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Abstract

Objective

Cardiovascular response to passive leg raising (PLR) is useful in assessing preload

reserve, but it has not been studied longitudinally during pregnancy. We aimed to investi-

gate gestational age associated serial changes in maternal functional hemodynamics and

establish longitudinal reference ranges for the second half of pregnancy.

Materials and Methods

This was a prospective longitudinal study on 98 healthy pregnant women who were exam-

ined 3–5 times during 20–40 weeks of gestation (a total of 441 observations). Maternal car-

diac function and systemic hemodynamics were assessed at baseline and 90 seconds after

PLR using impedance cardiography (ICG). The main outcome measures were gestational

age specific changes in ICG-derived variables of maternal cardiovascular function and func-

tional hemodynamic response to PLR.

Results

Hemodynamic response to PLR varied during pregnancy. PLR led to an insignificant in-

crease in stroke volume during 20+0 to 31+6 weeks, but later in gestation the stroke volume

was slightly lower at PLR compared to baseline. PLR caused no significant change in car-

diac output between 20+0 and 23+6 weeks and a significant decrease after 24+0 weeks. A

decrease in heart rate, mean arterial pressure, and cardiac contractility was observed dur-

ing PLR throughout the second half of pregnancy. Systemic vascular resistance was

reduced by PLR up to 32+0 weeks, but increased slightly thereafter.
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Conclusion

Healthy pregnant women appear to have limited preload reserve and reduced cardiac con-

tractility, especially in the third trimester, which makes them vulnerable to fluid overload and

cardiac failure.

Introduction
Normal pregnancy is characterized by increased circulating blood volume [1–3], changes in
maternal heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resis-
tance (SVR) [1,3–8]. The heart is slightly enlarged due to an increase in venous filling [9,10].
Hemodynamic alterations related to pregnancy are different in women who have normal preg-
nancy compared to those who develop pregnancy complications [11–14]. Some variables of
maternal cardiovascular function may be abnormal long before the development of clinical
symptoms [15–18], and could be used to stratify risk [19] and improve the management of
complicated pregnancies [20].

Assessment of cardiovascular response to a physiological challenge, such as a reversible
“auto-transfusion” by passive leg raising (PLR), has proved useful as a method of studying
functional hemodyamics in critically ill patients [21,22]. It may be more useful to evaluate
functional hemodynamics rather than just assessing the static measures of circulatory function
for appropriately managing critically ill patients, including women with severe preeclampsia
[20]. Transient volume load caused by PLR should lead to an increase in SV by the Frank-Star-
ling mechanism in preload responsive individuals, and the change in SV as a result of PLR is an
expression of preload reserve. However, this response is likely to be affected not only by the
blood volume mobilised by PLR, but also by other factors, such as total circulating blood vol-
ume, baseline preload and cardiac contractility. We have previously shown that hemodynamic
response to PLR at 20–24 weeks of gestation is similar to that observed in non-pregnant
women [23]. Only a few studies with small sample size have previously investigated hormonal
[24–26] and hemodynamic [27–29] responses to postural changes in healthy pregnant women.
However, functional hemodynamic response to PLR has not been evaluated longitudinally in a
pregnant population. Thus, we aimed to investigate gestational age associated serial changes in
maternal cardiovascular response to PLR and establish reference ranges for assessing func-
tional hemodynamics during the second half of pregnancy.

Materials and Methods
This was a prospective longitudinal study design. The study was conducted from February
2010 to July 2013. Pregnant women attending the antenatal clinic for routine second trimester
ultrasonography at 17–19 weeks of gestation were recruited to the study. They were informed
about the study and invited to participate if they were>18 years, had no medical complications
in the current pregnancy and the ultrasound scan showed a singleton pregnancy without any
fetal or placental abnormality. Women with a previous history of pregnancy complications
such as preeclampsia, gestational diabetes, intrauterine fetal growth restriction or preterm
delivery were excluded.

