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State estimation is one of the most important processes in 
modelling and monitoring of a power system. Iterative and less 
accurate conventional means of estimation are now being 
replaced by fast and direct state vector measurements provided 
by PMUs. However, the high cost of PMUs forces engineers to 
choose wisely where the measurement units should be placed. 

The given project observes different ways to incorporate the PMU 
measurements to enhance power system state estimation, 
depending on the desired depth of observability and the amount 
of conventional measurements included. It also investigates the 
outcomes of such schemes in terms of estimation error. To 
evaluate the outcomes, numerical simulation has been carried out 
using a model designed in MATLAB. 
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1 INTRODUCTION 

1.1 Problem background 

Over the last century electric power has obviously become deeply 

integrated into our everyday routine. The power network of the Nordic 

countries developed greatly over time, becoming a complex system combining 

conventional and renewable energy sources, various consumers and vast 

transmission system [1]. A single failure in such a system can lead to serious 

consequences and should preferably be predicted and avoided. Therefore, the 

ability to monitor such a complicated system is a crucial prerequisite for stable 

and reliable operation of today’s smart grid.  

When the network stability issue is addressed, one of the most important 

functions is to determine the power system state at any point of the network at 

a given instant of time. The state variables are the voltage magnitudes and 

relative phase angles at the system buses. The ideas of least-squares estimation 

appeared in 19th century in applications in the aerospace field [2]. Later, static 

and dynamic estimators were developed for power systems. Early estimation 

algorithms used measurements of power flows to produce the best estimate for 

the system voltage and phase angles [3]. However, they could not measure the 

system state directly. 

Although the concept of using phasors to describe power system operating 

quantities was introduced in 1893 [4], the earliest application involving direct 

phasor measurement was reported in early 1980s by Dr. Arun G. Phadke and 

Dr. James S. Thorp at Virginia Tech and the first commercially available PMUs 

appeared in early 1990s [3]. The prototype utilized the Global Positioning 

System (GPS) technology to achieve time synchronization between remote 

measurements. The implementation of such device not only allowed to 

measure the system state variables directly, but also made it possible to 

redesign the state estimation method. Iterative and time-consuming process 



2 
 

could be substituted with a set of linear equations, reducing the number of 

calculations and increasing the state refresh rate. Continuously developing and 

worldwide integrating PMU technology can provide the system operators with 

a better picture of the network and improve the quality of system monitoring.  

1.2 Objective of thesis 

Although PMUs provide precise measurements of system state, the 

average cost per PMU ranges between $40 000 and $180 000 and depends on 

various factors described in [5]. This forces engineers to make compromises on 

PMU placement and combining phasor measurements with existing estimation 

techniques.  

This project examines different schemes utilizing PMU measurements and 

evaluates their effect on the system state estimation. The main objective of this 

thesis is to build up a model of a power system, which allows to make the state 

variables calculation based on desired method of state estimation, given 

amount of measurements and observability concern. The outcomes of these 

schemes will be analyzed and the most optimal placement techniques, 

producing minimal estimation error, will be proposed. 

1.3 Thesis outline 

The given thesis is divided into chapters to give a clear and structured 

picture on the problem.  

Chapter 2 discusses the basic principle of classic state estimation, the 

concept of non-linear weighted least squares and how it is applied for state 

estimation in power systems. The equations of non-linear functions of system 

state variables are also derived.  

Chapter 3 begins with a short insight into the common structure of PMU 

and its basic principle of operation. The concept of linear weighted least 

squares is explained and applied to linear state estimation for two cases: 
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utilizing PMU measurements exclusively or combined with traditional 

estimate. 

Chapter 4 concerns the optimal PMU placement problem. Complete and 

incomplete observability cases are discussed. The effect of inclusion of 

conventional measurements on the optimal placement is also considered. 

Examples illustrate how integer linear programming is applied to find the 

optimal solution. 

Chapter 5 explains how the theory above was applied to make the model 

script in MATLAB. The main features of the model are discussed. 

In chapter 6 the simulation results are presented and analyzed. 

Chapter 7 concludes the work done and suggests problems for future 

discussions. 
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2 CLASSIC STATE ESTIMATION  

As it was already mentioned above, state estimation provides the best 

possible approximation of system state according to the given input data. Such 

data usually is: 

- network model, which includes network topology (line connections and 

circuit breakers status information) and lines and transformers characteristics 

(impedance, tap ratio); 

- measurements, which for traditional estimators are measurements from 

SCADA system (real and reactive power flows, power injections, voltage and 

current magnitudes) [6]. 

Based on the given data, the estimator calculates the state vector x, which 

comprises voltage magnitudes and phase angles at the system nodes (buses). 

As for the classic estimator, this is performed with non-linear weighted least 

squares estimation, described below. Alternative formulations of the 

minimization criterion are covered in [7]. 

2.1 Mathematical basis 

The measurement equation is formulated as follows [2], [3], [6]: 

    z h x ,  (2.1) 

where  z – measurements vector;  

  h(x) – vector of non-linear functions, relating measurements to the 

state vector x; 

  ε – measurement error vector. 

The weighted least squares (WLS) method produces a state estimate, such 

that the sum of squared measurement residuals, weighted by their respective 

error covariances, is minimal. In other words, the task is to minimize the 

following objective function: 
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  
  






2

1

m
i i

i ii

z h x
J x

R
,  (2.2) 

or in matrix form: 

              
1T

J x z h x R z h x ,  (2.3) 

where R is the diagonal weighting matrix of variances  2
i ; 

 







 
 
 
 
 
  

2
1

2
2

2

...

m

R ,  (2.4) 

where m is the total number of measurements. 

Equation (2.3) is to be minimized recursively until the state variances 

meet the convergence limit (Δx becomes less than some tolerance value). When 

the initial conditions (k = 0) are set, the state vector estimate for k-th iteration 

will be defined by 

   1k kx x x ;  (2.5) 

     


   
1

1 1T T kx H R H H R z h x .  (2.6) 

Here H is a matrix of first partial derivatives of the elements of h with 

respect to the components of x (Jacobian matrix) evaluated at k-th iteration: 

 
 

     

     

     

   
 

   
   
 

     
  

 
   
 

   

1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n

h x h x h x

x x x

h x h x h x
h x

H x x x
x

h x h x h x

x x x

,  (2.7) 

where n is the number of state variables. 
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The numerical values of matrix H must be updated for each iteration step. 

2.2 Power system application 

The measurement functions that relate SCADA measurements to state 

variables are the following [8]. 

Power injections: 

        


   
1

cos sin
N

i i j ij i j ij i j
j

P V V G B ;  (2.8) 

        


   
1

sin cos
N

i i j ij i j ij i j
j

Q V V G B ,  (2.9) 

where N is the total number of buses, connected to bus i.  

Power flows: 

               2 cos sinij i i ij i j ij i j ij i jP V g g VV g b ;  (2.10) 

                2 sin cosij i i ij i j ij i j ij i jQ V b b VV g b .  (2.11) 

Line current magnitudes: 

 




2 2
ij ij

ij

i

P Q
I

V
.  (2.12) 

In the equations above, gij, bij correspond respectively to series 

conductance and susceptance of the line connecting buses i and j, and gi, bi are 

shunt conductance and susceptance of the line. These parameters are found 

with an assumption that the line is modelled as the π-equivalent, shown in 

Figure 2.1. Gij, Bij are respectively real and imaginary parts of ij-th element pf 

admittance matrix Y [9]. 



7 
 

 

Fig. 2.1. The π-equivalent model of a transmission line 

The measurement Jacobian matrix H will be formed as follows [6]: 

 











  
 
 

 
  

  
 
  

  
  

  
  
 
  

  
 

 
 

0

inj inj

flow flow

inj inj

flow flow

ij ij

i

P P

V

P P

V

Q Q

VH
Q Q

V

I I

V

V

V

  (2.13) 

The partial derivatives of the equations (2.8) – (2.12) are the following [6]: 

- elements corresponding to real power injection measurements: 

        
 


     


 2

1

sin cos
N

i
i j ij i j ij i j i ii

ji

P
VV G B V B ;  (2.14) 

        



   


sin cosi

i j ij i j ij i j

j

P
VV G B ;  (2.15) 

        



    



1

cos sin
N

i
j ij i j ij i j i ii

ji

P
V G B VG

V
;  (2.16) 

bus i bus j 
gij + jbij 

gi + jbi gj + jbj 

Pij, Qij Pji, Qji 
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        


   


cos sini
j ij i j ij i j

j

P
V G B

V
;  (2.17) 

- elements corresponding to reactive power injection measurements: 

        
 


    


 2

1

cos sin
N

i
i j ij i j ij i j i ii

ji

Q
VV G B V G ;  (2.18) 

        



    


cos sini

i j ij i j ij i j

j

Q
VV G B ;  (2.19) 

        



    



1

sin cos
N

i
j ij i j ij i j i ii

ji

Q
V G B VB

V
;  (2.20) 

        


   


sin cosi
j ij i j ij i j

j

Q
V G B

V
;  (2.21) 

- elements corresponding to real power flow measurements: 

        



   


sin cosij

i j ij i j ij i j

i

P
VV g b ;  (2.22) 

        



    


sin cosij

i j ij i j ij i j

j

P
VV g b ;  (2.23) 

