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Figure 1: Image of a quadrotor. Illustrated by Tom Stian Andersen

Since the first flight of an unmanned aerial vehicle (UAV) in 1804 by George Cayley, and especially in the
last two decades, a considerable effort has been made to improve UAV technologies aiming at safety and
reliability of unmanned aviation. The result is seen today as a growing use of UAV systems to perform a
variety of tasks, such as military reconnaissance, geological surveys, environmental monitoring, and time-
optimal search and rescue operations.

UAV systems include various types of unmanned aerial vehicles, including e.g fixed wing aircrafts, heli-
copters and quadrocopters. Where fixed wing aircrafts have requirements of sufficient flight speed to avoid
stalling, helicopters and quadrocopters have the possibility to perform hovering operations and may there-
fore be used for extended surveillance of a particular area. However, the latter will typically have a shorter
operating range and more complex dynamics. It is therefore important to derive a detailed nonlinear math-
ematical model of the system for control purposes.

Main Task

The main task of this project is to derive a detailed mathematical model of a quadrocopter as shown
in the picture above. The model should be implemented in Matlab/Simulink, together with a simple con-
trol solution.

Technical specifications for the system are chosen by the student in cooperation with the supervisor.

Subtasks

1. Study previous work on quadrocopters and their applications, including cascaded systems modeling
and passivity-based control.

2. Derive a mathematical model of quadrocopter dynamics using a cascaded framework, including
actuation for rotation and translation of the system, and implement the model in Matlab/Simulink.

3. Derive a passivity-based control solution for the system, and show the performance of the controller
through simulations.
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Abstract

In this thesis a mathematical quadrotor model based on cascade modeling theory, using a passivity-based
control solution is derived and presented. The rotation and translation cascades are first decoupled, modeled
mathematically and simulated separately to test individual control solutions and stability, followed by total
system modeling and simulations to verify the control solutions and stability of the total system. Both the
decoupled systems and the total system are able to track both fixed positions and positions that change
with time, such as the circle, helix and waypoint tracking. The simulation figures for the spiral trajectory
tracking shows a growth in position error as the radius of the circle increases, indicating that the control
solutions are struggling with increase in acceleration (jerk), but is believed to be rectified by additional
compensation terms. Overall the system performs well, and can be presumed stable.
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Chapter 1

Introduction

Since man first gazed upon the sky with awe at its beauty and grandeur, discovering creatures with the
ability to soar free and untethered from the surface, he has yearned for the skies and the freedom it
represents. For centuries thinkers, scientists and adventurers have made attempts of flight using various
methods, but it would take over 2000 years before the first modern flying machine would see the light of day.

The Beginning
It is believed that kites may have been the first form of man-made aircraft and was invented in China,
possibly as early as the 5th century BC. It is also believed that man-carrying kites were used in ancient
China, for both military and civil purposes, even as a punishment. An early recording of such a flight was
that of prisoner Yuan Huangtou, a Chinese prince in the 6th century AD. The Chinese also invented a toy
in the form of the bamboo-copter which made use of rotor wings like a helicopter and has existed since
around 400 BC.

The Renaissance and Rational Designs
From the Period of Chinese kites and up until the rational aircraft designs of the renaissance era, tower
jumping was the most common experimental method of flight, using feathers glued to make-shift wings or
wings made out of wood and cloth. But with the coming of one of the renaissance’s most famous thinkers,
namely Leonardo da Vinci, a new approach to aircraft design was used: Rational design. Da Vinci studied
bird flight and while analyzing it, anticipated many principles of aerodynamics. At the end of the 15th
century he sketched and designed several flying machines and contraptions, such as ornithopters, fixed-wing
gliders, rotor-craft and parachutes. Although rational, the designs were not based on good science, and
since his work remained unknown until 1797, his designs did not influence the development over the next
three hundred years.

Lighter than Air: Balloons
In the 17th and 18th century it was suggested that lighter than air flight was possible. In 1670 a man named
Francesco Lana de Terzi proposed a theory, known as Vacuum Airship, that it would be possible to lift an
airship using copper foil spheres containing a vacuum, which would be lighter than the displaced air. Of
course this theory is not feasible with any current materials due to the fact that the surrounding pressure
would crush the spheres.

Instead methods including hot air and hydrogen were used, and during the late 18th century five avia-
tion firsts were achieved in France:

1. Demonstration of unmanned hot air balloon in Annonay by the Montgolfier brothers.

2. The launch of the first unmanned hydrogen-filled balloon from Champ de Mars, Paris by Jacques
Charles and the Robert brothers.

3. The launch of the first manned flight, a tethered balloon with humans on board at the Folie Titon in
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CHAPTER 1. INTRODUCTION

Paris by the Montgolfier brothers. The aviators were Jean-Francois Piltre de Rozier, Jean-Baptiste
Rveillon and Giroud de Villette.

4. First free flight with human passengers launched by the Montgolfier brothers and piloted by Jean-
Francois Piltre de Rozier and Marquis Francois d’Arlandes.

5. Launch of the first manned hydrogen balloon by Jacques Charles and Nicolas-Louis Robert from
Jardin des Tuileries in Paris.

The most common type of balloons from the 1790s to the 1960s were gas balloons. These were replaced by
hot air balloons with the invention of a more sophisticated heat source, making it easier to control ascent
and decent. Today ballooning is associated with recreational activities and it is believed that some 7500
balloons are operating in the United States alone.

Lighter than Air: Airships
Airships, or dirigible balloons as they were originally called were mainly developed from the late 18th, to
the early 20th century. The design comprised of three different types of airships: Non-rigid (blimps), which
rely on internal pressure to maintain the shape of the airship, semi-rigid, which relies on internal pressure as
well but has some sort of supporting structure, such as a fixed keel, and rigid, which has an outer structural
framework, which carries all the load and maintains the shape.

The most famous airships throughout history are the Zeppelins, rigid airship designs pioneered by the Ger-
man count Ferdinand von Zeppelin. At the time rigid airships had far superior lifting capabilities compared
to the fixed-wing aircraft, and resulted in passenger transport zeppelins like the ”Hindenburg”. Although
used extensively in the early 20th century, through World War I and II, the airship was subdued by the ad-
vancements in heavier-than-air crafts, and are today mostly used as advertising, sightseeing and surveillance.

Heavier than Air: Fixed-Wing
Along side the development of lighter-than-air crafts, studies in heavier-than-air flight were also carried
out. In the 18th century, the first paper on aviation was published by Emanuel Swedenborg in 1716 and
suggested a design for an aircraft with wings working similar to a birds wings. Although he knew it would
not fly, he was confident that the problem would be solved.

In the late 18th century, George Cayley, also known as the ”father of the aeroplane”, began the first rigorous
study of the physics of flight and would later design the first modern heavier-than-air craft (HTAC). Some
of Cayley’s contributions to aeronautics include:

• Clarifying our ideas and laying down the principles of heavier-than-air flight

• Reaching a scientific understanding of the principles of bird flight

• Conducting scientific aerodynamic experiments demonstrating drag and streamlining, movement of
the center of pressure, and the increase in lift from curving the wing surface

• Defining modern aeroplane configuration comprising a fixed wing, fuselage and tail assembly

• Demonstration of manned, gliding flight

• Setting out the principles of power to-weight-ration in sustained flight

In 1848 Cayley constructed a triplane glider large and safe enough to carry a child, where a local un-
known boy was chosen, and in 1852 he published the design of a full-sized manned glider the ”governable
parachute”, which carried the first adult aviator across Brompton Dale in 1853.

In the late 19th century Samuel Pierpoint Langley started an investigation into aerodynamics and later
turned to building his designs. His Aerodrome No. 5 made the first successful sustained flight of an un-
manned engine-driven HTAC on May 6, 1896 followed by Aerodrome No. 6 in November 28, 1896 but never
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CHAPTER 1. INTRODUCTION

managed to design a successful model scaled for manned flight.

