informally define a multistage distributed performance as a performance
conducted by actors in non-overlapping environments usually representing rooms
or stages, potentially at the same time. This might seem simplistic at first, but
we believe this informal definition is generic enough to be used as a starting

1.1 MULT ISTAGE D ISTR IBUTED PERFORMANCE 3

point for this dissertation.

Multiple solutions and tools are available on the market to target related issues,
mostly videoconferences. As an example,we consider Skype [2], software that is
one of the most widespread for videoconferences, but the following reasoning
can be applied to most of the conference software available at the time of
writing. Skype supports voice and video calls one to one, or many to many
with a subscription fee.

It looks like a good starting point but it has several limitations. At the time of
writing Skype, with many other commercial systems, is tailored to single users
and not to stages; it captures the whole scene without distinguishing the single
actors, both in video and in audio. It does not expose an Application Program
Interface (api) that allows splitting streams or manipulating them differently,
for example different encoding or different destinations. There would be no
other way to, for example, detect a user gesture than to capture the output
on-screen and process it, locking the logical place where this computation can
happen at the end point of the communication. A fee is needed to avail of the
conference call with multiple people (more than two) and the layout of the
videos on screen is not adjustable by the user.

Maintenance or other issues can cause the service to stop at any moment with-
out notice or the bandwidth can be reduced in the middle of the performance
because it is interfering with other functionalities of the third-party infrastruc-
ture. Political issues might cause the specific Internet traffic to be filtered or
throttled in some countries.

Based on this overview there are multiple areas that can be improved.

• Ability to manipulate streams of data not only at the end point, but
potentially at any stage of communication: at the begin point, end point,
or distribution. The necessity of further computation on a stream can
arise at the same location where the stream is produced; it is not efficient
to encode and decode the stream again to access it.

• Ability to split data streams on a per user fashion and to subscribe to,
and receive, only a set of the available streams. Not all the stages may
need the whole performance from all the stages; it is more flexible to
give the opportunity to the single stage to choose the amount of data
they can handle and the data streams they need.

• Spatial and temporal data of each stream. Given that the performance is
split into different locations but is supposed to be on the same stage, the
availability of the spatial/temporal data of each stream makes it possible

4 CHAPTER 1 INTRODUCT ION

to reconstruct the performance as a whole on each physical stage. For
example, the remote presence of an actor, reconstructed from a data
stream, can be placed on a virtual stage in the exact position where the
actor was. Temporal information allows preservation of the interactions
between different actors – the timings of their actions – and to reproduce
them as close as possible to reality in the case of two actors being on the
same stage, or to what should have happened, in the case of two actors
being on different stages.

1.2 Challenges and Solutions
There are multiple challenges to be surmounted before distributed perfor-
mances are able to mimic the real event in a productive way for the artists.

1.2.1 Latencies, delays, and their effects
Avoiding delays in a distributed performance is impossible as the theoretical
fastest transmission speed of information is the speed of light. Traveling at the
speed of light it takes, roughly 67ms to reach the antipode of any point on earth.
This time is the worst-case scenario where two peers communicating are at
antipodes of the earth. This delay is already significant and does not take into
account other prominent factors such as processing times, delays introduced
by the medium of transmission (Internet? Other networks?). Even if we do not
operate in the worst possible conditions, delays cannot be avoided.

However it is possible to hide the effects, the consequences of the delays. Hiding
the effect of the delay can be done in many ways; we do it by manipulating
the remote presence of actors from a remote site. Other techniques, such as
shared clocks, allow us to detect delays when they become intolerable for the
user experience and react by manipulating the remote presence. The various
possible manipulations are based on the spatial and temporal data embedded
in the streams at the detection site.

1.2.2 Remote Presences
For a multiroom/multistage distributed performance to be believable, the ac-
tors/users need to interact in a natural way, as natural as if they were at the
same location. Interaction in this context does not only mean one to one, single
user to single user, but it can be a more extended and spatially dependent
many-to-many interaction. As an example, on a stage, the actors do not only

1.2 CHALLENGES AND SOLUT IONS 5

consider the position of the other performers, but also there are cues, motion
and signs coming from the rest of the actors and crew.

In the same way, in a distributed performance, one actor might not need
to interact with only one of the remote presences, but potentially needs to
consider all the others, because their motions, poses, and positions may convey
information essential to the performance result.

1.2.3 User Data Stream
To achieve this goal of consistent interaction between remote stages, the Remote
Presence system needs data from the remote stages, and the Detection system
takes care of capturing the state of the stages and its occupants. The Detection
system also encodes the data in separate streams, each one comprising the
data needed to render the remote presence of users. Every stream is annotated
with temporal and spatial information, every frame of each stream acquired by
the 3D cameras is timestamped, and the raw depth data translated is a 3D point
cloud. Assuming a shared clock, shared across the whole distributed system,
these streams can be used to reproduce the relative positions and timings of
motions in a remote location.

1.2.4 Amplified Interaction
Interactions on a stage can be different from the normal interactions between
people. During a stage performance there is a distance between the actors
and the audience – both physical distance and cognitive distance. Physical
distance is the distance between the spectator and the stage, which can vary,
depending on the location, from a few meters (first row in a theater) to
potentially hundreds of meters (e.g., last rows in a big theater or at a crowded
open air festival). Cognitive distance is all the information the actors give
away indirectly by their acting, tone of voice, hairstyle, scene clothes, and other
factors contributing to the experience that spectators have about the characters.
Costumes, exaggerated gestures, makeup, lights, and sound effects participate
to provide the final experience and to help narrow the gap between actors,
characters, and spectators.

In a remote distributed performance it is not obvious how, and to an extent
whether, these factors can be available or carried over to the remote sites.
Different equipment, different stage sizes, and different hour of the day are all
examples of differences that can alter the performance.

To mitigate the problem, we explore the possibility of modifying the remote

6 CHAPTER 1 INTRODUCT ION

presence of an actor according to a defined set of conditions and gestures
performed by the same. For example, the position of a user on the stage can
trigger a different coloring of his remote presence, or a fast waving arm can
be made to glow, or a predefined gesture can trigger an animation. This in
principle allows the users/actors to overcome the lack of more mundane stage
tricks, or the inability to convey them in a remote presence, to enhance the
on-stage interaction.

1.2.5 Gestures
If Amplified Interactions are a way for the actors, remote or not, to reach both
the audience and other actors, gestures are a way to trigger and integrate the
Amplified Interactions on the stage as part of a performance. Gestures are a
way to convey information by using motion. A system capable of detecting such
motion can augment the natural interaction of actors by the use of Amplified
Interactions.

Gestures can also be used to grant the actors another dimension of expressivity,
enabling them to decide or command events on the stages, both remote and
local. This other dimension can, and often is, planned in traditional stage
events, for example with lights and other effects synchronized with predefined
events in the performance. A gesture-based system can be used to not only
replicate this behavior, but also to allow improvisations from the actors to
become another tool in their interaction toolbox.

A stream of gestures, annotated with time and space coordinates, can be
manipulated at a stream level, filtered, and replicated; for example, sending
different gestures to different stages based on the position on the stage. Or at a
more fine grained resolution, shifting the single gestures, or set of gestures, in
time or space; for example, placing a gesture on a different stage in a different
position or delaying it until after another event. This empowers the stages to
decide what kind of interactions and/or interference they allow from other
stages, as well as allowing them to shape the input from the other stages more
directly; for example, deciding which part of a remote stage is allowed to
interact with the local stage.

1.3 Contributions
This dissertation makes a set of contributions briefly summarized in the follow-
ing subsections and more thoroughly exposed in Chapter 7. The contributions
are the result of both the effort in designing, implementing and measuring the

1.3 CONTR IBUT IONS 7

systems composing MultiStage and the hindsight knowledge gained in writing
this dissertation.

1.3.1 Lessons Learned
During the design, implementation and experiments we distilled few drops of
practical wisdom. The following list represent a meaningful subset we believe
relevant to highlight among the contributions.

Implicit and Explicit state changes. In principle a stage can modify the state
at another stage in two ways: (i) implicitly by modifying the state sent
to other stages or (ii) explicitly by asking the other stages to change the
state. There are implications and trade offs in both choices.

Single-data stream, single user. The Detection system collects the state of
the stage in the context of single users and put this information in
a per user data stream. The advantage of having a one-to-one ratio
between users and streams is that the remote presence of each user can
be individually manipulated with low resource usage.

RGB-D cameras can reduce the CPU usage when detecting an actor’s state.
RGB-D cameras can be used to record what is in a predetermined vol-
ume. If an actor is inside this volume few assumptions can lead to fast
detection of the users.

Remote presences as 3D point clouds. Creating a remote presences using
3D point clouds preserves the shape and proportions of a human being,
allowing to express, even if in a limited way, the body language of the
acquired user.

Observer redefines observed. An observed user on stage can be mapped or
redefined into an object being simpler to analyze when looking for ges-
tures. The users are aware of the simplification and adapt their behaviour
accordingly. The simplification saves processing and reduces delays.

1.3.2 Models
Among the contributions of this dissertation there are the models used in
designing MultiStage. These model are listed here as reference and support
to some of the design decisions of MultiStage. To be noted that the following
is a short list of the most significant models and not a comprehensive list of
all the models that can be found in MultiStage. In Section 1.4 these models

8 CHAPTER 1 INTRODUCT ION

are correlated with the published papers that constitute the platform of this
dissertation.

Decoupled producer and consumer with monitored distribution. Producer
and consumer are not directly connected, they exchange data through
via a distribution system. The distribution system is also monitoring the
network performances and can intervene when necessary. Intervention
can include replacing lost packets or switching to a pre-recorded stream.

Global Interaction Space. The Global Interaction Space allows a user to run
commands on the computers in a room with gestures. A user can steer
the computation of many computers in a room without walking, allowing
the user to run scripts at the same time on multiple computers.

A gesture recognition model based on simple volumetric detection of users.
With 3D sensors is possible to track the volume occupied from an ac-
tor on stage. Characteristics of the volume can be changed by the user
and tracked to detect gestures. In this way is possible to detect simple
gestures with low processing and delays.

1.3.3 Artifacts
Among the products of system research are the artifact constituting the system
explored. The following artifacts are an extract of the most relevant. Their
relevance to the state of the art is exposed later in this chapter, Section 1.4.

Sensor Suite. The Sensor Suite detects actors on stage, it comprises fours 3D
cameras and two computers. It has a cumulative horizontal field of view
of almost 360 degree.

A User Context State Detection, Analysis, and Sharing System. This system
is the software counterpart of the Sensor Suite, it process the data com-
ing from the sensors and encodes it in one data stream per user. After
encoding and compressing the streams it delivers them to the distribution
system.

Remote Presence system. The Remote Presence system renders colored point
clouds on a display. Remote actors can interact visually with the remote
presence as if it was another person at the same site.

Bounding box point and point motion system. When users are detected the
volume they occupy is approximated by a bounding box. The bounding
box is built by identifying the six points that hold the maximum and

1.3 CONTR IBUT IONS 9

minimum value for each of the three coordinates X, Y, and Z. A user with
knowledge of how the volume is built and where the control points are
situated can move them with his body, and perform gestures.

Gestures through Regular Expressions and User Volume Control Points. This
system extends and completes the Bounding box point and point motion
system. It translates the control points movements in strings of text. The
text is searched with regular expression to identify gestures.

The Global Interaction Space. The Global Interaction Space system is the
implementation of the Global Interaction Space model.

1.3.4 Facts
During the experiments we collected data on the performance of MultiStage
as a whole and on its subsystems. It very useful to use benchmarks in order to
compare different version of a software to keep track of its evolution, but it is
not trivial to design benchmarks that are serviceable for comparison with other
systems. For this reason the performance measurements here exposed are not
benchmarks results but the data acquired during experiments in condition
as close as possible to real use. The meaning of these data is to give the
reader an idea on the resource utilization of MultiStage. In this way is possible
to better comprehend the requirements and the capabilities of a MultiStage
deployment.

CPU utilizationl All the CPUs involved in the experiment were Intel Core i7
at 2.7 GHz and Intel Core i5 at 2.5 GHz. The only system to use 50% of
the CPU was the Sensor component of the Global Interaction Space (see
Chapter 6) on an Intel Core i7 at 2.7 GHz, while the others never used
more than 25% of the available CPU.

Memory utilization During the experiments the memory consumption ob-
served on single machines for each system was never above 45%. How-
ever, not all the systems were running on machines with 8 GByte of
memory, some had only 4 GByte (see Chapter 5). Normalizing the mem-
ory utilization of the systems running on 4 GByte of memory to the ones
with 8 GBytes we can reconcile the memory utilization of all the systems
to be below 25%.

Banbwidth per stage The bandwidth used was a proportional to the number
of streams and number of points in the point cloud: streaming four point
clouds of 5K points needs 7 MByte/s.

10 CHAPTER 1 INTRODUCT ION

Scalability Combining these facts with the bandwidth used we can deduce the
scaling factor of Multistage. If each stage is equipped with four cameras
(7 MByte/s with 5K points see Chapter 5) and each stage receives all
the streams, assuming an ideal linear scale, at three stages each stage
receives 21MByte/s. At four stages the needed bandwidth is 28MByte/s,
and so on.

Given these numbers, and assuming a central distribution system, the
discriminant for the scalability of MultiStage is the bandwidth. In case
of a three stages setup it will be 63 MByste/s, with four stages it will
be 112 MByte/s. At four stages a Gigabit link will theoretically still
be enough (125 MByte/s), but it will need better hardware or a better
system architecture or better compression of the transmitted data to scale
further.

1.4 Publications
This chapter presents a short description of each paper highlighting the con-
tributions and concepts brought by each of them. Following that, there are
tables explicitly connecting the contributions to the papers and the papers to
the chapters of this dissertation.

In the description of each paper the dissertation’s organization of the contribu-
tions is used. This will aid in correlating from which paper each contribution
stems. For each contribution the chapter numbers in parenthesis identifies
where in the dissertation the topics are treated.

1.4.1 MultiStage: Acting across Distance
The paper reports on a prototype system helping actors on a stage to interact
and perform with actors on other stages as if they were on the same stage. The
main findings and contributions are listed below.

• Lessons learned

– Single data stream, single user (Chapter 3).

* By using appropriate sensors complex and possibly long time
running processing to create a data stream about an actor is
not necessary. This will contribute to a lower end to end delay
in the system.

1.4 PUBL ICAT IONS 11

* Flexibility: move around RP, each actor can be treated individ-
ually: means the position at the stages and if you lose one data
stream the other are not influenced, cut down on bandwidth
use bu requiring only some of the streams. Analysis can be
performed only on some streams.

• Models

– Decoupled producer and consumerwithmonitored distribution. The
producer and consumer of the data streams are decoupled. Producer
and consumer communicate through a third system that takes care
of monitoring the delays. When the delays are judged too large the
third system takes action bymasking the effects of delay as described
by Su et al. [3]. This model is mentioned for completeness and not
further discussed in this dissertation.

• Artifacts

– A User Context State Detection, Analysis, and Sharing System (Chap-
ter 1.3.3).

* User Context State Detection (Chapter 3)

· Single data stream, single user: Chapter 1.3.1. For each user
a separate data stream is created for further use by other
system.

· Multistage Sensor Suite: Chapter 1.3.3. At each stage four
3D cameras tiled back to back for an almost 360 degree
view, continuously record actors.

* Analysis: the system processes the recorded data on-the-fly to
discover actions by actors that it should react to. A gesture
recognition model based on simple volumetric detection of
users (Chapter 1.3.2).

* Sharing: the system streams data about actors and their actions
to remote stages.

– Remote Presence system (Chapter 5). At each stage each actor is rep-
resented by a remote presence. The prototype uses a visualization
of the actor.

– Masking the effects of delays. When the remote presences lag behind

12 CHAPTER 1 INTRODUCT ION

too much because of network and processing delays, the system
applies various techniques to hide this, including switching rapidly
to a pre-recorded video or animations of individual actors.

– Amplified interactions: the system amplifies actors’ actions by adding
text and animations to the remote presences to better carry the
meaning of actions across distance.

• Facts

– The system currently scales across the Internet with good perfor-
mance to three stages, and comprises in total 15 computers, 12
cameras, and several projectors.

1.4.2 Global Interaction Space for User Interaction with aRoom of Computers
To interact with a computer, a user can walk up to it and interact with it
through its local interaction space defined by its input devices. With multiple
computers in a room, the user can walk up to each computer and interact with
it. However, this can be logistically impractical and forces the user to learn each
computers local interaction space. Interaction involving multiple computers
also becomes hard or even impossible to do. This paper presents the following
list of contributions.

• Lessons learned

– We have found the principle of customization to be a simple way of
making the local side do exactly what the global side has defined.
To customize a computer entering the room, a one-time overhead
is taken when downloading action scripts to the computer. This
reduces the traffic between the global and local side when low
latencies matters the most, which is during actual use of the global
interaction space.

• Models

– Global Interaction Space model: a global interaction space lets
users, through in-room gestures, select and issue commands to one
or multiple computers in the room (Chapter 6).

– A gesture recognition model based on simple volumetric detection
of users(Chapter 4).

1.4 PUBL ICAT IONS 13

• Artifacts

– Global Interaction Space system: The architecture of the system
defines functionalities to (i) sense and record the state of a room,
primarily the state of computers and users. The state of users in-
cludes gestures that the user can perform. (ii) translate gestures in
to commands. (iii) issue commands to computers and have them
execute the commands(Chapter 6).

* The prototype was used in a room controlling multiple com-
puters and a display wall.

• Facts

– CPU and memory and network resources usage is low or insignifi-
cant.

– The latency of detecting a gesture is interactively fast.

This paper won the best paper award at HSI 2013, 6th International Conference
on Human System Interaction [5].

1.4.3 Controlling and Coordinating Computers in a Roomwith In-Room Gestures
This paper is a further development on the precedent. It formalizes concepts
that were present in the previous one but not yet well defined or explored. The
main contributions are in the list below.

• Lessons learned

– No lessons were learned solely based on this paper.

• Models

– Bounding box point and point motion system (Chapter 4).

* The volume containing/wrapping the user is detected by sen-
sors and approximated by a bounding box. The bounding box
is constructed by determining the maximum and minimum
points occupied by the user along each of the XYZ axes (Fig.
4.3 shows a simplified example in two dimensions). By moving
their bodies the users are able to move these points, termed

14 CHAPTER 1 INTRODUCT ION

control points.

• Artifacts

– Gestures through Regular Expressions and User Volume Control
Points (Chapter 6).

* Given the users the knowledge of the control points they can
move their bodies to perform gestures by moving the control
points. Translating the motion of the control points into strings
of characters allows us to detect the gestures by matching
them against regular expressions. This gives the flexibility of
detecting a different set of gestures by defining a different set
of regular expressions(Fig. 4.4 provides a visual explanation).

• Facts

– The latency of detecting a gesture is, in average, between 0.9 and
1.3 seconds (see Chapter 4.5.1).

The content of this paper are summarized in a video poster [6] presented at
the Verdikt 2013 conference [7] where it won the best poster award.

1.4.4 Mapping of contribution and publications
This section consist of a table that explicitly links the contributions listed
previously in this Chapter to the respective publications. In the table header are
indicated the publications as the Section in which they are presented.

1.4 PUBL ICAT IONS 15

Contribution \ Publication Multi
Stage

GIS Gestures

Explicit and implicit state changes
Single-data stream, single user X
RGB-D cameras can reduce the CPU usage
when detecting an actor’s state

X X

Remote presences as 3D point clouds X
Observer redefines observed X
Decoupled producer and consumer with
monitored distribution

X

Global Interaction Space Model X X
A gesture recognition model based on sim-
ple volumetric detection of users

X X

Multistage Sensor Suite X
A User Context State Detection, Analysis,
and Sharing System

X

Remote Presence system X
Bounding box point and point motion sys-
tem

X

Gestures through Regular Expressions and
User Volume Control Points
Global Interaction Space Artifact X X

Table 1.1: Map of per paper contributions. For brevity the paper are referenced by a
shortened name and not by full title of the publication.

1.4.5 Mapping of publications and Chapters
This section consist of a table that explicitly links the publications listed pre-
viously to chapters in this dissertation. The connections are between systems,
designed and implemented, and the publication they were part of. The systems
are extensively described each in their respective chapter.

Publication \ Chapter 3 4 5 6

MultiStage: Acting across Distance X X
Global Interaction Space for User Interaction with
a Room of Computers

X X

Controlling and Coordinating Computers in a
Room with In-Room Gestures

X X

Table 1.2: Map of publications and chapters of the dissertation. This table connects
the systems described later in the dissertation with the publications they
were designed and implemented for.

2
MultiStage Overview
2.1 Motivation
Using the Internet, communication is easy even across continents; we are
used to interacting more or less in real-time with people at relatively remote
distances. We also have the availability of a diversified and rich set of commu-
nication means with different trade-offs in terms of interactivity, availability,
and persistence. A phone call, for example, has high interactivity; we speak
with our interlocutor as if he was present in the same room. A phone call
though has usually no persistence, can be recorded but usually is not, and the
availability of the service is dependent on two people making and receiving
the call. E-mail, in contrast, has good persistence, can stay on a server for years,
and the persistence can be indefinitely extended. But the level of interaction is
lower than in a phone call. In other words, sending and receiving e-mail is not
like having the other person in the same room. In addition, the availability of
the service is not person dependent in the e-mail, but the response time usually
is.

Other flavors of interactions are available depending on many factors, such as
relative position of the users and the object of the communication – gossip, stock
options, event data stream, etc. One particular niche is occupied by artistic
stage performance, where the interactivity of the communication must be as
close as possible to having the performers in the same room. In the era of the
Internet and easy communications, artists want to be able to perform together,
on the same stage, but from different locations. The challenge is to make this

17

18 CHAPTER 2 MULT ISTAGE OVERV IEW

possible using the same means and technologies used for the other kinds of
long distance interactions, and manage to obtain a consistent performance for
both the actors and the audience. The motivation for this work is to explore,
and possibly mitigate, using a computer science point of view, the problems
that keep the artists from performing together remotely.

2.2 Ideas of MultiStage
In the context of a distributed performance, we conceptualize a system to eval-
uate and investigate a computer-mediated collaborative stage show. The given
system tries to give the participants (performers and audience) a consistent
view of the stage. More particularly, we are interested in hiding the effects of
the unavoidable delays that occur among the performers on different virtual
stages during a show, especially if the performance is distributed across differ-
ent continents. As mentioned before, the information maximum speed is the
speed of light, and this already sets a minimum always-present latency, without
mentioning the other delays introduced by sampling, processing and transmis-
sion of signals, visualization, and so on. With this contextual information, we
can assume the delays between stages are unavoidable. The goal of our system
is, then, to mask the effects of the delays and give the performers and the
audience the impression of a synchronized and distributed performance.

The effects of the delays can be masked (or reduced) in many ways. MultiStage
focuses on the remote presence of the participants and its manipulation in an
interactive way; for example, using a computer to drive a remote presence, in
place of a performer, to follow a script when the detected latency at a remote
stage is above a threshold. The manipulation also includes user generated
events, such as gestures, to trigger other forms of visual interaction. These in-
teractions can span from special effects and visual enhancements, such as body
parts emitting sparks or glows, to a more direct medium such as a text bubble
appearing on top of an actor to convey information to the audience.

2.3 Concepts
2.3.1 Temporal Causal Synchrony
In a distributed stage show, causality of the actions of the actors is paramount
to the enjoyability of the show for the audience. Even if causality is preserved,
delays are present, and based on the amount of delay and the demands of the
interaction we define different levels of temporal causal synchrony.

2.3 CONCEPTS 19

Temporal causal synchrony can be loose in the case of low demands on delays,
as in a teleconference call where the interaction is unstructured and the parties
can tolerate a not well-defined amount of delay. When the interaction is more
structured we fall into the case of interactive temporal causal synchrony.

In this case, the actors/performers are dealingwith a possibly rapid action–reaction
situation; for example, dancing or martial arts. For these scenarios where, due
to delays, the temporal causal synchrony cannot be achieved, we defined the
following approaches to mask the effect of delays.

Actor feedbacks. The actors react to the remote presence video as if it was the
real actor. The system does not provide any other means of preserving
the temporal causal synchrony. Depending on varying factors, the delays
perceived by the audience and actors can be intolerable, preventing any
interaction paradigm except loose causal synchrony.

