

Department of Electrical Engineering

Effect of Placement of PMUs on State Estimation

in a Power System

Iurii Mironov
SHO6262 Master thesis in Electrical Engineering - July 2016

ii

Title: Effect of Placement of PMUs on
State Estimation in a Power System

Date: 04.07.2016

Classification: Open

Author: Iurii Mironov Pages: 57

Attachments: 1

Departement: Department of Electrical Engineering

Studieretning:

Electrical Engineering

Supervisors:

Pawan Sharma, Charu Sharma

Principal:

UiT The Arctic University of Norway (Campus Narvik)

Principal contact:

Pawan Sharma, Charu Sharma

Keywords:

Phasor measurement unit (PMU), power system state estimation,
IEEE bus system, optimal placement, network observability

Abstract:

State estimation is one of the most important processes in
modelling and monitoring of a power system. Iterative and less
accurate conventional means of estimation are now being
replaced by fast and direct state vector measurements provided
by PMUs. However, the high cost of PMUs forces engineers to
choose wisely where the measurement units should be placed.

The given project observes different ways to incorporate the PMU
measurements to enhance power system state estimation,
depending on the desired depth of observability and the amount
of conventional measurements included. It also investigates the
outcomes of such schemes in terms of estimation error. To
evaluate the outcomes, numerical simulation has been carried out
using a model designed in MATLAB.

iii

PREFACE AND ACKNOWLEDGEMENT

This thesis is submitted in partial fulfillment of the requirements for the

degree of Master of Science at UiT The Arctic University of Norway (Campus

Narvik). The work has been carried out at the Department of Electrical

Engineering from January to July 2016.

First of all, I would like to express my sincere gratitude to my supervisors,

Associate Professor Dr. Pawan Sharma and Dr. Charu Sharma, for supporting

and sharing their expertise with me through the entire work. This thesis would

hardly be done without their valuable advices and careful guidance towards

problem solutions.

I also want to thank my groupmates Oleksandr Starynets and Carlos

Rodriguez Cortez for their motivation and support during the work with my

thesis.

Finally, I’m deeply grateful to all my friends who made these two years in

Narvik an unforgettable experience.