The names that may be the most well known in the history of aeronautics are that of Wilbur and Orville
Wright, who made the first known sustained, controlled powered HTAC flights, which were undertaken at
Kill Devil Hills, North Carolina on December 17, 1903 in their craft ’The Wright Flyer’. Following the
success of the flights in 1903 the Wrights continued to fly in 1904-05 and introduced the Flyer II in 1904,
which was an improved version of the original Flyer and in 1905 Flyer III was launched, which became the
first practical aircraft, though without wheels and needing a launching device.

Following the success of the Wright brothers and technology advances in European flight pioneering, flight
became an established technology ca. 1908 and has since then been subjected to huge technological advance-
ment from the simple designs using wood, canvas and modest internal combustion engines to the metal,
electronics, computers and jet propulsion that is common today.

Heavier Than Air: Rotorcraft
References of vertical flight can be dated as far back as 5th century BC, and found in China, in the form
of a toy called the bamboo-copter, and in the 4th century book Baopuzi by Ge Hong, which reportedly
describes some of the ideas inherent to rotary wing aircraft.

During the Renaissance the Chinese helicopter toy was introduced in paintings and other works. It was in
this era that Leonardo da Vinci created a design for a machine, described as an aerial screw. Until he did
this there had not been any recorded advancement made towards vertical flight. As scientific knowledge
increased, man continued to pursue vertical flight, and many of these machines would more closely resemble
the ancient bamboo top with spinning wings rather than Leonardo’s screw.

In the 18th century some coaxials modelled after the Chinese top were developed. One in 1754 by Mikhail
Lomonosov powered by a spring, and one in 1783 by Christian de Launoy and his mechanic, Bienvenu,
consisting of a contra-rotating of turkey flight feathers as rotor blades. Even George Cayley developed a
model similar to that of Launoy and Bienvenu, but powered by rubber bands, and later progressed to using
sheets of tin for rotor blades and springs for power.

The term ”helicopter” was coined by Gustave de Ponton d’Amécourt in 1861, a French inventor who
demonstrated a small steam- powered model. In 1878 the first vehicle of its kind, designed by the Italian
Enrico Forlanini, rose to a hight of 12ft and hovered for some 20 seconds after a vertical take-off, unmanned
and powered by a steam engine. In 1906 the brothers Jacques and Louis Breguet experimented with aerofoils
for helicopters, and those experiments resulted in the Gyroplane No. 1, possibly the earliest known example
of a quadcopter. Sometime between August and September 1907, the Gyroplane No. 1 lifted its pilot about
0.6m into the air for one minute. Although considered to be the first manned flight of a helicopter, but not
free and untethered flight because one man had to stand and hold it in each corner to stabilize the vehicle.
Instead the first truly free flight was conducted by Paul Cornu in his Cornu helicopter November 13. the
same year.

The early 20th century saw increasing development in rotorcraft technology and experimentation, and
leaps were taken during the 1920s and 30s. The first mass produced helicopter was the Sikorsky R-4, de-
signed by Igor Sikorsy and were produced between 1942-44. The 1950s saw the first turbine engine-powered
helicopter K-255 designed by Charles Kaman, which spurred the further development of helicopters along
with advancements within other technologies, such as electronics, and much like with the development of
fixed-wing aircraft, into the the direction of today’s modern helicopters.(Crouch, 2004)

Unmanned Aerial Vehicles(UAVs)
UAVs have always been a part of aviation history, in the sense that, generally back in the experimentation
and pioneering era of flight technology, first flights of prototypes, ranging from kites to rotorcrafts, were
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Figure 1.1: Configuration of a quadrotor (Illustration by Tom Stian Andersen).

almost always conducted without pilots. Today however, when regarding UAVs, most think of military
drones such as the Predator drone used by the United States Air Force, which is a form of fixed-wing UAV,
or remote controlled quadcopters or quadrotors, which is a form of rotorcraft UAV, and this thesis’ subject
of focus.

Quadrotor UAVs
A quadrotor is a multi rotor helicopter propelled by four (two pairs) of identical fixed pitched rotors, where
one pair rotates clockwise and the other pair rotates counter-clockwise. These use independent variation
of the speed of each rotor to achieve control and movement in the form of total thrust and total torque.
Quadrotors were seen as a possible solutions to persistent problems in vertical flight such as torque-induced
control issues, which can be eliminated with counter-rotation and the short blades are easier to construct.
Early prototypes suffered from poor performance and later prototypes required too much pilot work, due
to poor stability and limited control authority. However, advancements in technology in the late 2000s,
namely micro electro-mechanic systems MEMS, allowed the production of cheap and lightweight sensor
components, such as accelerometers, GPS, barometers and cameras. The quadrotor has become a popular
research platform for new ideas within a number of fields, including flight control theory, navigation, real
time systems and robotics, due to its small size and mechanical simplicity. The quadrotor can be applied in
many scenarios, ranging from military use such as surveillance and reconnaissance, commercial use within
aerial imagery, and humanitarian use like search and rescue.(Hoffmann et al., 2004)

1.1 Background and the Purpose of the Thesis

The background for this thesis is, that it is desired to investigate if a cascaded quadrotor system model
always becomes ideally UGAS or ULES regardless of which type of control solution that is chosen.

The purpose of the thesis is to verify if a passivity based control solution can be applied to a cascaded
quadrotor model system.
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1.2 Previous Work

1.2.1 Previous Work in General

When it comes to previous work within quadrotor modeling the dynamics of a quadrotor using i.e. Euler
angles or quaternions are well developed and much of the work done related to quadrotors have to do with
improved control under various conditions.

In Beul et al. (2014) nonlinear model-based position control for a micro aerial vehicle (MAV)is proposed,
where the model makes use of a variety of sensors to navigate to desired way-points created by a planning
algorithm. The paper studies both simulation data for the control algorithm and real flight data for the
vehicle MAV 1, with the intention of studying a second vehicle MAV 2 with an array of more advanced
sensors to give faster and more accurate feedback.

In Alexis et al. (2011) a model for predictive indoor control is proposed for environments where absolute-
localization data, like GPS or positioning from external cameras are inadequate, by the use of an internal
measurement unit (IMU) and an optical flow sensor. The dynamics Ẋ of the quadrotor is presented in its
augmented form and comprise of a R12 matrix that contains translation, rotation and input components
summed together with the additive disturbance vector. The model predictive control (MPC) in this case
uses the estimated rotational components provided by the IMU, the calibrated translational acceleration
measurements expressed in the Earth-fixed frame, and a data fusion with the ground distance measurement
of a sonar through a 2-state Extended Kalman Filter to estimate the altitude and change in altitude. the
control-scheme itself is based on three cascade switching model predictive controllers applied on the multi-
ple Piecewise Affine representation of the augmented dynamic system and the error dynamics modeling for
vertical and planar motions.

Other methods for control of a quadrotor can be found in, for example, Mian and Daobo (2008) which
proposes altitude, position and a backstepping-based PID control technique for the rotation subsystem, and
in Pounds et al. (2010) where control of a large quadrotor (e.g > 3kg) is proposed.