Shared clock, shared performance start time, individual actor scripts. The
system synchronizes the clocks of all computers involved in the perfor-
mance (at each stage/site). We set a start time and begin a countdown
on each stage. When the countdown ends, the performance starts at
the same time on all the involved stages, and the actors will start the
performance in accordance with a script that defines not just the actions,
but also the timings of such actions. The scripts must include the de-
lays involved; this implies a priori knowledge about the delays expected
during the performance.

Shared clock, individual performance start time, individual or shared actor scripts.
The system synchronizes the clocks of all computers involved in the per-
formance. We choose one of the stages to be live and the others are
secondary stages. We measure the delay from the secondary stages to
the live stage and adjust the start time (and the countdown) of each sec-
ondary stage accordingly to the live stage start time plus each secondary
stage delay. When the countdowns finish, each actor will start performing
following their script. At the live stage all the remote presences will be
in interactive causal temporal synchrony with the actors on stage. The
actors and audience at the secondary stages will experience the effects
of delay.

Act-by-wire. The system synchronizes the clocks of all computers involved in
the performance. The computers are constantly monitoring the delays
between the stages among other metrics. If any of the delays is above
a threshold, the system tries to alleviate the perceived latency by using
manipulations of the remote presence. These manipulations can be as
simple as substituting the remote presence with a prerecorded version or

20 CHAPTER 2 MULT ISTAGE OVERV IEW

blurring the remote presence in order to hide the delay to the audience.
More compacted manipulations can include the prediction of the move-
ment of the remote presence, or if possible, animate the remote presence
according to the script.

2.3.2 Amplified Interactions and Gestures
On a theater stage, with a significant physical distance between actors
and the audience, bold makeup, clothes, and exaggerated movements
are used to better project to the audience what the actors are doing.
In remote interactive performances there is a distance not only to an
audience, but also between the actors.

Consequently, the actors need their appearance, movement and gestures
to be amplified such that they become easier to see and understand both
for the other users and for the audience. In this way we extend the range
of human interaction to remote locations and enrich the communication
between them. We term this amplified interaction.

To be able to detect what an actor is doing, we must surround him with
an interaction space. An interaction space detects human movements,
and analyzes them looking for gestures. A gesture represents a prede-
fined command to the system to execute code to do some functionality.
A gesture can be simple, like raising an arm, or complicated like doing
two-arm movements. They can also be active like walking in a specific
direction or passive as in standing still posturing. A collective (collabora-
tive) gesture is a combination of the above kinds of gestures. Collective
gestures can happen at the same stage, or be distributed, comprised of
gestures from multiple stages.

For example, when two actors at different stages, within some short
timespan, raise their left arms above their head this can be interpreted
as a command to the system to animate a lightning between the two
raised arms and display it on all the displays. Based on the gestures we
can create effects in the remote presence manifesting itself at remote
rooms. A user’s arm movement can in the remote presence be amplified
by having a text bubble appear in the video, and by adding other visual
effects to the representation of the user. The users remote presence can
even be enhanced by executing a model of the user and using its output
as the basis for the remote presence.

2.4 ARCH ITECTURE 21

2.4 Architecture
The basic functionalities needed to achieve a distributed performance are: (i)
detection of actors and their gestures, (ii) remote presence of the actors with
possible amplification of the interaction, and (iii) distribution of the remote
presence (data).

Detection means capturing each actor on a stage, their pose and position
through time, and extracting data from the stage to enable the detection of
gestures and reproduction of the actors through a remote presence. Remote
presence means representing the remote actors on the local stage in a way that
makes it possible to interact; in other words, providing a replica of the actors
on the local stage.

It is also a goal to preserve space and time relationships between the single
actors; in this way we are able to reproduce the performance or part of it. For
this reason, we focus on the state of the actors on the stage, monitoring the
state of the single users and separating the user state from the background
scene. Audio and video are the most commonly used mediums to convey an
interaction-worthy presence of a remote user; other means, such as robots,
can help. Our take on the matter is to use a 3D point cloud to provide the
interaction between stages.

Distribution is needed to connect the multiple stages by transferring the data
obtained by detecting the actors. Distribution is from the detection stage to
the stage where the actors are replicated via a remote presence.

A functionality that receives all the streams, in a similar way to the distribution,
can perform a global analysis of the streams. The result of these computations
can be a different number of streams than the ones received; for example, global
gestures can be detected and streams of gestures distributed to the stages. This
functionality needs to be placed before the distribution; it needs a global view
of the state of the stages in order to perform a global analysis.

The way these macro functionalities exchange data is through streams. Given
that each actor needs to be detected on a stage and replicated on another one
(or more than one), at least one stream is associated with each actor from
detection to remote presence. Therefore streams of data are the output of
the detection, the input of the remote presence, and the input/output of the
distribution.

TheMultiStage architecture comprises a begin point and an end point. The begin
point is a producer of data and the end point is a consumer; in other words,
the begin point handles the detection and the end point handles the remote

22 CHAPTER 2 MULT ISTAGE OVERV IEW

presence. The begin and end points are linked by an inter-stage distribution
system. Each stage is (potentially) composed of one or more begin and end
points; in this way, the stages share a distributed performance. Figs. 2.1 and 2.2
explain the layout of the architecture – how the functionalities are arranged
and interconnected.

2.4 ARCH ITECTURE 23

(a) Detection
site. Usually a
stage.

(b) Distribution.
Function-
ality per-
taining the
global side of
the system.

(c) Remote in-
teraction site.
Usually a
stage.

(d) Stage. Local
side of the
system as
opposed to the
global.

(e) Global side of
the system, for
distribution
and global
data process-
ing requiring
data from all
the stages.

(f) Detection. The box
marked with this icon
detects the actors
from raw sensor
data and generates a
representation in the
form of a pointcloud.

(g) Distribution. The box
marked with this icon
distributes the data to
the correct recipient.

(h) Remote presence/
amplified interac-
tions. The boxes
marked with this
icons use the data for
amplified interactions
and remote presence.

(i) Bottleneck warning.
The configuration
marked with this icon
can be susceptible
to bottleneck in the
transferring of data.

(j) Complexity warning.
The configuration
marked with this
icon is susceptible to
growing complexity
potentially hard to
manage.

Figure 2.1: Legend of icons.

24 CHAPTER 2 MULT ISTAGE OVERV IEW

Fig. 2.2 is organized as a table, with a header on top and a column header
on the left. The top header indicates the functionalities of the architecture;
the column header on the left indicates whether the macro functionality is
present on a stage (detection and remote presence) or whether it is global
(distribution). Both headers are annotated with icons describing the meaning
of rows and columns; Fig. 2.1 provides a legend for the icons. It is possible to
see the functionalities present on the stages (top and bottom rows) or globally
(middle row).

This logical separation of what pertains on a stage and what is relevant for
the whole MultiStage system splits the system into two sides, mentioned from
now on as the local side and the global side. It can also be noted that the macro
functionality boxes are decorated with an icon showing the additional tasks
they perform. For example, the detection (see chapter 3) is performing analysis
of the data obtained by the cameras (Fig. 2.1f), while the remote presence (see
Chapter 5) is allowing people from different locations to interact, and possibly
amplifying this interaction (Fig. 2.1h).

Stage and
system state
distribution

Detection
and

Analysis

Remote
Presence

Remote
Presence

Detection
and

Analysis

Figure 2.2: Illustration on the architecture. Multiple stages and functionalities, at
each stage we have a detection and analysis system and a remote presence
system. The data is exchanged, and fed back to the stage, using the global
distribution system.

2.4 ARCH ITECTURE 25

Multiple reasons, including experience from building different systems, led us
to this architecture. Extracting a stream of data for each actor at the begin
point gives more flexibility for manipulation further along the flow path of
the data. Also, new streams can be produced by analyzing the data on the
way. Consumers with limited resources and/or limited interest in collecting all
the available streams can subscribe to only those of interest. This implies that
other functionalities can be implemented by manipulating the new streams
because they are generated at the begin point. A different combination of
functionalities can be chained for different results. We termed this architecture
balanced.

The main purpose of detection, as will be explained in detail in Chapter 3, is to
detect users on stages and provide their state in different streams, one for each
user on each stages. This functionality needs to be fixed here at architecture
level to allow subsystems leverage on the availability of personal streams of
data that can be manipulated individually. It is possible to have different
implementations of the same functionality as well as alternative architectures.
In the following subsection we review a few alternative architectures.

2.4.1 Alternative Architectures
Other architectures could provide the same results with different trade-offs.
An example in Fig. 2.3 is where all the computation is done in the global
distribution and not much in terms of functionality is left at the stages. Raw
data from the detection is processed and the result is augmented, and possibly
prerendered. The rendered output, a sequence of images or a video, is streamed
to the end point. This solution can look simpler at first – all the computation
is kept in the same (at least logical) location, but the bandwidth can be a
bottleneck. And scaling problems are likely to arise quickly. We termed this
architecture light begin point, fat global side, light endpoint, or L-F-L to point
out that the greatest share of the work is done on the global side. As can be
evinced in Fig.2.3.

26 CHAPTER 2 MULT ISTAGE OVERV IEW

Stage and
system state
distribution

Detection
and

Analysis

Remote
Presence

Remote
Presence

Detection
and

Analysis

Figure 2.3: Light begin point, fat global side, light endpoint. In this architecture most
of the work is done in the global side. The processing of the raw data
from the sensors and the remote presence/amplified interactions. The end
point receives streams of preprocessed data. Bottlenecks in transmitting
raw data from the begin point and already rendered data to the and point
are to be expected. As it is expected an increase in complexity to make
this architecture scale.

How much bandwidth is needed to send the raw data to the global distribution,
and how computational intensive will it be? How many stages can the global
distribution and computation serve before needing more computational power?
In other words, will it scale? In our opinion, it would have been hard to make
it work properly with commodity hardware without a major redesign and a
much steeper cost in terms of complexity. So, to keep the system simple we did
not select this particular architecture, and kept the data, logically and spatially,
close to the computation.

2.4 ARCH ITECTURE 27

Stage and
system state
distribution

Detection
and

Analysis

Remote
Presence

Remote
Presence

Detection
and

Analysis

Figure 2.4: Light begin point and global, fat endpoint or L-L-F. Charging the endpoint
with all the computational load can be lead to bottle necks due to the raw
data from the sensors to be delivered to the endpoint.

Another alternative in Fig. 2.4 allocates all the computations at the endpoint.
This is a different solution than the one depicted in Fig. 2.3 but the distribution
can still be a bottleneck. This is especially true in cases where the stages are
spatially far apart; for example, on different continents, where the bandwidth
available may be prone to unpredictable fluctuations [8]. We termed this
architecture light begin point, light global side, fat end point, or with the
abbreviation pattern used before, L-L-F.

At the other end of the spectrum to the solution in Fig. 2.4 we find the mirrored
architecture described in Fig. 2.5, or F-L-L. The distribution can also be a
bottleneck for this architecture. The begin point detects the actors and processes
the streams. The rendering of the streams also happens at the begin point and all
the preprocessed data is sent to the end point. In this case, the data represents
the final rendering of the remote presence and can be encoded in a single event
data stream. But one single stream would reduce the flexibility of the Remote
Presence system. The possibility of having global gestures and global events is
more complex (and potentially resource demanding) unless the begin points

28 CHAPTER 2 MULT ISTAGE OVERV IEW

can bypass the global Distribution system and directly communicate with the
end point, complicating the architecture even further.

Stage and
system state
distribution

Detection
and

Analysis

Remote
Presence

Remote
Presence

Detection
and

Analysis

Figure 2.5: F-L-L. At the other end of the spectrum we have all the computational load
on the begin point. The same concerns from the L-L-F architecture are
pertinent here: delivering the rendered output to the

2.5 Design
The MultiStage system is designed following the balanced architecture. Fig.
2.6 shows a simplified version of the data flow. The local sides represent
functionalities that are located on the stages and are directly connected to
the stages and/or the actors. The global side comprises functionalities that
encompass all the stages or the MultiStage system in general. The figure is a
symbolic illustration of how the data flows in streams from begin point to end
point. It should be noted that the begin and end points can both be on the same
stage and in more than one instance. In other words, a stage can be composed
of many instances of the detection and remote presence functionalities. Fig. 2.7
shows an example with two stages. The data collected is analyzed by the Local
Detection/Analysis subsystem, and the results streamed to the global side to

2.5 DES IGN 29

be distributed or processed further by the Global Analysis subsystem.

The Local Detection/Analysis subsystem represents the begin point; it detects
the users/actors using 3D (or depth) cameras (or any other device that can
perform a 3D detection of the actors on stage), performing detection of the
users in the stage volume. The output of the system is a colored point cloud
for each camera.

A colored point cloud is a list of 3D points each with an associated color.
During detection, all the pixels containing the actor are selected from each
image captured, and in the case of 3D cameras each pixel has an associated
distance from the camera. During analysis, each tuple depth pixel - color pixel
is used to compute the real-world coordinates of the pixel, generating a 3D
point with a color. The result is a colored point cloud representing the actor on
the stage for each frame of each camera doing the detecting. Each point cloud
is packaged with a header containing the stage identifier, the camera identifier,
a stream type identifier, a sequence number, and a timestamp. The header
minus the sequence number and the timestamp serves as a stream identifier;
the systems receiving the resulting packages can discriminate their origin, as
well as discriminating a point cloud stream from a gesture stream or a control
stream for internal use.

All the streams are sent to the global side which, having them all available, can
elaborate the data by using global knowledge. This elaboration can develop in
the creation of other streams; for example, a stream comprising a collective
gesture performed by actors on more than one stage. After the global analysis,
the streams are sent or published to the distribution. Other systems can then
subscribe to any of the streams using the stream header (minus sequence
number and timestamp) as identifier.

The Remote Presence system is an example of a subscriber. It aims to recreate
part of the reality of one stage on another one, in a manner that allows inter-
actions between the local stage and the remote ones. To achieve this goal it
needs to receive the streams published to the distribution. Different kinds of
remote presence can use different kinds of streams; for example, a point cloud
stream can be directly rendered to a video. A robot impersonating an actor
might need a more sophisticated stream containing the position of limbs. A
simpler remote presence can be implemented by, for example, projecting a dot
on the position of another actor on a remote stage.

Another task performed by the Remote Presence system is Amplified Interac-
tions. This term encompasses all the possible modifications or enhancements
that a remote presence system can accomplish to reinforce the virtual presence
of remote actors on the local stage. These sorts of stage tricks are not unknown

30 CHAPTER 2 MULT ISTAGE OVERV IEW

Streams

 Distribution

Local
Detection/
Analysis Streams

Global
Analysys

Streams

Remote
Presence

Local Side Global Side Local Side

Begin Point End PointInterstage Distribution/Global Analysis

Figure 2.6: Schematic data flow of the Multistage system. The Local Sides represents
functionalities that are located on the stages and are directly connected
to the stages and/or the actors. The global side comprises functionalities
that pertain all the stages or the Multi Stage system in general. The figure
is a symbolic illustration of how the data flows, in streams, from stage to
stage.

to actors who use makeup, clothing or grandiose body language to emphasize
their acting and reach out to the audience. The Amplified Interaction goal
is to provide the remote actors with some of the capabilities they have on a
real stage and some others that are not possible on a real stage. For example,
in the case of a video remote presence, a 3D model could impersonate the
actors with a different shape/form (maybe not even human) depending on
their position on the stage, or trigger the change with a gesture. Other possible
enhancements are actors appearing on a different part of the stage or having
a double repeating all their actions.

Two other subsystems are present and vital to the MultiStage system. They are
not presented in this work but can be found in Su et al. [9]. Nonetheless, the
description of the design would not be complete without a brief introduction
to the subsystems and an overview of the functionalities provided. The first
functionality is performance monitoring, and the second is masking the effects
of delay. The two systems are synergistic; they provide the MultiStage system
with performance measurement and tolerance to unexpected delays and the
former is needed to achieve the latter. The Performance Monitoring system is
designed as a two-part system – a global collection and processing point and
a local subsystem monitoring the performance of the computers composing
the MultiStage system more details in Su et al. [3]. The metrics collected are
memory utilization, CPU utilization, data transmitted and received, and latency
between the single machines and the Distribution system. Another important
task performed by the monitoring system is to keep the clock of the machines
reasonably in sync with Network Time Protocol (ntp).

2.5 DES IGN 31

The other system performs Controllable Temporal Synchronization (see Section
2.3) for the Remote Presence systems. Briefly, this means that it controls the
flux of information delivered to the remote presence and can react to delays in
communication. For example, if the delay is deemed sufficient to disrupt the
interactivity of the distributed performance, it can switch the stream from the
live (and delayed one) to a prerecorded one masking the effect of the delay. For
this control to be possible, the Remote Presence system needs to receive the
data from the Controllable Temporal Synchronization system. Fig. 2.8 explains
the additional flow of data needed by these two systems.

Remote
Presence

Local
Detection/
Analysys

Remote
Presence

Local
Detection/
Analysys

Remote
Presence

Local
Detection/
Analysys

Remote
Presence

Local
Detection/
Analysys

Distribution
via

Publish/
Subscribe

Local Side Global Side Local Side

Global
Analysys

Remote
Presence

Local
Detection/
Analysys

Remote
Presence

Local
Detection/
Analysys

Stage Global Side Stage

Figure 2.7: Design of the Multistage system.

2.5.1 Discussion
As explained before in Chapter 2.4, the whole system delivers data streams
from the begin points to the end points. The data streams are detected by
3D cameras grouped in the center of the stage and pointing away from each
other. The camera cluster, we call it the Sensor Suite, detects a predefined
volume inside the room covering close to 360 degrees around itself. We chose
to use 3D cameras this early in the design because they became available and
are inexpensive to buy. In addition, we are familiar with the most common
pain point of computer vision, and the use of 3D cameras combined with few
assumptions can go a great length to ease the computations needed to detect
users and their movements. To give an example, with a 3D camera we can
isolate a volume inside a room; this basically isolates the objects in the volume
from the background.

The traditional way to do this is with computer vision algorithms. A common
approach to achieve the same results is background subtraction; this can be
seen both as a solution and as another problem, as explained in Piccardi [10].

32 CHAPTER 2 MULT ISTAGE OVERV IEW

Distribution
via

Publish/
Subscribe

Local Side Global Side

Global
Analysys

Remote
Presence

Local
Detection/
Analysys

Stage Global Side

Figure 2.8: The figure shows how the Monitoring and Controllable Temporal Synchro-
nization systems overlays the other component of the Multistage system.

Pertinent to the issue is the illumination of the environment – a slight change
in the light conditions can cause a major disruption in different algorithms
relying on the intensity value of the pixels, both color and black and white. A
sufficient change in the illumination can happen in a few hours in a room with
a window, caused by the sun moving in the sky. Of course, there are solutions to
this problem that involve more processing of the images, more complexity and
potentially more delay (not taking into consideration accelerators or graphical
processors). The use of a 3D camera makes this problem more manageable by
not being influenced by most of the indoor light, delivering the pixel inside
the volume of choice. This brings a reduction in complexity and potentially
reduced latency due to less processing.

The global side comprises the distribution and monitoring in addition to the
global analysis. The Distribution system protocol follows the publish–subscribe
paradigm. The motivation for this is that not all the end points may want to
receive all the streams. Some might be interested in only a few or do not have
the resources to handle them all. This improves the overall flexibility of the
system

2.6 STATE OF THE ART 33

The monitoring subsystem collects system-wide performance metrics from
the local side and delivers them to the global monitoring system. In the
case of network disconnections or disruptive delays, the Controllable Temporal
Synchronization can take action and mask the effects of delays. For this to
happen, the price to pay is an increase in complexity – the Remote Presence
system needs to receive the data from the Controllable Temporal Synchronization
system. This has a cost also in terms of delay – the data is received by a process
and sent to another one. Even if these processes are running on the same
machine, the delay is not zero.

Technological note
At the time of writing, there is a proliferation on the consumer market of
different sensors/devices that could have been substituted in part or entirely
for the use of the 3D camera. The design of the system tried to keep open
as many options as possible by not binding to a specific solution. Any sensor
output can be translated into 3D points; therefore, the MultiStage system could
be adapted to use other input devices such as wearable motion sensors, floor
pad sensors, stereo camera, etc.

2.6 State of The Art
Distributed stage performances have been attempted with various degrees
of success and from different directions. The previous attempts used various
techniques, often tailored to address one specific dimension of the problem.
The set of dimensions of the problem space include audio and visual remote
interactions and in some cases a remote presence.

2.6.1 Landscape/Broad View
There are in literature systems and tools that, even if not built especially for
a remote/distributed stage show, present relevant qualities worth mention-
ing.

Some systems are tailored to a distributed stage, and can focus on achieving
the same experience for the audience on each stage involved (Sawchuk et al.
[11], Zimmermann et al. [12]).

The most resembling systems are the teleconferencing, they provide a mean
to communicate remotely both verbally and visually ([2], [13]). Some tele-

34 CHAPTER 2 MULT ISTAGE OVERV IEW

conferencing systems provide the users with some extra functionalities or
enhancements over the traditional teleconferencing tools (Tang et al. [14],
Nguyen et al. [15]).

These systems can employ more than just one camera or 3D cameras to bring
to the users a more immersive experience than just a video stream (Essid
et al. [16], Schreer et al. [17], Petit et al. [18], Feldmann et al. [19], Izadi et al.
[20]).

An enhanced experience can be obtained not only through immersive 3D
environments, but can be the result of a more vivid presence, a remote presence,
of the users at one or both ends of the communication channel (Sakamoto et al.
[21], Maimone and Fuchs [22], Huang et al. [23], Alexiadis et al. [24]).

Some other systems can allow the remote user to be more present with its
actions in stead of its appearance as in a remote presence, allowing the users
to interact remotely (Vasudevan et al. [25]). The approach of interaction can
be different but in many cases it involves detecting gestures performed by the
users directly, or free handed, or through an input devices (Mistry and Maes
[26], Elgendi and Magenant-Thalmann [27], Van den Bergh and Van Gool [28],
Pederson et al. [29], Ebert et al. [30], Morishima et al. [31], Farhadi-Niaki et al.
[32], Fanello et al. [33], Kellogg et al. [34]).

Many of these systems involve some degree of Human Computer Interaction
(HCI), depending on the dimensions of the problem and on the purpose of
the system. And a large wall sized display can be of great help in aiding the
audience and the users to better visualize the performance (Dou et al. [35],
Anshus et al. [36], Stødle [4], Wilson and Benko [37], Shoemaker et al. [38],
Bragdon et al. [39]), Kim et al. [40], Spindler et al. [41]).

Tele-immersion systems are also relevant. As the name suggests these systems
goal is to put the users in an immersive shared environment, where they can
collaborate interacting with their respective remote presences. The remote
presence created by such systems is usually the result of three dimensional
data acquisition and aim to be as close as possible to the reality (Lien et al.
[42], Yang et al. [43], Vasudevan et al. [25], Fechteler et al. [44], Mekuria et al.
[45], Raghuraman et al. [46], Alexiadis et al. [24]).

2.6.2 Distinctive Systems
Among those systems there are somemore close in functionality to a distributed
performance and merit more than just a mention.

2.6 STATE OF THE ART 35

An example of audio interactions and distributed artistic performance is the
Distributed Interactive Performance (DIP) exposed in Sawchuk et al. [11] and
Zimmermann et al. [12]. It addresses the music and audio synchronization of
two stages.

Two-room interaction systems are described with a focus on achieving audio
synchrony. They compensate for the network latency by delaying local actions
correspondingly, making both rooms experience the same delay. In Chew et al.
[47], a series of experiments based on the DIP system is described with focus on
the audio delay, and how the delay affects musicians’ cooperation. An artificial
delay of 50ms to the remote room’s audio stream was tolerable. With the
same latency added at both rooms, it became possible to play easily together
with a delay of up to 65ms. Adding visual interactions to an audio interaction
system we obtain a teleconferencing system. There are many around, some
commercial some not, with different capabilities and characteristics. Some are
tailored to user cooperation and to a fixed number of locations. Sato et al.
[48] illustrate a remote camera system for teleconferencing, supporting user
cooperation between a local and a remote room. The system captures 360
degree images as well as supporting pan/tilt/zoom of cameras.

Another approach, with a focus on a three-way collaboration, is in Tang et al.
[14], also including some remote presence capabilities. The system allows
three people to collaborate in a virtual environment. In each room there is
a multi-touch table, camera, speaker, microphone, and two LCD monitors to
display the two other rooms. The shadow of remote hand and arm gestures is
captured by an infrared camera and displayed on the multi-touch table to show
the remote person’s behavior. Another relevant system for teleconferencing,
focused on informal meetings between rooms, is Dou et al. [35]. The system
merges the images from panorama cameras acquiring the background of a
room, with a camera acquiring the users when they are close by the display.
The key feature of the system is to allow users to maintain eye contact during
the conversation by stitching together images from both the panorama and
short range cameras.