Pregnant women were examined three to five times at approximately 4-weekly intervals,
from 20 weeks of gestation until term (range 20+1–40+5 weeks). The examination took place
in a quiet room with the room temperature maintained at approximately 22°C between
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08:00–16:00 hours. Study participants were not fasting. Height was measured using an altime-
ter (Charder Electronic Co, Taichung City, Taiwan) during the first visit. Bodyweight was mea-
sured at each visit using an electronic scale (Soehnle, Leifheit AG, Nassau, Germany). Body
mass index (BMI) was calculated as weight/height2 and the body surface area (BSA) was calcu-
lated as = 0.007184 x Height 0.725 x Weight 0.425 [30].

Parameters of maternal systemic hemodynamics were measured using impedance cardiog-
raphy (ICG) (Philips Medical Systems, Androver, MA, USA). Baseline measurements were
performed after 10 minutes of rest with the participant lying in a 45° supine semi-recumbent
position on an electronically pivotable bed with a possibility of changing the position without
any active movement by the study participant [23]. The study participants were instructed to
keep quiet during ICG measurements. Four sensors were used to obtain ICG signal. Two sets
of dual sensors were placed vertically on each side of the neck, and the other two dual sensors
on each side of the chest in the mid-axillary line. A single operator (ÅV) examined all women
using the same equipment and technique under identical conditions. Each pair of sensors con-
sists of outer electrodes continuously sending and receiving a painless, low amplitude (1mA)
electric signal through the thorax. The two inner electrodes detect and measure the change in
impedance, which is directly related to the blood volume change in the thoracic aorta through-
out the cardiac cycle.

A sphygmomanometer cuff placed on the left arm for blood pressure measurement was
connected to the ICG machine. Woman’s height, present weight, and age were entered into the
machine. Central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP)
were pre-set at 4 and 8 mmHg, respectively. The following variables were directly measured
and displayed on the ICG screen: heart rate (HR), stroke volume (SV), systolic blood pressure
(SBP), diastolic blood pressure (DBP), pre-ejection period (PEP), left-ventricular ejection time
(LVET), thoracic fluid content (TFC), velocity index (VI) and accelerated cardiac index (ACI).
The following variables were calculated as follows: CO = SV x HR, cardiac index (CI) = CO/
BSA, MAP = DBP + 1/3 (SBP-DBP), systemic vascular resistance (SVR) = ((MAP-CVP)/CO) x
80, systemic vascular resistance index (SVRI) = SVR/BSA, systolic time ratio (STR) = PEP/
LVET, left cardiac work index (LCWI) = (MAP-PAOP) x CO/BSA x 0.0144. A repeatability
study was performed in 20 women, each at a different gestational age, which showed a coeffi-
cient variation of 3.16% (95% CI, 1.23–5.08) for SV, 4.67% (95% CI, 1.96–7.38) for HR, 3.27%
(95% CI, 2.16–4.37) for CO, and 2.65% (95% CI, 1.73–3.58) for SVR.

After obtaining the baseline measurements, the participant’s upper body was lowered to a
supine position, and PLR was performed raising both legs to 45° by tilting the lower portion of
the bed. The ICG measurements were recorded approximately 90 seconds after PLR. The car-
diovascular response to PLR was calculated as percent change (Δ%) of the hemodynamic vari-
ables from baseline to PLR, i.e. (measurement during PLR–baseline measurement) / baseline
measurement x 100%. The SV Δ% was considered as an estimate for preload reserve.

Statistical analysis
Data analysis was performed using IBM SPSS statistics (SPSS software, version 21.0, Inc., Chi-
cago, IL, USA) and SAS version 9.3 (SAS Institute INC., Cary, NC, USA). The number of study
participants required to establish normal reference values was estimated to be approximately
100 based on the assumption that 20 observations per gestational week (i.e. a total of 400 obser-
vations between 20–40 weeks) would be sufficient to calculate reference intervals with adequate
precision [31]. Categorical variables are presented as n (%) and continuous variables as mean
(±SD) or median (range) as appropriate. Comparison between baseline values and values
obtained during PLR was performed using paired t-test. Statistical significance was set to
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p<0.05. Assumption of normality was checked for each variable and logarithmic or power
transformations were performed to achieve normal distribution when required. Fractional
polynomials were used to obtain best fitting curves in relation to gestational age accommodat-
ing for nonlinear associations. We applied multilevel regression modelling using proc mixed in
SAS to investigate gestational age associated changes in functional hemodynamics and estimate
the reference percentiles [32,33] accounting for possible dependency between repeated mea-
sures. We fitted individual observations as a linear function for the fractional polynomial term
of time, i.e. the gestational age. We included a random intercept term for each individual and a
random slope was used for the fractional polynomial term of the gestational age.