          


      


cos sin 2ij

j ij i j ij i j i ij i

i

P
V g b V g g

V
;  (2.24) 

        


    


cos sinij

j ij i j ij i j

j

P
V g b

V
;  (2.25) 

- elements corresponding to reactive power flow measurements: 

        



   


cos sinij

i j ij i j ij i j

i

Q
VV g b ;  (2.26) 

        



   


cos sinij

i j ij i j ij i j

j

Q
VV g b ;  (2.27) 

          


      


sin cos 2ij

j ij i j ij i j i ij i

i

Q
V g b V b b

V
;  (2.28) 
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        


    


sin cosij

j ij i j ij i j

j

Q
V g b

V
;  (2.29) 

- elements corresponding to voltage magnitude measurements: 

 
 

   
   

   
0; 0; 1; 0;i i i i

i j i j

V V V V

V V
  (2.30) 

- elements corresponding to current magnitude measurements: 

   


 
 



2 2

sinij ij ij

i j i j

i ij

I g b
VV

I
;  (2.31) 

   


 
  



2 2

sinij ij ij

i j i j

j ij

I g b
VV

I
;  (2.32) 

    
 

  


2 2

cosij ij ij

i j i j

i ij

I g b
V V

V I
;  (2.33) 

    
 

  


2 2

cosij ij ij

j i i j

j ij

I g b
V V

V I
.  (2.34) 

The state vector obtained by classic state estimator is in the form: 

     1 2 1 2, , ..., , , , ...,
T

CSE n nx V V V ,  (2.35) 

where n is total number of buses; Vi, θi – voltage magnitude and phase at the 

i-th bus. 
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3 STATE ESTIMATION UTILIZING PMU MEASUREMENTS 

With the ability of PMUs to measure the system state directly, the use of 

phasor measurements for state estimation enhances both speed and accuracy 

of the process. Unlike classic estimation technique which has to deal with 

iterative solution of non-linear equations, the PMU measurements are linear 

functions of state variables. Therefore, the computation process can be 

significantly simplified. 

Direct measurements of state variables can also be augmented by the state 

vector obtained in the classic estimator. This so called hybrid linear state 

estimation with a post-processing step [10] will also be discussed in this 

chapter. 

3.1 Phasor measurement unit 

A phasor measurement unit (PMU) is a device that measures the 

parameters of the electrical waves and produces output time-stamped 

measurement data. The hardware configuration of PMUs may depend on the 

manufacturer; however, its common components are depicted in Figure 3.1. 

 

Fig. 3.1. Configuration of modern PMU [11] 

The analog inputs are voltages and currents obtained via measurement 

transformers. These signals are converted to suitable format for the analog-to-

digital converters and sampled typically at a rate of 48 samples per second [4].  
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The Global Positioning System (GPS) acts as a common time source. With 

a GPS receiver, all measurements are assigned a time stamp to synchronize the 

data that is time-skewed during transmission via communication link. The 

sampling clock is also phase-locked with the GPS clock pulse. 

Phasor microprocessor calculates positive-sequence estimates of the 

current and voltage signals using techniques based on discrete Fourier 

transform (DFT). 

Finally, the time-tagged measurement data is transferred via modems to 

higher levels of the measurement system hierarchy. 

Detailed structure of PMU devices, its hierarchy, communication options 

and applications are discussed in [3] and [12]. 

Table 3.1 illustrates the key advantages of PMU measurements compared 

to conventional SCADA measurements. 

 SCADA PMU 
Resolution 1 sample every 2-4 seconds 

(steady state observability) 
10-60 samples per second 

(dynamic observability) 
Measured quantities magnitude only magnitude and phase 
Time synchronization no yes 
Total input/output 
channels 

100+ analog and digital ~10 phasors, 16+ analog, 
16+ digital 

Focus local monitoring and 
control 

wide area monitoring and 
control 

Table 3.1. Comparison of SCADA and PMU measurement systems [13] 

3.2 Mathematical basis of linear state estimation 

As it was mentioned above, PMUs provide direct measurements of system 

state variables, making the relation between state vector and measurements 

vector linear. 

The objective function that must be minimized, is the same as in chapter 2: 

              
1T

J x z h x R z h x .  (3.1) 

The only difference is that measurement functions h(x) are now linear. 

Therefore, equation (2.1) can be expressed as follows: 
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       z h x Bx ,  (3.2) 

where B is the system matrix. 

The state vector x can therefore be calculated as follows [3]: 

 


    
11 1T Tx B R B B R z Mz ,  (3.3) 

where R is the diagonal weighting matrix of measurement variances  2
i ; 

 







 
 
 
 
 
  

2
1

2
2

2

...

m

R   (3.4) 

The matrix M is constant as long as the system structure and parameters 

do not change. It can be computed offline and stored for real-time use [3]. 

3.3 Power system application  

Consider again the π-equivalent model of a transmission line, shown in 

Figure 3.2: 

 

Fig. 3.2. The π-equivalent model of a transmission line 

Here Vi, Vj – complex voltages measured at bus i and j respectively; Iij, Iji – 

complex line currents measured near bus i and j respectively. 

Assuming state vector: 

bus i bus j 
yij 

yi yj  

Vi Vj 
Iij Iji 
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 

  
 

i

j

V
x

V
  (3.5) 

and measurements vector: 

 

 
 
 
 
 
 

i

j

ij

ji

V

V
z

I

I

,  (3.6) 

equation (3.2) is then expressed as follows [3]: 

 

   
   

            
   

    

1 0

0 1
i

j i

ij ij i ij j

ji ij ij j

V

V V

I y y y V

I y y y

,  (3.7) 

where the system matrix B: 

 

 
 

         
 
  

1 0

0 1

ij i ijs

ij ij j

II
B

y y yyA y

y y y

  (3.8) 

To explain how the elements of the matrix B are constructed, consider 

4-bus system, shown in Figure 3.3 with PMUs installed at buses 1, 2 and 4.  

 

Fig. 3.3. Example 4-bus system 
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The elements of the matrix B are as follows [3]: 

II – a unit matrix of width n (n – number of buses). Rows corresponding to 

buses without voltage measurements, are removed: 

 

 
 


 
  

1 0 0 0

0 1 0 0

0 0 0 1

II  (3.9) 

A – current measurement incidence matrix. Rows correspond to current 

measurements, columns correspond to buses; 1 and –1 indicate respectively 

the start and the end of the line being measured: 

 

 
 

 
 

  
 

 
 

 

1 1 0 0

1 1 0 0

0 1 0 1

0 1 1 0

0 1 0 1

0 0 1 1

A  (3.10) 

y – diagonal matrix of series admittances of measured branches: 

 

 
 
 
 

  
 
 
 
 

1

1

3

2

3

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

y

y

y
y

y

y

y

  (3.11) 

ys –matrix of shunt admittances of measured branches. Rows correspond 

to measurements, columns correspond to buses: 

 

 
 
 
 

  
 
 
 
 

10

10

30

20

30

40

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

s

y

y

y
y

y

y

y

  (3.12) 



15 
 

The resulting system matrix: 

 

 
 
 
 
 

   
     

   
  

  
 

  
   

1 10 1

1 1 10

3 30 3

2 20 2

3 3 30

4 4 40

1 0 0 0

0 1 0 0

0 0 0 1

0 0

0 0

0 0

0 0

0 0

0 0

s

y y y
II

B y y y
yA y

y y y

y y y

y y y

y y y

  (3.13) 

The measurement function is 

 
   

   
   

PMU

PMU s

V II
V

I yA y
,  (3.14) 

where VPMU, IPMU – vectors of measured complex voltages and currents; V – state 

vector of complex voltages. 

Note that this method described in [3] utilizes complex voltages as state 

variables, which is suitable for simulations in MATLAB.  Other papers [11][14] 

use the notation with voltage real and imaginary parts as separate state 

variables. 

3.4 Hybrid linear state estimation 

There are two general techniques that are used to combine PMU 

measurements with traditional SCADA data. 

The first method integrates PMU measurements into classic state 

estimator and processes them in the same iterative procedure.  

Another algorithm utilizes the estimate obtained in classic state estimator 

through a post-processing step. The state vector is converted to rectangular 

form, comprising real and imaginary parts of bus voltages. Then it is fed into 

the linear estimator along with voltage and current measurements. 
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Tests show [10], that the results of both methods are identical. Therefore, 

it is preferable to use linear estimator as less complicated and non-iterative 

algorithm. Also, such approach avoids the problem of physical integration of 

PMU measurements and rewiring existing traditional estimators. 

The measurements vector is augmented by the estimate from the classic 

state estimator VCSE (in complex form): 

 

 
 


 
  

CSE

H PMU

PMU

V

z V

I

 (3.15) 

The derived earlier system matrix B is augmented by unit matrix I: 

 

 
 


 
  

H

s

I

B II

yA y

  (3.16) 

Also, the covariance matrix of linear estimator, defined here as R2, is 

diagonally concatenated with the CSE covariance matrix: 

 
 

  
 

1
1 1 1

2

0

0

T

H

H R H
R

R
  (3.17) 

The state variable in this case is calculated as follows (index H refers to 

hybrid linear state estimation): 

 


    
11 1T T

H H H H H H Hx B R B B R z .  (3.18) 
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4 OPTIMAL PLACEMENT PROBLEM 

Placing PMUs at all buses in a power system results in direct measuring of 

the system state instead of estimating it. However, such a solution could be 

rather costly. On the other hand, measuring line currents can extend voltage 

measurements to the buses where no PMUs are installed. Therefore, a minimal 

number of PMUs can be installed to indirectly measure all the bus voltages in 

the system. Finding out this smallest number of PMUs as well as their locations 

in the network has always been a subject to optimization problem. An overview 

of solution methods for this problem is discussed in [15]. In this project the 

methods discussed in [16], [17], [18] and [3] were used. All of the methods 

utilize integer linear programming (ILP) to solve optimization problems. 