The collaboration approach is taken a step forward, but in another direction, in
Petit et al. [18]. The system presented is a multi-camera real-time 3D modeling
system for remote presence and remote collaboration. 3D models of users are
computed from two-dimensional (2D) images from multiple cameras, and the
3Dmodels are streamed to remote rooms where users are visualized in a virtual
3D environment. Computing and visualizing collisions and reaction forces to
virtual objects in the virtual space strengthen the remote presence.

Another remote presence system, more physical than virtual, is in Sakamoto
et al. [21]. The system uses a remote-controlled android, which can have a set

36 CHAPTER 2 MULT ISTAGE OVERV IEW

of states to be in: idle, speaking, listening, left-looking, and right-looking. A
remote user controls the android’s behavior by choosing its state, enhancing
the feeling of the presence of the remote user. On the same track of full body
interaction, there is in Essid et al. [16], a multi-modal corpus for research
into human-to-human interaction through a virtual environment. The virtual
environment is defined as a virtual dance studio where a dance teacher can
teach students choreographies. Both teacher and students are represented in
the virtual studio by 3D avatars. The corpus consists of the recordings of the
3D avatars and outputs from other sensors, such as cameras, depth sensors,
audio rigs, and wearable inertial measurement devices.

Continuing on motion classification and interaction, Elgendi and Magenant-
Thalmann [27] present a study on hand gesture speed classification with the
goal to improve human–computer interaction. The aim of the study is to train
a virtual human to detect hand movements in a noisy environment. The factors
of the study are multiple body features like hand, wrist, elbow, and shoulder,
evaluated against different gesture speed such as slow, normal, and fast.

Stødle [4] describe a distributed optical sensor system used to implement a
device-free interaction space. The system uses an array of commodity cameras
as 3Dmultipoint input to track hands and other objects. The tracked coordinates
are used to provide 3D input to applications running on wall-sized displays. We
extend this system to suit a multi-display environment; we also use commodity
3D cameras to provide room-wide depth information and gesture detection.
Other works on gestures and large displays are Aghajan and Wu [49],Bellucci
et al. [50], Bragdon and Ko [51], Blakney [52],Mitra and Acharya [53], Pavlovic
et al. [54], Sabir et al. [55], Seyed et al. [56], Shoemaker et al. [38] and Farhadi-
Niaki et al. [32].

Another system that uses multiple depth cameras and projectors is LightSpace
Wilson andBenko [37]. In LightSpace, the projectors and cameras are calibrated
to real-world coordinates so any surface visible by both camera and projectors
can be used as a touch screen. Adding the 3D world coordinates of the detected
users to this multi-display installation allows for different multi-touch body
gestures, such as picking up an object from a display and putting it on another.
The body of one or more users can be used to transfer objects to different
displays by touching the object on the first display and then touching the other
display.

Relevant to the topic is Van den Bergh and Van Gool [28], in which a novel algo-
rithm is presented that detects hand gestures using both Red-Green-Blue (rgb)
and depth information. The prototype is used to evaluate the goodness of hand
gesture detection techniques using a combination of rgb and depth images.
To evaluate the algorithms, a device-free interaction system is developed and

2.6 STATE OF THE ART 37

tested. In the same context, Kim et al. [40] present Digits, a personal, mobile
interaction space provided by a wrist-worn sensor. The sensor is composed
of off-the-shelf hardware components. Digits can detect the pose of the hand
without instrumenting it. On the same track of gesture detection, Kellogg et al.
[34] proposes to exploit the surrounding electromagnetic waves present in the
every modern office/home such as Wi-Fi, TV or cellphone signals. The device,
named AllSee, can discriminate some hand motions performed in front of it by
how the hand reflects the electro magnetic waves. AllSee implementation is
based on energy harvester chips, not unlike the ones used for Radio-frequency
identification (rfid), making it a passive device and so reducing the power
consumption.

In Bragdon et al. [39], a system designed to support meeting of colocated
software developers explores the space of touch and air gestures in a multi-
display, multi-device environment. The system is composed of a 42 inches
touch-display, two Kinects, a smartphone, and a tablet. Mid-air gestures, like
pointing to an object on the bigger display, are supported through the Kinect. In
combination with a touch-enabled device, the hand gesture can be augmented
to address some of the problems of gesture detection, such as accidental
activation or lack of tactile response.

One more special purpose system is Ebert et al. [30]. The system is a touch-free
interface to a medical image viewer used in surgery rooms. The system uses a
depth camera and a voice recognition system as a substitute for a keyboard and
mouse input in an environment where touching those devices can compromise
the operation.

Commercial remote conference software includes Skype [2], GoToMeeting [13],
and many more. With the emergence of new Web technologies, i.e., Websocket
[57] and WebRTC [58], via a browser from any computer available to the users.
On the gesture front, many new gadgets are hitting the consumer market, such
as Leap Motion Controller and Myo Armband [59], [60].

2.6.3 La Serva Padrona
An example of distributed opera is the play, La Serva Padrona, enacted in
Tromsø in 2012. The play was split into two locations and used displays with
back projection to represent the actors on the other half stage.

Both stages were in the same building on different floors, and audience and
actors were also split in two in accordance to the stages. During the break in
the middle of the performance the audience swapped stage to watch live the
other half of the stage and the actors.

38 CHAPTER 2 MULT ISTAGE OVERV IEW

As already stated interacted with the remote presences of the other actors on
the displays through displays on each stage. The displays were roughly 2x2
meters placed at regular intervals on the stages in an interleaving fashion, so
that gaps between displays on one stage were covered in the other. Between
each display there was camera recording the area in front of it and reproducing
it on the corresponding display on the other stage. The displays provided a
view on the other stage and the choreography put the actors in these views
during the play. In this way the actors could (inter)act through these portals
to the other stage.

Microphones and speakers provided the audio, both for the voices of the actors
and for the stage sounds, such as footsteps, or behind the scene sounds. The
choreography was also tailored to underline and exploit the separation of the
two stages: stage jokes and tricks were also adapted to the double reality. Figs.
2.9 and 2.10 show the flyer for the event.

2.6 STATE OF THE ART 39

Figure 2.9: Flyer of the play La Serva Padrona, an Italian comedy from 1733, authored
by Giovanni Battista Pergolesi.

40 CHAPTER 2 MULT ISTAGE OVERV IEW

Figure 2.10: Flyer of the play La Serva Padrona, an Italian comedy from 1733, authored
by Giovanni Battista Pergolesi.

3
User Context StateDetection
This chapter describes the User Context State Detection system for analysis and
sharing, from the idea behind it to the prototype.

3.1 Idea
The idea behind the User Context State Detection (ucsd) system is to be able
to detect the state of the remote stage, and share it with another stage. The
shared state can be used to enable interaction between stages or to create a
distributed stage composed of remote stages. Taking, for example, the position
of actors on stage as a shared state, the actors could use this information to
interact with each other, and to refer to their relative position as if they were
on the same stage. The shared state, or part of it, could also be of interest to
other parties not on a stage, such as a remote audience. The audience, however,
might be interested not in the whole performance, but just a smaller part of it.
Or maybe the interest is in a particular actor and who surrounds them, so the
audience would like to follow that particular actor.

In order to reproduce a consistent performance, or part of it, by sharing the state
of the stages, it is necessary to preserve the space and time relationships of the

41

42 CHAPTER 3 USER CONTEXT STATE DETECT ION

single actors on every stage. For this reason, the focus is on the state of the actors
on the stage. Such state can be generalized in at least position and volume
occupied at some time, but more data on the actors is of course welcome. That
is why the ucsd system filters the state of the whole stage in single streams of
state for each actor, embedding spatial and temporal information about each of
them. If we assume to have (reasonably) synchronized clocks at the stages, the
relationship between actors interacting on the same stage is preserved in the
streams and can be replicated or represented at a remote location. Individual
streams can be treated separately, giving flexibility to the Remote Presence
system – the system in charge of reproducing the user context state at a remote
location.

If the previous assumption of a shared clock among the different locations holds,
the space and time relationship between any of the streams holds, and the
multi-stage performance can be reproduced anywhere. We are not considering
here the unavoidable delays of transmitting the state streams to other locations;
that is a problem for another system to solve, [3]. The ucsd system is meant
to provide the state to share in order to obtain a performance spanning more
than one stage.

3.2 Architecture
As summarized in Fig.3.1, the system architecture comprises different compo-
nents: Local State Monitoring (lsm) records what the sensors/cameras see
and passes the raw data to the Local State Analysis (lsa) for further analysis.
lsa performs on-the-fly analysis of the data from the lsm and extracts inter-
esting objects and events from the stream. For example, it separates the actors
from the background and detects a gesture performed by an actor. In more
detail, the lsm interfaces with the sensor to obtain the raw data. The raw
data includes a timestamp of acquisition and the spatial configuration of the
sensor, most commonly the position on the stage and, in the case of directional
sensors (e.g., cameras), also orientation. The data is then passed to the lsa
to perform the analysis needed to extract the actors from the background,
detect gestures, or other potentially needed analysis. To carry out the analysis,
the lsa uses not only the information contained in the raw data, but also the
information attached by the lsm, i.e., timestamp and spatial configuration of
the sensor.

To clarify, consider the following example: the detection of a gesture by tracking
a point in space, which belongs to one of the actors. The lsm delivers to the lsa
frames containing raw data timestamp and spatial configuration of the sensor.
At this point, the lsa extracts the actor from the background and calculates

3.2 ARCH ITECTURE 43

the position of the point being tracked. A cache of previous position and time
of acquisition of the tracked point can be used to calculate the direction of
motion and the speed. These factors, direction of motion and speed, can be
used to detect a gesture.

As these two parts (lsm and lsa) belongs to the local side of the architecture
(Fig.3.1) they are tasked to deal with a single stage. To make the information on
one stage available to other stages the lsa encodes the results of the analysis
in streams and delivers them to the global side. Each packet of the stream
of data contains the timestamp and spatial configuration of the sensor that
generated the stream.

GlobalLocal

LSM: Local State Monitoring
LSA: Local State Analysis
GSM: Global State Monitoring
GSA: Global State Analysis

LSM LSA GSM GSA Distribution

Figure 3.1: Architecture of the User Context State Detection. It analyzes the raw data
and streams it to the global side. Here the state of streams is analyzed in
a global context and global events are extracted and transmitted in new
streams.

On the global side we have Global State Monitoring (gsm) and Global State
Analysis (gsa). Similar to their local counterparts they collect the streams
(gsm) and analyze them (gsa). They are called global state monitoring and
analysis because contrary to the local ones they deal with the streams from all
the stages. Having available all the data from the stages, the analysis happens
in a global context – all the streams are taken into consideration and can be
analyzed to extract global information on the whole performance or to detect
global events and gestures. A global gesture is a gesture that can be seen as a set
of global states to be reached in sequence, or a single global state to be reached.
An example of a global gesture can be as simple as all the actors standing in
a predefined position. A slightly more complex one for both detection and the
actors could be actors standing in a predefined position relative to each other.
An even more complex global gesture can be to follow the choreography of a
dance.

44 CHAPTER 3 USER CONTEXT STATE DETECT ION

This kind of event can be used for instance to signal the beginning or the end
of a performance, or to automate the lighting effects on the stages, and can
only be obtained by funneling all the streams to the gsm/gsa.

This implies that the gsa can create new streams on-the-fly and deliver them to
the Distribution system, as well as all the streams received by the local side. The
Distribution system works according to a publish–subscribe protocol and each
stage can subscribe to any stream, obtaining the whole performance or just a
part according to their capabilities. This also allows the stages to receive, for
example, the global gesture streams without needing all the streams, reducing
the bandwidth needed to receive them and the processing power needed to
process them.

To conclude, the flexibility of this solution allows any stage to replicate any
subset of the performance comprising any number of actors, from one actor
to all the actors. The space and time awareness of the data streams allows the
receiving stages to maintain space–time relationships among related streams.
For example, a group of two or three people talking or interacting can be
virtually repositioned anywhere by the Remote Presence system, without losing
the credibility of the interaction, because the relative distances, in space and
time, of virtual representations are preserved.

3.3 Design
If we visualize the MultiStage system as a pipeline where data flows from a
begin point to an end point, the ucsd system is the first stage of the pipeline.
The first stage of the pipeline is where the actors are detected during a show.
The data obtained on each actor is encoded into streams and the streams are
sent to the distribution. To keep track of the different streams, the ucsd system
annotates with a header all the packets that compose the streams. The header
contains a stream identifier (ID), a timestamp of the data acquisition, and a
sequence number. The ID in the stream header needs to be unique to each
stream and must contain information also on its provenance, the stage where
it has been generated. This allows the consumer of the data at any stage of the
pipeline to know the origin of the stream.

Fig. 3.2 illustrates this concept. The streams of data generated by the ucsd
system flow in one direction through the pipeline, making the ucsd system the
first pipeline stage where data is produced. Data is delivered to the Distribution
system, which accepts subscriptions for data streams from other systems.

Each packet composing the steams is produced by the lsm/lsa from a single

3.4 IMPLEMENTAT ION 45

UCSD
UCSD

UCSD

LSM/LSA

HeaderData

HeaderData

HeaderData

Subscriber

Hea
der

Data

Subscriber

Subscriber

Subscriber

Header
Data

HeaderData

Header

Data

Distribution

Figure 3.2: Design of the User Context State Detection. The stream packets are anno-
tated with a header that unequivocally identifies the stream. The distribu-
tion system uses the stream headers to publish and route the streams.

frame of the sensors. Consecutive packets are independent of each other –
there is no encoding of a stream as a whole. This decision trades bandwidth for
flexibility – the system does not save bandwidth by making each frame inde-
pendent from the previous one (e.g., encoding each packet as being function
of the previous one). But each packet is self-contained and can be used alone
without knowledge of the preceding packets. Another advantage of having the
data in each packet independent of each other is better tolerance at packet loss
or network delays. When a packet is lost or discarded because it is delivered
out of order there is no penalty for the stream consistency.

The system uses User Datagram Protocol (udp) for network communication.
The reasons behind this choice are stateless communication and lack of retrans-
mission. Stateless communication is faster and easier to set up and maintain,
with no need to keep track and manage the connection state. Retransmission
can be desirable in other scenarios, but in real-time communications the delay
of the retransmission can interfere with the performance.

3.4 Implementation
To evaluate the architecture and the design by running experiments, a proof
of concept prototype has been built. The prototype consists of both software
and hardware. To be more specific, the software has been written almost from
scratch and the hardware assembled from off-the-shelf components.

46 CHAPTER 3 USER CONTEXT STATE DETECT ION

3.4.1 Sensor Suite
The sensors of choice for the prototype are 3D cameras, specifically MS Kinects
that are cheap, off-the-shelf hardware. 3D cameras are now commodity hard-
ware, and combined with some assumptions their use can save much compu-
tational power otherwise dedicated to complex computer vision algorithms. A
simplifying assumption we make is that each user is detected by one camera,
and the data from each camera is encoded in one stream. Each stream (and
user) is bound to exactly one camera and can be identified with it. When the
cameras are properly configured and their position and orientation on stage
is known, we can extract the volumetric information of the user in front of
it.

The combination of the sensors and computers is a self-contained transportable
device called the Sensor Suite. The Sensor Suite is a combination of four Kinects,
three Mac minis, and one Apple AirPort Extreme (see Fig. 3.3). One of the
Mac minis runs the remote presence software (see Chapter 5) to let the actors
interact with the other stages. The other two Mac minis control two Kinect
cameras each.

Even if the Mac minis have four USB ports, their USB 2.0 bus cannot support
more than two Kinects. A different hardware solution might be possible, such
as a PC with a USB board to support all the Kinects, but the Mac minis keep
the Sensor Suite compact and portable. The resulting system is even more
distributed in this way, and it also provides a small degree of redundancy: if
one of the Mac minis malfunctions, the other is not influenced and there is still
50% of the monitoring in place. A full working Sensor Suite delivers a close to
360-degree view and can monitor a room or a stage.

The last component of the Sensor Suite is an Apple AirPort Extreme for con-
nectivity, both wired and wireless; more specifically, 1 Gbit/s wired and Wi-Fi
802.11a/b/g/n, even if the wireless connectivity was never used during the
experiments. Fig. 3.3 shows the cabled connection of the Sensor Suite. It
should be noted that one last Ethernet port is used to connect the Sensor Suite
to a local area network (LAN) / wide area network (WAN) for inter-stage
communication.

3.4.2 Software
The ucsd system is structured as a pipeline (see Fig. 3.4), with each stage
implementing a functionality.

The first stage combines lsa/lsm, gathers the data from the cameras and

3.4 IMPLEMENTAT ION 47

Figure 3.3: The Sensor Suite is composed by four Kinects connected to two Mac minis.
An Airport Extreme provides network connection.

performs analysis and monitoring.The output of this stage is a colored point
cloud with attached a header comprising a timestamp, a sequence number
and a stream ID. The next stage marshals the point cloud and the header in a
binary format and then compress it with the Snappy algorithm [61]. The result
is packaged into a udp datagram and sent to the distribution.

To detect the actors, the system uses few assumptions: (i) one user per camera,
and (ii) the user occupies a known volume in front of the camera. The first
assumption means that the ucsd system detects only one user for each camera.
This is not a technological limit, Microsoft and PrimeSense Kinect proprietary
drivers can detect more than one user on a single camera. But the proprietary
drivers use around 50% of the CPU available on a Mac mini with one Kinect.
That would not leave much room for other computations given that the ucsd
system uses two Kinects on each Mac mini; for this reason the ucsd system
uses the libfreenect [62]. Libfreenct is an open source driver that allows to use
the basic functionalities of the Kinect, such as receiving the data acquired with
the cameras.

48 CHAPTER 3 USER CONTEXT STATE DETECT ION

MessageProcess
/Thread Channel

User Context State Detection

LSA/
LSM

Marshal

Point
Cloud

UDP
Socket

LSA/
LSM

Distribution

Figure 3.4: Software implementation of the User Context State Detection.The system
is structured as a pipeline, the first stage detects the users and creates a
point cloud, the second stage marshals it and sends it to the distribution
via udp.

The second assumption is that anything in front of the camera and in the
detection volume is considered a user. This again simplifies the implementation
allowing a single scan of the depth image to determine whether a user is being
detected. To be more specific, a depth image is an image whose pixels represent
a depth or a distance from the camera. Having obtained a depth image from a
Kinect, the ucsd system proceeds to scan it pixel by pixel and checks whether
there are pixels of value inside a predefined range. The pixels whose value is
inside the range are kept as part of the detected user, and the ones with pixel
value outside the range are discarded as background.

With the same scan it is possible to determine the bounding box of the user:
while parsing the depth image, the ucsd system keeps track of the farthest
and closest point from the camera, i.e., the pair of points having the maximum
and the minimum Z value. The same happens for the other two axes: X leftmost
and rightmost, Y highest and lowest. This process identifies six points. The
combination of the coordinates of these points is enough to describe a bounding
box of the user.

In practice, only two points are necessary to determine a bounding box, the
maximum and minimum points – the maximum contains the maximum of
all the XYZ coordinates, and the minimum contains the respective minimum.
Using only two points, however, limits the flexibility as shown in 4. Therefore
the system keeps track of all six points and sends them along the point cloud
for later use; for example, graphically debugging by printing the bounding
box.

3.5 EXPER IMENTS 49

The system generates the colored point cloud by transforming the pixels of the
depth image in 3D points and matching them with the pixels from the rgb
image, assigning a color to each point. The 3D transformation is a projection
of the points from camera coordinates to world coordinates; the parameters
of the projection matrix are the result of a factory calibration and are stored
in the Kinect firmware. The libfreenect driver can access the firmware making
the parameters available and in addition provides utility functions to convert
depth pixels into to 3D points. The same driver provides rgb and depth image
matching pixel by pixel, so to assign a color to a point is necessary to match
the pixels with the same index in the two images.

The data so obtained is a colored point cloud of the users and the bounding box
containing them. The point cloud is compressed with the Snappy algorithm
[61], chosen for its speed not for the compression rate. The compressed data
is given a header containing the information to identify the provenance of the
data, and it is then serialized and sent to the Distribution system.

The number of points can be too big to fit into a single udp packet, even when
compressed. For this reason a command line argument can be used to specify
the number of points, the system down samples the point cloud to the amount
requested. This is also useful to save bandwidth. 5000 points compressed with
Snappy is the maximum number of points that fits an udp datagram.

The ucsd system is written in the Go programming language, which was
chosen for its simplicity, cleanliness, and above all for its Communicating
sequential processes (csp) [63] inspired concurrency primitives: channels and
goroutines (green threads).

This is visible in Fig. 3.4 – lsm/lsa is implemented as a goroutine calling
the libfreenect driver written in C to obtain the images. After the analysis,
implemented in the Go code, the lsm/lsa goroutine sends the point cloud
and bounding box through a channel. At the receiving end of the channel there
is another goroutine which tasks it to marshal the data in a string of bytes,
compress it, and send it to the distribution via udp.

3.5 Experiments
To evaluate the performance of the ucsd system a set of experiments was con-
ducted. The design and setup of the experiments is explained in the following
section.

50 CHAPTER 3 USER CONTEXT STATE DETECT ION

3.5.1 Design and Configuration
The experiments collected three metrics: network traffic, CPU, and memory
utilization. The factors were the size of the point cloud and number of stages.
The point cloud size is not arbitrary, but the result of our own use of the system
and size of udp datagram. 5000 points is the maximum amount that can fit an
up datagram after compression. Using more than one datagram per frame was
abandoned during the design to keep the system simple. 1000 points is the
least number of points that, in our opinion, makes the interaction still plausible.
Below 1000 points it is difficult to distinguish the features of the actors, a
fundamental aspect for the interaction.

Two stages were configured for this experiment, both stages were equipped
with a Sensor Suite to run the ucsd system. Each Sensor Suite comprises two
Mac minis (mid-2011) with an Intel Core i7 at 2.7 GHz and 8 GB of RAM. Two
Kinect cameras were connected to each Mac mini, and all the computers were
connected to a gigabit Ethernet switch. To collect the data, the ucsd system
was left running for little over five minutes. In front of each camera was placed
a static object the size of an average human being.

The measurements (CPU memory and inbound traffic) have been collected
with the monitoring system discussed in Section 2.5. The monitoring system
measures resource consumption of the whole machines running the ucsd
system, not at process level. This does not allow for a fine-grained collection
of data on each system, but grants an overview on the general behaviour of
MultiStage. This overview allows us to understand the trend in the resource
utilization and to possibly take action to avoid saturation. In other words it
grants the knowledge to quantify the amount of resources needed for a specific
MultiStage installation.

3.5.2 Results
As we can see in Fig. 3.5, the resources of the system are not constrained in
terms of CPU and memory. Memory usage varies from 13% to 24% among the
computers. This variation is attributed to background noise, other processes
running in the background. Even is the memory utilization varies among
the computers it is consistent across point cloud sizes, for all the computers
increasing the point cloud size does not produce visible variation in the memory
usage.

The CPU utilization grows from 1000 point to 5000 consistently on each
computer, as does the standard deviation indicated in the figure by the error
bars. However, the CPU utilization is below 5% for any amount of points

3.6 D ISCUSS ION 51

0	

5	

10	

15	

20	

25	

30	

1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	

SensorSuite-‐0-‐0	 SensorSuite-‐0-‐1	 SensorSuite-‐1-‐0	 SensorSuite-‐1-‐1	

i7	 @	 2.7	 GHz	 8	 GB	 RAM	 	 i7	 @	 2.7	 GHz	 8	 GB	 RAM	 	 i7	 @	 2.7	 GHz	 8	 GB	 RAM	 	 i7	 @	 2.7	 GHz	 8	 GB	 RAM	 	

2	 MS	 Kinect	 @	 30	 fps	 2	 MS	 Kinect	 @	 30	 fps	 2	 MS	 Kinect	 @	 30	 fps	 2	 MS	 Kinect	 @	 30	 fps	

Stage-‐0	 Stage-‐1	

UClizaCon	 %	
	

Factors:	 Points	 -‐	 Stages	 -‐	 Hardware	

UCSD	 System	 CPU	 and	 Memory	 UClizaCon	

CPU	

MEM	

Figure 3.5: Memory and CPU usage of the ucsd compared among different point
cloud sizes. The error bars indicate the standard deviation.

used in the experiments and for each computer. The system is not resource
restraint.

