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Abstract

A wide range of machine learning methods have taken advantage of density
estimates and their derivatives, including methodology related to principal
manifolds and mode seeking, finding use in a number of real applications.

However, research concerned with improving density derivative estimation
and its practical use have received relatively limited attention. Also, the fact
that the derivatives of a distribution over a point set can provide a statistical
framework for manifold learning has not yet been used to its full potential.

The aim of this thesis is to help fill these gaps, and to provide novel machine
learning algorithms and tools based on principal manifolds using density
derivatives. We present three different lines of works aiming towards this
goal.

The first work presents a fast and exact kernel density derivative estimator.
The method takes advantage of the fact that the derivatives of a multivariate
product kernel can be decomposed into a product of univariate differentia-
tions. By cutting redundant multiplications we obtain significant speedup
while retaining an exact estimator.

Next, we present a novel algorithm for manifold unwrapping based on tracing
the gradient flow along a manifold estimated using density derivatives. This
allows a direct and geometrically intuitive approach consistent with theory
from differential geometry. Promising results are shown on both real and
synthetic data sets.

Finally, we provide a novel framework for robust mode seeking. It is based
on ensemble clustering and resampling techniques. This allows a clustering
algorithm that is both robust with respect to parameter choices as well as
being capable of handling data sets of very high dimension. Concretely, we
build the ensemble by running multiple instances of a k nearest neighbor
mode seeking algorithm. We show good results on benchmark tests, as well
as a case study involving medical health records.
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Chapter 1

Introduction

Important features of the probability density function such as critical points
(modes), curvature, ridges and valleys, and to some extent cluster structure
can be described using derivatives [151, 7, 158, 138, 93, 46, 51, 36].

Already in 19771 R. S. Singh pointed out important problems that can be
solved by estimating a density and its derivatives [158]. Even before that, in
1975, Fukunaga and Hoestler [82] introduced the first version of the famous
mean shift algorithm, widely used for clustering.

In the following years, a wide range of methods have taken advantage of den-
sity estimates and their derivatives. In astronomy, the filamentary geometry
of the cosmic web has inspired many works [44, 86, 160, 45]. The geom-
etry of roads in images has been analysed using density derivative based
principal curves [40, 127, 135]. Similarly principal curves have also been
used in medical- and neuroimaging [186, 13]. Other applications include es-
timating economic summary indexes [188], tracking and reconstruction in
neutrino oscillation experiments [8] and ice floe detection [11]. The gradient
field of the density derivatives has been used with great success. Exam-
ples include the Microsoft’s Kinect R© computer vision system [156], object
tracking [52, 134, 182] and brain connectivity visualization [25].

More recent theoretical works include Kullback-Leibler divergence approxi-
mation [151], least squares log-density gradients used for clustering [150] and

1quite some time ago in the machine learning timeline

1
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higher order kernels for density derivatives [106].

Topics related to principal manifolds and mode seeking have thus had a
considerable impact on machine learning and related fields, as exemplified
above.

However, the field of research concerned with improving density derivative
estimation have received comparably limited attention. Also, the fact that
the derivatives of a distribution over a point set can provide a statistical
framework for manifold learning [135, 85] has not yet been used to its full
potential.

The aim of this thesis is to help fill these gaps, and to provide novel machine
learning algorithms and tools based on principal manifolds and modes using
density derivatives.

Towards that end we present novel estimators and methods that takes advan-
tage of probability density derivatives. We make use of the close connection
between probability density derivatives and geometry – in the form of prin-
cipal manifolds – to propose new algorithms for both manifold learning and
unsupervised learning.

Specifically, our objectives in this thesis are:

• Faster methods and estimators involving probability density deriva-
tives.

• Novel applucitions of principal manifolds inspired by differential geom-
etry.

• More robust algorithms in the application of probability density deriva-
tives.

In the following of this, we provide some illustrative examples.

1.1 Motivating examples

To illustrate our main ideas and the methodological setup considered in the
course of this thesis, we have included two motivating examples. The first
illustrates how density derivatives can be useful tools in machine learning,
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Figure 1.1: This sketch illustrates two concepts: (1) how nonlinear projec-
tions can be used to estimate an underlying nonlinear structure and (2) how
a smooth underlying surface of lower intrinsic dimension can be a good ap-
proximation in the case of noisy non-linear data.

especially in cases where the data manifest nonlinear structure. The second
illustrates problems that arise in evaluating density derivative estimation due
to the use of non-parametric density estimates. This poses several difficulties,
especially in unsupervised learning applications such as clustering, where no
ground truth is available and methods such as cross-validation cannot be
adopted to establish the best estimators.

1.1.1 Nonlinear structure in data

How do we deal with non-linear structure in data? In Figure 1.1 we see an
illustrative example of how nonlinear structure in data can appear in practice.
We consider a set of arbitrary measurements, which are drawn from a smooth
non-linear hypersurface (a manifold M) and have been corrupted by noise.
The geometry of the non-linear structure typically comes from the data-
generating process, e.g. images that rotate, translations or body movements
in medical applications or in principle any significant features that change
smoothly over time or space [73, 180, 79].

Let us assume that we want to perform statistical inference, e.g regression,
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along the smooth underlying manifold in the case depicted in Figure 1.1. A
reasonable workflow would then be: (1) estimate or learn the structure of
M , (2) project the data2 onto the smooth structure (3) perform inference
along M , (4) map the input back to the ambient space (R3 in the example).
The last stage is optional, depending on context. For example in the case of
images a map back to the input space is desirable to be able to visualize the
results (this is known as the pre-image problem in kernel methods [117]).

In this thesis we have investigated how density estimate derivatives can be
used to solve some of the steps in the general workflow presented above. In
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Figure 1.2: The top three principal components of the 1 digit in the MNIST
data set (blue), the smooth underlying manifold estimated by principal man-
ifolds (green) and a smooth interpolation along the manifold between two
arbitrary digits (red). The points along the red curve are mapped back to
the input space and shown in the top right corner.

Figure 1.2 the first three principal components of a set consisting of images of

2We assume there are many more data points than those illustrated in Figure 1.1.
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handwritten digits of the number one – the MNIST data set [119] – are shown
in blue. The green dots represents the smooth two-dimensional principal
manifold estimated, a structure represented by the gradient and Hessian of
a kernel density estimate. Once the smooth underlying surface (manifold)
is estimated, inference can take place. In this example we perform smooth
interpolation (non-linear regression) by calculating the shortest distance –
called a geodesic – along the manifold between two arbitrarily chosen points
(shown in red). An alternative approach would be to unfold the manifold
and use a linear interpolation method in the unfolded space.

Finally, the interpolated points are mapped back to the input space using,
for example, a two-layer neural network enabling visual inspection (this is
is possible due to the extensive amount of training data available in this
data set3). Indeed we see that the digits transform smoothly from the tilted
number 1 (top left) to the more horizontal digit (bottom right).

1.1.2 Parameter sensitivity in unsupervised learning

Another important class of density derivative applications is unsupervised
learning, most often implemented by mode seeking methods [51, 46, 61, 125].
This is also called population clustering in some settings [34], and has the
benefit that the definition of a cluster is defined directly by the probability
density. It is based on the fact that the gradient flow of the probability
density (with some additional technical constraints [34]) induces a partition
of the input space.

An example of this is shown in Figure 1.3 where we see a mixture of five
Gaussians and the estimated density, Figure 1.3a. The corresponding gradi-
ent flow field is shown in Figure 1.3b, and the induced partition of the input
space in Figure 1.3c.

Mode seeking methods are almost exclusively based on non-parametric den-
sity estimates, which have several benefits, but also an inherent sensitivity to
the critical bandwidth4 of the estimate that is hard to overcome in clustering
settings. For this reason, mode seeking methods have been most successful

3This constitutes parts of research related to this thesis that is not yet published.
4The bandwidth h in kernel density estimation and k in nearest neighbor methods [166].

See Chapter 2 for details.
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space induced by gra-
dient flow.

Figure 1.3: Illustration of the data space partitioning induced by the gradient
flow of a probability density estimate. The data set is a mixture of five
Gaussians.

in applications where the clustering process is mostly a pre-processing stage
such as object tracking [52, 175], pose estimation [156] or 3D reconstruc-
tion [171].

Part of these issues are due to the fact that a cluster has to be unimodal
to be picked up by a mode seeking algorithm. This is obviously a strong
limitation. In fact, results from topological analysis of multivariate Gaussian
mixtures state that even in parametric mixture models the number of modes
can be higher than the number of clusters [144].

An elegant way of avoiding parameter tuning and enabling simple algorithms
to handle greater variation in both cluster structure and cluster separation is
represented by ensemble methods [161, 75, 173]. Instead of a single clustering
algorithm, an ensemble evaluates multiple partitions with different param-
eters, initializations or both, and measures agreement across all partitions.
In Figure 1.4 we see a non-linear data set that cannot be correctly clustered
by a mode seeking algorithm. However, when applying an ensemble of mode
seeking algorithms with random parameter initialization, the true cluster
structure is captured in Figure 1.4c.
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Figure 1.4: Non-linear toy data that cannot be clustered correctly by a mode
seeking algorithm.

1.2 Short summary of papers

The following papers are included in this thesis:

• M. Shaker, J. N. Myhre, D. Erdogmus, “Computationally Efficient
Exact Calculation of Kernel Density Derivatives”, published in
Journal of Signal Processing Systems, December 2015, Volume 81, Issue
3, pp 321–332.

• J. N. Myhre, M. Shaker, M. D. Kaba, D. Erdogmus, “Manifold un-
wrapping using density ridges”, unpublished manuscript5.

• M. Shaker, J. N. Myhre, M. D. Kaba, D. Erdogmus, “Invertible non-
linear cluster unwrapping”, published in the Proceedings of the 2014
IEEE International Workshop on Machine Learning for Signal Process-
ing.

• J. N. Myhre, K. Ø. Mikalsen, S. Løkse and R. Jenssen, “A robust
clustering using a kNN mode seeking ensemble”, in review with
Pattern Recognition.

Paper I: We suggested and implemented a new tree-based algorithm for
removing redundant multiplications in kernel density derivative estimation.
This leads to a fast exact estimator, which is not based on approximation.

5A pre-print was posted on arXiv.org in March 2016, http://arxiv.org/abs/1604.01602
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Paper II and III: These two papers present novel ideas for manifold un-
wrapping using density ridges. Density ridges are manifold estimators based
on the estimated gradient and Hessian of a probability density. In addition
the algorithms were implemented in parallel using adaptive ODE solvers,
such that a significant speedup was achieved.

Paper IV: The final paper proposes a novel algorithm for non-parametric
density based clustering. We used concepts from ensemble clustering, result-
ing in an algorithm which is more robust towards parameter sensitivity and
is capable of handling high dimensional data. Parameter sensitivity is one of
the biggest problems in non-parametric density estimation.

Figure 1.5 shows how our contributions are related to the overall use of
probability density estimation in machine learning.