1.2.2 Cascade Modeling

Cascade modeling (CM) is a form of mathematical modeling used in control engineering to prove stability
of a certain system, where the system itself is divided into a cascade interconnected system instead of a
feedback interconnected system. The general idea behind CM is to decouple a system that has multiple
distinctive subsystem functions, i.e. rotation and translation, and try to prove that each subsystem is by
itself stable. If it can be proven that subsystem 1 is stable, and that subsystem 2 is stable, combined
with restrictions of the growth term g(t, x)x2 represented in (1.1), it follows that stable + stable ⇒ stable,
meaning that the total system consequently becomes stable. For large and complicated systems CM has
its advantages due to the fact that smaller, simpler systems are easier to prove stable, thus lengthy and
complicated calculations can be avoided. Cascade theories and work is presented in Lamnabhi-Lagarrigue
et al. (2004); Loŕıa (2004a,b), where different forms and configurations of cascade interconnected systems
and stability are discussed. For non-linear time-varying systems (NLTV) a general expression is described
as

Σ1 : ẋ1 = f1(t, x1) + g(t, x)x2 (1.1)

Σ2 : ẋ2 = f2(t, x2) (1.2)

where x2 becomes the input of system Σ1 and x1 becomes the total output of the system. It is stated in
Khalil (2002) that the term g(t, x) represents perturbation in the system that could result from modeling
errors, aging, or uncertainties and disturbances, which is inherent in any realistic problem. A generic
representation of a cascaded system can be as shown in Figure 1.2 , but cascaded structures can also be
constructed as shown in Figure 1.3, Figure 1.4 and Figure 1.5.
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Figure 1.2: Block diagram example of a cascade interconnected system inspired by (Loŕıa, 2004b)

Figure 1.3: Case 1, the plant itself has a cascaded structure, example robot with a motor. inspired by
(Loŕıa, 2004b)

Figure 1.4: Case 2, appeared cascaded structure when applying a control input. inspired by (Loŕıa, 2004b)

Figure 1.5: Case 3, output-feedback control design that ideally leads to a separation principle. inspired by
(Loŕıa, 2004b)
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How much the perturbation affects the system as a whole depends on the robustness of the stability in
the system. The goal in general is to control the system such that the the growth term g(t, x) does not
grow faster than the function term f1(t, x1), thus causing instabilities in the total system. Several proofs
for ensuring stability for NLTV cascaded systems are presented in Khalil (2002); Loŕıa (2004a); Lamnabhi-
Lagarrigue et al. (2004); Loŕıa (2004b), where it is stated that from a ”robustness viewpoint”, the most
useful forms of stabilities are uniform global asymptotic stability UGAS, and uniform local exponential
stability ULES.

1. UGAS: A system that behaves exactly the same independent of time, that can exist everywhere in
relation to the desired stability point and stabilizes asymptotically towards the desired stability point.

2. ULES: A system that behaves exactly the same independent of time, that must exist within a local
boundary of the desired stability point and stabilizes exponentially towards the desired stability point.

From a practical point of view these are considered as mathematically ideal, and therefore not possible
to achieve in real practical systems.Practical stabilities as introduced in Kristiansen (2008) are described
as uniform practical asymptotical stability UPAS, and uniform semi-global practical asymptotical stability
USPAS. Practical stability can in a sense be described as illustrated in Figure 1.6, where the desired position
Pd is enveloped by a sphere or ”ball” of a certain size, where the size of the sphere is dependant on the
control gains introduced in the system. The sphere represents the area of position that is actually attainable
for the quadrotor, referenced with Pd. This is due to the unknown conditions that surrounds Pd which from
a reality viewpoint makes it impossible for the controllers to obtain position convergence, and consequently
the quadrotor will hover around Pd within the sphere. However, in this thesis the stability criteria will be
viewed as ideal, i.e. UGAS and ULES.

1.2.3 PD+ Passivity Based Control

In Ortega et al. (1998) its is stated that the term passivity-based control, (PBC) was first introduced in
Ortega and Spong (1988) to ”define a control methodology whose aim is to render the closed-loop passive”.
The GAS PD+ control scheme was introduced in Paden and Panja (1988) as an extension of the position
controller presented in Takegaki and Arimoto (1981), Figure 1.7 and is stated as passive. The idea behind
the PD+ is to decompose the controller into an inner PD loop and an outer dynamic compensation loop,
made possible because the inertia matrix is outside the feedback loops, and by doing so the structure allows
the simple PD computations to be run at a higher speed than the dynamic compensation loop in digital
implementations. The control schemes’ ”+” term is the reference term denoted θ̈θθDM , which is considered a
reference signal. Examples of applications for the PD+ controller can be found in (Oland, 2014; Kristiansen,
2008; Schlanbusch, 2012).

Figure 1.6: Illustration of practical stability for UPAS, Inspired by (Kristiansen, 2008)
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Figure 1.7: Takegaki and Arimoto’s control scheme (Paden and Panja, 1988)

Figure 1.8: PD+ control scheme (Paden and Panja, 1988)
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1.3 Contribution

In this thesis, a mathematical quadrotor model based on cascade modelling theory is presented. The
cascaded interconnected system is proposed as a rotational cascade and a translational cascade with separate
control solutions, where both are based on the passive PD+ control scheme. The basis for the control
solutions in the cascaded systems are models of the the translation and rotation of a quadrotor in flight.

Initially, the rotation and translation of the quadrotor is presented decoupled from one another as stand-
alone systems, where the control solutions are based on the assumptions made in accordance with the desired
behavior of the systems. Then the two cascades are integrated into one cascaded interconnected system,
where the final control solutions are presented such that the rotation and translation cascades work in union,
allowing the quadrotor to be pointed in the desired flight direction and fly towards a desired position. A
guidance generator is also presented such that the desired rotation, desired angular velocity and reference
signal can be constructed.

1.4 Outline

This section provides a brief presentation of the contents of the thesis.

Chapter 2 contains mathematical definitions and notations, introduction to quaternion mathematics, pre-
liminary rotational and translational kinematics and dynamics and explanations of the reference frames.

Chapter 3 has three main sections, where the first contains the main mathematical results of the kinemat-
ics, dynamics and control solution for the rotational cascade, the second contains the main mathematical
results of the kinematics, dynamics and control solution for the translational cascade, and the third con-
tains the main mathematical results of the kinematics, dynamics and control solution for the total cascaded
interconnected system and the guidance generator.

Chapter 4 contains the simulation results for the rotation and translation cascades, and the total cas-
caded interconnected system.

Chapter 5 contains the concluding remarks and suggestions for future work.

1.5 Delimitations

This thesis does not consider actuator dynamics in the quadrotor model, and stability proofs for the
controllers and the cascade system growth term has not been conducted.
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Chapter 2

Preliminaries

This chapter contains descriptions of notations, definitions, introduction of quaternion mathematics,
reference frames, and descriptions of dynamics and kinematics of the rotation and translation of a quadrotor.

2.1 Notations and Definitions

In this paper the notations that are used are inspired by the notations used in Oland (2014), where
bold small case letters are vectors x ∈ Rn, bold capital letters are matrices X ∈ Rn×m, and scalar
values are represented as non-bold. The time derivatives of vectors and matrices are represented in a
similar fashion to the representation in linear systems and control engineering in general. Where the time
derivative of a vector is denoted as ẋ = dx

dt and Ẋ = dX
dt for matrices, and the length of a vector is

represented as ‖x‖ =
√
xTx. Superscripts when used with vectors denote the reference frame in which

the vector exist such that xB is a vector in frame B. For rotation matrices the notation is written as
RB
A ∈ SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}, which rotates a vector from frame A to

frame B and where I is the identity matrix of sufficient dimensions depening on the context. The vector
representing the angular velocity is denoted ωωωCB,A ∈ R3, which represents the angular velocity of frame A.
relative to frame B referenced in frame C. Adding together angular velocities from different frames can be
done as ωωωBA,D = ωωωBA,C +ωωωBC,D (Egeland and Gravdahl, 2002). The time derivative of the rotation matrix is

found as Ṙ
B

A = RB
AS(ωωωAB,A), where the cross product operator S(·) is a skew symmetric matrix, and is such

that for two arbitrary vectors v1,v2 ∈ R3, S(v1)v2 = v1 × v2, S(v1)v2 = −S(v2)v1, S(v1)v1 = 0 and

vT1 S(v2)v1 = 0 and with v1 =
[
v1 v2 v3

]T
the skew symmetric cross-product operator matrix is defined

as

S(v1) =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 . (2.1)

When it comes to the parametrization of the rotation matrix R, it is shown in Egeland and Gravdahl (2002)
that this can be done by using a unit quaternion vector as invented by Hamilton in 1844 (Oland, 2014). A
quaternion is represented by a vector

q =

[
η
εεε

]
(2.2)

where q ∈ R4, η is the scalar part and εεε =
[
ε1 ε2 ε3

]T
is the vector part of the quaternion. A quaternion

rotation from frame A to frame B is denoted

qB,A =
[
ηB,A εεεT

]T
(2.3)

where qB,Aq
T
B,A = 1, and η and εεε are the Euler parameters

ηB,A = cos
θB,A

2
, εεε = kkk sin

θB,A
2

, (2.4)
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which performs a rotation of an angle θ around the unit vector kkkB,A, and where the inverse quaternion of
qB,A is defined as

qA,B = q̄B,A, (2.5)

where
q̄B,A =

[
ηB,A −εεεTB,A

]T
. (2.6)