Fig. 3.6 shows the bandwidth used. The bandwidth used for 5000 points is
close to 3.5 MByte/s. According to the Netflix Internet Connection Speed
Recommendation [64] the bandwidth recommended for Ultra HD quality is
25 Mbit/s. That translates in 3.125 MByte/s, comparable to the bandwidth
used by one of the computers of a Sensor Suite to stream two streams at 5000
points.

3.6 Discussion
In the previous section we compared the data-rate of a Sensor Suite to an Ultra
HD quality movie from Netflix (3125 KByte/s), even if each frame derives from
two Video Graphics Array (vga) images (640X480 pixel). In order to have
some perspective we can calculate the bit-rate for the raw data and for the
point cloud. The images from a Kinect are a depth image with 16 bits per pixels
and an rgb image with 24 bits per pixel. At 30 frames per second the amount
of data to move is: (640 ∗ 480 ∗ (24 + 16)) ∗ 30 = 368.64 Mbit/s or 46.08
MByte/s of raw data from one camera.

52 CHAPTER 3 USER CONTEXT STATE DETECT ION

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	

SensorSuite-‐0-‐0	 SensorSuite-‐0-‐1	 SensorSuite-‐1-‐0	 SensorSuite-‐1-‐1	

Stage-‐0	 Stage-‐1	

KByte/s	

Factors:	 Points	 -‐	 Stages	 	

UCSD	 System	 Outbound	 Network	 Traffic	 	

Kbyte/s	 out	

Figure 3.6: Network traffic generated by the ucsd for different point cloud sizes. The
error bars indicate the standard deviation.

The ucsd extracts from each frame, both rgb and depth, up to 5000 pixels
and converts them into colored 3D points. Each 3D point is represented by
three floating-point numbers and a color: 32 ∗ 3+ 24 = 120 bits. At 30 frames
per second the amount of data to move is: 120 ∗ 5000 ∗ 30 = 18 Mbit/s or
2.25 MByte/s of uncompressed data from one camera.

The ucsd compresses each frame individually with the Snappy algorithm [61].
The result of the compression, visible in Fig. 3.6, is close to 3.5 MByte/s for
data from two cameras.

To reduce the amount of bandwidth used the streams could be encoded like a
video, making each frame (or consecutive acquisition of point clouds from a
camera) a function of its predecessor. This would decrease the bandwidth but
limit the flexibility of the system, modifying a frame on the fly would disrupt
the successive frames.

Keeping the frames composing a stream independent allows other systems
between begin point and end point to interleave, modify and manipulate the
data without needing to take care of encoding algorithms. As we will see
in the following chapters, other systems have the goal of manipulating the
information/data transiting from the begin point to the end point, such as the
Remote Presence systems presented in Chapter 5 or systems tasked to mask the
effects of delays as presented in Su et al. [3].

3.7 LESSONS LEARNED 53

3.7 Lessons Learned
The Sensor Suite is, to some extent, a distributed system, with the advantage
and disadvantage of other distributed systems. It is more complicated to man-
age, but it provide some degree of fail tolerance: if one of the computers fails
the Sensor Suite is still operational at 50%.

Using udp as the transport protocol simplifies the management of network
connections – there is no need to handle the connections to the ucsd system,
just fire and forget. This leads to a simpler recovery from failures – if a computer
comprising the Sensor Suite fails, it can be substituted without renegotiating
the connection on the receiving end.

A few thousand points (up to 5000 in our experiments) are enough to represent
a user in a way that allows interactions. This limit was set by the size of the udp
datagram; a better compression algorithm, or more compact representation of
the data can probably increase this limit. The combination of the information
is enough to reproduce the performance of the users in other locations, and
allows other remote users to interact with the remote presence.

3.8 Summary
In this chapter the ucsd system has been presented.

The ucsd is a system capable of detecting actors/users on a stage, acquiring
their volumetric information and a colored point cloud describing them. It also
marshals the point cloud attaching a header and sends it to the Distribution
system. The ucsd system is the begin point of the MultiStage system, where
the streams of data are generated for the other systems.

This chapter also presented the detail of the architecture, design, and imple-
mentation of the ucsd system, as well as the evaluation of the experiments
and discussion of the results.

4
Gestures
In this chapter we present a system to detect gestures based on regular ex-
pressions. In the MultiStage context, gestures can be used in many ways to
gather inputs from the user on stage under the assumption that user input is
needed. The user input can be used for the performance itself and be visible
to the audience, or can be functional to the development of the show or used
for offstage communication.

4.1 Need for actor input
The concept of gesture detection involves the capturing of a subset of move-
ments of the user and giving them a meaning. In other words, we make the
system aware of the user and make the user able to interact with the system
with their movements.

A way to obtain this is to define a language that both system and human can
use, and translate the human motions into that language. If the system can
translate user motions into strings of text and these strings can be matched by
a regular expression, the system can map user motions to gestures. Different
regular expressions can represent different gestures, effectively broadening the
gesture dictionary available to the user.

The same principle can be applied to collective gestures from different locations.

55

56 CHAPTER 4 GESTURES

For example, in a multistage scenario a collective gesture can be detected when
all the users are standing in a defined relative position to each other, or if all
the users from all the locations perform a gesture in a short time frame, this can
be compared time-wise to a distributed mouse double click, where the clicks
must happen in a defined time frame and in a defined area. These collective
gestures can be used to trigger inter-stage events to enrich the performance.
In all these scenarios it is possible to produce a string of text, or phrases of a
language, and match them against a regular expression. The only difference
in this global scenario is the location where it happens; a global interpreter
needed to interpret the global gestures.

The idea of using languages to identify gestures is not novel as we can see in
[65]. What we propose is a system able to recognize gestures in a 3D space, and
collective gestures with contributions from different remote locations.

4.2 Architecture
Fig. 4.1 shows the architecture of the Gesture Detection system. The architecture
distinguishes a global side and a local side. To detect a global gesture there
is a need to analyze the input from different stages, and there is thus a need
for a global side for the system. The local side is meant to detect gestures
performed by the actors on the local stage, and the gestures are delivered to
a Global State Analysis. The gsa performs analysis on received gestures and
creates new ones if gestures detected on the stages compose a global gesture.
In practice, the gsa generates streams of new discovered events to be delivered
to the interested peers. (The same distribution system used in the previous
chapters is a good candidate for this task).

We follow the idea previously described by having a stream of points in space as
the source of the gesture; the Point Stream Generator (psg) is the component
responsible for that. The psg is also responsible for tracking the time of
detection for each point it generates, so a timestamp accompanies each point.
The functionality provided by the Point Motion Analysis (pma) is the base on
which the gesture detection is built. It compares different points at different
times and translates them into strings of text to be parsed by the Regular
Expression Gesture Engine (rege). The rege tries to match each string of
characters received against a predefined set of regular expressions; each regular
expression is defined to detect a gesture.

If a regular expression matches the text from the pma, the corresponding
gesture is detected. The final output of the local side is a stream of gestures,
annotated with position on the stage where they have been performed and

4.3 DES IGN 57

GlobalLocal

PSG: Point Stream Generator
PMA: Point Motion Analyser
REGE: Regular Expression Gesture Engine
GSA: Global State Analyser

PSG PMA REGE GSA

Figure 4.1: Architecture of the gesture detection system.

the time of their execution by the actor. The global side aggregates the various
gesture streams from the stages, collecting and analyzing their global state. If
the state of the stage, as expressed by the gestures and received by the gsa,
determines a collective gesture, thegsa delivers a new event to the Distribution
system. The Distribution system is in charge of delivering these events to its
subscribers.

4.3 Design
Fig. 4.2 shows the design of the Gesture Detection system. Assuming a technol-
ogy to obtain a 3D scan of the user, such as a 3D camera, and assuming that
the user is facing the camera, we can detect and track six well-defined points
of the user: the closest point to the camera, the farthest point still visible by the
camera, the topmost and the bottommost point of the user, and the leftmost
and rightmost point of the user. This functionality is implemented by the ucsd
system, but the design is not tightly coupled to it – any stream of 3D points
can be used so other devices can be considered for the purpose.

Given that a plane is defined by a point and a normal, we can combine these
six points in combination with the reference axes of the camera coordinates
to obtain an axis-aligned bounding box enveloping the user (see Fig. 4.3a).
Assuming also that we are tracking the points used to generate the bounding
box, we are in effect surrounding the user with six virtual touch screens always
in contact with the user (Fig. 4.3b).

58 CHAPTER 4 GESTURES

GlobalLocal Gesture Detection

GSA
Point

Motion
Analysis

Point
Srteam

Strings
of Characters

Regulat
Expression

 Gesture
Engine

UCSD

Sensor
Manager Gestures

Distribution

G
estures

Figure 4.2: Design of the gesture detection system. The design assumes that the
ucsd is the source of points to be analyzed, but other sensors producing
a stream of point can be used. The pma performs a motion analysis
on the points and outputs strings of characters representing the motion.
The Regular Expression Gesture Engine detects gestures by matching the
strings produced by the pma against the regular expressions. The Global
State Analysis receives the gestures and perform a global analysis to detect
global gestures.

The movements of these points are then used to produce character sequences
and are matched with regular expressions to detect gestures. No single body
part is tracked, such as hands or head; the user is free to use any part of his
body to perform the gestures (Fig. 4.3c).

To illustrate the generation of the string of characters, consider Fig. 4.4. First
of all we define which set of user movements we want to be translated into
characters. We call this set a motion dictionary, Fig. 4.4a illustrates the motion
dictionary. The arrows represent the movements the system will look for, and
the character each movement will produce.

For simplicity and efficiency we considered only motions along the major axes
and the diagonal between them. For example, an up-arrow implies an arm
or body part moving straight up and being interpreted as a character, in this
case n. Fig. 4.4b illustrates a circular motion and the characters produced by
doing it. A full circular movement of an arm/hand produces the characters
nuersdwln. The system takes into account character repetition and speed of
the user movement so that characters are produced only in a predefined speed
range of the tracking points.

4.3 DES IGN 59

(a) Bounding box sur-
rounding the user.

(b) Bounding box with
points used to gener-
ate it in evidence.

(c) Possible use of a
bounding box.

Figure 4.3: User Bounding Box.

l n u

●w e

sd r
(a) Motion to character

dictionary.

u
e

r
sn

d
w

l

(b) Example of circular
gesture character pro-
duction.

Figure 4.4: The motion dictionary and an example of circular gesture.

60 CHAPTER 4 GESTURES

4.4 Implementation
The output from the ucsd system is already space and time annotated and is
suitable for the task of detecting user gestures. The implementation embeds
the ucsd and in particular uses the bounding box surrounding the user (see
Chapter 3), and other components are introduced to fulfill the functionalities
needed. In the prototype, the points on the planes behind and below the feet
of the user are harder to track, but the four remaining planes have been proven
enough for a minimal gesture set.

4.4.1 Point Motion Analysis
The pma works as follows. The system holds two bounding boxes, old and new,
defined by six points each: the system starts with zeroed bounding boxes. The
ucsd system (in this case the lsm/lsa parts of the ucsd system, see Chapter
3) sends a new bounding box from the last detection. The pma subtracts
each of the new points from the corresponding old points – the new top point
from the old top point, and so on. The result of the subtraction is a vector
pointing in the direction of the motion. The vector is projected on the plane
corresponding to the point; for example, the top point is projected on the XZ
plane, and the closest point to the camera on the XY plane (see Fig. 4.6 for a
visual example).

4.4 IMPLEMENTAT ION 61

Global Gesture Detection

MessageGoroutine Channel

Local Gesture Detection

Marshal

UDP
Socket

Distribution

Points

Point
Motion

Analysis

Point
motion

description
strings

RE
engine

Gestures

LSM/
LSA

UDP
Socket

UDP
Socket

Un-
Marshal

Gestures

Marshal

Global
gesture
analysis

Figure 4.5: Implementation of the gesture detection system. The source of data is
the lsm/lsa if the ucsd. The system process the points and analyzes
their motions. The result of the analysis is a stream of motion strings that
are matched by the regular expression engine in order to detect gestures.
The system marshals the local gestures and sends them over the network
to the global gesture analyzer. The system is divided in independent
functionalities, each of them running in its own goroutine.

The projected vector is normalized and its component analyzed. If one of the
elements of the vector is close to one, it means the vector is close to parallel
to a main axis of the plane, and the sign of the elements is the discriminant.
If none of the elements are close to one, the vector is considered a diagonal,
and once again the sign of the elements is the discriminant. For each of the
different directions detected, the pma emits a character in the input string for
the Regular Expression Engine (see Fig. 4.4 for a visual example).

62 CHAPTER 4 GESTURES

X

Y

(a) The Y element of the
vector is above the
threshold. The vec-
tor produces a vertical
motion.

X

Y

(b) The X element of the
vector is below the
threshold. The vector
produces an horizon-
tal motion.

X

Y

(c) The elements of the
vectors are inside the
thresholds. The vector
produces a diagonal
motion.

Figure 4.6: Discrimination of motions using normalized vectors. If one of the elements
of the vectors, in this case X and Y, is above a predefined threshold, marked
in red on the axes, the vector is considered vertical or horizontal. The sign
of the elements decides the direction.

4.4.2 Regular Expression Engine
The Regular Expression Engine is a set of regular expressions against which
the motion strings are matched. The prototype limits the motion strings to
100 characters; once the input string reaches this limit it is truncated to a zero
length. To alleviate this problem, the system uses two parameters.

(i) The length of the input. Given that the points are extracted from the cameras,
the amount of points per second is the same as the frame rate of the camera
capturing them, which in this prototype is 30 fps. Assuming a maximum
gesture execution time close to three seconds with a maximum string length
of 100 characters, we cover the execution time of the gestures if we start the
gesture when the input string is of zero length.

(ii) The speed range of the detected points. To maximize the chance that the
input string is at zero length when the user starts performing a gesture, the
system tracks the speed of the detected points. If a point moves too fast or
too slow, the input string is truncated. This filters out glitches of the Detection
system, and noise from the cameras.

For example a point can flicker between two different positions in consecutive
frames, resulting in speed not compatible with a room setting. Also, the user
needs an energetic movement to trigger a gesture detection; just standing in

4.5 EXPER IMENTS 63

front of the camera is not enough as the system will truncate the input string
until the user starts a fast enough motion. This helps the users to initiate a
gesture when the input string has just been truncated – giving them three
seconds to complete the gesture.

4.5 Experiments
During the use of the system we collected some statistics to verify the resources
utilization and latency in detecting the gestures. The configuration was a Mac
mini with an Intel i7 at 2.7 GHz and 8 GB of RAM, and two Kinects connected
to the computer. The systems also uses a lighter version of the detection
algorithm of the ucsd system that does not include the generation of the point
clouds.

4.5.1 Latency
Tables 4.1 and 4.2 present the latency of the system in detecting a gesture.
For the experiment the system was configured to detect two kind of gestures
on four planes. The gestures were chosen based on their robustness to false
positives so that users behaving normally in front of the camera would not
trigger a gesture.

The first gesture is to describe a circle, both clockwise and counterclockwise.
The second gesture is to describe a straight line, both vertical and horizontal.
Each of the regular expressions that identify each gesture has a different
minimum amount of characters, setting a minimum amount of time for the
gesture to be performed/detected. The regular expression for the circular
gesture is: n*u+e*r+s*d+w*l+n*, with a minimum of 9 characters. While the
straight line gesture one is: n{20,}, with a minimum of 20 characters. This
difference in the character numbers accounts for the different results shown in
the Tables 4.1 and 4.2. The number of characters reported is the actual number
of characters in the buffer at the time of detection of the gesture.

Seconds Characters Seconds / Characters

Average 0.957227185 29.71328671 0.0319942844
Median 0.863717786 27 0.032000686
Stdev 0.45646036 13.67923397 0.000711968

Table 4.1: Circle gesture latency.

64 CHAPTER 4 GESTURES

Seconds Characters Seconds / Characters

Average 1.355079928 41.59756098 0.032467229
Median 1.280198133 39 0.03249347
Stdev 0.47902494 14.34311445 0.000414628

Table 4.2: Straight gesture latency.

4.5.2 Resource Utilization
Fig. 4.7 shows the CPU and memory utilization. As we can see, the system is
not resources bound – the most exploited resource is the CPU, around 50%,
used to process the 3D depth images in order to generate the bounding boxes.
The memory usage is quasi irrelevant for the system on which the prototype is
deployed. Statistics were collected using the ps (the shell script is in Appendix
B) during a section of gesture detection by one user. The user kept switching
usage between the two cameras.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

CPU	 Memory	

Figure 4.7: Percentage CPU and memory utilization of the gesture detection system
with standard deviation.

4.6 Discussion
As we stated earlier, the Regular Expression Engine has an arbitrary limit of 100
characters for the input string. This limitation can cause false negatives if the
limit is reached during a gesture, compared to a more complex implementation

4.7 LESSONS LEARNED 65

such as a circular buffer.

The latency measurements suggest that the time needed by the system to detect
a gesture is proportional to the number of characters in the buffer. This is an
argument for a circular buffer sized on the maximum number of characters
needed to detect a gesture. This number, however, depends on the regular
expression chosen, and in some cases cannot be know a priori.

In any case, with the current hardware the rate of the updates to motion strings
is 30 updates/s; this translates roughly as a 3 s limit on the gesture duration.
We found this value to be sufficient for the gestures we used, and so the need
for a more complex solution did not arise.

Another limitation of the current implementation of the system, is the projection
of the gesture on predefined orthogonal planes. This implies that even if the
planes are positioned in a 3D environment, the gestures exploit only two of
the available dimensions. However, this limitation is an artifact of convenience.
Assuming a rectangular room, the ucsd system can be oriented so that the
walls are perpendicular and parallel to the viewing planes of the cameras.
We believe that in this way we facilitate the users in visualizing the planes,
and lower the failures in performing a gesture, perceived by the user as false
negatives. This limitation can be easily lifted and lead to fully 3D gestures or to
a different orientation of the planes for the user’s convenience or for a different
use.

4.7 Lessons Learned
During the early development of the Gesture Detection system we started by
tracking the least amount of points needed to define an axis-aligned bounding
box. This was just two points containing the minimums and maximums of
the XYZ coordinates. However, the pair of points had scarce expressivity, and
although they could be used to detect some user gestures, they were quite
limited.

We later found out that we could track other points and that these points could
be used for, and are better suited to, performing gestures. We chose these more
expressive points lying on the six planes that compose the bounding box. In
this way, the users can move the points with their body and limbs.

Due to technological and anatomical limitations, we restricted the number of
points from six to four, as described in the previous chapters. The increase in
the number of points, from two to six (four), allows a richer gesture vocabulary

66 CHAPTER 4 GESTURES

as well as multi-limb gestures.

Combining this with the regular expression gave us another level of freedom in
the configuration of the system: a string of text is, potentially, all that is needed
to define a gesture.

4.8 Summary
In this chapter we presented a system to detect gestures based on a bounding
box surrounding the users. The system tracks the motion of the user on the
bounding box surface and translates it into strings of text. Then the system
parses the text matching it against a set of regular expressions to detect user
gestures from the user movements.

We also presented details of the implementation of the system. We followed
with a discussion of the limits of the system as well as the strengths and
weaknesses. We also experimentally measured the resources the system uses
when functioning and its latency in detecting gestures.

5
Remote Presence
Remote presence in the MultiStage context means to recreate the reality of
one stage on another one, in a manner that allows interaction between the real
stage and the remote one to happen and to be credible. Audio and video are
the most commonly used mediums to convey an interaction-worthy presence
of a remote user. In the work presented by Zimmermann et al. [12], the authors
describe a detailed analysis of the problems of distributed interactive audio
performance. The performance is based on music played by professionals,
representing one of the most demanding scenarios for a remote interaction.
Other forms of interactions do not have such a strict timing requirement and
can be addressed with more pragmatic solutions. Here we present a video
remote presence system based on a 3D point cloud. This approach does not
include audio, the streams of point clouds are rendered to a video.

Even if the most common means of implementing a remote presence are audio
and video, specifically on a display, there are other options potentially involving
different senses.

• 3D models and computer graphics are well known to the entertainment
industry and are the de facto standard for special effects in movies and
in high end video games.

• Scratch-and-sniff stickers were popular in the late 1970s: automating
the process of releasing smells from similar capsules can add smells to a
remote presence.

67

68 CHAPTER 5 REMOTE PRESENCE

• Haptic technologies, delivering tactile and force feedback, can be used
to enhance an already established remote presence.

• Remote-controlled robots can deliver a remote presence that is not bound
to the space limits where remote presences are usually pinned (usually
on a display in a room).

All these technologies can be combined to deliver a more credible and complete
remote presence, or they can be used to enhance, augment, and amplify a
remote presence as explained later in this chapter.

5.1 Idea
The basic idea of a remote presence system is to reproduce the captured data
to create a presence with which the user can interact. The presence could be
of a form and quality suitable to enable other remote users of the system to
interact with it. The presence is also usually a reproduction or replica of another
user, but this constraint can be lifted if the interacting users can interact with
another protocol that is not just the body language and speech. It is possible
to implement a remote presence system based on teleconferencing system,
streaming video and audio from a place to another. However on a stage show
it is also important to perceive the relative position of actors and possibly form
more than one point of view. Given the potential difference in the stages layout,
the possibility of relocating part of the show on a different position is also
a requirement. All this can be combined with the necessity of showing only
a part of the performance in case the resources available on a stage are not
enough to replicate the whole performance.

To achieve this the Remote Presence prototype system renders streams of
colored three-dimensional point clouds received from one or more remote
stages. The data is acquired on the remote stages by the ucsd system and
is annotated with space and time coordinates. This not only preserves the
relationship of the actors on different stages allowing to reproduce the show,
but also carries the potential for manipulating the streams of data. The goal
of this manipulation can be as simple as relocating of the actors in another
part of the stage. Or it can be a more elaborated control over the visualization
to enhance and amplify the interaction among both actors and audience. In
addition if the resources of the systems on a stage are constrained, the Remote
Presence system can subscribe to only a fraction of the streams and allow the
actors to interact even if only partially.

5.2 ARCH ITECTURE 69

5.2 Architecture
The architecture of the system is summarized in Fig. 5.1. The system is divided
in three sides: the Remote side, the Global and the Local side. On the Remote
side we find the Detection and Analysis functionality, this functionality includes
the acquisition of the data on a remote location and the detection of the remote
users. The acquired data is transmitted to the Distribution on the Global side.
The Distribution in turn deliver the data to the Local side. On the local side the
data is received by the Effects of Delay Hiding functionality, this functionality
manipulates the received data to hide the effects of the delays. At this point
the data is ready to be rendered and delivered to the Rendering functionality,
that will provide the user a replica of what has been detected on the Remote
side.

The Remote side in this context can be any computer from any location that
sends streams to the Distribution system. The source of the data could be a
computer in the same room as the Remote Presence system. The Distribution
functionality is placed on the Global side because both the Remote and Local
side functionalities need to know about it. The Global side is the bridge
connecting the other two sides. The Local side is the where the remote presence
is provided to the final user by the Rendering functionality. On the same side the
Effects of Delay Hiding functionalities takes place, after the data has travelled
to the end point of the communication incurring in unavoidable delays.

The architecture does not present a functionality for Amplified Interactions,
this functionality, and its absence is explained later in the chapter.

Global Local

Effects of
Delay
Hiding

RenderingDistribution

Remote

Detection
and

 Analysis

Figure 5.1: Remote Presence system Architecture. The system is divided in three sides
comprising the main functionalities. Detection of the user is handled on
the Remote side, on the Global side we find the distribution, on the local
the Hiding of the Effect of Delay and the Rendering.

70 CHAPTER 5 REMOTE PRESENCE

5.3 Design
Fig. 5.2 shows how the design of the system. In the design we joined the Remote
to the Global side, the Local side is unaware of the distinction between the
them and interfaces only with the Distribution. The data is generated by an
instance of the ucsd system or other systems with similar capabilities.

As we can see, the Distribution system delivers the data to the Effects of Delay
Hiding component, which is the entry point for the data to the system: it feeds
the data to the Rendering component after masking the effect of delays if
needed.

Given that the streams from the ucsd system are personal, comprising a
single user, once inside the Rendering component the streams handled inde-
pendently.