4.1 Complete observability case 

As it was mentioned above, a PMU can make installed bus and all 

connected buses observable. Figure 4.1 describes a system completely 

observed by two PMUs (marked by large circles). The shade of smaller circles 

indicates which PMU provides observability to the neighboring buses [3]. 

 

Fig. 4.1. Example of fully observable bus system [3] 

The placement problem for complete observability is solved by finding a 

minimal set of PMUs such that each bus is reached by a PMU at least once [17]. 

Define incidence matrix TPMU: 
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


 



,

1, if

1, if and are connected

1, otherwise.
PMU i j

i j

T i j   (4.1) 

 

Fig. 4.2. Example 7-bus system [16] 

For a 7-bus system illustrated in Figure 4.2 the incidence matrix is 

constructed as follows [16]: 

 

 
 
 
 
 

  
 
 
 
 
 

1 1 0 0 0 0 0

1 1 1 0 0 1 1

0 1 1 1 0 1 0

0 0 1 1 1 0 1

0 0 0 1 1 0 0

0 1 1 0 0 1 0

0 1 0 1 0 0 1

PMUT   (4.2) 

Formulation of the optimal placement problem in terms of ILP for N-bus 

system is the following: 

 

 
 










1

1 2

min

subject to

0,1

N

k
k

PMU PMU

T

N

i

x

T X b

X x x x

x

  (4.3) 

where X is PMU placement vector of binary values, with 1 (ones) indicating 

placement buses; bPMU is the inequality constraints vector: 

  



1

1 1 1
T

PMU N
b   (4.4) 
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The solution for the example 7-bus system is 

   0 1 0 0 1 0 0
T

X   (4.5) 

This means that PMUs should be installed at buses 2 and 5. 

4.2 Incomplete observability cases 

The system is incompletely observable when some of the buses cannot be 

reached by a PMU i.e. the voltages of such buses cannot be indirectly measured 

by PMUs.  

 

Fig. 4.3. Example of incompletely observable bus system [3] 

4.2.1 Depth-of-one unobservability 

Depth-of-one unobservability implies that all unobserved buses must be 

connected only to observed buses. Such condition is illustrated in Figure 4.3. 

The ILP formulation for depth-of-one unobservability case is similar to 

that for full observability. The difference is that the incidence matrix TPMU is 

modified by matrix A [16]: 

 

 
 









1
1

1

1 2

min

subject to

0,1

N

k
k

PMU

T

N

i

x

AT X b

X x x x

x

  (4.6) 

where A is the branch-to-node incident matrix; b1 is a unit vector of the same 

length as the number of branches. 
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Each row in matrix A corresponds to its respective branch and the indexes 

of 1’s (ones) in that row indicate the two buses connected by that branch. For 

the 7-bus system in Figure 4.2 matrix A is constructed as follows [16]: 

 

 
 
 
 
 
 
 
 
 
 
 
  

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 0 0 1

0 0 1 1 0 0 0

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 0 0 1

A   (4.7) 

The solution for this system is 

   0 0 1 0 0 0 0
T

X   (4.8) 

This means that for depth-of-one unobservable system a PMU should be 

installed at bus 3. 

4.2.2 Larger depths of unobservability 

For larger depths of unobservability an approach proposed in [3] appears 

to be preferable due to its simplicity. According to that, the depth-of-M 

unobservability is achieved by taking (M+1)-th power of the incidence matrix 

TPMU. 

The ILP formulation of this problem is as follows [3]: 

 

 

 
   









 

 


1

1

1

1 2

min

subject to

1̂ 0

0,1

N

M k
k

M

PMU M PMU

T

M M

T

M N i

x

T X b

X X

X x x x x

  (4.9) 

where 1̂  is a unit vector; XM–1 is the set of PMU locations calculated for depth 

(M–1) unobservability case. 
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4.3 Inclusion of conventional measurements 

4.3.1 Complete observability case 

If the conventional measurements (flow, injection) are considered in 

optimal placement problem, then some modifications must be made to ILP 

algorithm. 

In previous cases when PMU measurements were utilized exclusively, the 

constraints were defined in the form: 

  1̂PMUT X   (4.10) 

Each element yi of the vector  PMUY T X  represent the number of times bus 

i is reached by PMUs. 

Conventional measurements also introduce inequalities that must be 

considered in ILP [17]: 

 if a power flow measurement in on line i–j, then the following needs to 

be held: 

  1i jy y   (4.11) 

which means that at least one of two buses must be reached by PMU. 

 if an injection measurement is at bus k which is connected to buses l, p 

and q, then the following needs to be held: 

    3k l p qy y y y   (4.12) 

These constraints form a matrix Tmeas in the way which is explained in the 

following example. 

Recall the 7-bus system in Figure 4.2 and consider injection measurement 

at bus 2 and flow measurement on the line between buses 2 and 3 [16]. These 

measurements introduce the following constraints: 

 
 


    

2 3

1 2 3 6 7

1

4

y y

y y y y y
  (4.13) 
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In matrix form: 

 
   

    
   

0 1 1 0 0 1
;

1 1 1 1 1 4
meas measT b   (4.14) 

where each column represents a bus associated to conventional measurements 

(respectively 1, 2, 3, 6, 7). 

The matrices can be reduced: 

 
   

    
   

0 1 1 0 0 1
;

1 0 0 1 1 2
meas measT b   (4.15) 

Buses that are not associated to conventional measurements are added in 

the following way: 

 

   
   

             
   
    

1 0 0 0 0 0 0 1

0 1 0 0 0 0 00 1
;

0 0 0 1 1 0 00 1

0 0 1 0 0 1 1 2

M M

con con

meas

I
T b

T
  (4.16) 

where 
M MI  is a unit matrix; M is the number of buses not associated to 

conventional measurements. 

Formulation of the optimization problem in terms of ILP: 

 

 
 










1

1 2

min

subject to

0,1

N

k
k

con PMU con

T

N

i

x

T PT X b

X x x x

x

  (4.17) 

where P is a permutation matrix. 

As the order of columns (buses) in matrix Tcon was changed, matrix P 

changes the order of rows in TPMU in the same manner. 
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 
 
 
 
 

  
 
 
 
 
 

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

P   (4.18) 

The optimal solution for the given example is  

   0 1 0 0 1 0 0
T

X   (4.19) 

This means that PMUs should be installed at buses 2 and 5. 

4.3.2 Depth-of-one unobservability case 

The ILP formulation for depth-of-one unobservability case with the 

inclusion of conventional measurements is similar to that with exclusive PMU 

measurements. The difference is that matrix P1 is introduced [16]: 

 

 
 









1
1

1 1 1

1 2

min

subject to

0,1

N

k
k

PMU

T

N

i

x

P AT X P b

X x x x

x

  (4.20) 

where P1 is the matrix that removes the branches associated to conventional 

measurements. 

 

Fig. 4.4. Example 7-bus system for incomplete observability [16] 
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For the 7-bus example (branches are numbered in Figure 4.4) with 

injection measurement at bus 2, the matrix P1 is set as follows: 

 

 
 
 
 
 
 

1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

P   (4.21) 
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5 MODEL DESCRIPTION 

The state estimation model is based on the theory discussed in previous 

chapters. It was constructed and run in MATLAB version R2016a with 

reference to [19]. 

Required input for the model is the following: 

1) bus data in IEEE common data format [20]. 

Bus parameters must be stored in a matrix described in Table 5.1. 

Column Value 
1 Bus number 
2 Bus type:  

0 – Unregulated (load, PQ) 
1 – Hold MVAR generation within voltage limits, (PQ) 
2 – Hold voltage within VAR limits (gen, PV) 
3 – Hold voltage and angle (swing)  

3 Voltage, pu 
4 Angle, degrees 
5 Active load, MW 
6 Reactive load, MVAR 
7 Active generation, MW 
8 Reactive generation, MVAR 
9 Base voltage, kV 

10 Desired voltage (for buses of type 2 and 3), kV 
11 Maximum MVAR or voltage limit 
12 Minimum MVAR or voltage limit 
13 Shunt conductance, pu 
14 Shunt susceptance, pu 

Table 5.1. Bus data format 

2) branch data in IEEE common data format [20]. 

Branch parameters must be stored in a matrix described in Table 5.2. 

Column Value 
1 Start bus number 
2 End bus number  
3 Branch resistance, pu  
4 Branch reactance, pu 
5 Line charging susceptance, pu 
6 Transformer turns ratio 
7 Transformer phase shift angle 
8 Minimum tap or phase shift 
9 Maximum tap or phase shift 

10 Step size 

Table 5.2. Branch data format 
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Bus and branch data for IEEE 14-, 30-, 57- and 118-bus systems [20] are 

stored in files ieee14.m, ieee30.m, ieee57.m and ieee118.m respectively. 