In terms of Euler parameters this enables the rotation matrix to be constructed as

RB
A = I + 2ηB,AS(εεεB,A) + 2S2(εεεB,A), (2.7)

and for a general quaternion denoted q =
[
η ε1 ε2 ε3

]T
a rotation matrix can be written as

R =

η2 + ε21 − ε22 − ε23 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)
2(ε1ε2 + ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 − ηε1)
2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) η2 − ε21 − ε22 + ε23

 . (2.8)

It is important that the resulting quaternion maintains the unit length property , which is ensured by
normalizing the composite quaternion rotations using first the quaternion product presented in Egeland
and Gravdahl (2002) as

qA,C = qA,B ⊗ qB,C , (2.9)

or
qA,C = T(qA,B)qB,C , (2.10)

then normalizing the composite rotation as

qd,b = ‖qd,b‖−1qd,b (2.11)

where the operator T(·) is defined as

T(qA,B) =

[
ηA,B −εεεTA,B
εεεA,B ηA,BI + S(εεεA,B)

]
, (2.12)

and the quaternion kinematics is given as

q̇A,B =
1

2
qA,B ⊗

[
0

ωωωBA,B

]
(2.13)

or as

q̇A,B =
1

2
T(qA,B)

[
0

ωωωBA,B

]
. (2.14)

2.2 Reference frames

In order to describe the rotational and translational dynamics of a quadrotor a set of basic reference frames
are required.

North East Down (NED): The NED Frame is denoted Fn, and is treated as the inertial frame. The xn

axis points North, yn points East, while zn completes the right handed reference system by pointing down-
ward to the center of the Earth. The NED frame is chosen as the inertial frame due to the fact that flying
with low speed in a local region, the centripetal and Coriolis effects of the Earth can be ignored (Oland,
2014), enabling the Laws of Newton to become valid. This method is called flat-Earth approximation.

Body Frame: The Body Frame is denoted Fb, and is the origin in the center of mass of the rigid body.
The xb axis is aligned with rotor 2 and 4, the yb axis is aligned with rotor 1 and 3, and to complete the
body reference system the zb axis points down through the center of mass, as shown in Figure 2.1.

Desired Frame: The Desired Frame is denoted Fd, and describes the orientation that is desired for
the quadrotor to obtain.
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Figure 2.1: Scheme of quadrotor body axes, (Ailon and Arogeti, 2015)

2.3 Translation Dynamics and Kinematics

The translational dynamics and kinematics of a quadrotor is represented in Mahoney et al. (2012) with
modified notation as

ṗn = vn (2.15)

v̇n = − 1

m
Rn
b

0
0
Υ

b + gn, (2.16)

where pn is the position vector, vn is the velocity vector and v̇n is the acceleration in the NED frame. Rn
b

represents the rotation matrix from Body Frame to NED frame, Υb is the total thrust along the zb-axis, gn

is the gravitational acceleration constant along the zn-axis and m is the mass of the quadrotor. The total
thrust Υb can be written as

Υ = mz̈d − kp(zn − zd)− kd(żn − żd) +mg (2.17)

where kp and kd are gains, zn is the z-component of the position in NED frame, zd is the z-component of
the desired position and mg is the compensation term for the gravitational effects on the quadrotor. The
position and velocity errors are found as

z̃ = zd − zn (2.18)

˙̃z = żd − żn (2.19)

inserted into (2.17) giving the total thrust as

Υ = mz̈d − kpz̃ − kd ˙̃z +mg. (2.20)

Υ is presented negative as a consequence of the zb-axis’ positive direction is defined downwards.
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2.4 Rotation Dynamics and Kinematics

2.4.1 Dynamics and Kinematics

The rotational kinematics are described as the quaternion rotation from Body Frame to NED Frame (Oland,
2014; Egeland and Gravdahl, 2002) as

qn,b, (2.21)

where the rotation dynamics are found using Euler’s momentum equation as (Oland, 2014; Stengel, 2014)

Jω̇̇ω̇ωbn,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b, (2.22)

where τττ b is a control signal.

2.4.2 Error Dynamics and Kinematics

The rotational error kinematics are found as the composite quaternion rotation from Body Frame to Desired
Frame as described in (2.9), (2.13) and (2.14) but rewritten with the correct notations as

qd,b = qd,n ⊗ qn,b, (2.23)

also known as the error quaternion. If the system is asymptotically stable the error quaternion will go
towards unity, i.e. [

1 0 0 0
]T
,

however, to avoid misinterpretations in simulation plots, the error quaternion can be defined as for positive
rotation(clockwise)

eq+ =
[
1− ηd,b εεεTd,b

]T
(2.24)

and similarly for negative rotation(counter clockwise)

eq− =
[
1 + ηd,b εεεTd,b

]T
(2.25)

assuring that the the quaternion error → 0. The error kinematics are found as

q̇d,b =
1

2
qd,b ⊗

[
0
ωωωbd,b

]
(2.26)

or as

q̇d,b =
1

2
T(qd,b)

[
0
ωωωbd,b

]
, (2.27)

where the angular velocity error ωωωbd,b is described as

ωωωbd,b = ωωωbd,n +ωωωbn,b = ωωωbn,b −Rb
dωωω

d
n,d. (2.28)

The angular acceleration in regard to the rotational dynamics is found using Euler’s momentum equation
as (Oland, 2014; Stengel, 2014)

Jω̇ωωbd,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b + JS(ωωωbd,b)R

b
dωωω

d
n,d − JRb

dω̇ωω
d
n,d (2.29)

where τττ b is the control signal and kan be written as

τττ b = S(ωωωbn,b)Jωωω
b
n,b + JRb

dω̇ωω
d
n,d − kpεεεd,b − kdωωωbd,b, (2.30)

and Jb is the inertia matrix defined as

Jb =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 (2.31)

where Jxx, Jyy and Jzz represents the constant inertia components along the {xb, yb, zb}-axes of the
quadrotor.
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Chapter 3

Main Results

In this chapter the main mathematical results of the quadrotor cascaded interconnected system is presented.
The chapter contains three main sections, where the first addresses the decoupling of the quadrotor’s
rotational motion, the second deals with the decoupling of the quadrotor’s translational motion, and the
third where the two cascades are joined together to form the total cascaded interconnected system. The main
reason for using a cascaded approach when it comes to mathematical modeling is, as stated in section 1.4,
that by breaking a larger system into smaller subsystems (or cascades), proving system stability becomes
much easier in terms of mathematical calculations. By proving that cascades are stable it follows, in
accordance with cascade theory, that if every cascade in a system is stable then the whole system becomes
stable.

3.1 Rotational Cascade

In this section the rotation of the quadrotor is addressed. The goal is to derive a mathematical model
describing the rotation and prove its stability. The problem is to control the quadrotor relative to an
inertial frame. The Body Frame is defined to coincide with the moments of inertia with an origin in the
quadrotors center of mass, while the NED Frame is treated as the inertial frame. By utilizing the the
equations (2.23), (2.27), (2.28), (2.29), (2.30), (2.31) the stand-alone rotation can be, with modification,
obtained.

3.1.1 Kinematics and Dynamics

If it is assumed that no translational motion occurs during the rotation and optimal conditions, (i.e. no
wind, blade flapping etc.) the desired quaternion qn,d can be defined as constant. First, the expressions for
the quaternion and angular velocity error are obtained. Using (2.10) the quaternion error is written as

qd,b = T(qd,n)qn,b

with the desired quaternion defined as (2.5) and (2.6) and the quaternion operator T(qd,n) as (2.12). With
these results the error kinematics can be constructed according to (2.27) and combined with (2.12) as

q̇d,b =
1

2

[
−εεεTd,bωωωbd,b

(ηd,bI− S(εεεd,b))ωωω
b
d,b

]
. (3.1)

The angular velocity error can be obtained from (2.28), which is defined as

ωωωbd,b = ωωωbn,b −Rb
dωωω

d
n,d.