Probability density estimation

Parametric models

Maximum likelihood Mixture models

Non-parametric models

KDE

Gradient

Mean shift Gradient + Hessian

Density ridges/principal manifolds Efficient calculation

kNN

Gradient

Mode seeking

Figure 1.5: An overview of the context of the contributions of this thesis. The
topic of each paper is marked with red. KDE is kernel density estimation
and kNN is k-nearest neighborhood density estimation.
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1.3 Reading guide

This remainder of this thesis consists of three parts, methodology, summary
of research and appended papers and an appendix.

Methodology: This is a theoretical background that introduces the reader
to the methodologies discussed in this thesis. The first three chapters review
basic theory from mathematics, statistics and machine learning. In the last
two chapters, we discuss the connection of the basic theory with the more
recent theory used in our contributions.

Chapter 2 Presents the basics of probability density estimation and the
derivatives of the kernel density estimator (relevant to Paper I).

Chapter 3 Presents a short summary of relevant concepts from differen-
tial geometry, as well as applications in machine learning (manifold learn-
ing).

Chapter 4 Presents principal manifolds, a general tool for estimating
smooth surfaces from point clouds. The first part is general. The second
part presents the special case of principal manifolds expressed through the
gradient and Hessian of the probability density (relevant to Paper II and
Paper III).

Chapter 5 Gives an introduction to unsupervised learning through den-
sity based clustering and explains how the derivatives of the probability
density function can be used to perform cluster analysis (relevant to Paper
VI).

All the chapters are written in an independent manner, and could be read
separately for reference.

Research contributions: In this part we present a short overview of the
scientific contribution represented by each paper included in this thesis. We
also include concluding remarks and areas of future research in this part.

Included papers: This part contains the publications included in the thesis
in their published or manuscript form.

Appendix: The appendix contains material that was used in Paper III, but
not suitable for the Methodology part.
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Chapter 2

Probability density estimation

In this chapter we present the probability density function and some funda-
mental estimators and properties of estimators.

The probability density function (pdf) is one of the fundamental building
blocks of machine learning and statistics [166, 101, 177, 91]. Methods such
as näıve Bayes [166], mixture models [145], Gaussian processes [143] and in-
formation theoretic learning [141], based on an estimated pdf are all popular
tools in the machine learning community.

Given a set of data points, X = {xi}ni=1, x ∈ Rd, the pdf p(x) describes the
relative probability that the data falls into a certain event, in this case an
interval or subset in Rd. p(x) must integrate to one,

∫∞
−∞ p(x) dx = 1 and

the probability of an event B is given as p(x ∈ B) =
∫
B
p(x) dx.

In practice, the true density function of observed data is often unknown and
we have to rely on estimates. It is common to separate probability estimation
into two branches: parametric and non-parametric estimation. We start
by mentioning parametric models before we proceed to the non-parametric
methods and their derivatives, which is the part most relevant to this thesis.
Also, note that in this thesis we operate in a non-Bayesian setting1.

1We assume no prior information of the distribution, and the parameters involved are
considered deterministic in nature.

11
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2.1 Parametric models for density estimation

Parametric density estimation assumes that a parametric model for the den-
sity is known in the form p(x|θ) and one seeks to estimate the parameters θ,
such as e.g. the mean µ and variance Σ for a normal distribution [166].

Maximum likelihood estimator Given an iid2 sample from p(x|θ), X =
{xi}ni=1, x ∈ Rd, we can form the likelihood function [145]

L(θ|x) =
n∏

i=1

p(xi|θ). (2.1)

The choice of parameters θ̂ = arg maxL(θ|x) that maximizes Eq. (2.1) is
called the maximum likelihood estimator [145]. An important property of
the MLE is that it is asymptotically unbiased [166].

Mixture models Mixture models assumes in addition to a parametric
model that a point xi is sampled with probability πj from a convex combi-
nation of k elementary distributions:

p(x) = π1p1(x) + π2p2(x) + · · ·+ πkpk(x), (2.2)

∑
j πj = 1. A mixture distribution is typically estimated with the expectation-

maximization (EM) algorithm [145].

The principal manifold framework presented later in this thesis, which is
based on non-parametric methods, can in fact also be estimated via a mix-
ture of Gaussians [68, 135]. Due to practical issues related to mixture models
(the number of components and computational efficiency among others), the
experiments in the papers in this thesis used non-parametric density estima-
tors.

2iid: Independent and identically distributed.
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2.2 Non-parametric methods for density es-

timation

Non-parametric density estimation does not assume a parametric model of
the density. Instead it focuses on estimating the density directly from data.
We start with the näıve density estimator which is the most basic non-
parametric estimator (if we exclude the histogram, which is mainly used as a
visual tool).

The näıve estimator The probability of a univariate3 observation being
in a small region is

p(x) = lim
h→0

1

2h
P (x− h < X < x+ h) , (2.3)

which can be modeled similar to a histogram by counting the number of
observations within a bin of width 2h at x

p̂(x) =
1

2hn
# {i|Xi ∈ (x− h, x+ h]} . (2.4)

This results in a piece-wise constant function with height equal to the nor-
malized number of points in each bin. By replacing the bins with smooth
functions, a smooth counting function can instead be used, leading to the
kernel density estimator.

2.3 Kernel density estimation

Given a data set X = {xi}ni=1, x ∈ Rd, the kernel density estimator, also
known as Parzen window estimator, is a smoothed version of the näıve esti-
mator given as follows [154]:

p̂(x|h) =
1

n

n∑

i=1

Kh (x− xi) , (2.5)

3The extension to multivariate data is trivial.
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where Kh(u) = h−dK
(

u
h

)
is a kernel function, an integrable function that

satisfies
∫
K(x) dx = 1. The parameter h is called the bandwidth of the

kernel and determines the amount of smoothness in the density estimate.
In the univariate case we have a single scalar bandwidth h, while in the
multivariate case we can have a diagonal matrix H = hI, where I is a d× d
identity matrix, or a fully parametrized bandwidth matrix H [37].

There are many kernel functions that satisfies these properties, but in this
work unless otherwise noted we use the (multivariate) Gaussian kernel:

KH (xi,xj) =
1

(2π)d/2|H|1/2 exp

(
−1

2
(xi − xj)H

−1(xi − xj)

)
. (2.6)

In Figure 2.1 an example of kernel density estimation, with h = 1, on samples
drawn from a mixture of two Gaussians, N (0, 1) and N (10, 1).

−5 0 5 10 15

0

0.2

0.4

0.6
Kernel functions

Kernel density estimate

Figure 2.1: Example of kernel density estimation for a sample from two
Gaussian distributions with unit variance and mean 0 and 10 in R. The
bandwidth parameter h determines the width of each of the kernel functions
(blue) placed over each data point.

Other popular choices of kernel functions include the Epanechnikov kernel
K(u, v) = 3

4
(1− (u−v)2), u ≥ 1 [177], the quartic kernel K(u, v) = (1− (u−

v)2)2, u ≥ 1 [102] or the polynomial kernel K(u, v) = (αuTv + c)d.
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The kernel density estimator is under mild conditions asymptotically unbi-
ased and consistent as the bandwidth h decreases and the sample size in-
creases [138, 166, 83]. Still, in the finite sample setting we have to consider
the ever present trade-off between bias and variance. The bias and variance
can be found by Taylor series expansions of the true density function p(x),
see Wand and Jones [177] for further details:

Bias: E [p̂(x|h)]− p(x) =
h2σ2

Kp
′′(x)

2
+ o(h2) (2.7)

Variance: Var [p̂(x|h)] =
p(x)

hn
µ2(K) + o

(
1

n

)
, (2.8)

where σ2
K =

∫
u2K(u)du and µ2(K) =

∫
K2(u)du and p′′(·) denotes second

order derivatives. Here we see that choosing a small h, gives a low bias, but
high variance. In the opposite case with a large h we get reduced variance
at the cost of increased bias.

2.3.1 Gradient and Hessian of the KDE

The gradient vector ∇T p̂(x) and Hessian matrix, Ĥ(x) = ∇∇T p̂(x), of the
KDE, with scalar bandwidth h for ease of notation, is given by:

ĝ(x) = ∇T p̂(x) = − 1

n

n∑

i=1

x− xi
h2

K

(
x− xi
h

)
. (2.9)

Ĥ(x) = ∇∇T p̂(x) =
1

n

n∑

i=1

(
uiu

T
i −

1

h2
I

)
K

(
x− xi
h

)
, (2.10)

where ui = x−xi

h2
(notation adapted from [85]).

Several properties connected to the derivatives of the KDE are relevant to this
thesis. We start with the induced flow from the gradient and the flow of the
Hessian eigenvectors, known as the subspace constrained gradient flow [135,
85].

Gradient flow The gradient vector field of the probability density function
induces a flow over the support of the probability density [5].
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This can be visualized by inserting a test particle at some point in the gra-
dient field and letting it flow along the gradient field with velocity given by
the gradient vectors [86].

A kernel density estimate with a Gaussian kernel is positive definite, such
that the gradient field will always point towards local maxima in the density
estimate. Carrying out a gradient ascent scheme over the gradient flow field
will thus give integral curves that converges to a critical point, ĝ(x) = 0, of
the density. More concretely, given a differentiable function f : Rn → R (e.g.
a probability density function) the following gradient ascent scheme

xl = xl−1 + α∇f(xl−1), l ≥ 1 (2.11)

will approximate the integral curve from an initial point x0 that converges to
a critical point [5]. A simple and practical form of this scheme is the mean
shift [51, 46], which converges to the true gradient flow lines [5]:

x←
∑n

i=1 xi K
(

x−xi

h

)
∑n

i=1K
(

x−xi

h

) − x = m(x)− x. (2.12)

The vector m(x) is called the mean shift vector.

The gradient flow, represented either through Eq. (2.12) or Eq. (2.9), forms
the foundation of a range of geometric tools for analysis. We will come back
to this in Chapter 5.1.

Hessian eigenvector field The Hessian of the pdf assigns a symmetric
matrix H ∈ Rd×d to each point in the support of the density. Following
directly, the eigenvectors of the Hessian forms an orthogonal frame bundle [2].
Thus, each set of eigenvectors is an appropriate basis for Rd. If the probability
density, pM , is supported on a manifold, M , and sampled with additive
Gaussian noise, pnoise such that4 p = pM ∗pnoise [85]. Then (given low enough
noise variance) the orthogonal basis provided by the Hessian can be split
into a component approximately tangent to the manifold and a component
representing the normal space of the manifold [43].

This basis decomposition forms the foundation of the subspace constrained
mean shift algorithm presented in Section 4.2.1.

4∗ denotes convolution.
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2.3.2 Selection of the bandwidth parameter

There exists many methods for selecting the bandwidth parameter h, most of
which are based on minimizing the mean integrated square error (MISE) [177]:

MISE{p̂(x|h)} = E

[∫
(p̂(x|h)− p(x))2 dx

]
, (2.13)

and its asymptotic expansion found by Taylor expansion. These measures
form the foundation of the normal scale rule, smooth- and least squares-cross
validation methods and plug-in methods [177, 35, 37]. Assuming a Gaussian
distribution and minimizing the asymptotic MISE gives the famous Silver-
man’s rule of thumb [157], h = 1.06σ̂n1/5, where σ̂ is the sample standard
deviation [177]. A recent method proposes mixing cross-validation methods
with plug-in estimators and has shown promising results [105].