However, any other bus system can be loaded to the model if it is stored in the 

format described earlier. 

Optional input that can be fed to the model: 

1) conventional measurements; 

2) phasor measurements. 

The format for measurements matrix is presented in Table 5.3. 

Column Value 
1 Measurement number 
2 Type of measurement 

For conventional measurements: 
1 – voltage magnitude 
2 – real power injection 
3 – reactive power injection 
4 – real power flow 
5 – reactive power flow 
 
For phasor measurements: 
1 – voltage in complex form 
2 – current in complex form 

3 Measured value, pu  
4 Bus number (for bus measurements) 

Start bus number (for branch measurements) 
5 End bus number (for branch measurements) 
6 Measurement variance 

Table 5.3. Measurements data format 

The model script is divided into consecutive sections for clear overview of 

each step and better understanding of the whole process. The full script can be 

found in Appendix A as well as on the attached CD. 

5.1 Conventional measurements setup 

As it was mentioned earlier, the conventional measurements matrix is an 

optional input. If user does not have a pre-defined measurements data set, it 

can be created during this section. 

The measurements positions are defined with vectors. Vectors volt and inj 

contain bus numbers with respectively voltage magnitude and power injection 
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measurements on them. Vector flow contains branch numbers with power flow 

measurements on them. These vectors can be set manually or using function 

randperm, which picks N random buses/branches for measuring. 

Measurement variances are also set in vectors Rvolt, Rinj and Rflow, 

corresponding to vectors of measurement positions. 

Function createZdatas generates “measured” values on specified positions 

with specified error variance and writes them to the file zdatas.m. 

5.2 Classic state estimation 

This section utilizes measurements stored in zdatas.m to produce the best 

estimate of the system state applying non-linear weighted least squares 

method (function WLS.m). This function is based on [21] with some 

modifications made. The output is stored in vectors of bus voltage angles th_est 

and magnitudes V_est. They are combined to produce state vector of complex 

voltages X_est, which will be used for hybrid linear state estimation in 

section 5.5. 

5.3 Optimal placement problem 

This section utilizes MATLAB function intlinprog to solve optimal 

placement problems. The constraints matrices for ILP are formed as described 

in chapter 4.  

For the cases when PMU measurements are used exclusively, the output is 

stored in vectors pmu0, pmu1 and pmu2 for complete observability, depth-of-

one and depth-of-two unobservability respectively. These vectors contain 

binary values, indicating incidence of PMU measurements on the bus. 

For the cases when PMU measurements are complemented by 

conventional measurements, the output is stored in vectors pmu0conv for 

complete observability case and pmu1conv for depth-of-one unobservability. 

The numbers of buses and branches with conventional measurements are set 

for these cases in vectors inj2 and flow2. 
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5.4 PMU measurements setup 

The PMU measurements file PMUdatas.m is constructed in the same way 

as described in 5.1. The only difference is that the measurement positions are 

defined by PMU incidence vectors obtained in previous section.  

5.5 Linear state estimation 

This section utilizes PMU measurements data stored in PMUdatas.m to 

produce the best estimate of the system state applying linear weighted least 

squares method. 

The matrix components are formed in a way explained in chapter 3. 

Function LSE.m produces linear estimate of bus voltage magnitudes V_lse and 

angles th_lse with phasor measurements from PMUdatas.m only. Function 

LSEconv.m also includes vector X_est as a measurement to produce hybrid state 

estimate V_hyb and th_hyb. 
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6 SIMULATION RESULTS 

6.1 Optimal placement simulation 

The optimal placement algorithm was tested on IEEE 14-, 30-, 57- and 118-

bus systems. Simulation results for cases with no conventional measurements 

are shown in Table 6.1. 

Bus  
system 

Complete 
observability 

Depth-of-one 
unobservability 

Depth-of-two 
unobservability 

IEEE 14 Bus 4 2 4 
IEEE 30 Bus 10 4 3 
IEEE 57 Bus 17 11 7 
IEEE 118 Bus 32 18 9 

Table 6.1. Optimal number of PMUs for exclusive PMU measurements 

Simulation results for cases when conventional measurements are 

included, are shown in Table 6.2. 

Bus  
system 

Number of conven-
tional measurements 

Complete 
observability 

Depth-of-one 
unobservability 

IEEE 14 Bus 2 3 2 
IEEE 30 Bus 6 7 4 
IEEE 57 Bus 15 7 11 
IEEE 118 Bus 30 23 15 

Table 6.2. Optimal number of PMUs for inclusion of conventional measurements 

The results correlate to those shown in [16], so the algorithm can be 

considered effective. However, it must be taken into consideration, that the 

results in Table 6.2. depend on the number of conventional measurements and 

their locations in the system. 

6.2 Linear state estimation simulation 

The state estimation algorithms were tested on IEEE 14-, 30-, 57- and 118-

bus systems. Simulation results are shown graphically on the following figures 

for comparison of effectiveness of different estimation methods. 
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Fig. 6.1. State estimation simulation results for IEEE 14 bus system 

 

 

 

Fig. 6.2. State estimation simulation results for IEEE 30 bus system 
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Fig. 6.3. State estimation simulation results for IEEE 57 bus system 

 

 

 

Fig. 6.4. State estimation simulation results for IEEE 118 bus system 

The results show, that CSE algorithm shows large deviation of estimated 

value from the true value as the number of buses increases. It may be caused 
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by imperfection of the estimation technique for large bus systems or errors in 

derivation of system equations.  

On the other hand, the LSE algorithm with PMUs located at the optimal 

positions shows very good precision of estimate and little estimation error. 

The inclusion of classic estimate in linear estimator does not affect much 

the overall result obtained in hybrid estimator. 
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7 CONCLUSIONS AND FUTURE WORK 

State estimation is a key function in determining real-time models for 

power system networks. This thesis discusses how the estimation algorithm is 

enhanced by placement of PMUs. A short overview of the problem background 

is followed by theoretical concepts that are implemented in practice, such as 

classic state estimation, linear state estimation incorporating phasor 

measurements as well as conventional measurements. Optimal placement 

problem was also addressed. The discussed theory was implemented in 

MATLAB model to simulate different test cases. 

All simulations were made in MATLAB, however the future work can 

include translating the existing algorithms to another programming language 

that is used in real measuring and estimating systems.  
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APPENDIX A. MATLAB MODEL SCRIPT 
clear all; 

clc; 

 

% 1. CONVENTIONAL MEASUREMENTS SET-UP 

% =========================================== 

% This section automatically creates the measurements file 'zdatas.m' 

% from bus matrix, according to specified measurement positions and 

% specified measurement errors. 

 

global bus branch nbus nbra ybus bbus zdata; 

 

% Set up bus and branch matrices, pick up from corresponding data file 

% (ieee14, ieee30, ieee57, ieee118): 

[bus, branch] = ieee14; 

nbus = size(bus,1);     % Get number of buses 

nbra = size(branch,1);  % Get number of branches 

 

% Get the Ybus matrix: 

ybus = getybus(); 

 

% Get the Bbus matrix: 

bbus = getbbus(); 

 

% Set up voltage magnitude measurement positions (buses) and measurement 

% variances: 

volt = [1]; 

% ...or use the following to pick slack bus and PV buses from bus matrix: 

%       volt = find(bus(:,2) >= 2); 

Rvolt = 9e-4 * ones(length(volt),1); 

 

% Set up injection measurement positions (buses) and measurement 

% variances: 

inj = [2 3 7 8 9 10 11 12 13 14]; 

%inj = [4 5 6 8 10 11 12 14 15 16 18 20 22 23 24 25 26 27 29]; % ieee30 

% ...or use the following to pick N random buses: 

%       rng; 

%       inj = sort(randperm(nbus, N)); 

Rinj = 1e-4 * ones(length(inj),1); 

 

% Set up flow measurement positions (branches) and measurement variances: 

flow = [1 3 4 8 9 5 7 10 13 15 11 19]; 

%flow = [1 3 5 6 8 10 11 12 13 15 16 17 19 20 21 25 26 28 29 30 31 32 ... 