However, since qn,d is considered constant, the rotation

Rb
dωωω

d
n,d = 0
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and the angular velocity error can then be written as

ωωωbd,b = ωωωbn,b.

Knowing this the rotation dynamics presented in (2.29) can be rewritten as

Jω̇ωωbd,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b (3.2)

where the derivative of the angular velocity error can be presented as

ω̇ωωbd,b = ω̇ωωbn,b

enabling the rotational dynamics in (3.2) to be rewritten as

Jω̇ωωbn,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b. (3.3)

and the error dynamics as
ω̇ωωbn,b = J−1(−S(ωωωbn,b)Jωωω

b
n,b + τττ b). (3.4)

3.1.2 Control Design

The controller is designed according to the principle of PD+ which is described in section 1.6.1, where
instead of a standard PD control scheme, the PD+ offers a reference in that the PD-response is to follow.
By using the rotation dynamics found in (3.3) a control law is constructed as a function of the quaternion
and angular velocity errors as

τττ b = S(ωωωbn,b)Jωωω
b
n,b − kpqd,b − kdωωωbn,b, (3.5)

where the error quaternion is represented by the vector part εεεd,b and the control law is rewritten as

τττ b = S(ωωωbn,b)Jωωω
b
n,b − kpεεεd,b − kdωωωbn,b. (3.6)

Inserting the control signal (3.6) into (3.3) the control law is obtained on the form ẋ = −kpx1 − kdx2 as

Jω̇ωωbn,b = −kpεεεd,b − kdωωωbn,b (3.7)

where kp and kd are gains. The PD+ approach requires a reference for the system to follow, which usually
comes in the form of the desired angular acceleration vector. However, since the system only rotates around
its own body axes with a constant velocity, the acceleration is, in this case 0, and subsequently the controller
can be represented as written in (3.7).

3.1.3 Block Diagram Model

With the kinematics, dynamics and controller in place a block diagram representation of the quadrotor
model is made to visually show the rotation cascade of the quadrotor.
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Figure 3.1: Illustration of the Rotation Cascade System.

3.2 Translational Cascade

In this section the control and stability of the translational motion of the quadrotor is addressed. As in
section 3.1.1 a mathematical model based on its translational motion is derived and the stability of the
controller is verified.

3.2.1 Kinematics and Dynamics

As described in (2.15) and (2.16) the translation kinematics and dynamics are written as

ṗn = vn

v̇n = − 1

m
Rn
b

0
0
Υ

b +

0
0
g

n .
Decoupled from the rotation, translational motion will only be achievable along the z-axis of the Body
Frame where the dynamics are represented as

v̇n = − 1

m
I

0
0
Υ

b +

0
0
g

n (3.8)

However, if it is assumed that the rotation matrix Rn
b is perfect, the rotation control can be performed

directly by the thrust vector ΥΥΥb, allowing the necessary rotation to occur. The dynamics can then be
rewritten as

v̇n = − 1

m
I

Υx

Υy

Υz

n +

0
0
g

n (3.9)

3.2.2 Control Design

As in section 3.1.2 the translational controller is also constructed as a PD+ control scheme. The control of
the quadroor will be divided into two parts, where the control signals of the translation are the total thrust
Υ and the thrust vector ΥΥΥb and is constructed as a function of the position, velocity and acceleration of the
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translational motion in NED frame pn and the desired position, velocity and acceleration in NED frame
pnd . The desired position as a function of the time t is defined as

pnd (t) =

r sin(ωt)
r cos(ωt)

zd

 (3.10)

where r is the radius (in meters), ω is the angular velocity of the sine, and cosine functions (rad/s) and
z is the desired altitude (in meters). The desired velocity and acceleration is found as the first and second
derivative of pnd as

ṗnd (t) =

 ωr cos(ωt)
−ωr sin(ωt)

0

 (3.11)

p̈nd (t) =

−ω2r sin(ωt)
−ω2r cos(ωt)

0

 . (3.12)

For a Helix trajectory the desired position, velocity and acceleration can be defined as

pnd (t) =

r sin(ωt)
r cos(ωt)
−t


ṗnd (t) =

 ωr cos(ωt)
−ωr sin(ωt)
−1


p̈nd (t) =

−ω2r sin(ωt)
−ω2r cos(ωt)

0

 ,
and a spiral trajectory can be represented as

pnd (t) =

(1 + t) sin(ωt)
(1 + t) cos(ωt)

−t


ṗnd (t) =

sin(ωt) + ω(1 + t) cos(ωt)
cos(ωt)− ω(1 + t) sin(ωt)

−1


p̈nd (t) =

 2ω cos(ωt)− ω2(1 + t) sin(ωt)
−2ω sin(ωt)− ω2(1 + t) cos(ωt)

0

 .
Total Thrust Control
Using pnd (t), ṗnd (t) and p̈nd (t) the total thrust Υb for the decoupled translational motion is found as a
modification of (2.17) as

Υ = mz̈d − kp(pndz − p
n
z )− kd(ṗndz − ṗ

n
z ) +mg, (3.13)

where kp and kd are gains, pnz is the z-component of pn , pndz is the z-component of pnd (t). Inserting the
position and velocity errors into (2.18) and (2.19), the errors are rewritten as

z̃ = pndz − p
n
z

˙̃z = ṗndz − ṗ
n
z ,

with the acceleration z̈d as
z̈d = p̈ndz (3.14)

17



3.3. TOTAL CASCADE INTERCONNECTED SYSTEM CHAPTER 3. MAIN RESULTS

Figure 3.2: Illustration of the Translation Cascade system

Using these alterations and inserting them into (2.17), the total thrust is found as

Υ = mz̈d − kpz̃ − kd ˙̃z +mg.

Thrust Vector Control
The thrust vector ΥΥΥb is found by inserting pnd (t), ṗnd (t) and p̈nd (t) into (2.17) as

ΥΥΥb
τ = mp̈nd − kp(pnd − pn)− kd(ṗnd − ṗn) +mgnz , (3.15)

where the position error, velocity error and acceleration is defined as

perr = pnd − pn (3.16)

verr = ṗnd − ṗn (3.17)

and = p̈nd . (3.18)

Inserting (3.16),(3.17),(3.18) into (3.15) the thrust vector is finally written as

ΥΥΥb
τ = mand − kpperr − kdverr +mg (3.19)

3.2.3 Block Diagram Model

Having found expressions for the translational dynamics and kinematics and a control law, a block diagram
model is made to show the translation cascade system.

3.3 Total Cascade Interconnected System

In this section the decoupled cascades are joined together. where the rotation, translation and controller
designs are reconstructed, such that, when given a desired position in R3 the quadrotor will rotate the
translational motion along the desired trajectory to obtain the desired position, where the desired rotations,
angular velocities and angular accelerations are generated by a guidance system.

3.3.1 Rotation Kinematics and Dynamics

Unlike the assumption for the decoupled rotation in section 3.1.1, the desired quaternion qn,d for the total
system can not be considered constant. The definition of the error quaternion is still as presented in (2.23)

qd,b = qd,n ⊗ qn,b,
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with the desired rotation from NED Frame to Desired Frame written as (2.5)

qd,n = q̄n,d,

where q̄n,d is found as (2.6)

q̄n,d =
[
ηn,d −εεεTn,d

]T
The error dynamics however will not be represented as in the decoupled system. With qn,d as a variable,
the angular velocity error must be represented as shown in (2.28) as

ωωωbd,b = ωωωbn,b −Rb
dωωω

d
n,d

with the error dynamics as (2.29)

Jω̇ωωbd,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b + JS(ωωωbn,b)R

b
dωωω

d
n,d − JRb

dω̇ωω
d
n,d.

3.3.2 Rotation Controller Design

Although the error dynamics are represented with the control signal τττ b, the rotation that requires a control
solution is the rotation qn,b, due to the fact that the quadrotor has to rotate from Body Frame to NED

frame. which is represented by the rotation dynamics of ωωωbn,b described in (3.3) as

Jω̇ωωbn,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b.