Unfortunately, none of these are optimized for density derivative estima-
tion. In a recent paper by Chacon and Duong [36], a unified framework for
data-driven density derivatives was proposed. By combining matrix theory
with the MISE (and integrated squared error), they established bandwidth
selectors specifically created for density derivative estimation. Some of the
standard methods were covered (smooth cross validation and plug in meth-
ods), and promising results were shown on both density estimation and mean
shift (requires derivatives).

Comment: In the work leading up to Paper II and Paper III, we tested
the methods of Chacon and Duong [36] as implemented in the ks package
for the R statistical programming language [142, 62]. Most experiments in
the papers of this thesis are aimed towards geometrical purposes, and even
though the methods are tuned to derivative estimation they did not perform
optimally in our experience. Instead we resorted to either manual tuning or
the heuristic of selecting the kernel size as the average distance to the kth
nearest neighbor, inspired by Shi et al. [155] and presented in Myhre and
Jenssen [131],

Obviously this is not a sustainable choice, so the problem of estimating band-
widths for use in manifold estimation settings remains an open problem.



Chapter 2. Probability density estimation 18

2.3.3 Product kernels and derivatives

The final topic we will present related to kernel density estimation is the
concept of product kernels – as used in Paper I. A product kernel is a way of
expressing a multivariate kernel as a product of univariate kernel functions:

p̂(x) =
1

n

n∑

i=1

[
d∏

k=1

Khk

(
xk − xki

)
]
. (2.14)

Khk is a univariate kernel function with bandwith hk for the kth dimension

and x =
[
x1, x2, . . . , xd

]T ∈ Rd as usual.

A nice property of product kernels is that the gradient and Hessian can be
written in combinatorial form using only univariate differentiations. The first
degree partial derivatives (elements of the gradient vector) are obtained using
the operator ∇c = ∂/∂xc with c = 1, ..., d:

∇cK(x) = K(1)(xc)
d∏

k=1
k 6=c

K(xk), (2.15)

where xc ∈ R and K(1)(xc) is the first derivative of the univariate kernel
K. Thus∇K(x) = [∇1K(x),∇2K(x), . . . ,∇dK(x)]T represents the gradient
vector. Note that we have omitted the bandwidth for notational simplicity,
we recall that it is just a scaling of the width of the kernel.

The second order derivatives are obtained with∇2
rc = ∂2/∂xr∂xc where r, c =

1, ..., d:

∇2
rcK(x) = δrc k

(2)(xc)
d∏

k=1
l 6=c

k(xk)

+ (1− δrc) k(1)(xr)k(1)(xc)
d∏

k=1
k 6=r
k 6=c

k(xk). (2.16)

This can be arranged in the d× d Hessian matrix H(x), Hij = ∇2
ijK(x).
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2.4 k-nearest neighbor density estimation

The k nearest neighborhood (kNN) density estimator is based on the intuition
that the probability density of a point is closely related to the number of
points that are close to it. It it is given as:

p̂(x|k) =
k

nvolk(x)
, (2.17)

where n is the number of data points. volk(x) is the volume of the d-
dimensional hyper-sphere centered at x with radius equal to the distance
to the kth neighbor:

volk(x) =
πd/2

Γ (d/(2 + 1))
||x− xk||d. (2.18)

xk denotes the kth nearest neighbor of x and Γ(i) = (i − 1)! is the Gamma
function. Often, to compensate for the poor scaling of the Gamma func-
tion, Γ(i), in higher dimensions, a simplified version of the kNN density is
used [174, 61]

p̂(x|k) =
k

n||x− xk||2
. (2.19)

Due to the random nature of ||x−xk||, the kNN density is harder to estimate
in terms of bias and variance compared to the KDE. This can be alleviated
by conditioning on ||x − xk||. In that case the bias and variance turns out
to be equal to the KDE bias and variance as in Eq. (2.8). Also, the tails of
the kNN estimate will in fact be smoother than the KDE estimate [122], as
a consequence of the varying nature of ||x− xk||.



Chapter 3

Differential geometry in
machine learning

In this chapter we present some fundamentals of differential geometry. Many
of these concepts form the foundation of the work done in Paper II and
Paper III. We also include well known algorithms from the machine learning
literature that exploit these fundamentals.

Differential geometry is the study of mathematical sets with smooth geometry1

in arbitrary dimensions. These smooth surfaces are called manifolds and have
been used in a wide range of problems in machine learning. The nature of
such applications varies between explicit assumptions about the data and
intrinsic assumptions on the definition concerning the problem itself. Thus,
we split the applications into three categories:

• Problems where the data themselves lie on or close to a submanifold
of the original space the data is sampled from [163, 165, 179]. This is
often referred to as the manifold assumption [16].

• Problems where the solution of the cost function that is to be optimized
lies on a manifold. For example optimization over real symmetric ma-
trices [1] or the parameter space of probability distributions [3, 92].

• Metric learning where distance measures are adapted to conform with

1This formulation is borrowed from Nicolas Boumal et al. [26] at the front page of
http://www.manopt.org/

20
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the intrinsic geometry of the data or the problem [187, 104, 178].

In this thesis the focus is strictly on the first category – the data we are
dealing with is assumed to lie on or close to a manifold of lower intrinsic
dimension than the input dimensionality of the data.

The main idea comes from the observation that data sets or data structures
seldom fill the vector space they are represented in. Even in low dimensional
settings, e.g. R3, data sets often concentrate around clearly bounded sub
regions that can be described by manifolds [27, 165, 139, 149, 88, 191].

3.1 Manifolds and related concepts

We start by defining a manifold and then proceed to present related topics
that are relevant.

A clear definition of a manifold can be found in either books of Lee or Tu,
[120, 168]:

Definition 1 A (topological) manifold is a second countable, locally Eu-
clidean, Hausdorff space.

Local Euclidean structure is analogous to how humans perceive the surface of
the earth. At smaller scales traversing a path along the surface will seem like
a straight line, but on larger (non-human) scales paths along the surface of
the earth are clearly curved. A Hausdorff space is a space where two separate
points have disjoint neighboorhoods [12]. E.g. a surface embedded in R3 that
intersects with itself will have points that shares neighborhoods and is thus
not Hausdorff.

The perhaps most well known and intuitive example of a manifold is the
sphere of radius r, Sd−1 =

{
x ∈ Rd : ||x||2 = r

}
.

Given a manifold M of dimension d, at each point p ∈M the tangent space,
TpM , is the Euclidean space of dimension d which is tangent to M at p [120].
The term tangent to, can intuitively be interpreted as either the space of
tangent vectors of all possible curves passing through p or the space spanned
by the partial derivatives of the parametrization of M at p [120]. A dis-
joint union of all tangent spaces of M is called the tangent bundle of M .
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Vectors in TpM can be expressed by a local basis of differentials Ei = ∂p
∂xi

.
These are called the normal coordinates at p [120]. These normal coordinates
parametrizes a Euclidean subspace of same dimension d as M . Figure 3.2
shows an illustration of the concepts presented above.

Figure 3.1: Concepts from differential geometry illustrated on the sphere
embedded in R3.

Smoothness in a manifold can be defined either through smooth coordinate
chart transitions or through the smooth change of the metric tensor of the
manifold [120].

A coordinate chart is a homeomorphism2 φ between an open subset U of the
manifold M and a open subset of Rd [1]. Given different charts φ and ψ,
the coordinate transformations φ ◦ ψ−1 : Rd → Rd and ψ ◦ φ−1 : Rd → Rd

from chart to chart should be smooth, i.e. C∞ (derivatives of all orders
should exist)[1]. A set of (overlapping) charts covering M is called an atlas
of M [139]. The metric tensor of a manifold M is a symmetric and positive
definite function GM ∈ Rd×d that determines inner products on each tangent
space TpM [120]. This enables the calculation of length and angles locally
at each point of the manifold. If the choice of metric varies smoothly, we

2A continuous function between topological spaces with a continuous inverse.
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Figure 3.2: A common way of defining the smoothness of manifolds: the
maps φ ◦ ψ−1 and ψ ◦ φ−1 should be smooth.

say that the manifold is a Riemannian manifold. In Euclidean space the
metric is defined such that the distance between two points is described by a
straight line. On Riemannian manifolds the idea of a straight line is replaced
by a geodesic, which informally can be described as the shortest path along
the manifold between two points [120]3.

A vector v ∈ TpM can be mapped to M by following the geodesic starting
at p for a time equal to the length of v as measured by the metric tensor
(we assume that the geodesic is parametrized by a single variable, hence the
term ‘time’ is used). We denote this mapping as the exponential map. The
inverse mapping from M to TPM is the logarithmic map [27].

Finally we introduce the concept of submanifolds and embeddings. A sub-
manifold is a manifold that is embedded in another manifold (often called
the ambient manifold). Surfaces – e.g. the sphere in R3 – are perhaps the
simplest example of an embedded manifold. Formally, the mapping from the
ambient manifold to the submanifold is an embedding if it is injective and
homeomorphic [58].

Throughout this thesis (and in most machine learning applications) all man-

3The formal definition of the geodesic is dependent on the connection or covariant
derivative of the manifold [120], which is beyond the scope of this text.
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ifolds considered are submanifolds embedded in Euclidean space RD [120].
This is common, but not often stated, in most applications where the mani-
fold assumption is in place.

3.2 Manifold learning

The family of machine learning algorithms that assume that data lie on or
close to an underlying manifold is called manifold learning. How to actually
learn something about the underlying manifold is manifested in a multitude
of approaches. Some methods aim to implicitly approximate the structure of
the underlying manifolds, while other methods aim to ‘unfold’ the manifold
such that the data approximately resides on a linear subspace. We begin
by briefly describing a few algorithm that inspired our work. Non-isometric
manifold learning [59] learns the tangent space of each point on the mani-
fold estimated from a point set and suggests several practical algorithms for
inference on the tangent space estimates. The Atlas approach of Pitelis et
al. [139] learns overlapping local linear approximations and joins them to-
gether to form an atlas over the manifold. Maximum variance unfolding –
later renamed semi-definite embedding – [178] learns a function that max-
imizes the pairwise distances between data points while at the same time
constraining neighboring distances to stay fixed. This will in effect stretch
out or unfold the manifold. Brun et al. [27] learns smooth geodesics along
the manifold by spline interpolations of paths from Dikjstras algorithm [57].
This allows for approximate local coordinates on the manifold – an intrinsic
unfolding of the manifold. Finally, we mention Ke Sun et al. [163] who pro-
posed a data transformation that minimizes curvature and entropy, also in
an attempt to unfold the underlying structure in the data.

The latter idea, trying to unfold or unwrap manifolds such that the data
space in practice becomes close to linear (flat), has received a lot of attention
the last decade [165, 149, 179, 15, 53, 190, 147, 164]. There are multiple
benefits to this concept:

• Many fundamental machine learning algorithms – such as e.g. sup-
port vector machines, k nearest neighborhood classification or random
forests [166, 53] – only requires pairwise distances as inputs. If the data
resides on a manifold, pairwise distances comes in the form of geodesics,
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which are notoriously hard to compute. A flattened manifold would in
principle enable Euclidean distances.