%    34 36 37 38 39 41]; % ieee30 

% ...or use the following to pick N random branches: 

%       rng; 

%       flow = sort(randperm(nbra, N)); 

Rflow = 64e-6 * ones(length(flow),1); 

 

createZdatas(volt, Rvolt, inj, Rinj, flow, Rflow) 

 

% Set up a matrix with conventional measurements from the file: 

zdata = zdatas(); 

 

clear volt inj flow Rvolt Rinj Rflow; 

 

% =========================================== 
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% Function creates and fills the file 'zdatas.m' with conventional 
% measurements. 

  
function [] = createZdatas(volt, Rvolt, inj, Rinj, flow, Rflow) 

  
global bus branch ybus; 

  
% Create a file 'zdatas.m': 
fid = fopen('1 Measurements Set-up\zdatas.m','w'); 
fprintf(fid, '%s\n%s\n%s\n%s\n%s\n%s\n\n%s\n\n%s\n%s\n',... 
'% Measurement data', ... 
'% =============================', ... 
'% Type of measurement:', ... 
'% 1 - Voltage magnitude;         4 - Real power flow;', ... 
'% 2 - Real power injection;        5 - Reactive power flow.', ... 
'% 3 - Reactive power injection;', ... 
'function zdata = zdatas()', ... 
'zdata   = [',... 
'%         |Msnt |Type | Value | From | To | Rii |'); 

  
count = 1; 

  
% Print voltage magnitude measurements: 
fprintf(fid, '%s\n',... 
'           %---- Voltage Magnitude --------------%'); 
type = 1; 
rng;       % Randomize... 
for i = 1:length(volt) 
    % Generate a random value from a normal distribution with actual 
    % voltage as a mean value and R as variance: 
    value = sqrt(Rvolt(i)).*randn(1) + bus(volt(i),3); 
    from = volt(i); 
    to = 0; 
    R = Rvolt(i); 
    fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',... 
        count, type, value, from, to, R,';'); 
    count = count + 1; 
end 
fprintf(fid, '%s\n',... 
'           %-------------------------------------%'); 

  
% Print power injection measurements: 
fprintf(fid, '%s\n',... 
'           %---- Real Power Injection -----------%'); 
type = 2; 
rng; 
for i = 1:length(inj) 
    value = sqrt(Rinj(i)).*randn(1) + 0.01*(bus(inj(i),7)-bus(inj(i),5)); 
    from = inj(i); 
    to = 0; 
    R = Rinj(i); 
    fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',... 
        count, type, value, from, to, R,';'); 
    count = count + 1; 
end 
fprintf(fid, '%s\n',... 
'           %-------------------------------------%'); 

  
fprintf(fid, '%s\n',... 
'           %---- Reactive Power Injection -------%'); 
type = 3; 
for i = 1:length(inj) 
    value = sqrt(Rinj(i)).*randn(1) + 0.01*(bus(inj(i),8)-bus(inj(i),6)); 
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    from = inj(i); 
    to = 0; 
    R = Rinj(i); 
    fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',... 
        count, type, value, from, to, R,';'); 
    count = count + 1; 
end 
fprintf(fid, '%s\n',... 
'           %-------------------------------------%'); 

  
% Print power flow measurements: 
fprintf(fid, '%s\n',... 
'           %------ Real Power Flow ------------- %'); 
type = 4; 
rng; 
for i = 1:length(flow) 
    from = branch(flow(i),1); 
    to = branch(flow(i),2); 
    R = Rflow(i); 
    % Calculate the actual power flow according to the bus data: 
    vs = bus(from,3).* exp(1j*deg2rad(bus(from,4))); 
    vr = bus(to,3).* exp(1j*deg2rad(bus(to,4))); 
    value = real(vr * conj(ybus(from,to)) * (vs - vr)); 
    value = sqrt(Rflow(i)).*randn(1) + value; 
    fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',... 
        count, type, value, from, to, R,';'); 
    count = count + 1; 
end 
fprintf(fid, '%s\n',... 
'           %-------------------------------------%'); 

  
fprintf(fid, '%s\n',... 
'           %------ Reactive Power Flow --------- %'); 
type = 5; 
for i = 1:length(flow) 
    from = branch(flow(i),1); 
    to = branch(flow(i),2); 
    R = Rflow(i); 
    % Calculate the actual power flow according to the bus data: 
    vs = bus(from,3).* exp(1j*deg2rad(bus(from,4))); 
    vr = bus(to,3).* exp(1j*deg2rad(bus(to,4))); 
    value = imag(vr * conj(ybus(from,to)) * (vs - vr)); 
    value = sqrt(Rflow(i)).*randn(1) + value; 
    fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',... 
        count, type, value, from, to, R,';'); 
    count = count + 1; 
end 

  
fprintf(fid, '%s\n%s\n',... 
'           %-------------------------------------%',... 
'           ];'); 

  
fclose(fid); 
disp('File "zdatas.m" was updated!'); 

  
end 
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% Function returns shunt susceptance matrix Bbus. 

  
function bbus = getbbus() 

  
global branch nbus nbra; 

  
fb = branch(:,1);       % From bus 
tb = branch(:,2);       % To bus 
b = branch(:,5);        % Charging susceptance, B/2 (pu) 

  
% Populate Bbus: 
bbus = zeros(nbus,nbus);    
 for k=1:nbra 
     bbus(fb(k),tb(k)) = b(k); 
     bbus(tb(k),fb(k)) = bbus(fb(k),tb(k)); 
 end 

 
 
% Function returns admittance matrix Ybus. 

  
function ybus = getybus()  

  
global branch nbus nbra; 

  
fb = branch(:,1);               % From bus 
tb = branch(:,2);               % To bus 
r = branch(:,3);                % Resistance, R (pu) 
x = branch(:,4);                % Reactance, X (pu) 
b = branch(:,5);                % Charging susceptance, B/2 (pu) 
t = branch(:,6);                % Turns ratio 
for i = 1:nbra 
    if t(i) == 0 
        t(i) = 1; 
    end 
end 

  
z = r + 1i*x;                   % Impedance, Z (pu) 
y = 1./z;                       % Invert each element 
b = 1i*b;                       % Make B imaginary 

  
% Initialize Ybus: 
ybus = zeros(nbus,nbus);      

  
% Populate the diagonal elements: 
for m =1:nbus 
    for n =1:nbra 
        if fb(n) == m 
             ybus(m,m) = ybus(m,m) + y(n)/(t(n)^2) + b(n); 
        elseif tb(n) == m 
             ybus(m,m) = ybus(m,m) + y(n) + b(n); 
        end 
    end 
 end 

   
% Populate the off-diagonal elements: 
for k=1:nbra 
     ybus(fb(k),tb(k)) = ybus(fb(k),tb(k))-y(k)/t(k); 
     ybus(tb(k),fb(k)) = ybus(fb(k),tb(k)); 
end 
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% 2. CLASSIC STATE ESTIMATION  
% =========================================== 
% This section estimates the state variables using non-linear weighted  
% least squares method (Newton-Raphson method): 

  
global nbus Xest; 

  
% Estimate the power system state: 
[th_est, V_est] = WLS(); 

  
Xest = V_est.*exp(1j*deg2rad(th_est));      % Estimated state vector 

  
disp('WLS State Estimation'); 
disp('  Bus | V (pu) |  Angle (Deg)'); 
disp('--------------------------'); 
for i = 1:nbus 
    fprintf('%4g', i); fprintf('  %8.4f', V_est(i)); fprintf('   %8.4f',... 
        th_est(i)); fprintf('\n'); 
end 
fprintf('\n'); 
clear i; 

  
% NB. If there is singularity warning, consider increasing the number of 
% conventional measurements in (1). 

 
% =========================================== 

 
 
% Function returns two vectors of state variables (angles and voltages) 
% after the state estimation using Weighted Least Squares method. 

  
function [Th, V] = WLS() 

  
global zdata nbus ybus bbus; 

  
set_tol = 1e-4;             % Set tolerance for iterations 

  
type = zdata(:,2);          % Type of measurement:  
% 1 - Voltage measurement;          4 - Real power flow; 
% 2 - Real power injection;         5 - Reactive power flow. 
% 3 - Reactive power injection; 
z = zdata(:,3);             % Measuement values 
fbus = zdata(:,4);          % From bus 
tbus = zdata(:,5);          % To bus 
Ri = diag(zdata(:,6));      % Make diagonal matrix of covariances 
V = ones(nbus,1);           % Initialize the bus voltages 
th = zeros(nbus,1);         % Initialize the bus angles (theta) 
X = [th(2:end); V];         % State Vector 
G = real(ybus); 
B = imag(ybus); 

  
vm = find(type == 1);    % Indices of voltage magnitude measurements 
pin = find(type == 2);   % ---------- real power injection measurements 
qin = find(type == 3);   % ---------- reactive power injection measurements 
pf = find(type == 4);    % ---------- real power flow measurements 
qf = find(type == 5);    % ---------- reactive power flow measurements 

  
nvi = length(vm);        % Number of voltage measurements 
npin = length(pin);      % --------- real power injection measurements 
nqin = length(qin);      % --------- reactive power injection measurements 
npf = length(pf);        % --------- real power flow measurements 
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nqf = length(qf);        % --------- reactive power flow measurements 

  
iter = 1; 
tol = 5; 

  
while(tol > set_tol) 

     
    % Measurement Function, h 
    h1 = V(fbus(vm),1); 
    h2 = zeros(npin,1); 
    h3 = zeros(nqin,1); 
    h4 = zeros(npf,1); 
    h5 = zeros(nqf,1); 

     
    for i = 1:npin 
        m = fbus(pin(i)); 
        for k = 1:nbus 
            h2(i) = h2(i) + V(m)*V(k)*(G(m,k)*cos(th(m)-th(k)) + ... 
                B(m,k)*sin(th(m)-th(k))); 
        end 
    end 

     
    for i = 1:nqin 
        m = fbus(qin(i)); 
        for k = 1:nbus 
            h3(i) = h3(i) + V(m)*V(k)*(G(m,k)*sin(th(m)-th(k)) - ... 
                B(m,k)*cos(th(m)-th(k))); 
        end 
    end 

     
    for i = 1:npf 
        m = fbus(pf(i)); 
        n = tbus(pf(i)); 
        h4(i) = -V(m)^2*G(m,n) - V(m)*V(n)*(-G(m,n)*cos(th(m)-th(n)) - ... 
            B(m,n)*sin(th(m)-th(n))); 
    end 

     
    for i = 1:nqf 
        m = fbus(qf(i)); 
        n = tbus(qf(i)); 
        h5(i) = -V(m)^2*(-B(m,n)+bbus(m,n)) - V(m)*V(n)*(-G(m,n)* ... 
            sin(th(m)-th(n)) + B(m,n)*cos(th(m)-th(n))); 
    end 

     
    h = [h1; h2; h3; h4; h5]; 