The control law vector τττ b as a function of the error quaternion and rotation dynamics is chosen as a
modification of (3.6) as

τττ b = S(ωωωbn,b)Jωωω
b
n,b − kpεεεd,b − kdωωωbd,b,

and to keep a PD+ structure the reference JRb
dω̇̇ω̇ω

d
n,d found in the error dynamic equation (2.29) is added,

reforming the control law to

τττ b = S(ωωωbn,b)Jωωω
b
n,b + JRb

dω̇̇ω̇ω
d
n,d − kpεεεd,b − kdωωωbd,b. (3.20)

Inserting the control law into (3.3) the rotation dynamics of the total system is found as

Jω̇̇ω̇ωbn,b = JRb
dω̇̇ω̇ω

d
n,d − kpεεεd,b − kdωωωbd,b (3.21)

With qn,b controlled, the rotation matrix Rn
b can be constructed as (2.7)

Rn
b = I + 2ηn,bS(εεεn,b) + 2S2(εεεn,b).

3.3.3 Translation Kinematics and Dynamics

The translational kinematics and dynamics are essentially the same as in section 3.2.1. However in the total
system the translation is not decoupled from the rotation. The rotation matrix Rn

b , which is produced in
the rotation cascade is fed into the translation cascade and acts as a control signal that enables the thrust
vector to be pointed in the desired direction such that the Body Frame aligns with the Desired Frame, and
subsequently allows the quadrotor to fly towards the desired position pnd , The kinematics and dynamics are
represented as (2.15) and (2.16)

ṗn = vn

v̇n = − 1

m
Rn
b

0
0
Υ

b +

0
0
g

n .
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3.3.4 Translation Controller Design

Knowing that the rotation matrix Rn
b is not a perfect rotation, i.e. no instant rotation, the translation can

not be controlled by the thrust vector that can be constructed using the desired position vector pnd . As a
result the translation controller for the total cascade interconnected system is represented as described in
(3.13), (2.18), (2.19) and (2.20) as an altitude controller on the form

Υ = mz̈ − kpz̃ − kd ˙̃z +mg.

However to obtain the correct thrust vector, the error position, error velocity and the reference acceleration
(2.18), (2.19), (3.18) is rotated to the Body Frame where the errors

eb = (Rn
b )T (pnd − pn) (3.22)

ėb = (Rn
b )T (ṗnd − ṗn) (3.23)

ëb = (Rn
b )T p̈nd (3.24)

where

z̃b = ebz (3.25)

˙̃zb = ėbz (3.26)

z̈b = ëbz (3.27)

When considering rotation, the thrust needs to compensate for the rotation angles or else the quadrotor
will fall to the ground. This can be done by modifying the thrust controller by dividing (3.13) with the zz-
component of the rotation matrix Rn

b , and finally inserting (3.25), (3.26), (3.27) into (3.13), reconstructing
the controller as

Υ =
1

Rn
bzz

(mz̈b − kpz̃b − kd ˙̃zb +mg). (3.28)

3.3.5 Guidance

To achieve the desired rotation in accordance with the change in position, three values must be generated,
namely the desired rotation quaternion qn,d, the desired angular velocity ωωωdn,d, and the angular acceleration

ω̇ωωdn,d. These are needed such that the quadrotor rotates correctly and points the thrust vector in the desired
direction. This is accomplished by constructing a waypoint tracking system that creates the desired values
using the position error between pn and pnd . As stated in (Oland, 2014) the position error in the Desired
Frame for fixed-wing UAVs can be defined as

ed :=

‖en‖0
0

 = Rd
ne

n = Rd
n(pnd − pn), (3.29)

where the objective is to make ed → 0. However, unlike a fixed-wing UAV which has its thrust vector
aligned with its xb-axis, a quadrotor UAV has its thrust vector aligned along its zb-axis, and the waypoint
error ed is as a consequence redefined as

ed :=

 0
0

−‖en‖

 = Rd
ne

n = Rd
n(pnd − pn), (3.30)

where pnd − pn = en is the position error between the desired and actual position in NED Frame and ‖en‖
is its norm. The desired quaternion rotation qn,d is then obtained as (2.3), (2.4)

qn,d =
[
cos
(
ϑn,d

2

)
kTn,d sin

(
ϑn,d

2

)]T
, (3.31)
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Figure 3.3: Illustration of the Position vectors in the xy-plane. Inspired by (Oland, 2014)

where the rotation angle ϑn,d and the quaternion vector kn,d is constructed as

ϑn,d =
1

3
tan−1

(
k‖
[
enx eny 0

]T ‖) kn,d =
ed × en

‖ed × en‖
, (3.32)

where k is a constant. Having obtained a solution for qn,d, an expression for the desired angular velocity

must be attained. As shown in (3.29), the waypoint error is defined as ed = Rd
ne

n, and by differentiating
ed a preliminary expression containing the desired angular velocity is found as

ėd = Rd
nS(ωωωnd,n)en + Rd

nė
n. (3.33)

To solve for the angular velocity the equation needs to be modified slightly and is rewritten as

ėd = −S(ωωωdd,n)ed + Rd
nė

n

and lastly with the angular velocity outside of the skew-symmetric matrix as

ėd = S(ed)ωωωdn,d + Rd
nė

n. (3.34)

With an expression containing ωωωdn,d obtained, the equation is then solved for the desired angular velocity,
rewriting the expression as

S(ed)ωωωdn,d = ėd −Rd
nė

n. (3.35)

Knowing that the skew-symmetric matrix with the components from the waypoint error does not have full
rank and is constructed by its z-component alone the matrix is written as

S(ed) =

 0 −‖en‖ 0
‖en‖ 0 0

0 0 0

 .
This means that to solve for ωωωdn,d the Moore-Penrose pseudo-inverse S†(·) must be used, where

S†(ed) =

 0 1
‖en‖ 0

− 1
‖en‖ 0 0

0 0 0

 ,
and by inserting the the pseudo-inverse into (3.35) the expression becomes

S†(ed)S(ed)ωωωdn,d = S†(ed)(ėd −Rd
nė

n),
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where S†(ed)S(ed) = I and

S†(ed)S(ėd) =

 0 1
‖en‖ 0

− 1
‖en‖ 0 0

0 0 0

 0
0
‖ėn‖

 = 0

making the desired angular velocity
ωωωdn,d = −S†(ed)Rd

nė
n. (3.36)

In addition to ωωωdn,d, the guidance system must also provide the rotational control reference, which is found

by either differentiating ωωωdn,d or by low pass filtering. Since differentiating ωωωdn,d can be quite difficult, a filter

solution is applied to approximate ω̇ωωdn,d as

ω̃ωωdn,d
ωωωdn,d

=
1

Ts+ 1
. (3.37)

Solving for ωωωdn,d gives

ω̃ωωdn,d(Ts+ 1) = ωωωdn,d,

rewriting to the extended form as
ω̃ωωdn,dTs+ ω̃ωωdn,d = ωωωdn,d,

and finally performing inverse laplace and solving for the derivative yields the filtered expression

˙̃ωωωdn,d =
ωωωdn,d − ω̃ωω

d
n,d

T
(3.38)

where ˙̃ωωωdn,d is the desired angular acceleration and T can be considered the sampling rate of the filter.

3.3.6 Total Cascade Interconnected System Model

Having found the modified expressions and control laws necessary to construct the final versions of the
rotational and translational cascades, a model for the total system can be constructed. The cascade
interconnected system can then be expressed as a modification of (1.1) and (1.2) on the form

Σ1 : v̇n = − 1

m
Rn
b

0
0
Υ

b +

0
0
g

n (3.39)

Σ2 : Jω̇̇ω̇ωbn,b = −S(ωωωbn,b)Jωωω
b
n,b + τττ b. (3.40)

A block diagram model is made to show the total cascaded interconnected system.
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Figure 3.4: Block Model of the Total Cascade Interconnected System
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Chapter 4

Simulation Results

To verify the control solutions that have been proposed in sections 3.1.2, 3.2.2 and 3.3.2, several simulations
have been conducted. The quadrotor model that is used is a prototype that is under development in the
University of Tromsoe (UiT) campus Narvik by Tor-Aleksander Johansen, shown in Figure 4.1, who has
provided the inertia matrix values and mass of the quadrotor. The simulations are divided into three
sections in accordance with chapter 3, where section 4.1 and 4.2 respectively holds the simulation results
of the Rotation and Translation Cascades, and section 4.3 presents the simulation results of the total
interconnected system. As a note, the z-axes in both NED and Body Frame are defined with positive
direction pointing down, meaning that in the simulation results, positive movement along the z-axis shows
the quadrotor flying downwards, and negative movement shows the quadrotor flying upwards.