Ethics statement
All study participants gave informed written consent. The study was approved by the Regional
Committee for Medical and Health Research Ethics–North Norway (Ref.nr. 2010/575-2. Date
of approval: 10.02.2010).

Results
A total of 102 pregnant women consented to this longitudinal study. Of these, 25 women had
also participated in a cross-sectional study investigating differences in functional hemodynam-
ics between pregnant and non-pregnant women [23]. Four women were excluded from analy-
sis because their medical records revealed that they had hypertensive disorders in previous
pregnancies. Data from 98 study participants (441 observations) were used for the final statisti-
cal analysis. The number of participants examined during pregnancy was 98 (20–24), 87 (24–
28), 90 (28–32), 80 (32–36) and 82 women (>36) weeks of gestation. The baseline characteris-
tics of the study population and data on pregnancy outcome are given in Table 1. 99% of the
women were non-smokers. The mean weight gain was 9.1 Kg (12.7%), from booking to the last
examination.

Table 1. Baseline characteristics of the study population (N = 98).

Parameter Result

Maternal

Age (years) 29 (range 19–39)

Body mass index at first examination (Kg/m2) (20–24 weeks) 25.67 (± 3.62)

Body surface area (m2) 1.79 (± 0.14)

Nullipara (n%) 43 (44)

Mean arterial pressure at baseline, first examination (mmHg) (20–24 weeks) 79.92 (± 6.97)

Fetal

Gestational age at birth (weeks) 40 (32–42)

Birth weight (g) 3520 (± 480)

Placental weight (g)* 607 (± 119)

5-minute Apgar score** 10 (2–10)

Umbilical artery pH# 7.24 (± 0.09)

Umbilical artery base excess (mmol/L)# -3.90 (± 3.77)

Data presented as n (%), median (range) or mean (± SD) as appropriate.

# n = 50

*4 missing values

**1 missing value.

doi:10.1371/journal.pone.0135300.t001
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Eight women were delivered by CS (three due to prolonged labour, four due to fetal distress
and one due to breech presentation and a history of previous CS).Three women delivered pre-
term (<37 weeks): two of them had spontaneous vaginal delivery at 33+3 and 36+5 weeks,
respectively and one had an emergency caesarean section (CS) due to fetal distress assosciated
with placental abruption at 32+4weeks. In another three women labour was induced due to
postdate.

Two neonates had Apgar score<7 at five minutes. A total of eight neonates were transferred
to the neonatal care unit for observation or treatment. One of them, delivered preterm due to
placental abruption, had intraventricular haemorrhage leading to neurodevelopmental delay
and hydrocephalus requiring ventriculo-peritoneal shunt. The remaining infants were dis-
charged home in good condition.

In S1 Table the individual measurements of maternal systemic hemodynamic variables
including baseline characteristics and pregnancy outcome are presented. The variables describ-
ing maternal systemic hemodynamics and cardiac function measured by ICG at baseline dur-
ing the second half of pregnancy are presented in Figs 1 and 2 as the mean values with their

Fig 1. Longitudinal changes in maternal systemic blood flow, blood pressure, vascular resistance
and thoracic fluid content during the second half of pregnancy. A. SV, stroke volume; B. HR, heart rate;
C. CO, cardiac output; D. MAP, mean arterial pressure; E. SVR, systemic vascular resistance and F. TFC,
thoracic fluid content.

doi:10.1371/journal.pone.0135300.g001
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respective 5th and 95th percentiles. Gestational age specific reference values for all these vari-
ables are presented in S2–S13 Tables. The mean differences (delta-values) between values mea-
sured at baseline and PLR are presented in Table 2.

The mean values of variables describing cardiac function and systemic hemodynamics
measured at baseline and PLR during different gestational ages are presented in S14 Table. The
mean quantitative effect of modified preload on cardiac function induced by PLR varied by ges-
tation, and varied among individual women at different gestations.