     
    % Residual 
    r = z - h; 

     
    % Jacobian 
    % H11 - Derivative of V with respect to theta 
    H11 = zeros(nvi,nbus-1); 

  
    % H12 - Derivative of V with respect to V 
    H12 = zeros(nvi,nbus); 
    for k = 1:nvi 
        for n = 1:nbus 
            if n == k 
                H12(k,n) = 1; 
            end 
        end 
    end 
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    % H21 - Derivative of real power injections with respect to theta 
    H21 = zeros(npin,nbus-1); 
    for i = 1:npin 
        m = fbus(pin(i)); 
        for k = 1:(nbus-1) 
            if k+1 == m 
                for n = 1:nbus 
                    H21(i,k) = H21(i,k) + V(m)* V(n)*(-G(m,n)* ... 
                        sin(th(m)-th(n)) + B(m,n)*cos(th(m)-th(n))); 
                end 
                H21(i,k) = H21(i,k) - V(m)^2*B(m,m); 
            else 
                H21(i,k) = V(m)* V(k+1)*(G(m,k+1)*sin(th(m)-th(k+1)) - ... 
                    B(m,k+1)*cos(th(m)-th(k+1))); 
            end 
        end 
    end 

     
    % H22 - derivative of real power injections with respect to V 
    H22 = zeros(npin,nbus); 
    for i = 1:npin 
        m = fbus(pin(i)); 
        for k = 1:(nbus) 
            if k == m 
                for n = 1:nbus 
                    H22(i,k) = H22(i,k) + V(n)*(G(m,n)*cos(th(m)-th(n)) ... 
                        + B(m,n)*sin(th(m)-th(n))); 
                end 
                H22(i,k) = H22(i,k) + V(m)*G(m,m); 
            else 
                H22(i,k) = V(m)*(G(m,k)*cos(th(m)-th(k)) + B(m,k)* ... 
                    sin(th(m)-th(k))); 
            end 
        end 
    end 

     
    % H31 - Derivative of reactive power injections with respect to theta 
    H31 = zeros(nqin,nbus-1); 
    for i = 1:nqin 
        m = fbus(qin(i)); 
        for k = 1:(nbus-1) 
            if k+1 == m 
                for n = 1:nbus 
                    H31(i,k) = H31(i,k) + V(m)* V(n)*(G(m,n)* ... 
                        cos(th(m)-th(n)) + B(m,n)*sin(th(m)-th(n))); 
                end 
                H31(i,k) = H31(i,k) - V(m)^2*G(m,m); 
            else 
                H31(i,k) = V(m)* V(k+1)*(-G(m,k+1)*cos(th(m)-th(k+1)) - ... 
                    B(m,k+1)*sin(th(m)-th(k+1))); 
            end 
        end 
    end 

     
    % H32 - Derivative of reactive power injections with respect to V 
    H32 = zeros(nqin,nbus); 
    for i = 1:nqin 
        m = fbus(qin(i)); 
        for k = 1:(nbus) 
            if k == m 
                for n = 1:nbus 
                    H32(i,k) = H32(i,k) + V(n)*(G(m,n)*sin(th(m)-th(n)) ... 
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                        - B(m,n)*cos(th(m)-th(n))); 
                end 
                H32(i,k) = H32(i,k) - V(m)*B(m,m); 
            else 
                H32(i,k) = V(m)*(G(m,k)*sin(th(m)-th(k)) - B(m,k)* ... 
                    cos(th(m)-th(k))); 
            end 
        end 
    end 

     
    % H41 - Derivative of real power flows with theta 
    H41 = zeros(npf,nbus-1); 
    for i = 1:npf 
        m = fbus(pf(i)); 
        n = tbus(pf(i)); 
        for k = 1:(nbus-1) 
            if k+1 == m 
                H41(i,k) = V(m)* V(n)*(-G(m,n)*sin(th(m)-th(n)) + ... 
                    B(m,n)*cos(th(m)-th(n))); 
            else if k+1 == n 
                H41(i,k) = -V(m)* V(n)*(-G(m,n)*sin(th(m)-th(n)) + ... 
                    B(m,n)*cos(th(m)-th(n))); 
                else 
                    H41(i,k) = 0; 
                end 
            end 
        end 
    end 

     
    % H42 - Derivative of real power flows with V 
    H42 = zeros(npf,nbus); 
    for i = 1:npf 
        m = fbus(pf(i)); 
        n = tbus(pf(i)); 
        for k = 1:nbus 
            if k == m 
                H42(i,k) = -V(n)*(-G(m,n)*cos(th(m)-th(n)) - ... 
                    B(m,n)*sin(th(m)-th(n))) - 2*G(m,n)*V(m); 
            else if k == n 
                H42(i,k) = -V(m)*(-G(m,n)*cos(th(m)-th(n)) - ...  
                    B(m,n)*sin(th(m)-th(n))); 
                else 
                    H42(i,k) = 0; 
                end 
            end 
        end 
    end 

     
    % H51 - Derivative of reactive power flows with theta 
    H51 = zeros(nqf,nbus-1); 
    for i = 1:nqf 
        m = fbus(qf(i)); 
        n = tbus(qf(i)); 
        for k = 1:(nbus-1) 
            if k+1 == m 
                H51(i,k) = -V(m)* V(n)*(-G(m,n)*cos(th(m)-th(n)) - ...  
                    B(m,n)*sin(th(m)-th(n))); 
            else if k+1 == n 
                H51(i,k) = V(m)* V(n)*(-G(m,n)*cos(th(m)-th(n)) - ... 
                    B(m,n)*sin(th(m)-th(n))); 
                else 
                    H51(i,k) = 0; 
                end 
            end 
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        end 
    end 

     
    % H52 - Derivative of reactive power flows with V 
    H52 = zeros(nqf,nbus); 
    for i = 1:nqf 
        m = fbus(qf(i)); 
        n = tbus(qf(i)); 
        for k = 1:nbus 
            if k == m 
                H52(i,k) = -V(n)*(-G(m,n)*sin(th(m)-th(n)) + ... 
                    B(m,n)*cos(th(m)-th(n))) - 2*V(m)*(-B(m,n)+ bbus(m,n)); 
            else if k == n 
                H52(i,k) = -V(m)*(-G(m,n)*sin(th(m)-th(n)) + ... 
                    B(m,n)*cos(th(m)-th(n))); 
                else 
                    H52(i,k) = 0; 
                end 
            end 
        end 
    end 

     
    % Measurement Jacobian, H 
    H = [H11 H12; H21 H22; H31 H32; H41 H42; H51 H52]; 

     
    % State Vector 
    dX = (H'*(Ri\H))\(H'*(Ri\r)); 
    X = X + dX; 
    th(2:end) = X(1:nbus-1); 
    V = X(nbus:end); 
    iter = iter + 1; 
    tol = max(abs(dX)); 

  
end 

  
Th = 180/pi*th;         % Convert radians to degrees 

  
end 
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% 3. OPTIMAL PLACEMENT PROBLEM 
% =========================================== 
% This section produces optimal placement schemes for PMUs considering 
% branch topology of the system, depth of unobservability and conventional 
% measurements. 

  
global Tpmu nbus nbra A pmu0 pmu0conv pmu1 pmu1conv pmu2; 

  
% COMPLETE OBSERVABILITY CASE 
% Set up the connectivity matrix Tpmu: 
Tpmu = getTpmu(); 

  
% Calculate the optimal positions of PMUs for exclusive PMU measurements: 
pmu0 = optimal(1, ones(nbus,1)); 

  
% Set up conventional measurement positions: 
inj2 = [1];     % Buses with injection measurements 
flow2 = [1];    % Branches with flow measurements 

  
% Set up connectivity matrix Tcon, permutation matrix P and vector bcon: 
[Tcon, P, bcon] = getTcon(inj2, flow2); 

  
% Calculate the optimal positions of PMUs for the case when PMU 
% measurements complement conventional measurements: 
pmu0conv = optimal(Tcon*P, bcon); 

  
fprintf('\n'); 
disp('==========================='); 
disp('COMPLETE OBSERVABILITY CASE'); 
fprintf('\n'); 
disp('No conventional measurements:'); 
fprintf('   PMU locations: '); fprintf('%d ',(find(pmu0 == 1)).'); ... 
    fprintf('\n'); 
fprintf('   Number of PMUs: '); fprintf('%d ', ... 
    length((find(pmu0 == 1)).')); fprintf('\n'); 
disp('With conventional measurements:'); 
fprintf('   PMU locations: '); fprintf('%d ',(find(pmu0conv == 1)).'); ... 
    fprintf('\n'); 
fprintf('   Number of PMUs: '); fprintf('%d ', ... 
    length((find(pmu0conv == 1)).')); fprintf('\n'); 