• A manifold that has been flattened or unfolded will in addition allow
the use of linear statistical methods. This is clearly a major benefit
since linear methods are well established.

• Visualization: Data sets that exhibit high curvature, or are embedded
in higher dimensions than three cannot be visualized properly. Un-
folded structures are much easier to visualize [163, 169].

In practice, unfolding or unwrapping a manifold can intuitively be performed
in two different ways. Either we use some function that stretches or flattens
the manifold directly, or we can somehow estimate the structure of the man-
ifold such that we can treat the manifold like a Euclidean space. Finally
we acknowledge the fact that manifold learning and dimensionality reduction
are most often part of the same algorithm, [28, 170, 166]. In practice this
means that some methods tries to learn the structure of the manifold, some
methods reduces the dimensionality of the data, and some methods combine
both. Our contributions in this thesis, mostly represented by Paper II, are
not directly concerned with dimensionality reduction, which therefore will
not be discussed in further detail.

In the next section we will present a selection of algorithms from the mani-
fold learning literature. These methods have either been used in this thesis
or illustrates essential ideas within manifold learning and have all influenced
the work in this thesis. Notable references for this section is the techni-
cal report of van der Maaten et al. [170] and the book of Theodoridis and
Koutroumbas [166].

3.2.1 Linear methods for manifold learning

We begin by introducing the linear projection methods of principal compo-
nent analysis (PCA) and multidimensional scaling (MDS). These are widely
used in statistics and machine learning, and have also been applied in Paper
II and Paper IV.

Let X = {xi}ni=1, x ∈ RD be a D-dimensional data set consisting of n data
points. We then seek a representation Y ∈ Rd×n where d < D.
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Principal component analysis reduces the dimensionality of X by lin-
ear projection to the top d eigenvectors of the sample covariance matrix,
Σ [109]. Eigendecomposition of Σ yields Σ(X) = XXT = UΛUT , where
U is the matrix containing eigenvectors as rows and Λii = λi is a diagonal
matrix containing the eigenvalues. Y , the transformed data will be the first
d columns of U , U1,...,d. An out-of-sample point x̂ can be directly projected
ŷ = UT

1,...,dx̂.

The construction of PCA can either be interpreted as minimizing mean
squared error or total variance (since Var(X) =

∑
i λi) [166].

Considering the geometry involved in the sample covariance eigendecompo-
sition, PCA can be interpreted as fitting an ellipsoid to the data. The axes
of the ellipsoid represents variance in the data and dimensionality reduction
is performed by eliminating minor axes of the ellipsoid.

Multidimensional scaling is closely related to PCA, but takes a pair-wise
dissimilarity matrix, DX , between the data points as input. The objective is
to reduce dimension while keeping the distances in the low dimensional space
as close as possible to the original data space. The cost function is framed
as:

minimize
y

∑

ij

(
d2ij − ‖yi − yj‖2

)
, (3.1)

where yi ∈ Rd is the low dimensional representation of X. The solution to
(3.1), [166], is the top d eigenvectors of the doubly centered Gram matrix,
K = −1

2

(
I − 1

n
11T

)
DX

(
I − 1

n
11T

)
, multiplied with the square root of the

eigenvalues such that Y = ΛT
1,...,dU1,...,d, where U and Λ is as defined for PCA.

Multidimensional scaling has been used as a component in several mani-
fold learning algorithms, perhaps most notably in ISOMAP [165] and non-
isometric manifold learning [59].

As a final note, these are linear methods such that they must be used with
care; for a data set with high curvature, both PCA and MDS could result in
unwanted flattening if the dimension is reduced too much.
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3.2.2 Nonlinear methods for manifold learning

In this section we present three benchmark algorithms for non-linear man-
ifold learning, isometric mapping (ISOMAP) [165], maximum variance un-
folding (MVU) [180] and Laplacian eigenmaps [15]. We also present two
lesser known algorithms, based on normal coordinates of the manifold, rie-
mannian manifold learning and fast manifold learning based on Riemannian
normal coordinates [124, 27]. The latter two are coordinate unfolding taking
place in the tangent space of some reference point, which is similar to our
work in Paper II and Paper III.

ISOMAP ISOMAP replaces the pair-wise distances of MDS with approx-
imate geodesic distances calculated using Dijkstra’s algorithm [57]. This will
result in an isometric unfolding of the manifold. It builds on the assumption
that the data we are given is sampled from a manifold without noise [165],
and that this manifold can be sufficiently modeled by nearest neighborhood
graph G.

Maximum variance unfolding MVU, is one of the first manifold learning
methods to actually explicitly require an unfolding of the data. MVU is a
cost function based approach, where the unfolding is formulated as stretching
the dataset as much as possible by maximimizing the variance, while at the
same time keeping nearest neighbor distances intact:

maximize
∑

ij

1

2n
‖yi − yj‖2

subject to ‖xi − xj‖2 = ‖yi − yj‖2, ∀i, j ∈ G,
(3.2)

where G is the nearest neighborhood graph over the input space, x are in-
put points and y are the desired (unfolded) outputs. The optimization is
reformulated and solved as a semi-definite program [180, 118].

Laplacian eigenmaps Laplacian eigenmaps is a spectral manifold learn-
ing technique similar in construction to MVU. Given a sparse weighted graph
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Gij between points xi and xj, Laplacian eigenmaps seeks an optimal embed-
ding, φ, in a lower dimensional space:

φ(Y ) =
∑

ij

‖yi − yj‖2wij, (3.3)

where wij are weights (often generated from a Gaussian kernel, Eq. (2.6)),
and y are the desired output points. This is rewritten and solved as an
eigenvalue problem:

D−1Ly = λy, (3.4)

where Dii =
∑

j Gij is the degree of G and L = W −D [170]. The optimal
embedding, that keeps neighborhoods close, is given by the top d+ 1 eigen-
vectors (The largest eigenvector is all ones and is omitted as it contributes
nothing to the solution).

All of the three algorithms mentioned above have shown strong empirical re-
sults in many settings, but are limited by construction. Noise and shortcuts
in the nearest neighborhood graph can destroy the topology of the embedding
for both ISOMAP and MVU [173, 29]. This is due to poor approximations of
geodesics in ISOMAP and erroneous constraints added in MVU. Moreover,
there is an underlying assumption, in MVU and ISOMAP, that the manifold
is isometric to Rd, which limits the number of manifolds that can be rep-
resented, see e.g. [139]. This implies the (quite strong) assumption that a
manifold can be represented by a single chart, and aims to find mapping from
the manifold to the chart, M → Rd. In fact for a manifold to be described
by a single chart it has to be a developable (intrinsically flat!) surface [148].

The embedding of the Laplacian eigenmaps is optimal, [15], in the sense
described by the cost function. But exactly what that embedding encodes
is very hard to interpret in practice. Also recent research shows that the
Gaussian kernel is flawed when not used in Euclidean geometry [70].

Methods based on normal coordinates Fast manifold learning based
on Riemannian normal coordinates (FastML) [27] and Riemannian manifold
learning (RML) [124] aims to learn a flat representation of a manifold by
calculating Riemannian normal coordinates.

Normal coordinates represent points on the manifold, M , through coordi-
nates in the local tangent space TpM [120]. A point in TpM represents a
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point on the manifold via the exponential map, see Section 3.1. Intuitively
the normal coordinates represents a flat, or Euclidean, version of the mani-
fold.

FastML [27] selects a single reference point and calculates the approximate
geodesic distance to all points on the manifold. To obtain the approximate
normal coordinates – represented by radial geodesics [120] – the directions of
the geodesics are estimated via the finite difference gradient of the geodesic
path. The dimension of the manifold is estimated through PCA on a neigh-
borhood around the reference point.

RML [124] is very similar to FastML, except that several local charts are
allowed (PCA on more than one reference point). Also, the geodesic ap-
proximation using Dijkstra is replaced by a more sophisticated algorithm,
making use of smooth second-order polynomials. It also suggests an incre-
mental learning approach, such that out-of-sample points can be directly
included.

Both these methods are sensitive to noise due to the graph based approxi-
mations of geodesics. Moreover, in the FastML case the entire manifold will
again be represented by a single chart, which we know is a limiting factor.

Learning a manifold as an Atlas Both ISOMAP and MVU are global
methods that are sensitive to noise. All manifold learning methods mentioned
so far do not take into account that the manifold can be sampled with noise.
In addition, ISOMAP, MVU and FastML are global methods that try to
represent the manifold with a single chart.

The Atlas algorithm [139] represents a mix between local and global strat-
egy and can handle noisy samples from the manifold. The algorithm relies
on creating overlapping charts by local linear approximations through local
PCA. An optimization scheme alternating between assigning points to charts
and estimating the parameters of the charts is employed. Moreover, a reg-
ularization term is also added to constrain the number of charts to give a
compact representation of the manifold.

Atlas is somewhat different from the other methods mentioned. It does not
require the manifold to be flat or to obey Euclidean geometry, instead it
learns a representation of the manifold through the collection of charts. The
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representation was shown to give positive results on kNN classification [139]
and semi-supervised learning [140].

3.2.3 Calculating geodesics

Calculating geodesics is an important step in many manifold learning al-
gorithms and for applications inspired by differential geometry such as e.g.
image registration [14, 128, 31]. In this section we review three different
frameworks for calculating geodesics:

• Graph based algorithms: Dijkstra’s algorithm.

• Intuitive engineering approaches: Snakes and gradient descent.

• Calculus of variation: Euler-Lagrange.

Dijkstra’s algorithm Dijkstra’s algorithm is a solution to the single source
shortest path problem in a connected graph with positive weights – it finds
the shortest distance between two given vertices in a graph [57]. The algo-
rithm has been extensively used in manifold learning approaches [165, 27,
124]. Pseudocode for the algorithm is given in Algorithm 1. Several exten-
sions to Dijkstra’s algorithm have been made, see e.g. [21, 78], and in Berstein
et al. [20] it was proven that the algorithm will asymptotically approximate
geodesics on the manifold (given some conditions).

A major problem when using Dijkstra’s algorithm in manifold learning – or
statistical settings in general – is the fact that the graph needed to calculate
the shortest path is very sensitive to noise [139]. The most common approach
to handle this problem in manifold learning is through regularization using
splines or polynomials [27, 124].

Geodesics by gradient descent An alternative approach for calculating
geodesics, inspired by so-called snakes used in computer vision [111], was
proposed by Dollar et al. [59]. The idea is to minimize the length of a
discretized path between two points by gradient descent.

minimize
m−1∑

i=2

||γi − γi−1||2, (3.5)
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Input: Graph G(V,E) with nodes v ∈ V and edges e ∈ E and source node
s

Output: Shortest path from s to all other nodes V
dist[s]=0;
for all v ∈ V − {s} do

dist[v]←∞;
end
S ← ∅;
Q← V ;
while Q 6= ∅ do

u← mindistance(Q, dist) ; // Element in Q with minimum

distance

S ← S
⋃{u};

for v ∈ neighbors[u] do
if dist[v] > dist[u] + e(u, v) then

dist[v]← dist[u] + e(u, v)
end

end

end
Algorithm 1: Dijkstra’s algorithm

where γi is the path between two data points xi and xj, often initialized
with Dijkstra’s algorithm. To avoid shrinking the path to a single point,
the start and endpoints are held fixed, γ0 = xi and γm = xj. Also, some
constraints need to be imposed to force the trajectory to stay on the manifold,
either by projection (as in Paper II) or by de-noising [59]. The geodesic can
thus be approximated by alternating between minimizing (3.5) and manifold
projection/de-noising.