The separation is made by stream identifier that is unique inside a MultiStage
setup. This also enables the integration with the components tasked to mask the
effect of delays, Su et al. [3], that can manipulate single streams. Each stream
is then rendered on a display and the end user can interact with it.

LocalGlobal

Distribution
Effects

of
Delay
Hiding

UCSD

Others

Rendering

HeaderData

Header

Data

Header

Data

Stream
Handler

Stream
Handler

Stream
Handler

Strem
Dispatch

Figure 5.2: Remote Presence system design. Data arrives to the Rendering components
from the Global side through the Effects of Delay Hiding component. The
Rendering component handles the streams of data independently.

5.4 Implementation
Fig. 5.3 illustrates a schematic view of the implementation of the Rendering
component of Remote Presence prototype system. The system is implemented
in the Go programming language and uses the Go bindings to the OpenGL
[66] api. The system exploits the Go language capabilities using goroutines

5.4 IMPLEMENTAT ION 71

for concurrency and parallelism. It receives the streams of data and renders
them to a display. The streams are generated by the ucsd system, each stream
is divided into frames binary encoded and compressed using the Snappy
algorithm [61] (see Chapter 3). Upon arrival in the system, each frame (or
packet) is unmarshaled in a stream header and a colored point cloud.

The Remote Presence system holds a data structure mapping stream headers
to Go channels, labeled channel map in Fig.5.3. The channels are used to
supply fresh data to the goroutines handling the streams and are retrieved
from the map using the stream header as key. The system uses one goroutine
for each stream of data, which translates into one stream per user from another
stage.

Each one of these goroutines handles the updates from the remote sites and
maintains the state of the stream locally in a scene graph. The leaves of the
scene graph are non-overlapping areas of memory, meaning the goroutines
can update concurrently with the scene-graph. Another goroutine is used for
rendering and wakes up every 16ms (60 fps) to perform the rendering.

Root

LeafLeaf Leaf

Stream
Handle

Render

Un-
marshalDistribution

Header

Data

Stream
Handle

HeaderData

One entry for each
stream received

Timer

Scenegraph

Channel map

Figure 5.3: Implementation of the remote presence system. Each stream is handled
and updated independently by a goroutine. The data is fed to these
goroutines through a channel and used to update a scene-graph. Another
goroutine renders the scene-graph synchronising with the other ones with
a Reeders-Writer-Lock.

The visual output of the Remote Presence system is a rendering of the point

72 CHAPTER 5 REMOTE PRESENCE

cloud, surrounded by its bounding box, visible in Fig. 5.4.

Figure 5.4: Output on screen of the Remote Presence system for one stream.

5.5 Experiments
We conducted an experiment to record the resources utilization of the Remote
Presence system as part of a MultiStage installation.

5.5.1 Configuration
Fig. 5.5 shows the configuration of the experiment. The experiment measures
the CPU and memory utilization and inbound network traffic of the Remote
Presence system. The factors are the number of points from the ucsd sys-
tem per stream. MultiStage is configured with three stages, each streaming
four point cloud at 30 frames per second. Each stage subscribes to all the
streams.

5.5 EXPER IMENTS 73

Each stage is composed of three computers, one running the Remote Presence
system, and two running the ucsd system. Two Kinect cameras are connected
to each of the ucsd computers. The Global Side and Distribution is composed
by two more computers, one running the Distribution system and one run-
ning the Global State Analysis/Monitoring (see Chapter 3). All computers are
connected to a 1 Gbit/s switched network.

The computers in the experiment are of two different specifications: the com-
puter comprising Stage-2 are Intel Core i5 @ 2.5 GHz with 4 GB of RAM. All
the others are Intel Core i7 @ 2.7 GHz with 8 GB of RAM as indicated in Fig.
5.5 by the dashed boxes.

The measurements (CPU memory and inbound traffic) have been collected
with the monitoring system discussed in Section 2.5. The monitoring system
measures resource consumption of the whole machines running the Remote
Presence system, not at process level. This does not allow for a fine-grained
collection of data on each system, but grants an overview on the general
behaviour of MultiStage. This overview allows us to understand the trend in
the resource utilization and to possibly take action to avoid saturation. In other
words it grants the knowledge to quantify the amount of resources needed for
a specific MultiStage installation.

74 CHAPTER 5 REMOTE PRESENCE

Zyxel GS-105B

Airport Extreme

RP

UCSD

UCSD

Stage-1

Airport Extreme

RP

UCSD

UCSD

Stage-0

Zyxel GS-105B

RP

UCSD

UCSD

Stage-2

GSA

DSDSGlobal Side
and

Distribution

Intel Core i7 @ 2.7 GHz

8 GB of RAM

Intel Core i5 @ 2.5 GHz

4 GB of RAM Airport Extreme

Figure 5.5: Hardware and software configuration for the experiment. Each grey square
represents an Apple Mac mini running a system of MultiStage: ucsd and
Remote Presence (RP). If the Mac mini has a device connected that is
printed aside. This is visible for the Local and Sensor component, having
connected to them respectivelymonitors and cameras. In this configuration
the cameras are MS Kinects. All the network connections and switches are
Gbit Ethernet.

5.5 EXPER IMENTS 75

5.5.2 Results
The results are visible in Fig. 5.6 and Fig. 5.7. The stage-0machine used a steady
15% of the memory for all the points, from 1K to 5K , while the CPU raised from
10% at 1K points to 22% at 5K points. Stage-1 shows almost the same pattern
in the CPU utilization, but a higher memory utilization around 23%. Stage-2
on the other hand shows an even higher memory utilization, roughly double
the amount of the memory used by stage-1. However, this higher percent usage
is justified by the fact that the total amount of memory available to the stage-2
machine was half of the available to the other two stages. Beside the memory
amount stage-2 CPU utilization pattern is comparable to the other two stages.
Other discrepancies in the measurements can be attributed to other processes
running in the background occupying machine resources.

The inbound network traffic is stable for all the computers, varying from slightly
less than 5Mbyte/s for 1K points to 20MByte/s for 5K points. This result was
expected and corroborate the one in Chapter 3 where the cumulative outbound
traffic of a stage was close to 7 MByte/s at 5K points.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	

Stage-‐0	 Stage-‐1	 Stage-‐2	

Core	 i7	 @	 2.7	 GHz	 8	 GB	 of	 RAM	 	 Core	 i7	 @	 2.7	 GHz	 8	 GB	 of	 RAM	 	 Core	 i5	 @	 2.5	 GHz	 4	 GB	 of	 RAM	 	

U?liza?on	 %	

Factors:	 Points	 -‐	 Stages	 -‐	 Hardware	

Remote	 Presence	 System	 CPU	 and	 Memory	 U?liza?on	

CPU	

MEM	

Figure 5.6: Percent CPU and memory utilization measured during the experiments
for the Remote presence system. The error bars indicate the standard
deviation.

76 CHAPTER 5 REMOTE PRESENCE

0	

5000	

10000	

15000	

20000	

25000	

1000	 3000	 5000	 1000	 3000	 5000	 1000	 3000	 5000	

Stage-‐0	 Stage-‐1	 Stage-‐2	

KByte/s	

Factors:	 Points	 -‐	 Stages	 	

Remote	 Presence	 System	 Inbound	 Network	 Traffic	

Kbyte/s	 in	

Figure 5.7: Remote Presence system inbound network traffic. The factors are the
number of points per stream and the number of stages. The error bars
indicate the standard deviation.

5.6 Discussion
5.6.1 Implementation
During the implementation we encountered the issue ofwas how to synchronize
the stream-handling goroutines and the rendering goroutine. If the rendering
goroutine wakes up and reads the status of a stream to be rendered while
another goroutine is updating it, a race occurs with unpredictable outcomes.
To solve this problem we employed a reverse readers-writer lock (RWLock). It
is a traditional RWLock but the readers’ lock is held by the stream updating
goroutines (writers) and the writer lock is held by the rendering goroutines
(reader). The stream goroutines do not share the status of their streams and
are allowed to write in memory simultaneously. The rendering goroutine on
the contrary needs to read the status of all the streams, and no other goroutine
is allowed to write during the rendering. A traditional use of the RWLock
(readers holding a reader lock and writers holding the writer lock) would still
have led to a correct solution, but at a loss of concurrent update of the stream
state.

Another issue of the current implementation of the Rendering component is
that it is limited in concurrency by the OpenGL implementation. While the
goroutines are multiplexed on system threads, OpenGL calls need to be made
from the same thread that created, and holds, the OpenGL context. There is
no guarantee that an OpenGL call will be from the same thread that holds the

5.7 LESSONS LEARNED 77

context, provoking unexpected failures. The Go runtime provides facilities to
lock a goroutine to a system thread; in this way all the OpenGL calls can be
limited to the goroutine that created the OpenGL context solving this problem.
This limitation is at the time of writing being addressed in the next major
OpenGL release, Vulkan [67], following a trend established by other platforms,
such as Apple Metal [68] and AMD Mantle [69].

5.6.2 Amplified Interactions
We implemented two different prototypes of the Remote Presence system, with
different capabilities. The first one was used OpenGL [66] and is described in
this Chapter. The second uses the Horde3D [70] graphic engine. Some experi-
mentation of Amplified Interactions has been attempted in the prototype using
the Horde3D engine, without resulting in a fully functional proof of concept.
An example of the concept is shown in Fig. 5.8. In the figure there are three
stages and four actors, the actors are amplified by having their remote presence
substituted by a 3D model or by having special effects applied to the remote
presence. More details on this prototype are available in Appendix A.

5.7 Lessons learned
We can conclude that individual, per user streams of three-dimensional in-
formation captured at the begin point can provide added functionality and
flexibility to the end point. Availability of 3D information on the actors al-
lows cheap manipulation of the remote presence in a virtual environment. An
example of flexibility is the opportunity to move the remote presence of the
actors to accommodate for differences in stages layout. In addition the space
coordinates of the streams allows to keep the displaced remote presence at a
relative position consistent with the one of the original actors maintaining the
performance coherent. An example of added functionalities is the possibility of
masking the effects of delay. Different streams from different stages can incur
in different delays or can need different way of masking it. The possibility of
doing so is granted by having one stream per user.

5.8 Summary
We designed and implemented two systems for remote presence and Amplified
Interaction between remote stages. We discussed and motivated the decisions
that led to the global architecture of the distributed system. We measured the

78 CHAPTER 5 REMOTE PRESENCE

Stage 1 Stage 2 Stage 3

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

Figure 5.8: Output on display wall of three virtual stages. The output is augmented
with 3D models provided by the Horde3D graphic engine. Figure from Su
et al. [9]. The prototype in the picture uses the Tromsø Display Wall [36].

performance and the resource consumption of one of the implementations,
discussed the results. A discussion of possible alternative architectures and
implementation is also present, for a better understanding of the problems
surrounding the topic.

6
Global Interaction Space
6.1 Idea
In a room full of computers, such as an open-plan office, a computer laboratory
in a university, or any room rigged with many computers and displays, there is
often the need to control the remote computers or run commands on them. If
there is the possibility to log in remotely to any computer and run a command,
the problem is solved, but this is not often the case because of different issues,
not the least of which is to know the IP address or network name of the
remote machine. The problem is aggravated if we take into account laptops
and other moving computers that can have a different dynamically assigned IP
address.

A particular scenario in which this issue can disrupt thework-flow is a setupwith
a big, wall-sized display showing the results of some computations running on
any of the computers. The necessity of analyzing the results on the big display,
and running different computations on the various machines, implies walking
around the room every time the need for fresh data arises, distracting the users
and interrupting the work-flow. For this reason we built the Global Interaction
Space (gis), with the intention of controlling a room full of computers by
using gestures. The computer configured as part of the gis makes available to
the user a set of actions to be performed, implemented as scripts. The user can
execute these actions with gestures, on one or many computers from anywhere
in the room.

79

80 CHAPTER 6 GLOBAL INTERACT ION SPACE

6.1.1 Usage patterns
We provide here, as an example, a few general patterns of use that we targeted
with our prototype.

1. Action execution on one (many) computer(s) with a gesture
The user selects the computer(s) in the room with a gesture. The com-
puter(s) shows the state of selection to the user. (The user repeats the
gesture and selects more computers.) The user executes the action on the
selected computer(s) with a gesture. The computer(s) shows the state of
execution to the user.

2. Action execution on all the computers with a gesture
The user selects all computers in the room with a single gesture. The
computers show the state of selection to the user. The user executes the
action on all computers with a gesture. The computers show the state of
execution to the user.

3. Action execution on a single computer with a gesture
The user selects a single computer in the room, deselecting all the others,
with a gesture. The computers shows the state of selection to the user.
The user executes the action on a single computer with a gesture. The
computer shows the state of execution to the user.

Examples of use based on the patterns above include:

Interactions at home. A user at home has configured a gis for their comput-
ers: TV, cell phone, tablet, desktop, etc. The configuration comprises the
appropriate sensors in the living room and the rest of the house. The
user wants to display the content of the screen of all their computers on
their TV. The user performs the second pattern in the list above, and the
gis takes care of showing the combined output of each device on the TV.

Interaction in the office. An office or meeting room is configured with a gis.
Each computer in the room and belonging to the person occupying the
office is part of the gis. During a meeting, the occupant of the office
can, in turn, run commands on different computers using the first usage
pattern in the above list, display different content on a big display, or
start a demo with a gesture.

Stage performance. A performance is held on a stage equipped with many
computers and configured as a gis. The actors can perform gestures
recognized by the gis to interact with the computers, manipulating
the stage appearance through light and displays, or reproducing sound

6.2 ARCH ITECTURE 81

effects and sound tracks. Any of the above patterns can be appropriate
in this scenario given the diversity of stage performance.

The gis can be employed in other scenarios, but we believe the ones described
above are enough to motivate it.

6.2 Architecture
A gis comprises a set of functionalities (see Figure 6.1) divided into a global
side and a local side. The global side comprises Room Global State Monitoring
(rgsm) for monitoring of the room state and Room Global State Analysis
(rgsa) to detect gestures from the users. The gestures are then processed and
translated into actions by the Gesture to Action Translator (gat) and delivered
to the target computer(s). The correspondence of gesture to action is kept by
the Gesture to Action Dictionary (gad). The local side of the gis is running
on each computer that is part of it and can be the target of a gesture from
the user. It is composed of two components: the Action Executor (ae) and the
Visual Feedback (vf).

LocalGlobal

RGSM: Room Global State Monitoring GAD: Gesture to Action Dictionary
RGSA: Room Global State Analysis ADR: Action Definitions from Room
GAT: Gesture to Action Translator
AE: Action Executor
VF: Visual Feedback

RGSM RGSA GAT AE

GAD ADR

Gestures to Actions Definitions Action Definitions

VF
Ges

tures

Raw
 Data

Acti
ons

Stat
e

Figure 6.1: Architecture of the Global Interaction Space. The gestures are detected at
the Global side by the rgsm and rgsa. The gat translates the gestures
to actions and the ae executes them on the Local side. The vf provides
feedback on the state of the execution.

The ae’s task is to execute the action received from the global side. The
Action Definition from Room (adr) holds the definition/implementation of
the actions; at start-up each computer in the room pulls a fresh list of actions

82 CHAPTER 6 GLOBAL INTERACT ION SPACE

from the global side. The vf provides the user with information on computer
state and the action execution (e.g., ready, running, error etc.), with a simple
and brightly colored geometric symbol. In this way, the user can see the state
of the room at a glance.

6.3 Design
The design of the gis is organized as a pipeline (see Figure 6.2). Each stage
of the pipeline is in charge of some processing, and outputs data to the next
stage, from the raw sensor data to gestures, translating gestures into actions,
and then executing the actions on the target computers in the room while
providing visual feedback to the user. Three major components emerge in the
design: Sensor, Room, and Local components. Each component is a stand-alone
part of the distributed system and communicates with the others exchanging
messages in an intermediate format. The medium on which the messages are
sent and received can be any convenient one; in the case that the components
are deployed on different machines, the communications will be through the
network.

Room LocalSensor

RGSM RGSA GAT

GAD ADR

AE VF

ADR

RGSM: Room Global State Monitoring GAD: Gesture to Action Dictionary
RGSA: Room Global State Analysis ADR: Action Definitions from Room
GAT: Gesture to Action Translator
AE: Action Executor
VF: Visual Feedback

Raw
 Data

Ges
tures

Acti
ons

Stat
e

Figure 6.2: Design of the Global Interaction Space. The system is divided in three
components. The data flows from the Sensor component, that detect
gestures from the data acquired from the sensors, to the Room component.
The Room component translates the gestures into actions using the gad
and sends the actions to the Local component targeted by the initial
gesture. In order to execute the actions the Local component receives the
actions definitions from the Room component. The vf shows the state of
the execution.

Two of the main components – Sensor and Room – compose the global side.

6.4 IMPLEMENTAT ION 83

This side represents the room as an environment with its configuration, while
the local side represents the individual computer running the Local component.
The Local component communicates with the global side to receive the action
definitions and become part of the gis. The communication between stages
of the pipeline has a blocking receive and non-blocking send semantic. This
implies some buffering from the sender, which in turn implies some added
complexity, but this added complexity bears its own weight – the pipeline does
not stall completely if one of the stages slows down.

6.4 Implementation
Fig. 6.3 shows the implementation of the gis. As visible in the figure the
Sensor component modules rgsm and rgsa are implemented respectively
by the ucsd system and the Gesture Detection system (see Chapters 3 and
4). The ucsd monitors the room detecting users and sends their volumetric
information to the Gesture Detection system. The Gesture Detection system is
aware if the position and orientation of each sensor employed by the ucsd, this
information is stored in a configuration file. With this information the Gesture
System can associate each detected gesture with its point of execution in the
room. In addition the data originated by the ucsd is timestamped, granting
the Gesture Detection system the knowledge if the time of execution of each
gesture. After detection each gesture is marshaled with its associated point and
time of execution and sent to the Room component via a Transmission Control
Protocol (tcp) connection.

The Room component function is to translate the gesture to actions and to
send these last to the interested computer in the room. The translation is
done using a dictionary loaded from a file containing the association between
gesture and action. Changing the file changes the system behavior: different
gestures will produce different actions. To deliver the actions to the target
computer the system uses the Room Manager dictionary. The Room Manager
dictionary stores details on the computers comprising the gis, their location
in the room, and their volume of interest or bounding box. The Room gat uses
the bounding box to determine whether a gesture is targeting a computer in
the gis. For example, if a gesture is performed inside a bounding box or if a
gesture casts a ray that intersects a bounding box, the Room component will
send the corresponding action to the computer associated with the bounding
box.

84 CHAPTER 6 GLOBAL INTERACT ION SPACE

Ro
om

Lo
ca

l
Se

ns
or

UC
DS

 ->
 R

G
SM

: R
oo

m
 G

lo
ba

l S
ta

te
 M

on
ito

rin
g

G
es

tu
re

 D
et

ec
tio

n
->

 R
G

SA
: R

oo
m

 G
lo

ba
l S

ta
te

 A
na

ly
si

s
G

AT
: G

es
tu

re
 to

 A
ct

io
n

Tr
an

sl
at

or
AE

: A
ct

io
n

Ex
ec

ut
or

VF
: V

is
ua

l F
ee

db
ac

k

G
AD

: G
es

tu
re

 to
 A

ct
io

n
Di

ct
io

na
ry

AD
R:

 A
ct

io
n

De
fin

iti
on

s
fro

m
 R

oo
m

RM
: R

oo
m

 M
ap

UC
SD

G
es

tu
re

De
te

ct
io

n
G

AT
AE

G
AD

AD
R

Ra
w

 D
at

a
G

es
tu

re
Id

en
tifi

er
s

M
ar

sh
al

Ac
tio

n
Id

en
tifi

er
s

Un
-

m
ar

sh
al

Ac
tio

n
Id

en
tifi

er
s

HT
TP

Se

rv
er

HT
TP

Cl

ie
nt

RM

M
ar

sh
al

Un
-

m
ar

sh
al

AD
R

Se
ns

or

G
es

tu
re

Id
en

tifi
er

s

Se
ns

or
Po

si
tio

n
&

O
rie

nt
at

io
n

M
es

sa
ge

G
or

ou
tin

e
Di

ct
io

na
ry

C
ha

nn
el

Fi
le

Co
m

pu
te

r
Po

si
tio

n
&

Vo
lu

m
e

VF

Figure 6.3: Implementation of the Global Interaction Space. The data flow is the same
described in Fig. 6.2 with the addition of the implementation detail. The
sensor component uses the ucsd and the Gesture Detection systems to
detect user gestures. The messages exchanged among the components are
marshaled in JSON. The Room Manager holds the position and volume of
interest of all the computers in the room. The adr is implemented with
an HTTP server.

6.4 IMPLEMENTAT ION 85

To be associated with a bounding box in the gis a computer must be running
the Local component. The Local component on start-up reads a configuration
file containing its position and bounding box. This information is promptly
communicated to the Room component to fill in the Roommap. The Roommap
also holds thetcp connections that each Local component used to communicate
its coordinates and bounding box, binding each Local component to a volume in
the room. The Local component, also at start-up, receives the action definitions
from the Room component. We implemented this as a Hypertext Transfer
Protocol (http) client/server communication where the Room component
serves files to the Local component. As a language for the action definitions we
chose Python. The Local component executes the actions in a separate process
and provides visual feedback to the user. The visual feedback is implemented
as simple and colored geometric shapes. Fig 6.4 shows a few samples and some
possible future improvements.

(a) System ready. (b) Single selection. (c) Multi selection.

(d) Action in execution.
(e) Error during action ex-

ecution.

Figure 6.4: Visual Feedback of the Local component. Only one shape is shown at a
time, the user can survey the global state of the room with a quick look.

Here we also need to distinguish the different action–gesture relationship
hinted at in the use cases. Some gestures are not associated with action
definitions from the adr, but are interpreted by the Local component as a
state change, giving us the possibility to discern between select gestures and
execute gestures. The execute action is ignored by Local components not in a

86 CHAPTER 6 GLOBAL INTERACT ION SPACE

selected state.

The marshaling and unmarshaling processes use JavaScript Object Notation
(json) as intermediate format. Communication between components is done
via network connection over tcp.

The system is implemented mostly in the Go programming language. Its csp-
like [63] concurrency features, clear syntax, and rich standard library make
it a good choice, in our opinion, to write a prototype that can grow to a fully
fledged application in the future.

6.4.1 Visual Feedback to User
As mentioned before and as is visible in Fig. 6.4, the Local component provides
the user with visual feedback of its state. The feedback includes the selection
state of the computer and the execution state of the action. The selection can
be: no selection or ready (Fig. 6.4a), single selection (Fig. 6.4b), or multiple
selection (Fig. 6.4c). When the user performs a gesture to execute an action,
only the selected computers will execute it. The single selection is a convenience
for the user to execute an action only on one computer; when a single selection
gesture is performed targeting a computer, all the others selected will be
deselected and transition to the ready state. The system does not allow two
single selections at the same time, and the user can be certain to run the action
only on one.

During the selection, the system does not run any action but just shows its state,
when an action is executed, until its termination; the Local component shows
the execution symbol (Fig. 6.4d). In the event of a failure detected by the Local
component – an internal error or a bad return value from the action execution
– the Local component shows the error symbol (Fig. 6.4e). To conclude, the
visual feedback provides the user with knowledge of the state of the system and
a reaction to the performed gestures. The visual feedback is the only way for

(a) Selection of computer
across the room.

(b) Action execution on
the selected comput-
ers.

(c) Single selection dese-
lects the other com-
puters.

Figure 6.5: Example of usage and visual feedback to user.

6.5 EXPER IMENTS 87

the user to know whether a gesture has been positively detected by the system.
Fig. 6.5 shows a working example of some of the different visual feedbacks.
As we can see, different Local components are running and changing state in
response to the gestures of the user. The user can see immediately the result
of their gesture as interpreted by the system. As a final note, the big display
behind the user in Fig. 6.5 is a tiled display wall running a modified version of
the Local component. This modified version provides a consistent view of the
display wall, as it was a single computer.

6.5 Experiments
A set of performance measuring experiments has been conducted on the pro-
totype system. A video of the functioning system is also available online
[6].

6.5.1 Configuration
For the experiments, we configured the system with: (i) two computers, each
with two cameras, and each running the Sensor component, (ii) one computer
running the Room component, and (iii) multiple in-room computers, each
running the Local component. All computers were Mac minis at 2.7 GHz and
8 GB RAM connected with a switched 1 Gbit/s link. A schematic of the setup
is shown in Fig. 6.6.