  

  
% ---------------------------------- 
% DEPTH-OF-ONE UNOBSERVABILITY CASE 
% ---------------------------------- 
% Set up branch-to-node incident matrix A: 
A = getA(); 

  
% Calculate the optimal positions of PMUs for Do1 unobservability 
% (no injections measurements): 
pmu1 = optimal(A, ones(nbra,1)); 

  
% Determine the number of unobserved buses: 
nuob1 = unobserved(A, pmu1); 

  
% Set up matrix P1 which removes branches associated to zero injection 
% measurements: 
P1 = getP1(inj2); 

  
% Calculate the optimal positions of PMUs for Do1 unobservability 
% (with injections measurements): 
pmu1conv = optimal(P1*A, P1*ones(nbra,1)); 
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% Determine the number of unobserved buses: 
nuob1conv = unobserved(A, pmu1conv); 

  
fprintf('\n'); 
disp('================================='); 
disp('DEPTH-OF-ONE UNOBSERVABILITY CASE'); 
fprintf('\n'); 
disp('No conventional measurements:'); 
fprintf('   PMU locations: '); fprintf('%d ',(find(pmu1 == 1)).'); ... 
    fprintf('\n'); 
fprintf('   Number of PMUs: '); fprintf('%d ', ... 
    length((find(pmu1 == 1)).')); fprintf('\n'); 
fprintf('   Number of unobserved buses: '); fprintf('%d ',nuob1); ... 
    fprintf('\n'); 
disp('With conventional measurements:'); 
fprintf('   PMU locations: '); fprintf('%d ',(find(pmu1conv == 1)).'); ... 
    fprintf('\n'); 
fprintf('   Number of PMUs: '); fprintf('%d ', ... 
    length((find(pmu1conv == 1)).')); fprintf('\n'); 
fprintf('   Number of unobserved buses: '); ... 
    fprintf('%d ',nuob1conv); fprintf('\n'); 

  

  
% ---------------------------------- 
% DEPTH-OF-TWO UNOBSERVABILITY CASE 
% ---------------------------------- 
% Calculate the optimal positions of PMUs for Do2 unobservability 
% (no injections measurements): 
pmu2 = optimal2(2, 1, ones(nbus,1), pmu1); 

  
% Determine the number of unobserved buses: 
nuob2 = unobserved(A, pmu2); 

  

  
fprintf('\n'); 
disp('================================='); 
disp('DEPTH-OF-TWO UNOBSERVABILITY CASE'); 
fprintf('\n'); 
disp('No conventional measurements:'); 
fprintf('   PMU locations: '); fprintf('%d ',(find(pmu2 == 1)).'); ... 
    fprintf('\n'); 
fprintf('   Number of PMUs: '); fprintf('%d ', ... 
    length((find(pmu2 == 1)).')); fprintf('\n'); 
fprintf('   Number of unobserved buses: '); fprintf('%d ',nuob2); ... 
    fprintf('\n'); 

  
% =========================================== 
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% Function returns branch-to-node incident matrix A. 

  
function A = getA() 

  
global nbus nbra branch; 

  
A = zeros(nbra, nbus);      % Initialize A 
fb = branch(:,1);           % From bus 
tb = branch(:,2);           % To bus 
for i = 1:nbra 
    A(i, fb(i)) = 1; 
    A(i, tb(i)) = 1; 
end 

  
end 

  

 

 
% Function returns matrix P1 which removes branches associated to zero 
% injection measurements. 

  
function P1 = getP1(inj) 

  
global A nbra; 

  
npin = length(inj);             % Number of power injection measurements 

  
% Determine all branches not associated to zero injection buses: 
s = zeros(nbra,1); 
for i = 1:npin 
    s = s + A(:, inj(i)); 
end 

  
% Zero values of 's' indicate branches that are not associated to any of  
% zero injection buses: 
na_branches = find(s == 0); 

  
% Populate matrix P1: 
P1 = zeros(length(na_branches), nbra); 
for i = 1:length(na_branches) 
    P1(i, na_branches(i)) = 1; 
end 

  
end 
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% Function returns a connectivity matrix Tpmu. 

  
function Tpmu = getTpmu() 

  
global branch nbra nbus; 

  
% Initialize Tpmu: 
Tpmu = ones(nbus,1); 
Tpmu = diag(Tpmu);  

  
% Populate non-diagonal elements: 
fb = branch(:,1);      % From bus 
tb = branch(:,2);      % To bus 
for i = 1:nbra 
    Tpmu(fb(i),tb(i)) = 1; 
    Tpmu(tb(i),fb(i)) = 1; 
end 

  
end 

  

 

 

 
% Function returns a connectivity matrix Tcon. 

  
function [Tcon, P, bcon] = getTcon(inj, flow) 

  
global nbus Tpmu branch; 

  
npf = length(flow);             % Number of power flow measurements 
npin = length(inj);             % Number of power injection measurements 
fbus = zeros(npf + npin, 1);    % From bus 
tbus = fbus;                    % To bus 
for i = 1:npf 
    fbus(i) = branch(flow(i), 1); 
    tbus(i) = branch(flow(i), 2); 
end 
for i = 1:npin 
    fbus(npf + i) = inj(i); 
end 

  
% Initialize Tmeas and bmeas: 
Tmeas = zeros(npin + npf, nbus); 
bmeas = ones(npin + npf, 1); 

  
% Set up matrix Tmeas. 
% Power flow measurements bus incidence: 
for i = 1:npf 
    Tmeas(i, fbus(i)) = 1; 
    Tmeas(i, tbus(i)) = 1; 
end 

  
% Power injection measurements bus incidence: 
for i = 1:npin 
    for k = 1:nbus 
        Tmeas(npf + i, k) = Tpmu(fbus(npf + i), k); 
        bmeas(npf + i) = bmeas(npf + i) + Tmeas(npf + i, k); 
    end 
    bmeas(npf + i) = bmeas(npf + i) - 2; 
end 
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% Find indices of buses not associated to conventional measurements  
% (zero columns in Tmeas): 
na_buses = find(any(Tmeas,1) == 0); 
M = length(na_buses); 

  
% Remove zero columns from Tmeas: 
Tmeas = Tmeas(:, any(Tmeas,1)); 

  
% Set up permutation matrix P: 
P = zeros(nbus); 
for i = 1:M 
    P(i, na_buses(i)) = 1; 
end 
k = M + 1; 
for i = 1:nbus 
    if isempty(find(na_buses == i)) 
        P(k,i) = 1; 
        k = k + 1; 
    end 
end 

  
Tcon = blkdiag(eye(M),Tmeas); 
bcon = [ones(M,1); bmeas]; 

  
end 

  

 

 
% Function returns a vector of optimal PMU positions according to 
% requirements specified by matrix G and redundancy requirements specified 
% by vector Bg 

  
function pmu = optimal(G, Bg) 

  
global nbus Tpmu; 

  
% Solve mixed-integer linear programming with linear inequalities: 
f = ones(nbus,1);       % Objective function; 
intcon = 1:nbus;        % Vector of integer variables; 
A = -1*G*Tpmu;          % Inequality coefficients in 
b = -1*Bg;              %   form A*x <= b; 
Aeq = zeros(nbus); 
beq = zeros(nbus,1); 
lb = zeros(nbus,1);     % Bounds to produce binary 
ub = ones(nbus,1);      %   values. 
options = optimoptions('intlinprog','Display','off','LPPreprocess','none'); 

  
pmu = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options); 

  
end 
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% Function returns a vector of optimal PMU positions with depth N  
% unobservability according to linear inequality constraints specified by 
% matrix G and vector Bg and optimal placement positions (x0) of N-1 depth. 

  
function pmu = optimal2(N, G, Bg, x0) 

  
global nbus Tpmu; 

  
% Solve mixed-integer linear programming with linear inequalities: 
f = ones(nbus,1);       % Objective function; 
intcon = 1:nbus;        % Vector of integer variables; 
A = -1*G*Tpmu^(N+1);    % Inequality coefficients in 
b = -1*Bg;              %   form A*x <= b; 
Aeq = (f - x0)';        % Equality constraints 
beq = 0; 
lb = zeros(nbus,1);     % Bounds to produce binary 
ub = ones(nbus,1);      %   values. 
options = optimoptions('intlinprog','Display','off'); 

  
pmu = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options); 

  
end 

  

 

 
% Function returns a number of unobserved buses (depth-of-one) in a system 
% determined by branch-to-node matrix M and PMU position determined by 
% vector 'pmu'. 

  
function nuob = unobserved(M, pmu) 

  
global nbus; 

  
p = find(pmu == 1);               % Indices of buses with PMUs 
s = zeros(1, nbus); 
for i = 1:length(p) 
    br = find(M(:,p(i)) == 1);    % Indices of branches connected to  
    br = br.';                    %    i-th PMU 
    s = s + sum(M(br, :)); 
end 

  
uob = find(s == 0);     % Determine indices of unobserved buses 
nuob = length(uob);     % Determine the total number of unobserved buses 

  
end 
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% 4. PMU MEASUREMENTS SET-UP  
% =========================================== 
% This section creates the measurements file 'PMUdatas.m' of PMU 
% measurements from the bus matrix, according to specified PMU positions  
% and specified measurement errors. 