This method produces smooth geodesics, but needs a good initialization as
well as some measure of whether the curve stays on the manifold or not. The
latter is needed to formulate a stopping criteria for the algorithm in practice.

Geodesics by Euler-Lagrange In the case of a Riemannian manifold M
with a given metric GM , the distance between two points on the manifold is
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given as

length(γ) =

∫ √
γ′(t)TGM(γ′(t))γ′(t)dt, (3.6)

where γ : [0, 1] → M is the path between two data points xi,xj ∈ M and
γ′(t) = dγ(t)/dt [104]. The particular γ that minimizes equation (3.6) such
that γ(0) = xi and γ(1) = xj is a geodesic. Solving (3.6) requires the
Euler-Lagrange equation to hold:

∂L

∂γ
=

d

dt

∂L

∂γ′
, (3.7)

where L = γ′(t)TGM(γ′(t))γ′(t). Thus, assuming GM is known, we can
solve the equations using numerical solvers [104, 98]. In practice, the metric
tensor GM is rarely known or given, so it has to be estimated from the data
or constructed through known quantities in the problem formulation. This
is known as metric learning and is an entire branch of machine learning in
and of itself, which will not be further discussed here. See the review papers
by Kulis [116] or Bellet et al. [17].

3.2.4 Intrinsic manifold learning methods

As a final comment, we mention the area of research which is devoted to
what we call intrinsic manifold learning. Here, contrary to the previously
presented material, the manifold structure does not come from the geometric
structure of the data, but instead from the geometric structure of the problem
formulation. Examples include:

• Optimization problems formulated over symmetric matrices that re-
strict the solution space to a smooth manifold [1, 187, 47].

• Shape deformation in images that can be modeled by a specific manifold
structure [72, 73].

• The fact that parameter spaces of statistical models exhibit manifold
structure [92, 3].

• Optimization over the manifold of linear subspaces (the Grassmannian
manifold) [103, 10].



Chapter 4

Principal manifolds

In this chapter we present principal manifolds and corresponding algorithms.
These have been used extensively throughout this work, and connects the
ideas from differential geometry with kernel density derivatives (Section 4.2).

Principal manifolds are in general considered to be curves or surfaces that
somehow pass through the ‘middle’ of the data. Obviously the term ‘middle’
of the data is ambiguous, and many different definitions exist. We will present
a selection of algorithms from the literature and end this section with the
concept of principal manifolds defined as the ridges of the probability density
function. This is the definition most relevant to this thesis.

4.1 Principal curves

The notion of a principal curve was originally introduced by Hastie and Stuet-
zle [100] as an extension from linear principal component analysis (PCA) to
‘curves that pass through the middle of the data’. It was further developed
to include principal surfaces and in general principal manifolds [191, 96].

A key point of principal curves and surfaces is that they allow a statistical
framework to be formulated around the concept of estimating an underlying
manifold [88].

We start with Hastie and Stuetzles definition of a principal curve or surface,
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which is rooted in the ideas of orthogonal subspaces and self consistency.

Definition 2 (Orthogonal subspace) Given a curve γ : I → RD, the
orthogonal subspace at a point γ(t), t ∈ R, is the space N such that all
vectors v ∈ N satisfy vTγ′(t) = 0.

γ′(t) = 0 is the tangent vector of γ at t. This definition extends naturally
to a general surface S by replacing γ′(t) with TpS, the tangent space of the
surface at a point p.

A principal curve is defined by the idea of self consistency.

Definition 3 (Self consistency) A curve γ(t), t ∈ R, is said to be self
consistent if all points along the curve is the average of all points projected
to it, γ(t) = E

(
x|t̂γ(x) = t

)
,

where t̂γ(x) is called the projection index of x, the closest point t in γ to x.

Definition 4 (Principal curve) A curve is a principal curve if it satisfies
the self consistent property.

In other words, the principal curve itself is the average value of points or-
thogonally projected onto the curve (the expected value of the orthogonal
subspace). Figure 4.1 shows a conceptual illustration of the self consistency
criteria on a sinusoidal curve sampled uniformly with small spherical Gaus-
sian noise.

To end this introduction to principal curves we note that the extension to
cover principal surfaces and principal manifolds in general is trivial. Defi-
nition 2 can be directly extended to any arbitrary manifold where the tan-
gent space and normal space is well defined, and thus the principal sur-
face/manifold viewed as the expected value of points in the orthogonal sub-
space follows trivially.

4.1.1 Extensions and alternative formulations

Whilst being an intuitive and elegant proposal for locating nonlinear curves or
surfaces in point clouds, the self consistency is by construction flawed. In fact,
the optimal solution is a space-filling curve [88] and all practical solutions
requires some form of regularization. In this section we present some of the
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Figure 4.1: Illustration of the self consistent property. The principal curve
is the expected value of all points orthogonally projected onto the curve.

most important extensions and alternative formulations of principal curves
and surfaces that has seen practical use.

Kegl et al. [112] suggested a principal curve as a continuous curve of fi-
nite length that minimize the expected squared distance to the curve. This
enabled them to prove that for any distribution with finite second order mo-
ments the principal curve always exist and develop two versions, one optimal
and one efficient, of the polygonal line algorithm for practical implementa-
tion.

As noted by Einbeck et al. [65] and Delicado [55], there are several other flaws
in the original construction of principal curves. Most notably the principal
curve estimate is often strongly biased. They are also not able to handle
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self intersecting or crossing curves1. Also, both the algorithms og Hastie and
Stuetzle [100] and Kegl et al. [112] are dependent on initialization using the
first linear principal component, which can in many cases lead to a poor es-
timate. Delicado [55] formulated principal curves as smooth curves passing
through principal oriented points, a point-wise interpretation of self consis-
tency. The local principal curve algorithm of Einbeck [65] presented a more
practical version where the first principal component of the local centers of
mass defines the principal curve. The local centers of mass are calculated
through a kernel function weighted mean.

Related and with many successful applications, but different in construction
and idea, is the elastic principal graph for estimating principal manifolds by
Gorban and Zinovyev [95], where a grid approximation with varying amounts
of elasticity is used to model principal manifolds.

There exists a plethora of different algorithms for estimating or identify-
ing curves, surfaces or manifolds from point clouds, too many to mention
here. Well known examples include self-organizing maps [114], nonlinear
principal component analysis [60], principal geodesic analysis [73], curvilin-
ear component analysis [56], local tangent space alignment [191], ridgeline
manifolds [144], riemannian principal curves [102] and probabilistic principal
surfaces [38].

4.2 Principal manifolds as ridges of the prob-

ability density function

Ozertem and Erdogmus [135] presented a new view of principal curves and
surfaces. Instead of formulating principal curves as self-consistent curves
passing through the data, they proposed to define principal curves as the
ridges – or more generally the critical sets – of the underlying probability
density function of the data which the curve or surface passes through.

To enhance the intuition behind a principal curve as the ridge of a probability
density function, we include an example shown in Figure 4.2. In Figure 4.2b

1We have to note here that a smooth manifold cannot have self-intersections, so we have
to be careful to separate between algorithms to estimate manifolds and true manifolds.
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we see a noisy sinusoid on the two horizontal axes (x and y) and the proba-
bility density on the vertical (z) axis. From this viewpoint the idea of a ridge
is quite clear, completely analogous to the ridge of a mountain range.
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(a) Density ridge (red), data points
(blue), and kernel density estimate
(contours).
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(b) Density ridge (red), data points
(white), and kernel density estimate
(surface plot).

Figure 4.2: Example of the density ridge for a sinusoid sampled with
N (0, 0.03I) additive noise.

The extension to ridges of higher dimension is not as picturesque as seen in
the sinusoid example, but the formal definition is directly generalisable.

The ridge interpretation has two direct implications; first it allows the regu-
larization of the principal manifold to be directly inherited from the smooth-
ness of the underlying pdf – a well established subject in the case of kernel
density estimation [177]. Second, it presents an alternative form of the self-
consistency criteria, the density ridge is the local maxima of the orthogonal
subspace, not the expected value.

Given a data set X = {xi}ni=1, x ∈ Rd, we define the modes2 and ridges of
the probability density as (notation adapted from [42]):

M = mode(p) =
{
x ∈ RD : ∇p(x) = 0, λi(x) < 0, ∀i

}

R = ridge(p) =
{
x ∈ RD : V (x)V (x)T∇p(x) = 0, λD−d(x) < 0

}
.

Where V (x) is a subset of the eigenvectors of the Hessian of the pdf at x and
d represents the dimensionality of the ridge. The spectral decomposition

2We note that a mode of the pdf can be considered a zero dimensional ridge or manifold.
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of the Hessian of the pdf is H(x) = Q(x)Λ(x)Q(x)T , where Q(x) is the
matrix of eigenvectors sorted according to the size of the eigenvalue and
Λii(x) = λi, λ1(x) > λ2(x) > . . . , is a diagonal matrix of sorted eigenvalues.
Furthermore Q(x) can be decomposed into

[
Q‖(x) Q⊥(x)

]
, where Q‖ is the

d first eigenvectors of Q(x), and Q⊥ are the D − d smallest.

Definition 5 (Ozertem 2011) A point x is on the d-dimensional ridge, R
of its probability density function, when the gradient g(x) is orthogonal to at
least D − d eigenvectors of H(x) and the corresponding D − d eigenvalues
are all negative.

The intuition behind the definition of a ridge is as follows: If a point lies
on a ridge of the pdf the density value should ideally decay sharply in the
direction that points away from the ridge resulting in high curvatures (λ <<
0). Conversely, moving along the ridge should yield much less variation in
density, resulting in low curvature (λ ≈ 0).

Comparing to the differential geometry framework presented in Chapter 3,
we can note a few observations:

• For a point, x, in R, g(x) ∈ span
(
Q‖(x)

)
. Thus (considering R as a

manifold), Q‖(x) is a basis of TxR.

• Since g(x)TQ⊥(x) = 0, the normal space of R is span (Q⊥(x)).

A direct consequence is that the collection of all parallel eigenvectors Q‖ is
a tangent bundle of R.

Finally we note that the word ridge is as seen earlier most intuitive in the
one-dimensional case. A two-dimensional ridge amounts to a two dimensional
surface or, as Genovese et al. coined it, a wall [84]. Nonetheless we keep the
term ridge for any curve, surface or higher dimensional manifold that satisfies
Definition 5.

4.2.1 Subspace constrained gradient flow: projecting
noisy points onto the ridge

The observation that principal manifolds, modeled by the ridges of the pdf,
are the maxima of the orthogonal subspaces allows for a simple algorithm to
project noisy points onto the ridge [135].
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Figure 4.3: Example of the SCMS algorithm. A noisy one-dimensional man-
ifold is sampled with noise 4.3c, and we see that the ridges capture the un-
derlying structure. In 4.3a and 4.3b, we see a comparison between zoomed
in versions the mean shift and the SCMS trajectories.