At baseline, the SV increased from 83.0±15.83 ml during 20–24 weeks to a maximum of
84.6±16.74 ml at 28–32 weeks, and then decreased to 81.7±16.62 ml during 36–40 weeks. The
CO was 6.58±1.34 L/min at 20–24 weeks, increased to 7.14 ±1.46 L/min (8.5%) at 28–32 weeks,
and then decreased to 7.03±1.57 L/min at 32–36 weeks and 7.11 L/min at 36–40 weeks. The
HR and TFC increased steadily from 82/min to 90/min and from 28.63/kOhm to 30.16/kOhm,
respectively during 20–40 weeks. The blood pressure was lowest at 24–28 weeks, and then
there was a steady increase towards term. The SVR was lowest (899 dyne s/cm5) at 28–32

Fig 2. Longitudinal changes in parameters describingmaternal cardiac contractility and work
measured using impedance cardiography. A. ACI, acceleration index; B. VI, velocity index; C. PEP, pre-
ejection period; D. LVET, left ventricular ejection time; E. STR, systolic time ratio and F. LCWI, left ventricular
work index.

doi:10.1371/journal.pone.0135300.g002

Functional Hemodynamics in Pregnancy

PLOS ONE | DOI:10.1371/journal.pone.0135300 August 10, 2015 6 / 15



weeks, thereafter it increased slightly to 971 dyne s/cm5 at term. The LCWI was 3.81 Kg m/m2

at 20–24 weeks and increased by 10.5% to 4.21 Kg m/m2 close to term. The PEP increased
from 76ms to 95ms (24.3%), and the LVET decreased from 260ms to 247ms (4.9%) from 20
weeks to term, and as a result the STR increased by 32.8% during the same period. The ACI
and VI decreased by 25.1% and 21.3%, respectively from 20 weeks to term.

Longitudinal changes in cardiovascular response to PLR are presented as gestational age
specific reference ranges (mean % change of the measured variables from baseline to PLR with
their respective 5th and 95th percentiles) in Figs 3 and 4. There was no significant association
between the gestational age and % change in SV (p = 0.075) or HR (p = 0.087) from baseline
to PLR. PLR led to a small insignificant increase in SV during 20+0–31+6 weeks, but later in
gestation the SV was slightly lower at PLR compared to baseline. The HR was 2.5–4.7% lower
during PLR compared to baseline. The % change in CO was associated with gestational age
(p<0.0001). It was similar at baseline and PLR at 20+0–23+6 weeks but was significantly
decreased by PLR from 1.2% at 24 weeks to 5.4% at term. PLR induced 4% increase in TFC at
20–26 weeks, 3% at 27–37 weeks and 2% at 38–40 weeks compared to baseline, but the change
was not associated with the gestational age (p = 0.130). The blood pressure was reduced by
PLR, and the % change in BPS (p = 0.002), BPD (p = 0.033), and MAP (p = 0.003) was signifi-
cantly associated with gestational age with lower differences between values measured at base-
line and PLR with increasing gestation. The change in SVR was significantly (p<0.0001)
associated with gestational age. SVR was decreased by PLR until 32 weeks, but increased
slightly from 32 weeks onwards.

Table 2. Mean differences between hemodynamic variables measured by impedance cardiography at baseline and 90 seconds after passive leg
raising during the second half of pregnancy.

Variables GA (weeks) p-value GA (weeks) p-value GA (weeks) p-value GA (weeks) p-value GA (weeks) p-value

20–24 24–28 28–32 32–36 > 36

SV 1.14 (-0.31;2.59) 0.121 0.72 (-0.94;2.39) 0.390 -1.01 (-2.83;0.81) 0.272 -1.80 (-4.20;0.60) 0.139 -1.00 (-3.44;1.44) 0.418

CO -0.04 (-0.16;0.08) 0.496 -0.16 (-0.29;-0.03) 0.017 -0.31 (-0.46;-0.16) <0.001 -0.40 (-0.57;-0.23) <0.001 -0.37 (-0.57;-0.17) <0.001

CI -0.02 (-0.09;0.04) 0.487 -0.08 (-0.16;-0.01) 0.022 -0.16 (-0.24;-0.08) <0.001 -0.22 (-0.31;-0.13) <0.001 -0.20 (-0.30;-0.09) <0.001