iv

LIST OF ABBREVIATIONS

CSE

DFT

GPS

IEEE

ILP

LSE

PMU

SCADA

WLS

classic state estimator

discrete Fourier transform

Global Positioning System

Institute of Electrical and Electronics Engineers

integer linear programming

linear state estimation

phasor measurement unit

Supervisory Control and Data Acquisition

weighted least squares

v

CONTENTS

Abstract ... ii

Preface and acknowledgement .. iii

List of abbreviations... iv

List of figures ... vii

List of tables ... vii

1 Introduction ... 1

1.1 Problem background ... 1

1.2 Objective of thesis ... 2

1.3 Thesis outline ... 2

2 Classic state estimation .. 4

2.1 Mathematical basis ... 4

2.2 Power system application ... 6

3 State estimation utilizing PMU measurements .. 10

3.1 Phasor measurement unit .. 10

3.2 Mathematical basis of linear state estimation ... 11

3.3 Power system application .. 12

3.4 Hybrid linear state estimation ... 15

4 Optimal placement problem ... 17

4.1 Complete observability case ... 17

4.2 Incomplete observability cases .. 19

4.2.1 Depth-of-one unobservability .. 19

4.2.2 Larger depths of unobservability ... 20

4.3 Inclusion of conventional measurements ... 21

4.3.1 Complete observability case ... 21

4.3.2 Depth-of-one unobservability case .. 23

5 Model description ... 25

5.1 Conventional measurements setup .. 26

5.2 Classic state estimation ... 27

vi

5.3 Optimal placement problem ... 27

5.4 PMU measurements setup ... 28

5.5 Linear state estimation .. 28

6 Simulation results .. 29

6.1 Optimal placement simulation ... 29

6.2 Linear state estimation simulation ... 29

7 Conclusions and future work .. 33

References .. 34

Appendix A. MATLAB model script .. 37

vii

LIST OF FIGURES

Fig. 2.1. The π-equivalent model of a transmission line ... 7

Fig. 3.1. Configuration of modern PMU ... 10

Fig. 3.2. The π-equivalent model of a transmission line .. 12

Fig. 3.3. Example 4-bus system ... 13

Fig. 4.1. Example of fully observable bus system ... 17

Fig. 4.2. Example 7-bus system ... 18

Fig. 4.3. Example of incompletely observable bus system .. 19

Fig. 4.4. Example 7-bus system for incomplete observability 23

Fig. 6.1. State estimation simulation results for IEEE 14 bus system 30

Fig. 6.2. State estimation simulation results for IEEE 30 bus system 30

Fig. 6.3. State estimation simulation results for IEEE 57 bus system 31

Fig. 6.4. State estimation simulation results for IEEE 118 bus system 31

LIST OF TABLES

Table 3.1. Comparison of SCADA and PMU measurement systems 11

Table 5.1. Bus data format .. 25

Table 5.2. Branch data format ... 25

Table 5.3. Measurements data format ... 26

Table 6.1. Optimal number of PMUs for exclusive PMU measurements 29

Table 6.2. Optimal number of PMUs for inclusion of conventional

measurements ... 29

1

1 INTRODUCTION

1.1 Problem background

Over the last century electric power has obviously become deeply

integrated into our everyday routine. The power network of the Nordic

countries developed greatly over time, becoming a complex system combining

conventional and renewable energy sources, various consumers and vast

transmission system [1]. A single failure in such a system can lead to serious

consequences and should preferably be predicted and avoided. Therefore, the

ability to monitor such a complicated system is a crucial prerequisite for stable

and reliable operation of today’s smart grid.

When the network stability issue is addressed, one of the most important

functions is to determine the power system state at any point of the network at

a given instant of time. The state variables are the voltage magnitudes and

relative phase angles at the system buses. The ideas of least-squares estimation

appeared in 19th century in applications in the aerospace field [2]. Later, static

and dynamic estimators were developed for power systems. Early estimation

algorithms used measurements of power flows to produce the best estimate for

the system voltage and phase angles [3]. However, they could not measure the

system state directly.

Although the concept of using phasors to describe power system operating

quantities was introduced in 1893 [4], the earliest application involving direct

phasor measurement was reported in early 1980s by Dr. Arun G. Phadke and

Dr. James S. Thorp at Virginia Tech and the first commercially available PMUs

appeared in early 1990s [3]. The prototype utilized the Global Positioning

System (GPS) technology to achieve time synchronization between remote

measurements. The implementation of such device not only allowed to

measure the system state variables directly, but also made it possible to

redesign the state estimation method. Iterative and time-consuming process

2

could be substituted with a set of linear equations, reducing the number of

calculations and increasing the state refresh rate. Continuously developing and

worldwide integrating PMU technology can provide the system operators with

a better picture of the network and improve the quality of system monitoring.

1.2 Objective of thesis

Although PMUs provide precise measurements of system state, the

average cost per PMU ranges between $40 000 and $180 000 and depends on

various factors described in [5]. This forces engineers to make compromises on

PMU placement and combining phasor measurements with existing estimation

techniques.

This project examines different schemes utilizing PMU measurements and

evaluates their effect on the system state estimation. The main objective of this

thesis is to build up a model of a power system, which allows to make the state

variables calculation based on desired method of state estimation, given

amount of measurements and observability concern. The outcomes of these

schemes will be analyzed and the most optimal placement techniques,

producing minimal estimation error, will be proposed.

1.3 Thesis outline

The given thesis is divided into chapters to give a clear and structured

picture on the problem.

Chapter 2 discusses the basic principle of classic state estimation, the

concept of non-linear weighted least squares and how it is applied for state

estimation in power systems. The equations of non-linear functions of system

state variables are also derived.

Chapter 3 begins with a short insight into the common structure of PMU

and its basic principle of operation. The concept of linear weighted least

squares is explained and applied to linear state estimation for two cases:

3

utilizing PMU measurements exclusively or combined with traditional

estimate.

Chapter 4 concerns the optimal PMU placement problem. Complete and

incomplete observability cases are discussed. The effect of inclusion of

conventional measurements on the optimal placement is also considered.

Examples illustrate how integer linear programming is applied to find the

optimal solution.

Chapter 5 explains how the theory above was applied to make the model

script in MATLAB. The main features of the model are discussed.

In chapter 6 the simulation results are presented and analyzed.

Chapter 7 concludes the work done and suggests problems for future

discussions.