Recall from Chapter 2 that the mean shift algorithm approximates the gra-
dient flow of the pdf and converges to a local maximum of the pdf. It follows
directly from Definition 5 that the modes are a part of the ridge, [85, 135].
Furthermore, a point that is close to the ridge should lie in the orthogonal
subspace of some point on the ridge (represented by the last D− d eigenvec-
tors of the Hessian).

Thus, a point can be projected towards the density ridge by following the
mean shift flow projected onto the local orthogonal subspace.

Given mean shift as defined in Eq. (2.12) and V (x) = Q⊥(x) , the (orthogo-
nal) subspace constrained mean shift (SCMS) [135] is given as:

x→ V (x)V (x)Tm(x)− x. (4.1)

This allows noisy points to be projected onto the underlying smooth manifold
represented by the ridge. Stopping criteria for the SCMS can either be when
the steps are below a certain threshold or via checking if the gradient is
orthogonal to the orthogonal subspace, ||V (x)Tg(x)||/||g(x)|| < ε.

In Figure 4.3 Figure 4.4 we see examples of the SCMS on one- and two-
dimensional manifolds respectively.

The convergence of the SCMS algorithm has not yet been completely proved.
Ghassabeh et al. [90] showed that it inherits the convergence properties of
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Figure 4.4: Example of the SCMS for a two-dimensional manifold sampled
with noise.

mean shift and that the steps between the projected gradients (V (x)V (x)Tm(x))
goes to zero such that the algorithm is useful in practice. Furthermore, given
the existence of a smooth underlying manifold sampled with small noise,
Genovese et al. [85] showed that the ridges are consistent estimators of the
underlying manifold under Hausdorff loss.

Finally, what often comes up when discussing estimation, is ‘the curse of di-
mensionality’ [18]. As dimension increases kernel density estimation becomes
exponentially harder. This is due to the number of data points needed to fill
the space increases exponentially. Since kernel density estimation dominates
this thesis we simply have to be careful with dimensions that are too high.
However, some results are promising, such as the work by Adler et al. [2],
where the reach, a practical estimator for the curvature of the manifold, was
shown to be independent of the ambient space.

In the next chapter we leave the world of manifolds and move on to introduce
related concepts from unsupervised learning.



Chapter 5

Unsupervised learning –
Clustering

This chapter introduces clustering, a slightly different concept compared to
the previous chapters. We convey how mode seeking clustering is related
to density derivatives and present general algorithms for clustering, both
relevant to work presented in Paper IV.

Clustering algorithms aim to find natural subsets that reflects underlying
structure in data without a priori information or human guidance – in some
sense the purest form of unsupervised learning [99, 71, 108, 107]. In general, a
clustering algorithm should assign data points into groups such that members
within a cluster should be more similar to each other than to members from
other clusters.

Clustering has been used in a wide range of applications, such as cosmic
web reconstruction [44], pose estimation for the Microsoft Kinect R© com-
puter vision system [156], clustering of galaxies [4], grouping of biological
sequences [81, 64, 115], air traffic analysis [80, 94], medical image segmen-
tation [66, 159] among many others. It is also a growing field with many
novel contributions in recent years, including robust multi-way clustering [30],
sparse subspace clustering [67], clustering based on optimal transport [33],
consistent methods for tree based clustering [39], ensemble clustering using
matrix completion [185], methods from deep learning [183] and large scale
graph methods [136].

41
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Clustering is too big a field to be fully described in this text. The excellent
survey papers in the following references are most recommended [176, 173,
71, 108, 107, 125].

We start with the definition of clustering by Jain [107].

Definition 6 (Jain 2010) Given a representation of n objects, find K groups
based on a measure of similarity such that the similarities between objects in
the same group are high while the similarities between objects in different
groups are low.

Traditionally it has been common to separate clustering algorithms into hi-
erarchical methods and partitional methods.

Hierarchical clustering results in a hierarchy of nested clusters. There are two
common modes of hierarchical clustering. Agglomerative where each data
point is initialized as a single cluster and then recursively joined to form a
hierarchy of clusters ending in a single global cluster. Famous algorithms
include single-, average- and complete-linkage [166, 97, 153]. The opposite
direction with recursive splitting from a single cluster to each data point
being a single cluster is called divisive, but is seldom used in practice.

Partitional clustering aims to find a single global clustering that partitions
the data space into separate regions. There exist many practical considera-
tions in the partitioning of the data space such as hard, fuzzy or probabilistic
assignments or how to select the actual number of clusters wanted – a pa-
rameter that is needed as input in most cases. Well known algorithms such
as mean shift [51], k-means [74] and mixture models by expectation maxi-
mization [145] are partitional clustering algorithms.

A taxonomy of clustering, including the most well known general algorithmic
schemes, is shown in Figure 5.1.

5.1 Density based clustering

A particular sub-field of partitional clustering most relevant to this thesis
is density based clustering [125]. In density based clustering, the clusters
are assumed to be associated with properties of the underlying probability
density function of the data. The most common assumption is that connected
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Figure 5.1: A taxonomy of clustering approaches. The contributions of this
thesis are mostly in the areas marked with red.

regions of high density defines a cluster. This makes for an explicit and data
driven definition of cluster structure [34].

Density based clustering (similarly to density estimation, see Section 2.1) is
commonly divided into parametric and non-parametric methods. Here we
focus exclusively on non-parametric methods.

Non-parametric methods can be further divided into mode seeking methods
and level set methods [125]. Mode seeking methods identify local modes
(maxima) of the data density function and takes them as cluster centers [61].
All points in a local basin of attraction connected to a local mode are con-
sidered to be in the same cluster. Conversely, level set methods, also called
cluster tree methods [39, 54], are based on the idea that if one thresholds the
pdf such that only areas of high density are left, then regions that are still
connected should be clusters [34].
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(a) The principle of level set clus-
tering. The regions marked in
blue represents connected com-
ponents of the level set.

(b) The principle of mode seeking clus-
tering. The gradient ascent towards
local modes induces a partition of the
support of the pdf.

Figure 5.2: The two main frameworks of non-parametric density based clus-
tering.

5.1.1 Clustering by level sets

Level set clustering is based on the idea that connected regions of high density
is a natural representation of a cluster [39, 162]. Depending on context the
terms population clustering and cluster trees have also been used [54, 9].
Given a probability density p in Rd we define the level set:

L(λ) =
{
x ∈ Rd : p(x) ≥ λ

}
, λ ∈ (0,max (p)) . (5.1)

Given an estimate of p(x), most often in the form of a KDE, the goal is to
identify connected components of L(λ). Cuevas et al. [54]1 formulated it as
finding “islands of high probability in a sea of low probability”.

Finding connected components is usually formed as a graph problem [125].
Given a certain threshold λ∗, a graph Gλ∗ with vertices consisting of all points
in L(λ∗) is formed. The problem is thus reduced to identifying connected
components of Gλ∗ [54].

The challenges of clustering in this context lies in both determining connected
edges in Gλ and setting the proper threshold λ. A range of studies have used
different values of λ and created hierarchical cluster trees [125, 9]. Li et
al.[121] proposed a mix between modal clustering tree based level sets. In
Figure 5.2a, the basic concept of level set clustering is illustrated.

1See also Figure 9 in Paper III.
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5.1.2 Mode seeking – Clustering by following the gra-
dient

A different, but related application of kernel density derivatives is clustering
by mode seeking. As mentioned in Section 2.3.1 each point in the support of
a pdf p will have a gradient flow that converges to a local maximum (∇p = 0).
A simple illustration of this is presented in Figure 5.2b.

This will indirectly lead to a partition of the input space [89]. See Chacon [34]
for a thorough and theoretical account of the idea of basin of attraction for
clustering. This forms the foundation of clustering by mode seeking.

A number of different strategies have been proposed for finding local modes,
or equivalent approximations.

Mean shift This algorithm is the most straight-forward exploitation of the
gradient flow [51, 87, 46, 5]. For each input data point, or a grid of values
over the input space, the mean shift trajectories are calculated:

x←
∑n

i=1 xi K
(

x−xi

h

)
∑n

i=1K
(

x−xi

h

) − x = m(x)− x. (5.2)

Each point that converges to the same local maximum (within a certain
numerical threshold) are said to be in the same cluster.

Modal EM The modal EM algorithm reformulates the expectation max-
imization algorithm to consider kernel density estimation as a mixture of n
Gaussians [121], and adapts it to find local maxima instead of maximizing
the likelihood. This enables formulating mode seeking as an EM algorithm.

mk =
πkpk(xr)

p(xr)
, k = 1, . . . , n (5.3)

xr+1 = argmax
x

n∑

k=1

mk log pk(x). (5.4)

This has several benefits: Other models, even parametric, can be used to
find modes, it is computationally efficient and proven to be an ascending
algorithm [121].
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Other algorithms: DBSCAN and clustering via search and find
Density based spatial clustering of applications with noise (DBSCAN) is a
clustering algorithm that captures modal regions [69]. It is thus not restricted
to unimodal clusters, such as mean shift and related algorithms [34, 125]. The
basic idea of DBSCAN is that for each point in a cluster the density of its
corresponding neighborhood should be above some threshold. Clusters can
be found using an iterative and sequential approach, and it is not sensitive
to noise [69, 125]. However, it is dependent on two parameters, one for
determining neighborhood size and one determining the minimum number of
points in each cluster. Several extensions have been suggested [22, 113, 125].

Clustering by fast search and find of density peaks [146] is similar in con-
struction to DBSCAN. It is a mode seeking algorithm, and is based on two
assumptions. (1) cluster centers (modes) are surrounded by neighbors with
lower local density. (2) cluster centers are (relatively) far from other points
with higher local density. The algorithm calculates a decision graph based
on the distances to points with higher density, which is thresholded to obtain
a clustering.

Both of these methods represent successful mode seeking (or mode region
seeking in the case of DBSCAN) based on a more heuristic approach than
mean shift.

5.2 Ensemble methods in clustering

Inspired by the success of ensemble methods in classification, the field of en-
semble clustering has emerged [173, 107]. The idea consists of combining a set
of weak – fast and simple like e.g. k-means [166] – clusterings with either dif-
ferent initializations, different parameters or different algorithms altogether,
to form a clustering ensemble such that consensus over the ensemble forms
a more robust clustering than a single algorithm will give. Empirical results
have clearly shown the potential of such methods [161, 77, 173, 75].

General approaches in ensemble clustering can be separated in two stages.
The first stage builds the clustering ensemble and the second stage calcu-
lates the consensus over the repeated clusterings. In building the clustering
ensemble there is naturally a lot of variation since in principle any cluster-
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ing algorithm, parameter selection or initialization can be applied in virtu-
ally infinitely many combinations. The main difference within the family
of ensemble clustering algorithms comes from how the consensus over the
ensemble is established. Here we find two prominent directions, median
partition based algorithms and co-association, or consensus matrix, based
methods [123, 75, 173].