HR -2.54 (-3.52;-1.56) <0.001 -2.52 (-3.79;-1.24) <0.001 -3.62 (-4.97;-2.28) <0.001 -2.81 (-4.87;-0.75) 0.008 -5.05 (-7.03;-3.07) <0.001

BPS -3.92 (-4.92;-2.91) <0.001 -2.22 (-3.23;-1.21) <0.001 -2.69 (-3.92;-1.46) <0.001 -2.35 (-3.50;-1.20) <0.001 -1.61 (-2.77;-0.45) 0.007

BPD -4.93 (-5.73;-4.13) <0.001 -3.63 (-4.52;-2.73) <0.001 -3.73 (-4.51;-2.95) <0.001 -4.46 (-5.23;-3.70) <0.001 -4-07 (-4.96;-3.19) <0.001

MAP -4.59 (-5.34;-3.83) <0.001 -3.20 (-3.93;-2.47) <0.001 -3.42 (-4.16;-2.68) <0.001 -3.78 (-4.53;-3.02) <0.001 -3.27 (-4.06;-2.48) <0.001

SVR -50.51 (-70.48;-30.54) <0.001 -23.72 (-45.90;-1.54) 0.036 -3.44 (-23.01;16.13) 0.727 4.50 (-19.86;28.86) 0.714 5.37 (-19.10;29.83) 0.664

SVRI -90.61 (-125.83;-55.40) <0.001 -40.70 (-80.22;-1.18) 0.044 -5.78 (-40.98;29.43) 0.745 7.88 (-36.98;52.73) 0.728 11.59 (-35.06;58.23) 0.622

TFC 1.04 (0.73;1.35) <0.001 1.59 (0.54;2.63) 0.003 0.78 (0.37;1.19) <0.001 1.00 (0.56;1.44) <0.001 0.78 (0.46;1.10) <0.001

ACI -6.08 (-11.12;-1.05) 0.018 -5.61(-14.34;3.12) 0.205 -9.79 (-14.81;-4.77) <0.001 -13.39 (-18.62;-8.15) <0.001 -10.71 (-16.81;-4.61) 0.001

LCWI -0.28 (-0.36;-0.20) <0.001 -0.25 (-0.34;-0.17) <0.001 -0.37 (-0.48;-0.27) <0.001 -0.43 (-0.55;-0.32) <0.001 -0.37 (-0.50;-0.24) <0.001

PEP -7.80 (-9.72;-5.87) <0.001 -4.66 (-7.20;-2.11) <0.001 -0.34 (-3.23;2.54) 0.813 1.75 (-1.88;5.38) 0.340 -3.24 (-7.43;0.94) 0.127

LVET 10.80 (3.41;18.18) 0.005 13.75 (7.53;19.97) <0.001 5.39 (-1.80;12.57) 0.140 6.68 (-0.82;14.17) 0.080 5.34 (-1.99;12.68) 0.151

VI -6.67 (-8.97;-4.36) <0.001 -6.70 (-10.59;-2.81) 0.001 -5.60 (-8.16;-3.04) <0.001 -8.15 (-11.33;-4.97) <0.001 -5.62 (-8.37;-2.87) <0.001

STR -4.06 (-5.23;-2.89) <0.001 -3.34 (-4.64;-2.05) <0.001 -0.63 (-2.44;1.17) 0.488 -0.08 (-2.31;2.16) 0.947 -2.41 (-4.86;0.03) 0.053

Data are presented as mean values for the difference (delta-values) between the measurements recorded at PLR and baseline (95% confidence

intervals). p <0.05 was considered as significant. GA, gestational age; SV, stroke volume (ml); CO, cardiac output (L/min); cardiac index (L/min/m2); HR,

heart rate (beats/min); BPS, systolic blood pressure (mm Hg); BPD, diastolic blood pressure (mm Hg); MAP, mean arterial pressure (mm Hg); SVR,

systemic vascular resistance (dyne s/cm5); SVRI, systemic vascular resistance index (dyne s m2/cm5); TFC, thoracic fluid content (1/kOhm); ACI,

acceleration index (1/100 s2); LCWI, left ventricular work index (Kg m/m2); PEP, pre-ejection period (ms); LVET, left ventricular ejection time (ms); VI,

velocity index (1/1000s) and STR, systolic time ratio (%).