  
global pmu0 pmu0conv pmu1 pmu1conv pmu2 pmudata nbus; 

  
pmu = pmu0;       % Set PMU incidence vector from section 3 
% pmu0, pmu0conv - for complete observability 
% pmu1, pmu1conv - for Do1 unobservability 
% pmu2           - for Do2 unobservability 
% ...or use the following to install PMUs to all buses (redundancy): 
%   pmu = ones(1, nbus); 

  
pmubus = find(pmu == 1);                % Indices of buses with PMUs 
Rpmu = 1e-6 * ones(length(pmubus),1);   % Set PMU variances 

  
% Get PMU measurements from specified PMU placement positions: 
createPMUdatas(pmubus, Rpmu); 
pmudata = PMUdatas(); 

  
% =========================================== 

 
 
% Function creates and fills the file 'PMUdatas.m' with PMU voltage and  
% current measurements. 

  
function [] = createPMUdatas(pmubus, Rpmu) 

  
global bus Tpmu ybus; 

  
% Create a file 'PMUdatas.m': 
fid = fopen('4 PMU Measurements Set-up\PMUdatas.m','w'); 
fprintf(fid, '%s\n%s\n%s\n%s\n%s\n\n%s\n\n%s\n%s\n',... 
'% PMU measurement data', ... 
'% =============================', ... 
'% Type of measurement:', ... 
'% 1 - Voltage measurement;', ... 
'% 2 - Current measurement;', ... 
'function pmudata = PMUdatas()', ... 
'pmudata   = [',... 
'%   |Msnt |Type |          Value         | From | To | Rii |'); 

  
count = 1; 

  

  
% Print voltage measurements: 
fprintf(fid, '%s\n',... 
'%--------------------- Voltage ---------------------------------%'); 
type = 1; 
to = 0; 
rng;       % Randomize... 
for i = 1:length(pmubus) 
    from = pmubus(i); 
    value = bus(from,3).* exp(1j*deg2rad(bus(from,4))); 
    % Generate a random value from a normal distribution with actual 
    % voltage as a mean value and R as variance: 
    value = value + (1 + 1j)*sqrt(Rpmu(i)).*randn(1); 
    R = Rpmu(i); 
    fprintf(fid, '%8d %5d %14.4g%+1.4fi %7d %4d %7g%s\n',... 
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        count, type, [real(value) imag(value)], from, to, R,';'); 
    count = count + 1; 
end 
fprintf(fid, '%s\n',... 
'%---------------------------------------------------------------%'); 

  
% Print current measurements: 
fprintf(fid, '%s\n',... 
'%--------------------- Current ---------------------------------%'); 
type = 2; 
rng;       % Randomize... 
for i = 1:length(pmubus) 
    from = pmubus(i); 
    temp = find(Tpmu(from,:) == 1);    % Find all buses connected to 'from' 
    temp = setdiff(temp, from);        % Remove bus 'from' 
    if isempty(temp) == 0 
        for k = 1:length(temp) 
            to = temp(k); 
            vs = bus(from,3).* exp(1j*deg2rad(bus(from,4))); 
            vr = bus(to,3).* exp(1j*deg2rad(bus(to,4))); 
            value = ybus(from,to) * (vs - vr); 
            value = value + (1 + 1j)*sqrt(Rpmu(i)).*randn(1); 
            R = Rpmu(i); 
            fprintf(fid, '%8d %5d %14.4g%+1.4fi %7d %4d %7g%s\n',... 
                count, type, [real(value) imag(value)], from, to, R,';'); 
            count = count + 1; 
        end 
    end 
end 

  
fprintf(fid, '%s\n%s\n',... 
'%---------------------------------------------------------------%',... 
'];'); 

  
fclose(fid); 
disp('File "PMUdatas.m" was updated!'); 

  
end 
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% 5. LINEAR STATE ESTIMATION 
% =========================================== 
% This section produces the state vector using the direct PMU measurements. 
% The PMU measurements can be used exclusively or complemented with WLS- 
% estimated state vector. 

  
global nbus; 

  
% Set up current measurement bus incedence matrix: 
Apmu = getApmu(); 

  
% Set up voltage measurement bus incedence matrix: 
II = getII(); 

  
% Set up matrix of series admittances: 
y = gety(); 

  
% Set up matrix of shunt admittances: 
ys = getys(); 

  
% LINEAR STATE ESTIMATION UTILIZING PMU MEASUREMENTS EXCLUSIVELY: 
% Set up system matrix: 
B1 = [II; y * Apmu + ys]; 

  
% Estimate the state vector: 
[th_lse, V_lse] = LSE(B1); 

  
disp('Linear State Estimation utilizing PMU measurements exclusively:'); 
disp('  Bus | V (pu) |  Angle (Deg)'); 
disp('--------------------------'); 
for i = 1:nbus 
    fprintf('%4g', i); fprintf('  %8.4f', V_lse(i)); fprintf('   %8.4f', ... 
        th_lse(i)); fprintf('\n'); 
end 
fprintf('\n'); 
clear i; 

  
% LINEAR STATE ESTIMATION UTILIZING BOTH PMU AND CONVENTIONAL MEASUREMENTS: 
% Set up system matrix 
B2 = [diag(ones(nbus,1)); II; y * Apmu + ys]; 

  
% Estimate the state vector: 
[th_hyb, V_hyb] = LSEconv(B2); 

  
disp('Linear State Estimation with added conventional measurements:'); 
disp('  Bus | V (pu) |  Angle (Deg)'); 
disp('--------------------------'); 
for i = 1:nbus 
    fprintf('%4g', i); fprintf('  %8.4f', V_hyb(i)); fprintf('   %8.4f', ... 
        th_hyb(i)); fprintf('\n'); 
end 
fprintf('\n'); 
clear i; 

  
% =========================================== 
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% Function returns the current measurement bus incidence matrix Apmu. 

  
function Apmu = getApmu() 

  
global pmudata nbus; 

  
im = find(pmudata(:,2) == 2);   % Indices of current measurements 
nim = length(im);               % Number of current measurements 
fbus = pmudata(:,4);            % From bus 
tbus = pmudata(:,5);            % To bus 

  
Apmu = zeros(nim, nbus); 
for i = 1:nim 
    Apmu(i, fbus(im(i))) = 1; 
    Apmu(i, tbus(im(i))) = -1; 
end 

   
end 

  

 
% Function returns the voltage measurement bus incidence matrix II. 

  
function II = getII() 

  
global pmudata nbus; 

  
vm = find(pmudata(:,2) == 1);   % Indices of voltage measurements 
nvm = length(vm);               % Number of voltage measurements 
fbus = pmudata(:,4);            % Measurement bus 

  
II = zeros(nvm, nbus); 
for i = 1:nvm 
    II(i, fbus(vm(i))) = 1; 
end 

  
end 

 
 
 
% Function returns the diagonal matrix 'y' of series admittances of  
% measured branches. 

  
function y = gety() 

  
global pmudata ybus; 

  
im = find(pmudata(:,2) == 2);   % Indices of current measurements 
nim = length(im);               % Number of current measurements 
fbus = pmudata(:,4);            % From bus 
tbus = pmudata(:,5);            % To bus 

  
y = zeros(nim); 
for i = 1:nim 
    y(i,i) = ybus(fbus(im(i)), tbus(im(i))); 
end 

  
end 
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% Function returns the matrix 'ys' of shunt admittances. 

  
function ys = getys() 

  
global pmudata nbus bbus; 

  
im = find(pmudata(:,2) == 2);   % Indices of current measurements 
nim = length(im);               % Number of current measurements 
fbus = pmudata(:,4);            % From bus 
tbus = pmudata(:,5);            % To bus 

  
ys = zeros(nim, nbus); 
for i = 1:nim 
    ys(i,fbus(im(i))) = bbus(fbus(im(i)), tbus(im(i))); 
end 

  
end 

  

 

 
% Function returns state vector in the form of complex voltages after 
% performing linear state estimation utilizing PMU measurements 
% exclusively. 

  
function [Th, V] = LSE(B) 

  
global pmudata; 

  
% Make diagonal matrix of covariances: 
W = diag(pmudata(:,6)); 

  
% Make the measurements vector: 
Z = pmudata(:,3); 

  
% Linear State Estimation: 
X = (B'*(W\B))\B'*(W\Z); 

  
Th = rad2deg(angle(X)); 
V = abs(X); 

  
end 
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% Function returns state vector in the form of complex voltages after 
% performing linear state estimation utilizing both PMU and conventional 
% measurements. 

  
function [Th, V] = LSEconv(B) 

  
global pmudata nbus Xest; 

  
% Make diagonal matrix of covariances: 
W1 = diag(1e-4 * ones(nbus,1));   % Covariance of WLS estimated vector 
W2 = diag(pmudata(:,6));          % Covariance of PMU measurements 
W = blkdiag(W1, W2); 

  
% Make the measurements vector: 
Z1 = Xest; 
Z2 = pmudata(:,3); 
Z = [Z1; Z2]; 

  
% Linear State Estimation: 
X = (B'*(W\B))\B'*(W\Z); 

  
Th = rad2deg(angle(X)); 
V = abs(X); 

  
end 
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