The median partition problem is based on optimizing a cost function that
finds a partition P (clustering) that is as close as possible to all the different
partitions in the ensemble: P̂ = arg max

∑
j Γ(P, Pj), where Γ is a similarity

measure between partitions. We will not go into further details, but refer to
the survey paper by Vega-Pons ans Ruiz-Shulcloper [173].

The co-association strategy for calculating consensus can be considered a
voting or counting process. In the counting process, a clustering algorithm is
run repeatedly, and how many times a point is clustered in the same cluster,
or how many times a point is clustered with another point, is counted.

Given an ensemble of M clustering trials, the elements of S, the counting-
or co-association matrix [75, 76, 129], is then calculated by

sij =
nij
M
, (5.5)

where nij is the number of times xi and xj has been assigned to the same
cluster.

In the ideal case,

sij =

{
1 if xi and xj belong to the same cluster,

0 otherwise.,
(5.6)

leading to a matrix with a block structure if the data are sorted according to
group labels (of course unknown to the algorithm). This can be considered
a similarity matrix, and forms the foundation of further clustering. Fred and
Jain [75, 77] have used k-means in combination with different hierarchical
methods (most notably single- and average-linkage [166]). Monti et al [130]
used the same scheme, but also added resampling. In Myhre et al. [132] a
spectral clustering procedure, [176, 133] based on Cauchy-Schwarz divergence
was used.
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Chapter 6

Paper I - Computationally
Efficient Exact Calculation of
Kernel Density Derivatives

In this paper we present a fast exact estimator for kernel density derivatives.
We have already seen a wide range of applications of density derivatives in
the introduction to this thesis. With that in mind and the growing amount
of data we are facing every day, the need for development of fast estimators
of density derivatives is an important task. Exact estimators are especially
suitable for large scale applications, as errors due to poor approximations
can accumulate and grow out of proportion

In multivariate settings, the kernel function can be written as a product of
univariate kernels. While this greatly simplifies the expressions for the gra-
dient vector and the Hessian matrix, it also introduces a significant number
of redundant multiplications.

We proposed and implemented a tree-based algorithm for performing faster
exact kernel density derivative estimation. The computational complexity
was also proven as a function of the order of the derivatives:

d∑

l=1

(
l + r

r

)
, (6.1)

where d is the dimension and r is the derivative degree. Figure 6.1 illustrates
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Kernel Density Derivatives 50

how the redundant multiplications are omitted.

The novelties in this contribution lies in the exact nature of the estimator.
Other algorithms either try to reduce the number of pairwise points in the
kernel matrix, or try to come up with some approximation of the kernel
function.

6.1 Contributions by the author

The idea was conceived at the Cognitive Systems Laboratory at Northeastern
University by Dr. Deniz Erdogmus and associates.

My contributions:

• In collaboration with others I suggested the tree based structure which
enabled the practical implementation.

• I implemented the MATLAB prototype that was used to carry out the
experiments in the paper.

The paper was written as an equal collaboration between me and Matineh
Shaker, a PhD student at the Cognitive Systems Laboratory under supervi-
sion of Dr. Erdogmus.
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Figure 6.1: The key features of the efficient kernel density derivative algo-
rithm.



Chapter 7

Paper II - Manifold unwrapping
using density ridges

This paper presents novel ideas for unfolding manifolds modeled by density
ridge estimators. An explicit unfolding based directly on the geometry of
the data is introduced, contrary to other methods which are based on cost
functions and or regularized models.

The original idea was rooted in the fact that a d-dimensional ridge esti-
mate can be decomposed into d orthogonal one-dimensional ridges (principal
curves). These orthogonal curves will enable a curvilinear coordinate system
in each mode basin attraction of the underlying pdf. Tracing curve lengths
along the one dimensional ridges will yield linear coordinates in the modes
(similar to normal coordinates as presented in Section 3.1). Thus, a mani-
fold estimated by a d-dimensional ridge can in principle be decomposed into
separate curvilinear coordinate charts for each mode. Finally, these can be
stitched together to form a global atlas for the manifold.

Promising results were obtained for one-dimensional manifolds and two-
dimensional manifolds where the main variation could be described by a
one-dimensional manifold. For manifolds of higher dimensions, however, the
decomposition into one-dimensional orthogonal curves requires a significant
amount of smoothing such that the d dimensional estimate will experience
severe bias. To solve this we instead resort to linear approximation at each
local attraction basin. We do this by projecting the points into the space
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spanned by the local Hessian eigenvectors – equivalent to a first order Taylor
approximation.

For future work the estimators of Chacon and Duong [36], should be further
investigated as they imply different smoothing levels for the density, gradient
and Hessian estimates.

The novelties in this work lies in using the density ridge manifold as the basis
for manifold unwrapping. Previous research related to density ridge mani-
fold estimators have dealt with its statistical properties such as uncertainty,
convergence and existence [41, 85]. None have made direct use of the evident
connections to manifold learning.

7.1 Contributions by the author

The original idea was based on observations made by Dr. Erdogmus in previ-
ous research on principal curves and surfaces in collaboration with Dr. Umut
Ozertem [135, 68].

Together with Matineh Shaker and partially M. Devrim Kaba I implemented
the framework in the one-dimensional and unimodal case.

My contributions:

• I implemented an adaptive Runge-Kutta scheme for projecting the data
to the ridges, which enabled parallelization and significant speedup.

• I suggested and implemented the chart translation that enabled exten-
sion to multimodal cases.

• I suggested and implemented the multidimensional extension that in-
evitably led to the success of the unfolding algorithm.

• I wrote the manuscript draft for the final paper.

An extended abstract from this work was presented at the poster session of
the Geometry in Machine Learning (GIMLI) workshop at ICML 2016.
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7.2 Paper III - Invertible nonlinear cluster

unwrapping

This paper was a predecessor to Paper II. It concerns manifold unwrapping
in the one-dimensional and unimodal case.

Additionally, the paper contains an idea for out-of-sample projections based
on concepts from image registration. This enables us to train a model that
can project new points onto the ridge as well as calculate the inverse projec-
tion. This was also tested, at a later stage, on training a model that learned
out-of-sample and inverse for the multidimensional unwrapping (from Paper
III). Unfortunately, this projection model is very computationally expensive,
so it was not included in the later work that lead to Paper II.

A more detailed description of the diffeomorphic projection model is pre-
sented in Appendix A.

The novelties in this paper are the same as the previous paper, as well as the
introduction of a diffeomorphic model for out-of-sample and inverse projec-
tions.

7.3 Contributions by the author

• I implemented the methods in MATLAB and performed most of the
experiments.

• I contributed to an early draft while staying as a visiting researcher in
the Cognitive Systems Laboratory of Dr. Deniz Erdogmus.



Chapter 8

Paper IV - A robust clustering
using a kNN mode seeking
ensemble

In this paper we introduce concepts from ensemble clustering to improve
mode seeking methods with respect to parameter sensitivity.

It marks a clear separation from the rest of the work, as a kNN density
estimate is used instead of the kernel density estimate. This was chosen for
several reasons. First of all, the kNN density estimator is much faster and
more robust in higher dimensions. Second, a previously overlooked clustering
algorithm – kNN mode seeking – was revived by Duin et al. [61] that showed
considerable speedup compared to mean shift, at comparable accuracy. The
latter two makes it ideal for use in a clustering ensemble, in addition to the
fact that it is also capable of handling data sets of very high dimension.

Our proposed algorithm builds a cluster ensemble by repeated runs of the
kNN mode seeking algorithm with random parameter initialization. Ran-
dom subsampling of the data is also included in the ensemble to increase
robustness. Finally clustering agreement over the ensemble is calculated us-
ing hierarchical clustering.

The novelties in this paper lies in introducing mode seeking algorithms into
the ensemble clustering framework. In addition, the method provides progress
towards mode seeking as a complete clustering tool without critical param-
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eters that needs tuning.

8.1 Contributions by the author

The idea was conceived by myself and further developed in collaborations
with Karl Øyvind Mikalsen and Sigurd Løkse, at the Machine Learning
Group @ UiT – http://site.uit.no/ml/. The implementation and experi-
ments were carried out by myself with the help of Karl Øyvind Mikalsen. I
wrote the main draft of the manuscript.



Chapter 9

Concluding remarks

This thesis presents initial work in trying to establish principal manifolds,
estimated by density ridges, as practical machine learning tools. We have
provided geometrically intuitive algorithms and shown that the framework
has potential. Moreover, we have presented ensemble methods as a direction
for improving the otherwise sensitive mode seeking algorithms.

A novel method for unfolding a manifold, of any dimension, estimated by
a density ridge has been presented. The unfolding algorithm showed good
results on both real and synthetic data sets, and is intuitive in construction.
Moreover, the algorithm has a basic foundation in differential geometry that
allows unfolding any manifold estimate that is represented by a tangent bun-
dle (we have to know the basis of the tangent space at each point).

Furthermore, a diffeomorphic projection model, inspired by techniques for
smooth image registration, was implemented and tested. While showing
promising results on low dimensional and synthetic data sets, it is as of now
too computationally expensive to be considered practical.

In the final part of this work, we investigated how ensemble methods can act
as a tool to increase robustness towards critical parameters of non-parametric
density estimates. The particular application was in this case clustering by
mode seeking. In terms of clustering performance and speed, the algorithm
performed satisfactory and no parameter tuning was needed – a very promis-
ing result. However, due to the not so trivial connection between kernel
density estimation and k nearest neighbor estimation, it is hard to comment
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on how the robustness results would transfer to for example manifold esti-
mation.

9.1 Short discussion: Weaknesses and alter-

native approaches

As all frameworks of machine learning and statistics have their strengths,
they also have weaknesses that have to be acknowledged. Here we list a few
of the most obvious issues that should be considered either as future work,
or as guidelines for adapting our work into other frameworks.

Bayesian methodology This work have focused strictly on non-parametric
estimation. In principle the idea is very enticing, no assumptions and no other
parameters than the smoothness of the estimation. In practice however, this
is often too limiting, and one has to resort to engineering solutions and
heuristics. Bayesian methods allow the insertion of prior information into
the problem and treats parameters as stochastic variables[145, 92, 166]. The
setting can therefore still be non-parametric, but the bandwidth or smooth-
ing parameter in the estimate is assumed stochastic. This allows for much
more flexible models, both parametric and non-parametric.

Dimension As mentioned at the end of Section 4, whenever the kernel
density estimator is used, the curse of dimensionality has to be considered.
In this work we have in most cases overlooked this problem, as our main
goal was to create a functional unwrapping algorithm given a density ridge
estimate.

This will certainly pose constraints on the problems that our proposed algo-
rithm can handle in practice. However, knowing or estimating the intrinsic
dimensionality of the manifold can alleviate this problem, we recommend the
review of intrinsic dimensionality estimators by Campadelli et al. [32].

Feature extraction A large area of modern machine learning research is
related to feature extraction or learning representations of data (we recom-
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mend the review of Bengio et al. [19]). Features or representations of data
set are in practice considered good if they are fed into a linear classifier, typi-
cally a Support Vector Machine [166] and provide good classification results.
This is the foundation of Deep Learning [152], which automatically learns
non-linear features from data (given labels).