doi:10.1371/journal.pone.0135300.t002
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The % changes of ACI (p = 0.011), PEP (p<0.0001) and STR (p<0.0001) from baseline to
PLR were significantly associated with the gestational age, but the % change in VI (p = 0.672)
and LVET (p = 0.228) were not. During PLR, ACI decreased from 2% at 20 weeks to 10% at
term compared to baseline values. The LVET was slightly increased by PLR (5.1% at 20 weeks
compared to 2.3% at 40 weeks). The % reduction in VI from baseline to PLR was stable (7–8%)
throughout the second half of pregnancy, but the reduction in STR varied (1–19%). The PEP
was decreased significantly by PLR until 28 weeks, then increased very slightly until 36 weeks
and decreased again towards term. The LCWI decreased during PLR by 5.9% at 20 weeks com-
pared to 9.4% at term.

Discussion
We investigated hemodynamic response to PLR in healthy pregnant women from mid-gesta-
tion to term using noninvasive ICG. Cardiovascular response to PLR varied during 20–40

Fig 3. Gestational age specific longitudinal reference ranges of the percent change (Δ%) in maternal
systemic blood flow, blood pressure, vascular resistance and thoracic fluid content measured from
baseline to passive leg raising. The solid line represents the mean and the interrupted lines represent the
5th and 95th percentiles. A. ΔSV, stroke volume; B. ΔHR, heart rate; C. ΔCO, cardiac output; D. ΔMAP, mean
arterial pressure; E. ΔSVR, systemic vascular resistance and F. ΔTFC, thoracic fluid content.

doi:10.1371/journal.pone.0135300.g003
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weeks of gestation. The functional hemodynamic response to PLR was positive during 20+0–
31+6 weeks, but negative during 32+0–40+0 weeks, but the changes in stroke volume caused by
PLR were of small magnitude (-0.8 to 2.3%) and not significant. The HR was reduced by PLR
leading to a progressive reduction in CO during PLR compared to baseline in the third trimes-
ter of pregnancy. PLR caused a reduction in blood pressure, cardiac contractility and cardiac
work compared to baseline throughout the second half of pregnancy.

There are no published studies of functional hemodynamics in normal pregnancy investi-
gating cardiovascular response to PLR longitudinally to compare our results with. However,
the baseline measurements of cardiovascular function obtained during the second half of preg-
nancy in this study were similar to those reported previously by us [7] and others [8] using sim-
ilar equipment and methodology. A study performed on pregnant women at term [34]
reported no significant difference between CO measured at baseline and during PLR in the
semi-recumbent or left lateral decubitus positions, but a decrease in CO during PLR in the

Fig 4. Gestational age specific longitudinal reference ranges of the percent change (Δ%) in maternal
cardiac contractility and work from baseline to passive leg raising. The solid line represents the mean
and the interrupted lines represent the 5th and 95th percentiles. ΔACI, acceleration index; B. ΔVI, velocity
index; C. ΔPEP, pre-ejection period; D. ΔLVET, left ventricular ejection time; E. ΔSTR, systolic time ratio and
F. ΔLCWI, left ventricular work index.

doi:10.1371/journal.pone.0135300.g004
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right-lateral decubitus position. This was a cross-sectional study that used a different method
(pulse contour analysis) and device (ccNexfin; Edwards Lifesciences, Irvine, CA) to estimate
the CO. However, their results, as ours, indicate that pregnant women are not able to increase
CO during PLR in late gestation. Some investigators have previously examined cardiovascular
response to orthostatic stress in pregnant women using a variety of methods and postural
changes [25,27,29,35,36]. Higher values of SV and CO are generally reported in left lateral
compared to supine [27,37] or standing [36] position. However, the results from those studies
cannot be directly compared with that of our study as they are likely to be related to autonomic
response rather than change in preload.

Gestational age related reduction in ACI and VI, prolongation of PEP and shortening of
LVET suggested a decrease in baseline cardiac contractility with advancing gestation. This is in
line with Estensen et al. [38] who found reduced the left ventricular contractility during preg-
nancy based on reduced left ventricle ejection fraction. Geva et al. [39] also reported a transient
decrease in contractility in the second trimester using serial echocardiographic measurements
during and after pregnancy. In our study cardiac contractility and cardiac work was not
improved by increasing preload by PLR in pregnant women as evidenced by the reduction in
ACI, VI, STR and LCWI.