We used the command line tool ps called in a small shell (see Appendix B.1)
to measure each component’s (Sensor, Room and Local) CPU and memory
utilization. The script accepts the Process ID (pid) of a process and a file
name as parameters, it calls ps every second with the pid of the process, and
it logs the CPU and memory utilization in the file whose name it passes a
parameter.

6.5.2 Results
The results of the experiments are shown in Fig. 6.7. The graph reports the CPU
and memory percent utilization metrics. The results are obtained by querying
the OS from another process using the ps tool. The measured metrics are the
percentage CPU utilization of the process and the percentage of real memory
used by the process.

88 CHAPTER 6 GLOBAL INTERACT ION SPACE

Sensor

Room SensorLocal

Zyxel GS-105B

Local

Airport Extreme Airport Extreme

Figure 6.6: Hardware and software configuration for the experiment. Each grey
square represents an Apple Mac mini running the component of the
gis written on the square. If the Mac mini has a device connected that is
printed aside. This is visible for the Local and Sensor component, having
connected to them respectively monitors and cameras. In this configura-
tion the cameras are MS Kinects. All the network connections and switches
are Gigabit Ethernet.

6.5.3 CPU
The results show (Fig. 6.7a) that the computers running the Sensor components
used close to 50% of the CPU available. This result is in accordance with that
in Chapter 4. The Room and Local components have a very low CPU utilization,
below 1%. This measurement does not include the action execution, the actions
are executed in an external process and the resource utilization can be different
with different actions.

6.5.4 Memory
The memory utilization is stable and below 1% for all components. Specifically,
we measured 0.3% for the Sensor, 0.1% for the Room, and 0.2% for the Local
components. Considering that the physical memory of each of the computers
used during the experiments is 8 GB, we can give a more precise enumeration

6.6 D ISCUSS ION 89

0	
10	
20	
30	
40	
50	
60	

Sensor	 Room	 Local	

CPU	 %	

(a) Percent CPU utilization of the
system components.

0	

10	

20	

30	

Sensor	 Room	 Local	

Memory	 MB	

(b) Memory utilization of the sys-
tem components in Mega
Bytes.

Figure 6.7: Global Interaction Space CPU and memory utilization. The memory uti-
lization measured in percent was 0.3% for the Sensor, 0.1% for the Room,
and 0.2% for the Local component on a total of 8 GByte. Here reported
in MBytes for clearer comparison. The error bar indicates the standard
deviation.

in MB of the memory utilization: 24 MB for the Sensor, 8 MB for the Room,
and 16 MB for the Local component (see Fig.6.7b).

6.5.5 Network
We measured less than 100 Bytes transmitted on the network per gesture or
action. The low network traffic is motivated by the delay necessary to perform
and detect a gesture that sets an upper bound to the amount of network
traffic. Combining these information we can deduce that a real situation cannot
produce more than few KByte/s of traffic, not a problem for a Gbit/a link.

6.6 Discussion
In this chapter there is a discussion on the design, implementation and limita-
tion of the prototype.

6.6.1 Design
Here are discussed some deign decisions. A gis installation is designed to
have only one Room component, while there can be more than one Sensor and
Local component. This design decision reflects the fact that multiple sensors

90 CHAPTER 6 GLOBAL INTERACT ION SPACE

can be part of the room and they can be distributed around the room to better
cover its entirety. In addition, the Sensor components are in charge of the
gesture detection, a potentially CPU intensive task. In this way, the system
can distribute the computational load to the different computers handling the
sensors. Being a singleton component in a gis installation makes the Room
component a good candidate for hosting the adr dictionary containing the
action definition.

6.6.2 Implementation
Some of the motivations that steered the choice of the technologies in the im-
plementation are discussed here. The action definition are delivered via http,
it is a straightforward way to serve files and in case of further developments
an http server can be a starting point for more than just serving static files.
For example it could implement a Representational State Transfer (rest) api
providing a more complex behavior.

Python was chosen for the action definitions because it is a widespread scripting
language available by default on many platforms. Its interpreted nature allows
us to store the source code, ship it, and run it on most platforms.

Among the different serialization formats, json is a well-established format
for data exchange, and many languages have libraries to read and write json
files in case other components of the system, written in other languages, are
added. In addition, json is text encoded and easy to debug compared to
binary formats. Even though binary protocols tend to be more compact, but the
analysis of the network traffic in the previous session shows that more compact
data encoding is not needed.

Given the distributed nature of the system and the possibly non-exclusive use of
the network, we implemented the communication over a reliable protocol: tcp.
A packet lost or delivered out of order can produce unpredictable results.

6.6.3 Limitations
The current implementation has some limitations. First, it assumes that the
position of the Sensor and Local components in the room is static, that their
position in the room is fixed and read from a configuration file. This simplifies
the prototype implementation but does not allow moving computers and
sensors to be part of the gis prototype.

Second is how actions are selected and started. In the present prototype there is

6.6 D ISCUSS ION 91

a one-to-one binding between gesture and action execution. This conceptually
collapses both selection of an action and execution of an action into a single
gesture. This does not scale to more than a few actions with regards to the
number of gestures a user can remember and the gesture vocabulary detected
by the system. This can be improved by expanding the selection gesture
vocabulary with a script selection gesture, and the appropriate visual feedback
from the Local component, to allow the user to select both the action to be
executed and the computer on which to execute it. Another generic execute
gesture can then trigger the execution. Fig 6.8 shows an example.

Display Wall

User

(a) Selection of an action on a computer

Display Wall

User

(b) Selection of a different action on a com-
puter

Display Wall

User

(c) Execution of the selected actions

Figure 6.8: Possible improvement on the current implementation. The user can select
single actions on any computer and execute them at the same time.

A third limitation derives from the action definitions language, Python. Version

92 CHAPTER 6 GLOBAL INTERACT ION SPACE

incompatibilities between the interpreters on the Local components can cause
the execution of an action to fail. In addition in the case of a complex action,
all the needed dependencies must be satisfied by having the necessary Python
module installed. An alternative to this could be writing the action definitions
in Go and having the Room component cross compile them in a statically linked
binary for each architecture and platform of the Local components present in
the gis. The Go compiler produces by default binaries that are self-contained
and do not need shared libraries on the host. The Local component would then
retrieve the binary file of the action and run it.

A last limitation is the unawareness of the system to different users – it does
not track specific users or the provenance of the gestures. There are no user
profiles or user settings. This implies that any number of users can be in the
room performing gestures and running actions. To not interfere with each
other, users need to collaborate.

6.6.4 MultiStage Applications
Outlined its capabilities in the previous sections, we can now fit the gis in
the context of a multistage distributed performance, especially in the context
of remote interactions. During a distributed performance the actors cannot
communicate directly so they rely upon other mediums to convey information
to other stages, such as video streams and remote presence systems. Using a
potentially non-optimal medium of communication can leave the experience
wanting and diminish the enjoyability of the performance or hamper it alto-
gether. gis can then potentially assist by delivering additional information and
extending the communication on a different axis.

The communication can then happen by defining a set of gestures, and com-
mands, and placing a computer belonging to the gis at every stage. The actors
can in this way influence not only their own environment, but the environment
on other stages, possibly compensating for the non-optimal communication.
Beyond that we can speculate on the potential of not just using this new means
of communication as crutches to sustain a leaking abstraction, that actors on
the remote stages can interact as if they were on one stage, but as an instrument
of communication as dignified as the ones already in place, as is discussed in
Section 5.6.2.

6.7 LESSONS LEARNED 93

6.7 Lessons Learned
The gis shows that is possible to select and use multiple computer at the
same time by using only a few gestures. During the use of gis we found out
that circular gestures provide the least amount of false positives during the
normal activity of people in the room. The circular motion also provides a
sense of completeness to the user, meaning the user knows when he has moved
his hands in a complete circle and can expect a result from the system. This
mitigates the lack of feedback during the gesture, feedback usually present on
visual interfaces or other haptic devices.

The drawback of circular gestures is that they can contain other simplermotions.
For example an up-and-down gesture, the gesture of rising and lowering a
control point (see Chapter 4), can be detected before the completion of a circle,
because rising and lowering the control point is part of describing a circle. The
system will then produce the up-and-down gesture, flush the buffer containing
the motion string (see Chapter 4) and start waiting for another gesture. In
this scenario the circular gesture will never be detected. Other approaches, as
seen in [65], use more sophisticated regular expression systems to avoid this
issue.

With the knowledge and insight obtained from building the gis, we designed
and implemented Mr. Clean (Tartari et al. [71]). Mr. Clean is a system designed
for comparison of scientific visualizations on big displays in the context of data
cleaning of biologic dataset.

6.8 Summary
This chapter presented the Global Interaction Space. The gis provides its users
with the ability to execute predefined actions. In the current implementations
it means to execute Python scripts, on any computer part of the gis with
gestures, standing anywhere in the room. This capability is useful in scenarios
where the user needs to run different computations on different machines and
compare the results.

In the context of MultiStage the gis can be used to enhance the performance
by detecting gestures of the actors and running commands on computers on
stage. These commands ran can provide special effects of light or sound to
underline moments in the narrative, or used to activate and control Amplified
Interactions (see Section 5.6.2).

We presented and, where fitting discussed, the architecture, design and imple-

94 CHAPTER 6 GLOBAL INTERACT ION SPACE

mentation of the gis. Presented its limitations, proposed improvements for
the future and considered the lessons learned by building the system.

7
Contributions
Here follows a review of the contributions of this work, similar to what we have
already seen in Chapter 1, but with a bias on where these contributions have
been made, especially now that we have had a broader view of the systems,
their architecture, implementation, and the idea driving their making.

7.1 Lessons Learned
Implicit and Explicit state changes. In principle a stage can modify the state

at another stage in two ways: (i) by modifying the state sent to other
stages or (ii) asking the other stages to change the state.

The first is an implicit change, the second, an explicit. A receiving stage
can refuse an explicit state change but will be oblivious to an implicit one.
In the first case the sending stage has the responsibility of changing state
before sending it to the remote stages. In the second case the receiving
stage receives commands to change the state locally. Which one is used
has impact on safety, resource usage, and customization of a stage.

With regards to safety, the implicit approachmakes it easier for amalicious
stage to forge fake state updates and steer the receiving stages to a
harmful state. For example in the case of mobile robotic telepresence
systems [72]. The explicit approach makes it easier for the stages to avoid

95

96 CHAPTER 7 CONTR IBUT IONS

harmful states by masking harmful commands.

With regards to the resource usage, the implicit approach is likely to
increases CPU usage at the sending side and saves CPU at the receiving
side. Network traffic can also increase in some cases, and local latency
at the receiving stages can be reduced.

Customization of a stage is, for example, to define the local layout of a
stage including where the remote presences are located. Other customiza-
tion can involve amplified interactions and how the remote presences
are dressed. The implicit approach makes it harder for a stage to do local
customizations.

Single-data stream, single user. The Detection system collects the state of
the stage in the context of single users and put this information in
a per user data stream. The advantage of having a one-to-one ratio
between users and streams is that the remote presence of each user can
be individually manipulated with low resource usage.

For example, two remote presences can be created at different locations
on each stage. Each remote presence can be delayed or accelerated and
modified to create special effects and mask the effects of delay.

It also allows for clients with limited resources to receive only the streams
they can handle or are interested in. A similar concept is presented
in other another work, ViewCast [43], where each remote presence is
comprise of different streams acquired from different angle all around
the user. Each receiving end of the remote presence decides the streams
to receive based on the combination of streams that compose the current
view of the user on each remote stage from the perspective of the viewer.
MultiStage applies a similar concept to the whole performance, allowing
to choose the remote presence to receive.

RGB-D cameras can reduce the CPU usage when detecting an actor’s state.
Three-dimensional cameras can deliver not just normal images but also
depth images containing 3D spatial data, for this reason they are often
called RGB-D. The depth images can be used to record what is in a pre-
determined volume ahead of the camera. An actor to be detected must
be inside this volume. This helps in detecting the state of the actor with
low delays. In effect, the low delay detection is achieved by limiting what
the cameras are recording. The alternative approach would be to let a
camera record multiple actors and process the video stream to create
separate state streams per actor.

7.2 MODELS 97

In one scan of the RGB and depth images is possible to acquire the state
of the actor in front of the camera. This state can be used to create a
remote presence or to detect gestures. The computation needed can be
kept low to allow capturing the state at the full frame rate of the camera.
The resulting remote presence can therefore have the same fluidity of
the full frame rate of the camera. Similar techniques are used in other
works (e.g. Fanello et al. [33]) to detect users, where they assume the
user stands in front of the camera and no other movements is present in
the background.

Remote presences as 3D point clouds. Creating a remote presences using
3D point clouds rendered onto large displays mimics the layout, size and
shape, of a human being. The remote presence shows limbs and body
posture, allowing to express, even if in a limited way, the body language
of the acquired user. Mimicking the human body is also useful for per-
formance measuring experiments of the system when doing human to
remote presence interaction, for example a hand shake. Simple everyday
interaction can be recorded and analyzed. The representation is scalable
with regards of sampling rate and number of points in the cloud.

However this is a trade-off compared to other systems (e.g. [43], [25],
[22], [45]) where the remote presence is closer to reality in its look and
also has three-dimensional characteristics. This in turn requires more
intensive computations, with the effect of slowing the frame rate.

Observer redefines observed. An observed user on stage can be mapped or
redefined into an object being simpler to analyze when looking for ges-
tures. The users are aware of the simplification and adapt their behaviour
accordingly. The MultiStage gesture system redefines the users’ body into
four control points being the leftmost, rightmost topmost and nearest
part of the body relative the sensor used. With the knowledge of these
control points, and how to move them, the users can perform gestures.
The simplification saves processing and reduces delays.

This implies that the gesture detection system (see Chapter 4) does not
need to detect the exact body part performing the gesture as long as the
gesture is simple enough. There is no need to detect a right hand or a
hand at all as long as the user has the means to perform a gesture.

7.2 Models
This section expands on the list of models briefly exposed in Chapter 1.3.2.

98 CHAPTER 7 CONTR IBUT IONS

Decoupled producer and consumer with monitored distribution. When the
producer and consumer of data streams are decoupled they are not di-
rectly connected, and potentially unaware of each other. The data is
transferred by a distribution system, [3], that is by design distributed on
the producer and consumer machines. The distribution system is also
monitoring factors such as, for example, end to end latency or lost pack-
ets. This opens the possibility to seamlessly substitute the produced data
without the consumer noticing when the distribution system detects, for
example, an end to end delay that would disrupt the communication. The
distribution system can also employ other techniques, such as replacing
the leaked packet or adjusting the reproduction times of the streams.

A gesture recognition model based on simple volumetric detection of users.
A gesture can be anything regarding a user: a movement of an arm, a
nod of the head, a pose held for a defined amount of time, moving from
one position to another one, or even changes in the heart rate. All these
potential gestures have in common the tracking of characteristics or fea-
tures of the person performing the gesture. With 3D sensors is possible
to track the volume occupied from an actor on stage. Characteristics of
the volume can be changed by the user and tracked to detect gestures.
In this way is possible to detect simple gestures with low processing and
delays.

Global Interaction Space. The gis is an extension to the Interaction Space
model [4], where each computer in a room can execute commands as
response to gestures performed by users in the room. Through the gis a
user can choose one or more computers and run a script on them with
a gesture. The gis is responsible for running the computation on the
chosen computers and displaying a result. The model can be useful when
a user needs to steer the computation of many computers in a room
while standing in the same room, allowing the user to run scripts at the
same time on multiple computers.

This model can be applied to stages during shows. A stage can be config-
ured with computers to serve as platform for stage tricks, such as light
and sounds, and actors could command these special effect with gestures.

7.3 Artifacts
The following artifacts were created during this project.

Sensor Suite. In order to detect users and actors on a stage sensors must

7.3 ART IFACTS 99

be employed. The solution proposed in this dissertation is a sensor
suite composed of four 3D cameras controlled by two computers. One
last element completes the sensor suite, a networks switch with wire-
less capabilities. The network switch provides connectivity between the
computers comprising the suite and to the outside world.

The sensor suite has cumulative range of vision close to 360 degree when
placed in the middle of a stage or a room. The sensor suite can detect
and acquire up to four users. The images acquired by the cameras, can be
processed by the computers comprising the suite and shared via network.
The system is described in details in Chapter 3.

A User Context State Detection, Analysis, and Sharing System. This system
is the software counterpart of the Sensor Suite, it process the data com-
ing from the sensors and encodes it in one data stream per user. After
encoding and compressing the streams it delivers them to the distribution
system. The system is described in details in Chapter 3.

Remote Presence system. The Remote Presence system creates remote pres-
ences of the actors. The remote presences are based on the streams
received by the distribution system and normally generated by the ucsd.
The remote presences are three-dimensional colored point clouds. The
point clouds have enough details to show limbs and body language to
the other users. The system is described in details in Chapter 5.

Bounding box and point motion system. An axis-aligned bounding box for
a set of points is the box with the smallest volume within which all the
points lie, with the constraint that the edges of the box are parallel to the
coordinate axes. In this specific case the set of points is the point cloud
comprising the detected user. And the coordinate axes are the axes of
the camera acquiring the user.

The bounding box is built by identifying the six points that hold the
maximum and minimum value for each of the three coordinates X, Y,
and Z. A user with knowledge of how the volume is built and where the
control points are situated can move them with his body, and perform
gestures. The system is described in details in Chapter 4.

Gestures through Regular Expressions and User Volume Control Points. This
system extends and completes the Bounding box point and point motion
system. It translates the control points movements in strings of text, mo-
tion stings. The motion strings can be parsed and analyzed to determine
if the movement of the control point was a predefined gesture. The sys-
tem uses a regular expressions engine to perform such analysis. The

100 CHAPTER 7 CONTR IBUT IONS

gestures are predefined as regular expressions and the system tries to
match the motion strings against the predefined regular expressions. If
a match occur a gesture is detected. The system is described in details
in Chapter 4.

The Global Interaction Space. The gis system is the combination of the
systems describes above. The gis is a distributed system that allows its
users to remotely control multiple computers in a room with gestures.
The gis provides a gesture interface to the user; a user can choose a
computer and trigger the execution of a computation on it with a gesture.
This approach can be extended to many computers at the same time,
allowing the user to execute computations at the same time on multiple
computers. The system is described in details in Chapter 6.

7.4 Facts
Based on experiments and performance measurements we collected the fol-
lowing facts on the systems and artifact presented in this dissertation. As
mentioned in Section 1.3 these measurements are not benchmarks but an
overview of the resource utilization of MultiStage. The data collected is meant
to be a paragon for future systems built within the same scope. This data are
summarized in Table 7.1. A more complete description of the experiment setup
is in Chapter 5.5.

System CPU Memory Bandwith

Gesture 50% < 1% NA
gis 50% < 25 MB < 1 KByte/s
RP < 25% < 45%(< 25%) 20 MByte/s (3 stages, 4 Streams,

5K points, 30 fps)
ucsd < 5% 25% < 3.5MByte/s (2 cameras,5K points,

30 fps)

Table 7.1: Collection of performance measurements. Gesture Detection system and
gis measurements are at process level, while User Context State Detection
(ucsd) and Remote Presence system (RP) rows show machine resource
utilization. The Remote Presence results come from two different sets of
machines with different hardware configurations, specifically 8 and 4 GByte
of memory. The number in parenthesis refers to the normalized utilization
for all the machines.

The only systems whose process used 50% of the CPU was the Sensor com-
ponent of the Global Interaction Space (Chapter 6) and the gesture detection
system (Chapter 4). In both cases the memory used was less than 25 MByte,

7.4 FACTS 101

and sensibly less for the gesture system alone.

The performance of the other systems was not measured at process level but at
system level. The tool used for the measurement is described in Su et al. [9].
The User Context State Detection (ucsd) and Remote Presence system (RP)
(Chapter 3 and 5) never used more than 25% of the available CPU.

The total machine memory consumption observed for each system during the
experiments was never above 45% of the available. However, not all the systems
were running on machines with 8 GByte of RAM, some had only 4 GByte (see
Chapter 5). Normalizing the memory utilization of the systems running on
4 GByte of memory to the ones with 8 GBytes we can reconcile the memory
utilization of all the system to be below 25%.

Combining these facts with the bandwidth used we can deduce the scaling
factor of Multistage. If each stage is equipped with four cameras (7 MByte/s
with 5000 points see Chapter 5) and each stage receives all the streams,
assuming an ideal linear scale, at three stages each stage receives 21 MByte/s.
With four stages the needed bandwidth for each stage is 28 MByte/s.

Given these numbers, and assuming a central distribution system, the dis-
criminant for the scalability of MultiStage is the outbound bandwidth of the
distribution system. In case of a three stages setup it will be 63 MByte/s, with
four stages it will be 112 MByte/s. At four stages a Gigabit link will theoret-
ically still be enough (125 MByte/s), but it will need better hardware or a
better system architecture or better compression of the transmitted data to
scale further.

This hypothesis has been confirmed by our experiments, Fig. 7.1 shows the
results of of an experiments with a three stages configuration. Two of the
stages were equipped with a ucsd system while the third was simulating one
by transmitting a prerecorded point cloud. The rest of the third stage was
commensurate with the other two. The bandwidth consumption measured is
from the Distribution system point of view, which was running on a single
machine. For the experiment each stage was configured with four cameras (for
the ucsd system Chapter 3) and a viewer (for remote presence Chapter 5).
The number of stages was increased from one to three. In addition each stage
subscribed to all the streams from the other stages.

It is possible to configure the stages in a different way to better adapt to
different circumstances or to make different trade offs. For example reduce the
number of stream subscriptions per stage or the number of points in the point
clouds. An expanded discussion on the implications can be found in Chapter
8.

102 CHAPTER 7 CONTR IBUT IONS

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

500	 1000	 3000	 5000	

KByte/s	

Points	

Distribu9on	 System	 Inbound	 and	 Outbound	 Network	 Traffic	

Kbyte/s	 in	

Kbyte/s	 out	

Figure 7.1: Scalability of Multistage. The experiment shows the bandwidth needed by
the Distribution system. The figure shows a three stage setup. The error
bars indicate the standard deviation.

Another measurement collected during experiments is the delay in detecting a
gesture. The data are summarized in Table 7.2 and are detailed in Section 4.5.1.
The gestures are detected by matching strings of text produced by the motions
of the user. The different gestures have different length, meaning different
time to complete which explain the different latency. The details on how the
gestures are detected are explained in Chapter 4.

Gesture Average Median Stdev

Circle 0.957227185s 0.863717786s 0.45646036s
Straight 1.355079928s 1.280198133s 0.47902494s

Table 7.2: Summary of Gesture detection latency. The different latency for the different
gestures are in part caused by the length of the gesture, the Straight gesture
is longer. For details see Chapter 4.

8
Discussion
MultiStage is a distributed system with different capabilities. It is built with
different tool and technologies each of them providing different trade offs. The
trade offs and the decisions about the architecture of MultiStage are discussed
in Chapter 2. Others are exposed in the rest of this chapter.

8.1 Missing Capabilities
During the development, we diverged from the initial plans and did not imple-
ment all the subsystems as initially specified in the architecture. For example,
we did not implement any global gesture through the gsa (see Chapters 2
and 3). Another divergence is the lack of Amplified Interactions (see Section
5.6.2 and Appendix A). The alternative of developing our own minimal graphic
engine was abandoned.

In retrospect it could have been a good idea to start the project using a fully
fledged graphic or even a game engine. Among the most recently released and
made available to the public we can find Unity [73] and Unreal [74]. However,
this approach can present issues in integrating with other systems, such as [3].
Or manifest a non irrelevant overhead from adapting to an api not friendly
with the domain. Game engines tend to be monolithic and might be difficult
to only use a subset of the functionalities.

103

104 CHAPTER 8 D ISCUSS ION

8.2 Limitations
Other parts of the system were in line with the original plans, such as the
gesture system and the ucsd system. These systems have proven useful, but
are not safe from critiques. The bounding box model, described in Chapter 4, is
lightweight and device agnostic but is not enough for a complete and generic
interaction paradigm. It is quite cumbersome, prone to gorilla arm, and the
gesture dictionary is quite small. Nonetheless, we believe it was a worthy proof
of concept.