Figure 4.1: HiNrotor Prototype Used For Simulation, Illustration by Tom Stian Andersen
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4.1 Rotational Cascade Simulation Results

Let the initial states be given as qn,b(0) =
[
1 0 0 0

]T
, and ωωωbn,b(0) = 0 rad/s, indicating that the

quadrotor is standig still where the quadrotors inertia matrix is defined as

J =

0.047316 0 0
0 0.048898 0
0 0 0.539643

 .
Three simulations are performed to test that for different rotations the controller holds. The three
desired orientations corresponding with the angles O1 =

[
30◦ 30◦ 30◦

]
, O2 =

[
30◦ 30◦ −30◦

]
,

O3 =
[
−30◦ −30◦ −30◦

]
are

qn,d(1) =
[
0.918558653543692 0.176776695296637 0.306186217847897 0.176776695296637

]T
qn,d(2) =

[
0.883883476483185 0.306186217847897 0.176776695296637 −0.306186217847897

]T
qn,d(3) =

[
0.883883476483185 −0.306186217847897 −0.176776695296637 −0.306186217847897

]T
.

The control gains are set to kp = 20 and kd=12. In these simulations the error dynamics are denoted ωωωbn,b
since ωωωbd,b = ωωωbn,b for the decoupled rotational cascade.

4.1.1 Simulation Case 1

This section contains the simulation results for the desired quaternion rotation qn,d(1)

25



4.1. ROTATIONAL CASCADE SIMULATION RESULTS CHAPTER 4. SIMULATION RESULTS

Figure 4.2: Quaternion Error for Simulation qn,d(1)
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Figure 4.3: Angular Velocity Error for Simulation qn,d(1)
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(a) Quaternion Rotation (b) Angular Acceleration

(c) Quaternion Kinematics (d) Quadrotor Torques

Figure 4.4: Additional Simulation Results for qn,d(1)
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4.1.2 Simulation Case 2

This section contains the simulation results for the desired quaternion rotation qn,d(2)

Figure 4.5: Quaternion Error for Simulation qn,d(2)
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Figure 4.6: Angular Velocity Error for Simulation qn,d(2)
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(a) Quaternion Rotation (b) Angular Acceleration

(c) Quaternion Kinematics (d) Quadrotor Torques

Figure 4.7: Additional Simulation Results for qn,d(2)
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4.1.3 Simulation Case 3

This section contains the simulation results for the desired quaternion rotation qn,d(3)

Figure 4.8: Quaternion Error for Simulation qn,d(3)
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Figure 4.9: Angular Velocity Error for Simulation qn,d(3)
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(a) Quaternion Rotation (b) Angular Acceleration

(c) Quaternion Kinematics (d) Quadrotor Torques

Figure 4.10: Additional Simulation Results for qn,d(3)
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4.1.4 Simulation Comments

As the Simulation figures for all three cases clearly shows, the control solution for the decoupled rotation
of the quadrotor presented in section 3.1 makes all errors → 0, thus verifying the control solution.

4.2 Translational Cascade Simulation Results

Let the initial states be given as pn(0) = 0 m and vn(0) = 0 m/s, indicating that the start position of
the quadrotor is in origin and that it is standing still. Three simulations are performed to test both the
decoupled thrust controller and the ideal thrust vector controller. The first simulation features the thrust
controller, while the second and third utilizes the thrust vector controller. Let a fixed desired position be
given by the coordinates pnd =

[
20 15 50

]
m, and a desired position as a function of time presented in

(3.10) as

pnd (t) =

r sin(ωt)
r cos(ωt)

zd

 .
The following scenarios are to be simulated:

1. Thrust controller with desired position as a function of time, with r = 25 m, ω = 0.01 rad/s and
zd = 50 m.

2. Thrust vector controller using the fixed desired position.

3. Thrust vector controller with trajectory tracking of a circle, with r = 25 m, ω = 0.01 rad/s and
zd = 50 m, a helix, with r = 25 m, ω = 0.01 rad/s and zdt m and a spiral, with r(t) = 2t m, ω = 0.01
rad/s and zdt = 1t m.

The mass of the quadrotor is 1.22463 kg and the control gains are set to kp = 20 and kd = 15.

4.2.1 Simulation Case 1

This section contains the simulation results using the thrust controller to track a desired trajectory.
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Figure 4.11: Position Error with Thrust Controller Υb
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(a) Desired Position (b) Velocity in NED frame

(c) Position in NED frame (d) Acceleration in NED frame

Figure 4.12: Additional Simulation Results with Thrust Controller Υb
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4.2.2 Simulation Case 2

This section contains the simulation results using the thrust vector to reach a fixed position.

Figure 4.13: Position Error in Fixed coordinates Simulation with Thrust Vector controller ΥΥΥb
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(a) Velocity in NED frame (b) Position in NED frame

(c) Acceleration in NED frame (d) Thrust Vector in Body frame

Figure 4.14: Additional Simulation Results for Fixed Coordinates with Thrust Vector Controller ΥΥΥb
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4.2.3 Simulation Case 3

This section contains the simulation results using the thrust vector to track a desired trajectory, accompanied
by 3D figures showing the trajectory tracking of a circle, helix and a spiral.

Figure 4.15: Position Error
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(a) Velocity in NED frame (b) Position in NED frame

(c) Acceleration in NED frame (d) Desired Position Reference

(e) Thrust Vector in Body frame

Figure 4.16: Additional Simulation Results for Trajectory Tracking with Thrust vector Controller ΥΥΥb
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(a) Trajectory tracking of a Circle with Altitude 50 m (b) Trajectory Tracking of a Spiral

(c) Trajectory Tracking of a Helix

Figure 4.17: 3D-plots of Trajectory Tracking with Thrust Vector Controller ΥΥΥb
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4.2.4 Simulation Comments

As the simulation figures shows, the translation system behaves as expected according to the assumptions
made in section 3.2, both when it comes to the thrust controller and the perfect rotational response from the
thrust control vector. As the figures of the circle, helix and spiral trajectory tracking shows, the quadrotor
follows the desired positions accurately.

4.3 Total Cascade Interconnection Simulations

Let the initial states be given as qn,b =
[
1 0 0 0

]T
, pn(0) = 0 m and vn(0) = 0 m/s, indicating that

the quadrotor is standing still and has the starting position in origin with no initial rotation. The thrust of
the quadrotor has been limited to 30 N following the quadrotor specification given, and the rotation angles
have been limited to ϑ = ±30◦. The following scenarios are to be simulated:

1. Fixed Desired position, with pnd =
[
10 −10 15

]T
m, to test if the rotation and translation

controllers are working, and to test if the cascades are working in union. The rotation controller
gains are set to kp = 4 and kd = 1, and the translation controller gains are set to kp = 2 and kd = 2.

2. Trajectory tracking of a circle, with r = 25 m, ω = 0.1 rad/s and zd = 50 m, where the rotation
controller gains are set to kp = 5 and kd = 1, and the translation controller gains are set to kp = 1
and kd = 5.

3. Trajectory tracking of a helix, with r = 25 m, ω = 0.1 rad/s and zd(t) = −1t m, where the rotation
controller gains are set to kp = 5 and kd = 1, and the translation controller gains are set to kp = 1
and kd = 5.

4. Trajectory tracking of a spiral, with r(t) = t + 1 m, ω = 0.1 rad/s and zd(t) = −1t m, where the
rotation controller gains are set to kp = 20 and kd = 1, and the translation controller gains are set to
kp = 1 and kd = 5.