We have previously compared the effect of PLR between non-pregnant and pregnant
women at 22–24weeks of gestation in a cross-sectional study and found that they respond simi-
larly to transient volume load [23]. However, the results of our current longitudinal study indi-
cate that under normal physiologic conditions the cardiovascular response to PLR is different
in the third trimester compared to earlier in pregnancy. We found that in pregnant women, the
heart is not able respond to increased preload by increasing stroke volume after 32 weeks.
Reduced contractility could be one of the mechanisms leading to inability of the heart to
increase its SV in response to auto-fluid challenge. We also found that the PLR increased total
SVR after 32 weeks despite decreasing the blood pressure, indicating reduced ability of heart to
increase CO in late pregnancy.

Our study participants were all healthy women with low risk pregnancies, and in a normal
state of hydration. It has been shown that the increase in CO in response to PLR is larger after
withdrawal of blood in healthy subjects [28], and the response is shown to be of higher magni-
tude in preload responsive volume depleted preeclamptic women [20]. In our previous study,
we found that healthy non-pregnant women have a relatively low preload reserve [23] com-
pared to that reported in volume depleted patients [40,41]. Furthermore, we found that the
TFC increased only by 2–4% during PLR in pregnant women, suggesting that the amount of
fluid transferred to the central circulation is small.

Another explanation for the negative response to PLR could be related to inability to
increase preload by PLR in the third trimester due to uterine compression of the inferior vena
cava (IVC) and compromised venous return. However, IVC compression does not occur very
often even in late pregnancy. A study comparing the diameter of the IVC in the supine position
and the left lateral tilt at term found that 25% of women had the largest IVC diameter in the
supine position [42]. Even in case of IVC occlusion, the venous return to the heart is directed
via collaterals (ascending lumbar veins) maintaining its preload [43]. Furthermore, we have
previously found a good agreement between ICG measurements performed in left lateral and
supine semi-recumbent positions in 20 women in late gestation [7].

Our study provides longitudinal reference ranges for the assessment of functional hemody-
namics in pregnant women. We used noninvasive ICG, which is well validated for the hemody-
namic assessment of pregnant women [44–49]. Compared to echocardiography, it is operator-
independent, quick and user friendly, which makes it ideally, suited for bedside functional
hemodynamic assessment. Although the accuracy of CO measurement in pregnant women
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using ICG has been questioned in the past, new generation of bioimpedance devices are
reported to be accurate, and provide reliable measurement of maternal hemodynamics [50].
All participants were examined by a single operator using the same equipment under identical
conditions. There were no dropouts after recruitment, and the follow up was complete. How-
ever, our study has some limitations. As we did not examine the participants before pregnancy,
during the first half of gestation or postpartum, the reference ranges are established only for
the second half of pregnancy. Our study population consisted of white European women, and
the results might not be applicable to other ethnic groups. There could be heterogeneity in
hemodynamics status related to age [51]. It has been shown previously that maternal cardiac
function may be affected by parity [52]. Parous women appear to have higher CO and lower
SVR compared to nulliparous women. Our study included healthy pregnant women aged 19–
39 years, but did not evaluate separately the results from multiparous versus nulliparous
women.

Functional hemodynamic evaluation using PLR has been shown to be useful in predicting
preload responsiveness and guiding fluid therapy. However, it would be important to take into
account the individual as well as gestational age associated physiological variations in quantita-
tive effect of modified preload throughout the pregnancy. A recent study in preeclamptic
women with oliguria showed that it is possible to predict fluid responsiveness using PLR [20].
It is known that pregnant women with severe preeclampsia and oliguria are at risk of develop-
ing pulmonary oedema and cardiac failure [53,54]. PLR could possibly be used to stratify
women into those who would benefit from volume expansion or fluid restriction, and monitor
as well as guide fluid and antihypertensive therapy.

Conclusion
In summary, our study provides longitudinal reference ranges for functional hemodynamic
assessment of pregnant women during the second half of pregnancy. Healthy pregnant women
appear to have limited preload reserve and reduced cardiac contractility, especially in the third
trimester, which makes them vulnerable to fluid overload and cardiac failure.
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