8.3 Technologies
Many and different technologies for human–computer interactions are emerg-
ing in the consumer market, the Microsoft Kinect used in the Sensor Suite is
an example. Other 3D cameras with better characteristics than the Kinect are
now on the market, the Kinect 2 or the ZED camera [83] are just an example.
Both cameras use a different technology from the first Kinect and exhibit better
performances, for example higher frame rate, no interference between two
cameras, higher resolution, longer range, and the possibility to be used out-
door. Other upcoming 3D sensors are Tango [75] and Movidius [76], which can
outperform the Kinect and be integrated in hand-held devices. Rebuilding the
Sensor suite with these technologies can lead to remote presences with higher
resolution and resemblance to reality, and potentially more fluid because of
the higher frame rate of the sensors.

On the gesture detection side the model employed, the bounding box model
(see Chapter 4), is general enough to be used with other technologies. To
be more precise, the model is not bound to the Kinect 3D camera, and any
device capable of detecting 3D objects is a potential candidate for our model.
In addition any of the many smart watches and wrist bands that can track
movements in two or even three dimensions can be used almost out the box.
By associating a control point to wrist warn tracking device a user can perform
gestures as it was in front a Sensor Suite. Tools such as the Leap Motion [59]
or the Myo Armband [60] could be used to add other levels of interactions not
available with the bounding box model.

8.4 Architectures
The architecture we chose was, to our knowledge, the best trade-off given the
requirements: scale to a handful of stages and a handful of people. Given

8.5 TOOLS 105

different prerequisites, other architecture could have provided a better trade-
off.

We also took for granted the presence of a physical stage or a room where the
actors perform. This might not be the case in the future as handheld devices
that are wearable, such as the Oculus Rift [78], are growing in power and
immersive technologies are becoming mainstream. The implication of this
could be a shift in the distributed performance paradigm, and the possibility
of having a distributed performance almost anywhere. This paradigm shift will
most likely render the current architecture obsolete, and new ones will need
to be devised.

8.5 Tools
Another part of the project where we debated choices was the tools used. Tools
such as the programming language are quite relevant choices, and do not
come without trade-offs of their own. For example the amount and quality
of libraries available for that particular language, the productivity and speed
of development associated with it or the inherent complexity of the resulting
code.

It is not easy to compare all the pros and cons, but we can try to motivate our
choice of the Go [79] programing language. We started using Go before version
1.0 was available, so it was not yet completely stable. Nonetheless, it showed
a maturity level beyond its young age, in stability, richness of the standard
library, and tooling. Google itself was using it in production, and each new
release came with a tool, gofix, that corrected your entire code base to match
the last iteration of the language. gofix made the development unhindered
by the changes in the language even while the language specification was
still in flux. Go also supports concurrency natively at language level, making
parallelization of execution simple, in line with the multi/many core era we
are facing.

Other tools we debated using were the official driver for Kinect (OpenNI [80]),
or the open source ones (OpenKinect [81]). The OpenNI drivers (at the time
version 1.x) were proprietary but offered skeletal recognition of the user. The
CPU use though was quite high; however, while skeletal recognition is a useful
feature, it was not indispensable for our purpose, and the OpenNI api was
needlessly complex for our needs. In contrast, the OpenKinect api was a lean
and clean C api easily wrappable to be used with Go. Calling the OpenKinect
api was possible to obtain the 3D point cloud and the colors associated to each
point. Worth mentioning is that all the code was open and publicly available.

106 CHAPTER 8 D ISCUSS ION

Even with the lack of skeletal recognition, the OpenKinect drivers were enough
to use the Kinect 3D cameras and without the added complexity of the other
drivers. Lastly using the proprietary drivers would make it more difficult to
switch to a different camera in the future, while dealing with sets of 3D points
can be a more generic api.

8.6 Feasibility
In themost general instance, amultistage system could be deployed on different
continents. This possibility brought us to think about the physical feasibility
of the project. The speed of light is a hard limit in terms of minimum delay in
communications. To help give some context to this statement, here are some
approximate numbers. The speed of light in a vacuum is roughly 3 × 108m/s,
and the earth’s circumference is roughly 40000km, so in the worst-case scenario
in ideal condition, which is to send a signal to earth’s antipodes around its
circumference, it takes around 67ms. Given that the results from [47], the worst-
case scenario is at least impractical for a distributedmusical performance.

In addition the theoretical 67ms does not take into account the fragmentation
of the path of the signal, a necessity given by the earth’s morphology and
division into countries. One continuous physical medium of transmission, for
example a fiber-optic (or even copper) cable, is practically unattainable. The
signal needs to be interrupted and amplified to traverse the globe. Another
potential delay is given by the speed of light in a medium different from the
void, even if this would probably result in a minor addition to the delay not
worth considering.

We are still not considering other sources of delay, such as sensor acquisition,
processing, encoding, etc. All these other sources of delay can add a consid-
erable amount to the total. In addition, if we consider more than two stages,
we can have different delays related to different relative distances, which
makes compensating for delays to obtain a consistent performance even more
complicated.

However, if the stages are not too far apart in terms of latency (which translates
almost directly to physical proximity), the network delay can be small enough
to leave some maneuvering space to deliver acceptable results. For example,
following the reports found in [8] about end-to-end performancemeasurements
of Internet links, we find that inside Europe we can expect an end-to-end ping
of 40ms. This leaves some room to deal with the delay.

8.7 SCALAB IL ITY 107

8.7 Scalability
As mentioned earlier in Section 7.4 we experimented with a three stage setup
of MultiStage. The results are summarized in Fig. 8.1. The experiment con-
figuration, as introduced in Section 7.4, was the following: each stage was
equipped with four cameras producing four point clouds with a variable num-
ber of points at 30 frames per second. Each stage subscribed to all the available
streams including the ones it generated. The factors in the experiments are
the number of stages and the number of points in the point cloud streams. The
data collected is shown from the point of view of the Distribution system. This
means that the data in is the data collected from the all the stages, while the
data out is the total data delivered to all the stages.

500	

1K	

3K	

5K	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

in	
out	

in	
out	

in	
out	

1-‐stage	
2-‐stages	

3-‐stages	

GBit/s	

Points	 per	 stream	
	 @	 30	 fps	 	

4	 streams	 per	 stage	

Mul?stage	 Distribu?on	 System	 Bandwith	 Usage	

Figure 8.1: Scalability Of Multistage in proportion to a Gbit/s link. Three stages and
up to 5K points for each point cloud.

Base on the data from the experiments in Section 7.4 (the data was collected
in collaborative effort with Fei Su during the preparation of Su et al. [9]) we
deduced the theoretical limit of the MultiStage system to be at four stages on
a Gbit/s link. However, it is possible to have more bandwidth than one Gbit/s.
Therefore, in order to have broader overview on the scalability of the system,
we made a projection of the data collected during the experiments.

The projection follows this pattern: doubling the amount of points in the point
cloud doubles the data in to the Distribution system. The data in for an n-
stage configuration is n times the data in for a one-stage configuration. The

108 CHAPTER 8 D ISCUSS ION

500	

1K	

3K	

5K	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

in	
out	

in	
out	

in	
out	

4-‐stages	
5-‐stages	

6-‐stages	

GBit/s	

Points	 per	 stream	
	 @	 30	 fps	 	

4	 streams	 per	 stage	

ProjecAon	 on	 DistribuAon	 System	 Bandwidth	 Usage	 4	 to	 6	 Stages	

Figure 8.2: Projection on the bandwidth use with four to six stages and 500 to 5K
points.

data out from the Distribution system for an n-stage configuration is data in
times n.

In other words: given in the data received by the Distribution system, out the
data delivered to each stage, k a compression/encoding factor, P the number
of points in the point cloud and n the number of stages, the following formulas
describe the projection.

in = kP ∗ n

out = in ∗ n

Substituting becomes:

out = kPn2

Revealing that the outbound bandwidth needed for distribution grows with the
square of the number of stages.

8.7 SCALAB IL ITY 109

Fig. 8.2 shows the projection of bandwidth consumption for four to six stages.
While Fig. 8.3 gives a projection on the scale in number of points up to 80K
while keeping the number of stages between one and three. As expected a
four stage configuration with the highest resolution for the point clouds (5K
points) touches the Gbit/s boundary (Fig. 8.2). While a six stages configuration
reaches 1.9 Gbit/s of outbound bandwidth from the Distribution system. A
higher resolution for the point cloud is also expensive in term of bandwidth.
A three-stage configuration reaches and outbound traffic of 7.6 Gbit/s at 80K
point, and to stay barely below 1 Gbit/s (0.95 Gbit/a) the system needs to
drop the resolution to 10K points.

10K	

20K	

40K	

80K	

0	

1	

2	

3	

4	

5	

6	

7	

8	

in	
out	

in	
out	

in	
out	

1-‐stage	
2-‐stages	

3-‐stages	

GBit/s	

Points	 per	 stream	
	 @	 30	 fps	 	

4	 streams	 per	 stage	

ProjecAon	 on	 DistribuAon	 System	 Bandwidth	 Usage	 10k	 to	 80k	 Points	

Figure 8.3: Projection on the bandwidth use with 10k to 80k points one to three
stages.

To better understand the full scale we also provide Fig. 8.4 that collects the
projections and the experimental data to give an overview of the scalability
of the system. The overview spans up to six stages and 80K points per point
cloud and keeps the inbound and outbound traffic separated. Fig. 8.5 presents
the same data but with aggregated inbound and outbound data.

This projection does not take into account other important scaling factors such
as the number of streams or the compression level. If we increase the number
of streams per stage (above the four we used in the experiments) the result will
be more bandwidth occupation, and a rise in CPU and memory consumption
for the systems involved.

110 CHAPTER 8 D ISCUSS ION

A better compression will also most likely increase CPU and memory usage but
in this case with a reduction of the bandwidth needed. This makes it a good
candidate for a speculation on the scalability of the system, but the lack of
experimental data in this area does not allow us to make a projection.

8.7 SCALAB IL ITY 111

50
0#1K
#3K
#5K
#10
K#20
K#40
K#80
K#

0#5#

10
#

15
#

20
#

25
#

30
#

35
#

in
#

ou
t#

in
#

ou
t#

in
#

ou
t#

in
#

ou
t#

in
#

ou
t#

in
#

ou
t#

1/
st
ag
e#

2/
st
ag
es
#

3/
st
ag
es
#

4/
st
ag
es
#

5/
st
ag
es
#

6/
st
ag
es
#

GB
it/

s#

Po
in
ts
#p
er
#st
re
am

#
#@

#3
0#
fp
s##

4#
st
re
am

s#p
er
#st
ag
e#

M
ul
@s
ta
ge
#D
is
tr
ib
u@

on
#S
ys
te
m
#S
ca
la
bi
lit
y#
O
ve
rv
ie
w
#

Figure 8.4: Scalability overview of MultiStage. The overview spans up to six stages
and 80K points per point cloud.

112 CHAPTER 8 D ISCUSS ION

50
0#1K

#3K
#5K
#10
K#20
K#40
K#80
K#

0#5#10
#

15
#

20
#

25
#

30
#

35
#

40
#

1*
st
ag
e#

2*
st
ag
es
#
3*
st
ag
es
#

4*
st
ag
es
#

5*
st
ag
es
#

6*
st
ag
es
#

GB
it/

s#

Po
in
ts
#p
er
#st
re
am

#
#@

#3
0#
fp
s##

4#
st
re
am

s#p
er
#st
ag
e#

#

M
ul
@s
ta
ge
#D
is
tr
ib
u@

on
#S
ys
te
m
#S
ca
la
bi
lit
y#
O
ve
rv
ie
w
#(T

ot
al
#N
et
w
or
k#
Tr
affi

c)
#

Figure 8.5: Scalability overview of MultiStage with aggregated traffic. The overview
spans up to six stages and 80K points per point cloud, the bandwidth is
the total traffic, in and out, seen by the Distribution system.

9
Conclusions
This dissertation presented theMultiStage system and its components, the ideas
and principles behind it, and the implemented prototypes (proofs of concept)
when available. For each of the components we discussed the architecture, the
design, and the implementation.

In Chapter 2 we presented an overview of the concepts and problems as well
as a brief look at the state of the art. We also explain the macro architecture
of our vision of the MultiStage system and explore some possible alternatives.
The chapter concludes with a discussion of the design derived by the chosen
architecture.

The following chapter (Chapter 3) presents the ucsd system. The system is
meant to collect the state of a remote stage and make it available to other
stages. The ucsd system is a working proof of concepts presented in Chapter
1, and through it we learned the lesson about splitting the data stream into
single user streams to be manipulated independently. With the ucsd system
prototype we also learned that a 3D point cloud is a convenient way to create a
remote presence. 3D cameras can be used successfully for remote interactions,
and with the more advanced options such as the Myriad chip (Movidius inc.)
available on the market, more options suddenly become available. This will
bring the possibility of building more powerful, efficient and compact systems
similar to the ucsd.

The final recipient of the ucsd system point clouds is a system to display them

113

114 CHAPTER 9 CONCLUS IONS

in a 3D environment; the Remote Presence system allows remote interactions
between stages (see Chapter 5). We applied the explicit and implicit state change
principle (described in Chapter 7) to the design and implementations in order
to fit the model of decoupled space–time with third-party fixer (see Section 1.3.2
and Su et al. [3]). With the combination of both, the data can be modified
during the transit, improving the flexibility of handling the data.

Chapter 4 presents a gesture system that uses the ucsd system. The gesture
system can detect simple gestures performed by users in the room using
volumetric information on the users. The information is used to describe a
bounding box around the users from a set of control points. Granted the users
the knowledge on the control points thy can use their body to perform gestures
by moving the points. The model is simple and effective, but allows a limited
gesture vocabulary.

The gesture systemwas a fundamental part of thegis (Chapter 6), a distributed
system designed to interact with the computers in a room. The use of gestures
to interact with computers is hardly novel, but while implementing such a
system we also devised the Global Interaction Space model. The model is
useful in a scenario where it is necessary to interact with multiple computers,
and even if the system implementing it is a prototype, we believe the model
can have practical and useful applications Tartari et al. [71].

Notwithstanding these limitations this dissertation shows that it is possible
today to open new channels of interaction between remote stages and allow
the actors/users to exploit it. These channels can be gestures performed by
the actors/users on the stage to emphasize some actions on stage or to trigger
some service routine to be ran on a computer on stage to activate special effects.
It could also be global gestures performed on all the stages in order to change
some global state of the performance. All this can be coupled with Amplified
Interactions and give a whole new axis of interaction to the show.

9.1 Future Works
Technologies that can be fruitfully employed for remote presence are growing
in number and maturing. There are already immersive systems and wearable
devices that can, and probably will, be made smaller and more portable ([82],
[76], [83], and [75]). And systems targeting the professional market ([77]).
Given these emerging technologies it is not far fetched to think that in near
future the capabilities of the ucsd system could be found in a handheld
device. The implications are many and promising, like the possibility to have a
shared stage in your pocket, enabling the opportunity for distributed flash mobs.

9.1 FUTURE WORKS 115

Wearable and not intrusive devices could detect gestures more easily while
offloading the computation effort from the rest of the stage. Remote presence
and Amplified Interactions could be experienced through other specialized
wearable devices, for example Oculus Rift [78], or directly through a personal
device. Global localization could be used to find the local performance with
the best latency to either spectate or participate in the show.

Appendices

117

A
Amplified Interactions
Amplified Interaction means rendering or representing the user in a different
way based on their behavior, based on a script or by giving them the chance
to modify their remote presence via a gesture. Examples of amplification
include a glowing arm, a different color in rendering the remote presence, or
in the case of a 3D model being used, an entirely different 3D model. The
user could be rendered with different clothes, be of a different height or at
a different position. The amplification could be a text box floating above the
remote presence illustrating feelings or inner dialogues that are not directly,
or not easily, conveyable with more traditional remote presence systems. The
boundaries and the triggers of the amplification can be different in different
contexts. For example, in a stage performance reenacting a fantasy battle, the
remote presence can be amplified with armors and weapons or be represented
on a horse. In a more abstract and creative context, it can be used to directly
produce special effects based on the movements and/or sounds of the user.

Fig. A.1 shows an example of the idea of Amplified Interactions. The figure
shows three stages and four actors, on each stage there is a UCSD detecting
the actors and their remote presence is visible on the display-wall. The display
wall is divided in three areas, each area represent the Remote Presence system
output on the respective stage. Their remote presence differs in ways it is ampli-
fied. The actor spreading its hands had no amplifications, its representation is a
colored point cloud as the one produced by the system presented in Chapter 5.
The actor kneeling with his hands on his head is also represented with a point
cloud, but its remote presence is amplified with a flame bursting from his head.

119

120 APPEND IX A AMPL IFIED INTERACT IONS

Stage 1 Stage 2 Stage 3

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

Figure A.1: Output on display wall of three virtual stages. The output is augmented
with 3D models provided by the Horde3D graphic engine. Figure from Su
et al. [9]. The prototype in the picture uses the Tromsø Display Wall [36].

The remaining two actors are represented with a 3D model that chances their
looks but preserves the body language. In alternative the system could change
the look of the actors based on their behavior or pose. The prototype gives an
idea of the possibilities, but it lacks the necessary features or completeness to
achieve the Amplified Interactions we planned and idealized.

The prototype system for Amplified Interactions is based on the Go binding for
Horde3D, a graphic engine that supports 3D models and animations. Horde3D
is a graphic engine and not a full stack game engine, it does not include a
sound and networking api. The engine also allows mixing primitive OpenGL
calls with the normal engine functionality; this allowed us to reuse part of the
Viewer implementation and merge it with visual effects, such as particles, and
3D models from the Horde3D engine. These features made it a good candidate
for prototyping Amplified Interaction.

B
Code

1 #!/ bin / bash
2 # Usage : logcpumem [PID] [f i l ename]
3 # r e p l a c e [PID] with p r o c e s s ID #
4 # r e p l a c e [f i l ename] with f i l e name to use
5 f i l e p a t h=. # modify i f needed
6 t ime l im i t=6000 # how long to run , in s e cond s
7 mydate=‘date "+%H:%M:%S " ‘ # the timestamp
8
9 while ["$SECONDS" − l e " $ t ime l im i t "] ; do

10 ps −p$1 −opid −opcpu −opmem −ocomm −c | \
11 grep $1 | sed " s/^/$mydate / " >> $ f i l e p a t h /$2 . log
12 s l eep 1
13 mydate=‘date "+%H:%M:%S " ‘
14 done

Listing B.1: Shell script used to log CPU and memory usage of a process.

121

C
Unexplored Paths: the CoilGun Display
Following the experience we had with the point cloud, we had the idea of
building a real, as in the physical world, 3D point cloud. We did not follow
this path so we cannot tell whether it is feasible or not, but the concept is
relevant and we are going to explain it here. The core concept is to shoot
particles vertically into the air and color them with projected light, or have self-
illuminating particles. The chosen means to shoot the particles is coil guns. We
briefly examined other techniques to move particles vertically – compressed air
jets, springs, or other mechanical devices. The coil gun was the best candidate,
with no moving parts and enough force to move a projectile to a human
height.

Also, the coil gun is probably the most silent option among the examined ones.
The coil gun display is arranged in modules of 1m2 (see Fig. C.1), each module
containing a hundred coil guns. Each coil gun occupies a space 10×10 cm2

and comprises a pipe, around which the coil is wound, ending in a funnel. The
funnel is supposed to receive the particle falling after it has been shot vertically,
reloading the coil gun. If the particles in flight are lit at proper time withe the
right color the result is a colored point cloud not bound to a display.

123

124 APPEND IX C UNEXPLORED PATHS : THE CO IL GUN D ISPLAY

Figure C.1: Coil gun display module.

Bibliography
[1] Verdione. Verdione Project. URL http://krikkit.simula.no/.

[2] Skype. http://www.skype.com/. URL http://www.skype.com/.

[3] Fei Su, J.M. Bjorndalen, Phuong Hoai Ha, and O.J. Anshus. Masking the
effects of delays in human-to-human remote interaction. In 2014 Federated
Conference on Computer Science and Information Systems (FedCSIS), pages
719–728, September 2014. doi: 10.15439/2014F137.

[4] Daniel Stødle. Device-Free Interaction and Cross-Platform Pixel Based
Output to Display Walls. PhD thesis, Ph. d. thesis, Uni. of Tromsø, 2009.

[5] HSI. HSI’13 6th International Conference on Human System Interaction,
2013. URL http://www.hsi.wsiz.rzeszow.pl/.

[6] Giacomo Tartari. Global Interactin Space for user interaction with a room
of computers. URL https://www.youtube.com/watch?v=7lTZ3p1gs14.

[7] Verdikt. VERDIKT-konferansen - VERDIKT, 2013. URL http:
//www.forskningsradet.no/prognett-verdikt/VERDIKTkonferansen/
1226993838234.

[8] PingER. PingER. URL http://www-iepm.slac.stanford.edu/pinger/.

[9] Fei Su, Giacomo Tartari, John Markus Bjørndalen, Phuong Hoai Ha, and
Otto J. Anshus. MultiStage: Acting across Distance. In Paolo Nesi
and Raffaella Santucci, editors, Information Technologies for Performing
Arts, Media Access, and Entertainment, number 7990 in Lecture Notes in
Computer Science, pages 227–239. Springer Berlin Heidelberg, January
2013. ISBN 978-3-642-40049-0 978-3-642-40050-6. URL http://link.
springer.com/chapter/10.1007/978-3-642-40050-6_20.

[10] M. Piccardi. Background subtraction techniques: a review. In 2004 IEEE
International Conference on Systems,Man and Cybernetics, volume 4, pages

127

http://krikkit.simula.no/
http://www.skype.com/
http://www.hsi.wsiz.rzeszow.pl/
https://www.youtube.com/watch?v=7lTZ3p1gs14
http://www.forskningsradet.no/prognett-verdikt/VERDIKTkonferansen/1226993838234
http://www.forskningsradet.no/prognett-verdikt/VERDIKTkonferansen/1226993838234
http://www.forskningsradet.no/prognett-verdikt/VERDIKTkonferansen/1226993838234
http://www-iepm.slac.stanford.edu/pinger/
http://link.springer.com/chapter/10.1007/978-3-642-40050-6_20
http://link.springer.com/chapter/10.1007/978-3-642-40050-6_20

3099–3104 vol.4, October 2004. doi: 10.1109/ICSMC.2004.1400815.

[11] A. A. Sawchuk, E. Chew, R. Zimmermann, C. Papadopoulos, and C. Kyr-
iakakis. From Remote Media Immersion to Distributed Immersive
Performance. In Proceedings of the 2003 ACM SIGMM Workshop on
Experiential Telepresence, ETP ’03, pages 110–120, New York, NY, USA,
2003. ACM. ISBN 1-58113-775-3. doi: 10.1145/982484.982506. URL
http://doi.acm.org/10.1145/982484.982506.

[12] Roger Zimmermann, Elaine Chew, Sakire Arslan Ay, and Moses Pawar.
DistributedMusical Performances: Architecture and StreamManagement.
ACM Trans. Multimedia Comput. Commun. Appl., 4(2):14:1–14:23, May
2008. ISSN 1551-6857. doi: 10.1145/1352012.1352018. URL http://doi.
acm.org/10.1145/1352012.1352018.

[13] Gotomeeting. gotomeeting. URL http://www.gotomeeting.com/online/.

[14] Anthony Tang, Michel Pahud, Kori Inkpen, Hrvoje Benko, John C. Tang,
and Bill Buxton. Three’s company: understanding communication chan-
nels in three-way distributed collaboration. In Proceedings of the 2010
ACM conference on Computer supported cooperative work, CSCW ’10, pages
271–280, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-795-0. doi:
10.1145/1718918.1718969. URL http://doi.acm.org/10.1145/1718918.
1718969.

[15] Viet AnhNguyen,Tien Dung Vu,Hongsheng Yang, Jiangbo Lu, andMinh N.
Do. ITEM: Immersive Telepresence for Entertainment and Meetings
with Commodity Setup. In Proceedings of the 20th ACM International
Conference on Multimedia, MM ’12, pages 1021–1024, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1089-5. doi: 10.1145/2393347.2396372. URL
http://doi.acm.org/10.1145/2393347.2396372.

[16] Slim Essid, Xinyu Lin, Marc Gowing, Georgios Kordelas, Anil Aksay,
Philip Kelly, Thomas Fillon, Qianni Zhang, Alfred Dielmann, Vlado Ki-
tanovski, Robin Tournemenne, Aymeric Masurelle, Ebroul Izquierdo, Noel
O’Connor, Petros Daras, and Gaël Richard. A multi-modal dance cor-
pus for research into interaction between humans in virtual environ-
ments. Journal on Multimodal User Interfaces, pages 1–14. ISSN 1783-
7677. doi: 10.1007/s12193-012-0109-5. URL http://www.springerlink.
com/content/p3l70r2767630831/abstract/.