5. Waypoint tracking, where the desired positions are set to: wp1 =
[
5 5 0

]T
, wp2 =

[
5 5 −5

]T
,

wp3 =
[
−5 15 −5

]T
, wp1 =

[
−7 −8 −20

]T
and wp1 =

[
15 −10 −5

]T
. the rotation

controller gains are set to kp = 10 and kd = 2, and the translation controller gains are set to kp = 2
and kd = 5.

4.3.1 Simulation Case 1

This section contains the simulation results for the total cascaded system tracking a fixed desired position.
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Figure 4.18: Quaternion Error, Fixed position Simulation
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Figure 4.19: Position error, Fixed Position Simulation
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Figure 4.20: Angular Velocity error, fixed Position Simulation
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(a) Position in NED Frame (b) Desired Position in NED Frame

(c) Quaternion Rotation from Body to NED Frame
(d) Desired Quaternion Rotation from Desired to NED
Frame

Figure 4.21: Additional Simulation results, Fixed Position Simulation
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4.3.2 Simulation Case 2

This section contains the simulation results for the total cascaded system tracking a circle trajectory.

Figure 4.22: Trajectory Tracking of a Circle
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Figure 4.23: Quaternion Error, Trajectory Tracking of a Circle
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Figure 4.24: Angular Velocity Error, Trajectory Tracking of a Circle
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Figure 4.25: Position Error, Trajectory Tracking of a Circle

(a) Desired Quaternion Rotation (b) Desired Angular Velocity

Figure 4.26: Additional Simulation Results, Trajectory Tracking of a Circle

51



4.3. TOTAL CASCADE INTERCONNECTION SIMULATIONSCHAPTER 4. SIMULATION RESULTS

4.3.3 Simulation Case 3

This section contains the simulation results for the total cascaded system tracking a helix trajectory.

Figure 4.27: Trajectory Tracking of a Helix
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Figure 4.28: Quaternion Error, Trajectory Tracking of a Helix
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Figure 4.29: Angular Velocity Error, Trajectory Tracking of a Helix
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Figure 4.30: Position Error, Trajectory Tracking of a Helix

(a) Desired Quaternion Rotation (b) Desired Angular Velocity

Figure 4.31: Additional Simulation Results, Trajectory Tracking of a Helix
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4.3.4 Simulation Case 4

This section contains the simulation results for the total cascaded system tracking a spiral trajectory.

Figure 4.32: Trajectory Tracking of a Spiral
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Figure 4.33: Quaternion Error, Trajectory Tracking of a Spiral
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Figure 4.34: Angular Velocity Error, Trajectory Tracking of a Spiral
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Figure 4.35: Position Error, Trajectory Tracking of a Spiral

(a) Desired Quaternion Rotation (b) Desired Angular Velocity

Figure 4.36: Additional Simulations, Trajectory Tracking of a Spiral
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4.3.5 Simulation Case 5

This section contains the simulation results for the total cascaded system tracking waypoints.

Figure 4.37: Waypoint Tracking
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Figure 4.38: Quaternion Error, Waypoint Tracking
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Figure 4.39: Angular Velocity Error, Waypoint Tracking
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Figure 4.40: Position Error, Waypoint Tracking

(a) Desired Quaternion Rotation (b) Desired Angular Velocity

Figure 4.41: Additional Simulations, Waypoint Tracking
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4.3.6 Simulation Comments

As Figure 4.19, Figure 4.22, Figure 4.27, Figure 4.32 and Figure 4.37 shows, it can be observed that the
quadrotor is tracking both the desired fixed position, the circle, helix and spiral trajectories, as well as the
waypoints quite smoothly. The figures representing the error measurements show some anomalies, in the
form of oscillatory movements where it is expected convergence towards zero. For the spiral trajectory,
the position error increases with time. A reason for this might be because the magnitude of the desired
acceleration increases over time, a solution to this could be to add more compensation terms.
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Chapter 5

Concluding Remarks

5.1 Discussion

In this thesis a mathematical cascaded quadrotor model with passivity-based control has been presented.
The model could be considered as a rotational cascade and a translational cascade, where the quaternion
rotation from the Body Frame to NED Frame within the rotation cascade generated a rotation matrix, Rn

b ,
which served as an input to the translation cascade, enabling the quadrotor to point the thrust in a desired
direction, causing the quadrotor to fly towards a desired position. Both the rotational and translational
controllers have been developed according to the passive GAS PD+ control scheme. The cascades were first
decoupled, such that the individual stability of the two cascades could be tested in accordance with cascade
stability theories, before they were joined together and the whole cascaded system was tested.

The simulation figures for both the decoupled rotation and translation cascades, along with the
mathematical descriptions and results of the systems shows that the rotation and translation in principle
are stable. In the rotation cascade, the quadrotor rotates fast and stable towards the desired quaternion,
and in the translation cascade, the quadrotor reaches the desired position fast and robustly using both the
altitude controller and the vector controller.

Following the theory of cascade interconnections the total system joined together should be stable. The
simulation results suggests that the system is stable, nonetheless they give no indications as to what type
of stability the system has, which can only be verified by stability proofs.

5.2 Conclusions

As the simulation results clearly show, the cascade interconnected quadrotor system is able to track both
fixed positions and positions that change with time, such as the circle, helix and waypoint tracking. The
simulation figures for the spiral trajectory tracking shows a growth in position error as the radius of the
circle increases, indicating that the control solutions are struggling with increase in acceleration (jerk), but
is believed to be rectified by additional compensation terms. Overall the system performs well, and can be
presumed stable.

5.3 Recommendations for Future Work

The following list includes recommendations for future work as an extension of the work done in this thesis.

• Develop a different guidance system, perform stability proofs for the obtained control solutions and
the growth term g(t, x)x2 of the cascaded system.

• Perform detailed simulations by taking atmospherical perturbations into account, and assess the
controllers developed in this thesis performances with the perturbing forces present.
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5.3. RECOMMENDATIONS FOR FUTURE WORK CHAPTER 5. CONCLUDING REMARKS

• Expand on the model by taking actuator dynamics into account, suggest control solutions based on
the added dynamics, and perform simulations of the system.

• Expand on the model by developing alternative control solutions and perform simulations of the
system.
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Appendix A

CD index

In the following directories on the attached CD you may find:

• THESIS: The thesis in .pdf format

• FIGURS: Folder containing all figures used in the thesis

• MATLAB AND SIMULINK: The Simulink models used for simulations and Matlab scripts used to
calculate quaternions and create figures.

• PAPERS: A selection of references

69


	Abstract
	Preface
	Introduction
	Background and the Purpose of the Thesis
	Previous Work
	Previous Work in General
	Cascade Modeling
	PD+ Passivity Based Control

	Contribution
	Outline
	Delimitations

	Preliminaries
	Notations and Definitions
	Reference frames
	Translation Dynamics and Kinematics
	Rotation Dynamics and Kinematics
	Dynamics and Kinematics
	Error Dynamics and Kinematics


	Main Results
	Rotational Cascade
	Kinematics and Dynamics
	Control Design
	Block Diagram Model

	Translational Cascade
	Kinematics and Dynamics
	Control Design
	Block Diagram Model

	Total Cascade Interconnected System
	Rotation Kinematics and Dynamics
	Rotation Controller Design
	Translation Kinematics and Dynamics
	Translation Controller Design
	Guidance
	Total Cascade Interconnected System Model


	Simulation Results
	Rotational Cascade Simulation Results
	Simulation Case 1
	Simulation Case 2
	Simulation Case 3
	Simulation Comments

	Translational Cascade Simulation Results
	Simulation Case 1
	Simulation Case 2
	Simulation Case 3
	Simulation Comments

	Total Cascade Interconnection Simulations
	Simulation Case 1
	Simulation Case 2
	Simulation Case 3
	Simulation Case 4
	Simulation Case 5
	Simulation Comments


	Concluding Remarks
	Discussion
	Conclusions
	Recommendations for Future Work

	Bibliography
	Appendices
	CD index