In this work we have only considered ‘raw’ data sets with no feature extrac-
tion and preprocessing, and one could argue that this is a too limited case
for practical use.

9.2 Future work

Below we list some of the most important areas of future work related to
each paper.

Paper I : The most important task left in this work is to provide an open
source implementation of the algorithm and provide options for testing band-
width selectors, such as Chacon and Duong [35, 36] or Botev et al. [24]. The
review of Heidenrich et al. [105] provides a good overview of the state of the
art as of 2013.

The algorithm is in its current state available in MATLAB R©, which is not
optimized for speed1 and not free software. There is a plan to rewrite it to a
c++ toolbox, but that is as of now not available yet.

Paper II and III : The future work related to the manifold unwrapping
project can be divided into:

• Bandwidth selection/smoothness of estimate.

• Intrinsic properties of the manifold we want to estimate and unfold.

• High-dimensional behaviour.

As previously mentioned, we have in this work only used heuristic band-
width selection. The same references to bandwidth estimator as for Paper I

1Somewhat ironic.
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should be investigated here [35, 36, 24, 105]. Especially the work of Chacon
and Duong [36] is appropriate here, since they proposed different amounts of
smoothing depending on degree of derivative (gradient, Hessian etc.). Fur-
thermore, not directly related to bandwidth, Sasaki et al. [150, 151] proposed
a direct estimator2 of the derivative of the probability density estimate.

Regarding intrinsic properties of the manifold, curvature and dimension are
the two most important. Estimating these are not trivial, as their interplay
in arbitrary dimension can be extremely varied. The previously mentioned
paper by Campadelli [32] and the work of Adler et al. [2] for estimating
curvature through reach should be considered.

Finally, the kernel density estimate breaks down when the dimension is too
large. In manifold learning settings, the bounds on how big the difference
between the intrinsic dimension of the manifold and the ambient/noisy space
(the codimension) can be, given compact samples on the manifold, is an open
and very interesting question.

Paper IV : The framework of ensemble clustering is very flexible, so there
are virtually endless possibilities when it comes to combining algorithms and
methods for future work. We therefore conclude with a short list of possible
directions

• For large scale tasks sparse hierarchical clustering could be used [181,
189].

• The recent robust single linkage by von Luxburg et al. [39] could replace
the hierarchical stage in this paper.

• Spectral clustering techniques could be used in the final step [176, 132,
184]

• Quick Shift or medioid shift could replace kNN mode seeking [172, 137].

• Different ensemble combination strategies should also be investigated [161,
126].

2In this thesis the derivative of the kernel density estimate, not the derivative of the
true density, was used.
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Appendix A

Diffeomorphic projection model
using landmark matching

Here we present further details of the diffeomorphic projection model used in
Paper III, presented in Chapter 7.2. We generalize a diffeomorphic landmark
matching methodology commonly used in image registration, which provides
a diffeomorphism [49, 110, 6, 128].

A.1 Learning the diffeomorphic Projection Model

The purpose of this learning process is to identify a diffeomorphic model for
approximate but fast transformations between two coordinate systems. Also,
because the model is diffeomorphic, it allows inverse transformations.

The original techniques, found in image registration literature, develop a dif-
feomorphic large deformation model by cascading diffeomorphic models for
small deformations, essentially by numerically approximating the solution of
a differential equation with boundary and smoothness conditions imposed
on the approximate solution [49], [48]. Small deformations parametrize a
displacement field u, which is added to the the initial point to find the trans-
formation as φ(x) = x + u(x). Clearly, starting from x and adding a small
perturbation has the advantage that the Jacobian of the overall mapping
is identity plus a perturbation (hence nonsingular for all x), leading to a
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diffeomorphism.

These approximations fail in the case of large non-linear deformations, and
is thus not suitable for manifold unwrapping. The large deformation frame-
works cascades such small perturbations optimally in order to guarantee a
one-to-one, smooth, and continuous mapping, with a nonsingular Jacobian
implying a diffeomorphism [6]. A key element of a diffeomorphic mapping
is that it preserves the topology (bot not angles since not conformal in gen-
eral), and is consistent under composition of transformations. These prop-
erties are useful when transforming coordinates in manifold unwrapping and
dimensionality reduction, implying transitive inverse consistent mappings.

The Euler-Lagrange equation for solving the large deformation diffeomor-
phic mapping is studied in [63], [167], and [110] for variational formulation of
image matching. This setting parametrizes the transformation by means of
velocity vectors v tangent to each displacement vector u. In our version of
this model, input training data {x1, . . . ,xn} and corresponding transformed
coordinates {c1, . . . , cn}, both coordinates in Rd, are connected via the diffeo-
morphic change of coordinate φ : Rd → Rd. φ is the solution of the ordinary
differential equation (ODE)

dφ(x, t)

dt
= v(φ(x, t), t), (A.1)

where t ∈ [0, 1] is the curve parametrization for the differential equation tra-
jectory, and the initial point φ(x, 0) = x corresponds to the identity trans-
form. Here, φ(x, t) is the Lagrangian trajectory defined as the position at
time t, which was at x at time 0 [50]. The final transformation (solution of
the differential equation) φ(·, 1) is therefore controlled through the velocity
field v(·, t), and is given as:

φ(x, 1) = x +

∫ 1

0

v(φ(x, τ), τ) dτ. (A.2)

Since such φ(x, t) is not unique, the optimal diffeomorphic match is con-
structed by minimizing deformation energy ‖Lv‖2, where L is a linear dif-
ferential operator on the velocity field. This is analogous to thin-plate
splines [23]. In addition, we want to minimize the distance between the
curvilinear coordinates c and the endpoints of the transformation φ(x, 1), re-
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sulting in the following optimization problem for the velocity field of (A.2):

v̂(x, t) = arg min
v(x,t)

∫

Rd×[0,1]
‖Lv(x, t)‖2 dx dt+

n∑

i=1

[ci−φ(xi, 1)]T [ci−φ(xi, 1)].

(A.3)

This optimization problem poses two problems: the infinite dimensional pa-
rameter space of the velocity field and the continuous nature of the integral.
The first issue is elegantly alleviated by noticing that the minimizer of (A.3)
must take the following form [110] (for reasons similar to kernel regression
emerging from the representation theorem for RKHS):

v̂(x, t) =
n∑

i=1

k(φ(xi, t),x)
n∑

j=1

(K−1(t))ij
˙̂
φ(xj, t), (A.4)

where Kij(t) = k(φ(xi, t), φ(xj, t)), where k is the Green’s function for LTL;
that is, LTLk(x− y) = δ(x− y).

With this observation, the following equivalent optimization problem is ob-
tained [110]:

˙̂
Φ(t) = arg min

Φ(t)

∫ 1

0

Φ̇(t)K−1(t)Φ̇(t)dt +
n∑

i=1

[ci − φ(xi, 1)]T [ci − φ(xi, 1)]

subject to Φ(0) = [xT1 ,x
T
2 , . . . ,x

T
n ]T

(A.5)
This reformulation has reduced the problem from finding the velocity field
on the entire space Rd to finding n trajectories.

Finally we can approximate these n velocity fields trajectories on t ∈ [0, 1]
to be piece-wise constant on M sub-intervals (as in Euler/RK2 numerical
integration), {tm = 1/M}Mm=0, resulting in:

∫ 1

0

Φ̇(t)K−1(t)Φ̇(t)dt ≈ M

M−1∑

m=0

(Φ(tm + 1)−Φ(tm))T K−1(tm) (Φ(tm + 1)−Φ(tm)) .

(A.6)
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A.2 Projecting Out-of-Sample Test Data

We continue to use the landmark matching framework [110], which essentially
results in a kernel regression type transformation for projecting points that
are not in the original landmark/training set. The out-of-sample test data
point projection rule consists of a weighted sum of estimated velocities at
each training sample, multiplied with the inverse pairwise kernel matrix seen
earlier during training. The estimated velocity at time t ∈ [ti−1, ti] for a
training point xi is given as

˙̂
φ(xn, t) =

φ̂(xn, ti)− φ̂(xn, ti−1)

(1/M)
, (A.7)

and we get the velocity field for an out-of-sample data point x̃ as

v̂(x̃, t) =
n∑

i=1

k(φ̂(xn, t), x̃)
n∑

j=1

(K−1(t))ij
˙̂
φ(xj, t). (A.8)

With this we can estimate the final transformation for the out of sample
point

ĉ(x̃) = φ̂(x̃, 1) = x̃ +

∫ 1

0

v̂(φ̂(x̃, τ), τ)dτ ≈ x̃ + M
M−1∑

m=0

v̂(φ̂(x̃, tm), tm),

(A.9)
using Euler/RK2 integration with the same step length as in training. The
inverse mapping will start from some c̃ and integrate backwards in time:

x̂(c̃) = φ̂(x̃, 0) = c̃ +

∫ 0

1

v̂(φ̂(x̃, τ), τ)dτ ≈ c̃− M
M∑

m=1

v̂(φ̂(x̃, tm), tm).

(A.10)
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[4] L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blan-
ton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, A. Burden, et al.
The clustering of galaxies in the sdss-iii baryon oscillation spectro-
scopic survey: baryon acoustic oscillations in the data releases 10 and
11 galaxy samples. Monthly Notices of the Royal Astronomical Society,
441(1):24–62, 2014.

[5] E. Arias-Castro, D. Mason, and B. Pelletier. On the estimation of
the gradient lines of a density and the consistency of the mean-shift
algorithm. Journal of Machine Learning Research, 2015.

[6] J. Ashburner et al. A fast diffeomorphic image registration algorithm.
Neuroimage, 38(1):95–113, 2007.

[7] E. Ataer-Cansizoglu and D. Erdogmus. A mode-based clustering algo-
rithm without mode seeking. In 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1925–
1928. IEEE, 2012.

[8] J. Back, G. J. Barker, S. B. Boyd, J. Einbeck, M. Haigh, B. Morgan,
B. Oakley, Y. Ramachers, and D. Roythorne. Implementation of a local

147



Bibliography 148

principal curves algorithm for neutrino interaction reconstruction in a
liquid argon volume. The European Physical Journal C, 74(3):1–15,
2014.

[9] S. Balakrishnan, S. Narayanan, A. Rinaldo, A. Singh, and L. Wasser-
man. Cluster trees on manifolds. In Advances in Neural Information
Processing Systems, pages 2679–2687, 2013.

[10] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking
of subspaces from highly incomplete information. In Communication,
Control, and Computing (Allerton), 2010 48th Annual Allerton Con-
ference on, pages 704–711. IEEE, 2010.

[11] J. D. Banfield and A. E. Raftery. Ice floe identification in satellite
images using mathematical morphology and clustering about principal
curves. Journal of the American Statistical Association, 87(417):7–16,
1992.

[12] M. Barile and E. W. Weisstein. T2-space. Visited on 25/02/15.

[13] E. Bas, D. Erdogmus, R. Draft, and J. W. Lichtman. Local tracing
of curvilinear structures in volumetric color images: Application to
the brainbow analysis. Journal of Visual Communication and Image
Representation, 23(8):1260–1271, 2012.

[14] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large
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