[17] O. Schreer, I. Feldmann, N. Atzpadin, P. Eisert, P. Kauff, and H. J. W. Belt.
3dpresence -A System Concept for Multi-User and Multi-Party Immersive
3d Videoconferencing. In 5th European Conference on Visual Media Produc-

http://doi.acm.org/10.1145/982484.982506
http://doi.acm.org/10.1145/1352012.1352018
http://doi.acm.org/10.1145/1352012.1352018
http://www.gotomeeting.com/online/
http://doi.acm.org/10.1145/1718918.1718969
http://doi.acm.org/10.1145/1718918.1718969
http://doi.acm.org/10.1145/2393347.2396372
http://www.springerlink.com/content/p3l70r2767630831/abstract/
http://www.springerlink.com/content/p3l70r2767630831/abstract/

tion (CVMP 2008), pages 1–8, November 2008. doi: 10.1049/cp:20081083.

[18] Benjamin Petit, Jean-Denis Lesage, Clément Menier, Jérémie Allard, Jean-
Sébastien Franco, Bruno Raffin, Edmond Boyer, and François Faure. Mul-
ticamera Real-Time 3d Modeling for Telepresence and Remote Collab-
oration. International Journal of Digital Multimedia Broadcasting, 2010:
1–12, 2010. ISSN 1687-7578, 1687-7586. doi: 10.1155/2010/247108. URL
http://www.hindawi.com/journals/ijdmb/2010/247108/abs/.

[19] I. Feldmann, W. Waizenegger, N. Atzpadin, and O. Schreer. Real-time
depth estimation for immersive 3d videoconferencing. In 2010 3DTV-
Conference: The True Vision - Capture, Transmission and Display of 3D
Video, pages 1–4, June 2010. doi: 10.1109/3DTV.2010.5506312.

[20] Shahram Izadi, Richard A. Newcombe, David Kim, Otmar Hilliges, David
Molyneaux, Steve Hodges, Pushmeet Kohli, Jamie Shotton, Andrew J.
Davison, and Andrew Fitzgibbon. KinectFusion: Real-time Dynamic 3d
Surface Reconstruction and Interaction. In ACM SIGGRAPH 2011 Talks,
SIGGRAPH ’11, pages 23:1–23:1, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0974-5. doi: 10.1145/2037826.2037857. URL http://doi.acm.
org/10.1145/2037826.2037857.

[21] Daisuke Sakamoto, Takayuki Kanda, Tetsuo Ono, Hiroshi Ishiguro, and
Norihiro Hagita. Android as a telecommunication medium with a human-
like presence. In Human-Robot Interaction (HRI), 2007 2nd ACM/IEEE
International Conference on, pages 193–200. IEEE, 2007. URL http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6251688.

[22] A. Maimone and H. Fuchs. Encumbrance-free telepresence system with
real-time 3d capture and display using commodity depth cameras. In
2011 10th IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pages 137–146, October 2011. doi: 10.1109/ISMAR.2011.6092379.

[23] Weidong Huang, Leila Alem, and Franco Tecchia. HandsIn3d: Support-
ing Remote Guidance with Immersive Virtual Environments. In Paula
Kotzé, Gary Marsden, Gitte Lindgaard, Janet Wesson, and Marco Winck-
ler, editors, Human-Computer Interaction – INTERACT 2013, number 8117
in Lecture Notes in Computer Science, pages 70–77. Springer Berlin
Heidelberg, September 2013. ISBN 978-3-642-40482-5 978-3-642-40483-
2. URL http://link.springer.com/chapter/10.1007/978-3-642-40483-
2_5. DOI: 10.1007/978-3-642-40483-2_5.

[24] D.S. Alexiadis, D. Zarpalas, and P. Daras. Real-Time, Full 3-D Recon-
struction of Moving Foreground Objects From Multiple Consumer Depth

http://www.hindawi.com/journals/ijdmb/2010/247108/abs/
http://doi.acm.org/10.1145/2037826.2037857
http://doi.acm.org/10.1145/2037826.2037857
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6251688
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6251688
http://link.springer.com/chapter/10.1007/978-3-642-40483-2_5
http://link.springer.com/chapter/10.1007/978-3-642-40483-2_5

Cameras. IEEE Transactions on Multimedia, 15(2):339–358, 2013. ISSN
1520-9210. doi: 10.1109/TMM.2012.2229264.

[25] Ramanarayan Vasudevan, Gregorij Kurillo, Edgar Lobaton, Tony
Bernardin, Oliver Kreylos, Ruzena Bajcsy, and Klara Nahrstedt. High-
Quality Visualization for Geographically Distributed 3-D Teleimmersive
Applications. Multimedia, IEEE Transactions on, 13(3):573–584, 2011. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5727958.

[26] PranavMistry and Pattie Maes. SixthSense: AWearable Gestural Interface.
In ACM SIGGRAPH ASIA 2009 Sketches, SIGGRAPH ASIA ’09, pages 11:1–
11:1, New York, NY, USA, 2009. ACM. doi: 10.1145/1667146.1667160. URL
http://doi.acm.org/10.1145/1667146.1667160.

[27] F. P. M. Elgendi and N. Magenant-Thalmann. Real-time speed detection
of hand gesture using kinect. In Workshop on Autonomous Social Robots
and Virtual Humans, The 25th Annual Conference on Computer Animation
and Social Agents (CASA 2012), Singapore, 2012. URL http://www.elgendi.
net/papers/casaworkshop12.pdf.

[28] M. Van den Bergh and L. Van Gool. Combining RGB and ToF cameras
for real-time 3d hand gesture interaction. In 2011 IEEE Workshop on
Applications of Computer Vision (WACV), pages 66 –72, January 2011. doi:
10.1109/WACV.2011.5711485.

[29] T. Pederson, L. Janlert, and D. Surie. A Situative Space Model for Mobile
Mixed-Reality Computing. IEEE Pervasive Computing, 10(4):73–83, 2011.
ISSN 1536-1268. doi: 10.1109/MPRV.2010.51.

[30] Lars C. Ebert, Gary Hatch, Garyfalia Ampanozi, Michael J. Thali, and
Steffen Ross. You Can’t Touch This Touch-free Navigation Through
Radiological Images. Surgical Innovation, 19(3):301–307, September 2012.
ISSN 1553-3506, 1553-3514. doi: 10.1177/1553350611425508. URL http:
//sri.sagepub.com/content/19/3/301.

[31] Satoru Morishima, Tomohiro Mashita, Kiyoshi Kiyokawa, and Hiroshi
Takemura. A waist-mounted ProCam system for remote collaboration. In
Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium
on, pages 301–302. IEEE, 2012. URL http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6402584.

[32] Farzin Farhadi-Niaki, Reza GhasemAghaei, and Ali Arya. Empirical study
of a vision-based depth-sensitive human-computer interaction system.
In Proceedings of the 10th asia pacific conference on Computer human

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5727958
http://doi.acm.org/10.1145/1667146.1667160
http://www.elgendi.net/papers/casaworkshop12.pdf
http://www.elgendi.net/papers/casaworkshop12.pdf
http://sri.sagepub.com/content/19/3/301
http://sri.sagepub.com/content/19/3/301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6402584
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6402584

interaction, APCHI ’12, pages 101–108, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1496-1. doi: 10.1145/2350046.2350070. URL http://
doi.acm.org/10.1145/2350046.2350070.

[33] Sean Ryan Fanello, Ilaria Gori, Giorgio Metta, and Francesca Odone.
Keep it simple and sparse: Real-time action recognition. The Journal of
Machine Learning Research, 14(1):2617–2640, 2013. URL http://dl.acm.
org/citation.cfm?id=2567745.

[34] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. Bringing
gesture recognition to all devices. In Usenix NSDI, volume 14,
2014. URL https://www.usenix.org/system/files/conference/nsdi14/
nsdi14-paper-kellogg.pdf.

[35] Mingsong Dou, Ying Shi, J. Frahm, H. Fuchs, B. Mauchly, and M. Marathe.
Room-sized informal telepresence system. In 2012 IEEE Virtual Reality
Short Papers and Posters (VRW), pages 15 –18, March 2012. doi: 10.1109/
VR.2012.6180869.

[36] O. Anshus, Daniel Stødle, T. Hagen, B\a ard Fjukstad, J. Bjørndalen,
L. Bongo, Yong Liu, and Lars Tiede. NineYears of the Tromsø Display Wall.
2013.

[37] Andrew D. Wilson and Hrvoje Benko. Combining multiple depth cam-
eras and projectors for interactions on, above and between surfaces. In
Proceedings of the 23nd annual ACM symposium on User interface soft-
ware and technology, UIST ’10, pages 273–282, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0271-5. doi: 10.1145/1866029.1866073. URL
http://doi.acm.org/10.1145/1866029.1866073.

[38] Garth Shoemaker, Takayuki Tsukitani, Yoshifumi Kitamura, and Kellogg S.
Booth. Body-centric interaction techniques for very large wall displays. In
Proceedings of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, NordiCHI ’10, pages 463–472, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-934-3. doi: 10.1145/1868914.1868967. URL
http://doi.acm.org/10.1145/1868914.1868967.

[39] Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel Mor-
ris. Code space: touch + air gesture hybrid interactions for supporting
developer meetings. In Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces, ITS ’11, pages 212–221, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0871-7. doi: 10.1145/2076354.2076393.
URL http://doi.acm.org/10.1145/2076354.2076393.

http://doi.acm.org/10.1145/2350046.2350070
http://doi.acm.org/10.1145/2350046.2350070
http://dl.acm.org/citation.cfm?id=2567745
http://dl.acm.org/citation.cfm?id=2567745
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-kellogg.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-kellogg.pdf
http://doi.acm.org/10.1145/1866029.1866073
http://doi.acm.org/10.1145/1868914.1868967
http://doi.acm.org/10.1145/2076354.2076393

[40] David Kim, Otmar Hilliges, Shahram Izadi, Alex D. Butler, Jiawen Chen,
Iason Oikonomidis, and Patrick Olivier. Digits: freehand 3d interactions
anywhere using a wrist-worn gloveless sensor. In Proceedings of the 25th
annual ACM symposium on User interface software and technology, UIST
’12, pages 167–176, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1580-
7. doi: 10.1145/2380116.2380139. URL http://doi.acm.org/10.1145/
2380116.2380139.

[41] Martin Spindler, Marcel Martsch, and Raimund Dachselt. Going be-
yond the surface: studying multi-layer interaction above the tabletop.
In Proceedings of the 2012 ACM annual conference on Human Factors in
Computing Systems, CHI ’12, pages 1277–1286, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1015-4. doi: 10.1145/2208516.2208583. URL
http://doi.acm.org/10.1145/2208516.2208583.

[42] Jyh-Ming Lien, Gregorij Kurillo, and Ruzena Bajcsy. Multi-camera tele-
immersion system with real-time model driven data compression. The
Visual Computer, 26(1):3–15, May 2009. ISSN 0178-2789, 1432-2315. doi:
10.1007/s00371-009-0367-8. URL http://link.springer.com/article/
10.1007/s00371-009-0367-8.

[43] Zhenyu Yang, Wanmin Wu, Klara Nahrstedt, Gregorij Kurillo, and Ruzena
Bajcsy. Enabling Multi-party 3d Tele-immersive Environments with
ViewCast. ACM Trans. Multimedia Comput. Commun. Appl., 6(2):7:1–
7:30, March 2010. ISSN 1551-6857. doi: 10.1145/1671962.1671963. URL
http://doi.acm.org/10.1145/1671962.1671963.

[44] P. Fechteler, A. Hilsmann, P. Eisert, S. V. Broeck, C. Stevens, J. Wall,
M. Sanna, D. A. Mauro, F. Kuijk, R. Mekuria, P. Cesar, D. Monaghan,
N. E. O’Connor, P. Daras, D. Alexiadis, and T. Zahariadis. A Framework
for Realistic 3d Tele-immersion. In Proceedings of the 6th International
Conference on Computer Vision / Computer Graphics Collaboration Tech-
niques and Applications, MIRAGE ’13, pages 12:1–12:8, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2023-8. doi: 10.1145/2466715.2466718. URL
http://doi.acm.org/10.1145/2466715.2466718.

[45] Rufael Mekuria, Michele Sanna, Stefano Asioli, Ebroul Izquierdo, Dick
C. A. Bulterman, and Pablo Cesar. A 3d Tele-immersion System Based on
Live Captured Mesh Geometry. In Proceedings of the 4th ACM Multimedia
Systems Conference, MMSys ’13, pages 24–35, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1894-5. doi: 10.1145/2483977.2483980. URL
http://doi.acm.org/10.1145/2483977.2483980.

[46] Suraj Raghuraman, Karthik Venkatraman, Zhanyu Wang, Balakrishnan

http://doi.acm.org/10.1145/2380116.2380139
http://doi.acm.org/10.1145/2380116.2380139
http://doi.acm.org/10.1145/2208516.2208583
http://link.springer.com/article/10.1007/s00371-009-0367-8
http://link.springer.com/article/10.1007/s00371-009-0367-8
http://doi.acm.org/10.1145/1671962.1671963
http://doi.acm.org/10.1145/2466715.2466718
http://doi.acm.org/10.1145/2483977.2483980

Prabhakaran, and Xiaohu Guo. A 3d Tele-immersion Streaming Approach
Using Skeleton-based Prediction. In Proceedings of the 21st ACM Interna-
tional Conference on Multimedia, MM ’13, pages 721–724, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2404-5. doi: 10.1145/2502081.2502188.
URL http://doi.acm.org/10.1145/2502081.2502188.

[47] Elaine Chew, Alexander Sawchuk, Carley Tanoue, and Roger Zimmer-
mann. Segmental Tempo Analysis of Performances in User-Centered
Experiments in the Distributed Immersive Performance Project. In Pro-
ceedings of the Sound andMusic Computing Conference, Salerno, Italy, 2005.
URL http://www.smc-conference.org/smc05/papers/ElanieChew/cstz-
smc05_final.pdf.

[48] Y. Sato, K. Hashimoto, and Y. Shibata. A New Remote Camera Work
System for Teleconference Using a Combination of Omni-Directional
and Network Controlled Cameras. In 22nd International Conference on
Advanced Information Networking and Applications, 2008. AINA 2008,
pages 502–508, March 2008. doi: 10.1109/AINA.2008.153.

[49] H. Aghajan and Chen Wu. Layered and Collaborative Gesture Analysis
in Multi-Camera Networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007, volume 4, pages IV–1377
–IV–1380, April 2007. doi: 10.1109/ICASSP.2007.367335.

[50] A. Bellucci, A. Malizia, P. Diaz, and I. Aedo. Human-Display Interaction
Technology: Emerging Remote Interfaces for Pervasive Display Environ-
ments. IEEE Pervasive Computing, 9(2):72–76, April 2010. ISSN 1536-1268.
doi: 10.1109/MPRV.2010.30.

[51] Andrew Bragdon and Hsu-Sheng Ko. Gesture select:: acquiring remote
targets on large displays without pointing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, pages 187–
196,New York,NY,USA, 2011. ACM. ISBN 978-1-4503-0228-9. doi: 10.1145/
1978942.1978970. URL http://doi.acm.org/10.1145/1978942.1978970.

[52] Andrew Blakney. Fleshing out gestures: augmenting 3d interaction. In
Proceedings of the Fifth International C* Conference on Computer Science
and Software Engineering, C3S2E ’12, pages 125–126, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1084-0. doi: 10.1145/2347583.2347602. URL
http://doi.acm.org/10.1145/2347583.2347602.

[53] S. Mitra and T. Acharya. Gesture Recognition: A Survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(3):
311–324, 2007. ISSN 1094-6977. doi: 10.1109/TSMCC.2007.893280.

http://doi.acm.org/10.1145/2502081.2502188
http://www.smc-conference.org/smc05/papers/ElanieChew/cstz-smc05_final.pdf
http://www.smc-conference.org/smc05/papers/ElanieChew/cstz-smc05_final.pdf
http://doi.acm.org/10.1145/1978942.1978970
http://doi.acm.org/10.1145/2347583.2347602

[54] V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual interpretation of hand
gestures for human-computer interaction: a review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(7):677 –695, July 1997.
ISSN 0162-8828. doi: 10.1109/34.598226.

[55] K. Sabir, C. Stolte, B. Tabor, and S.I. O’Donoghue. The Molecular Control
Toolkit: Controlling 3d molecular graphics via gesture and voice. In 2013
IEEE Symposium on Biological Data Visualization (BioVis), pages 49–56,
October 2013. doi: 10.1109/BioVis.2013.6664346.

[56] Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank Maurer, and An-
thony Tang. Eliciting usable gestures for multi-display environments.
In Proceedings of the 2012 ACM international conference on Interactive
tabletops and surfaces, ITS ’12, pages 41–50, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1209-7. doi: 10.1145/2396636.2396643. URL
http://doi.acm.org/10.1145/2396636.2396643.

[57] WebSocket. https://www.websocket.org/. URL https://www.websocket.
org/.

[58] WebRTC. http://www.webrtc.org/. URL http://www.webrtc.org/.

[59] LeapMotion. https://www.leapmotion.com/. URL https://www.
leapmotion.com/.

[60] Myo. https://www.thalmic.com/en/myo/. URL https://www.thalmic.
com/en/myo/.

[61] Snappy. google/snappy. URL https://github.com/google/snappy.

[62] Libfreenect. OpenKinect/libfreenect. URL https://github.com/
OpenKinect/libfreenect.

[63] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21
(8):666–677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585.
URL http://doi.acm.org/10.1145/359576.359585.

[64] Netflix. Netflix Internet Connection Speed Recommendations. URL
https://help.netflix.com/en/node/306.

[65] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Pro-
ton: multitouch gestures as regular expressions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,
pages 2885–2894, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1015-

http://doi.acm.org/10.1145/2396636.2396643
https://www.websocket.org/
https://www.websocket.org/
http://www.webrtc.org/
https://www.leapmotion.com/
https://www.leapmotion.com/
https://www.thalmic.com/en/myo/
https://www.thalmic.com/en/myo/
https://github.com/google/snappy
https://github.com/OpenKinect/libfreenect
https://github.com/OpenKinect/libfreenect
http://doi.acm.org/10.1145/359576.359585
https://help.netflix.com/en/node/306

4. doi: 10.1145/2207676.2208694. URL http://doi.acm.org/10.1145/
2207676.2208694.

[66] OpenGL. OpenGL. URL https://www.opengl.org/.

[67] Vulkan. Vulkan. URL https://www.khronos.org/vulkan.

[68] Metal. Apple Metal. URL https://developer.apple.com/metal/.

[69] Mantle. AMD Mantle.

[70] Horde3D. Horde3d next generation graphics ecngine. URL http://www.
horde3d.org/.

[71] G. Tartari, Daniel Stodle, J.M. Bjorndalen, Phuong Hoai Ha, and O.J.
Anshus. Global interaction space for user interaction with a room of
computers. In 2013 The 6th International Conference on Human System
Interaction (HSI), pages 84–89, 2013. doi: 10.1109/HSI.2013.6577806.

[72] Annica Kristoffersson, Silvia Coradeschi, and Amy Loutfi. A Review
of Mobile Robotic Telepresence. Adv. in Hum.-Comp. Int., 2013:3:3–
3:3, January 2013. ISSN 1687-5893. doi: 10.1155/2013/902316. URL
http://dx.doi.org/10.1155/2013/902316.

[73] Unity. http://unity3d.com. URL http://unity3d.com.

[74] Unreal. https://www.unrealengine.com. URL https://www.
unrealengine.com.

[75] Project Tango. https://www.google.com/atap/projecttango/#project.
URL https://www.google.com/atap/projecttango/#project.

[76] Movidius. http://www.movidius.com/. URL http://www.movidius.com/.

[77] ozo. Nokia OZO | Virtual Reality Camera with 360-degree audio and
video capture. URL https://ozo.nokia.com/.

[78] Oculus. http://www.oculus.com/. URL http://www.oculus.com/.

[79] Go. http://golang.org/.

[80] Openni. http://structure.io/openni. URL http://structure.io/openni.

[81] Openkinect. http://openkinect.org. URL http://openkinect.org.

http://doi.acm.org/10.1145/2207676.2208694
http://doi.acm.org/10.1145/2207676.2208694
https://www.opengl.org/
https://www.khronos.org/vulkan
https://developer.apple.com/metal/
http://www.horde3d.org/
http://www.horde3d.org/
http://dx.doi.org/10.1155/2013/902316
http://unity3d.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.google.com/atap/projecttango/#project
http://www.movidius.com/
https://ozo.nokia.com/
http://www.oculus.com/
http://structure.io/openni
http://openkinect.org

[82] 360fly. 360fly. URL https://360fly.com/.

[83] ZED. URL https://2013.asiabsdcon.org/papers/abc2013-P7A-paper.
pdf.

https://360fly.com/
https://2013.asiabsdcon.org/papers/abc2013-P7A-paper.pdf
https://2013.asiabsdcon.org/papers/abc2013-P7A-paper.pdf

Papers

137

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Multistage Distributed Performance
	1.2 Challenges and Solutions
	1.2.1 Latencies, delays, and their effects
	1.2.2 Remote Presences
	1.2.3 User Data Stream
	1.2.4 Amplified Interaction
	1.2.5 Gestures

	1.3 Contributions
	1.3.1 Lessons Learned
	1.3.2 Models
	1.3.3 Artifacts
	1.3.4 Facts

	1.4 Publications
	1.4.1 MultiStage: Acting across Distance
	1.4.2 Global Interaction Space for User Interaction with a Room of Computers
	1.4.3 Controlling and Coordinating Computers in a Room with In-Room Gestures
	1.4.4 Mapping of contribution and publications
	1.4.5 Mapping of publications and Chapters

	2 MultiStage Overview
	2.1 Motivation
	2.2 Ideas of MultiStage
	2.3 Concepts
	2.3.1 Temporal Causal Synchrony
	2.3.2 Amplified Interactions and Gestures

	2.4 Architecture
	2.4.1 Alternative Architectures

	2.5 Design
	2.5.1 Discussion

	2.6 State of The Art
	2.6.1 Landscape/Broad View
	2.6.2 Distinctive Systems
	2.6.3 La Serva Padrona

	3 User Context State Detection
	3.1 Idea
	3.2 Architecture
	3.3 Design
	3.4 Implementation
	3.4.1 Sensor Suite
	3.4.2 Software

	3.5 Experiments
	3.5.1 Design and Configuration
	3.5.2 Results

	3.6 Discussion
	3.7 Lessons Learned
	3.8 Summary

	4 Gestures
	4.1 Need for actor input
	4.2 Architecture
	4.3 Design
	4.4 Implementation
	4.4.1 Point Motion Analysis
	4.4.2 Regular Expression Engine

	4.5 Experiments
	4.5.1 Latency
	4.5.2 Resource Utilization

	4.6 Discussion
	4.7 Lessons Learned
	4.8 Summary

	5 Remote Presence
	5.1 Idea
	5.2 Architecture
	5.3 Design
	5.4 Implementation
	5.5 Experiments
	5.5.1 Configuration
	5.5.2 Results

	5.6 Discussion
	5.6.1 Implementation
	5.6.2 Amplified Interactions

	5.7 Lessons learned
	5.8 Summary

	6 Global Interaction Space
	6.1 Idea
	6.1.1 Usage patterns

	6.2 Architecture
	6.3 Design
	6.4 Implementation
	6.4.1 Visual Feedback to User

	6.5 Experiments
	6.5.1 Configuration
	6.5.2 Results
	6.5.3 CPU
	6.5.4 Memory
	6.5.5 Network

	6.6 Discussion
	6.6.1 Design
	6.6.2 Implementation
	6.6.3 Limitations
	6.6.4 MultiStage Applications

	6.7 Lessons Learned
	6.8 Summary

	7 Contributions
	7.1 Lessons Learned
	7.2 Models
	7.3 Artifacts
	7.4 Facts

	8 Discussion
	8.1 Missing Capabilities
	8.2 Limitations
	8.3 Technologies
	8.4 Architectures
	8.5 Tools
	8.6 Feasibility
	8.7 Scalability

	9 Conclusions
	9.1 Future Works

	Appendices
	A Amplified Interactions
	B Code
	C Unexplored Paths: the Coil Gun Display
	Bibliography
	Papers