4

2 CLASSIC STATE ESTIMATION

As it was already mentioned above, state estimation provides the best

possible approximation of system state according to the given input data. Such

data usually is:

- network model, which includes network topology (line connections and

circuit breakers status information) and lines and transformers characteristics

(impedance, tap ratio);

- measurements, which for traditional estimators are measurements from

SCADA system (real and reactive power flows, power injections, voltage and

current magnitudes) [6].

Based on the given data, the estimator calculates the state vector x, which

comprises voltage magnitudes and phase angles at the system nodes (buses).

As for the classic estimator, this is performed with non-linear weighted least

squares estimation, described below. Alternative formulations of the

minimization criterion are covered in [7].

2.1 Mathematical basis

The measurement equation is formulated as follows [2], [3], [6]:

 z h x , (2.1)

where z – measurements vector;

 h(x) – vector of non-linear functions, relating measurements to the

state vector x;

 ε – measurement error vector.

The weighted least squares (WLS) method produces a state estimate, such

that the sum of squared measurement residuals, weighted by their respective

error covariances, is minimal. In other words, the task is to minimize the

following objective function:

5

2

1

m
i i

i ii

z h x
J x

R
, (2.2)

or in matrix form:

1T

J x z h x R z h x , (2.3)

where R is the diagonal weighting matrix of variances 2
i ;

2
1

2
2

2

...

m

R , (2.4)

where m is the total number of measurements.

Equation (2.3) is to be minimized recursively until the state variances

meet the convergence limit (Δx becomes less than some tolerance value). When

the initial conditions (k = 0) are set, the state vector estimate for k-th iteration

will be defined by

 1k kx x x ; (2.5)

1

1 1T T kx H R H H R z h x . (2.6)

Here H is a matrix of first partial derivatives of the elements of h with

respect to the components of x (Jacobian matrix) evaluated at k-th iteration:

1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n

h x h x h x

x x x

h x h x h x
h x

H x x x
x

h x h x h x

x x x

, (2.7)

where n is the number of state variables.

6

The numerical values of matrix H must be updated for each iteration step.

2.2 Power system application

The measurement functions that relate SCADA measurements to state

variables are the following [8].

Power injections:

1

cos sin
N

i i j ij i j ij i j
j

P V V G B ; (2.8)

1

sin cos
N

i i j ij i j ij i j
j

Q V V G B , (2.9)

where N is the total number of buses, connected to bus i.

Power flows:

 2 cos sinij i i ij i j ij i j ij i jP V g g VV g b ; (2.10)

 2 sin cosij i i ij i j ij i j ij i jQ V b b VV g b . (2.11)

Line current magnitudes:

2 2
ij ij

ij

i

P Q
I

V
. (2.12)

In the equations above, gij, bij correspond respectively to series

conductance and susceptance of the line connecting buses i and j, and gi, bi are

shunt conductance and susceptance of the line. These parameters are found

with an assumption that the line is modelled as the π-equivalent, shown in

Figure 2.1. Gij, Bij are respectively real and imaginary parts of ij-th element pf

admittance matrix Y [9].

7

Fig. 2.1. The π-equivalent model of a transmission line

The measurement Jacobian matrix H will be formed as follows [6]:

0

inj inj

flow flow

inj inj

flow flow

ij ij

i

P P

V

P P

V

Q Q

VH
Q Q

V

I I

V

V

V

 (2.13)

The partial derivatives of the equations (2.8) – (2.12) are the following [6]:

- elements corresponding to real power injection measurements:

 2

1

sin cos
N

i
i j ij i j ij i j i ii

ji

P
VV G B V B ; (2.14)

sin cosi

i j ij i j ij i j

j

P
VV G B ; (2.15)

1

cos sin
N

i
j ij i j ij i j i ii

ji

P
V G B VG

V
; (2.16)

bus i bus j
gij + jbij

gi + jbi gj + jbj

Pij, Qij Pji, Qji

8

cos sini
j ij i j ij i j

j

P
V G B

V
; (2.17)

- elements corresponding to reactive power injection measurements:

 2

1

cos sin
N

i
i j ij i j ij i j i ii

ji

Q
VV G B V G ; (2.18)

cos sini

i j ij i j ij i j

j

Q
VV G B ; (2.19)

1

sin cos
N

i
j ij i j ij i j i ii

ji

Q
V G B VB

V
; (2.20)

sin cosi
j ij i j ij i j

j

Q
V G B

V
; (2.21)

- elements corresponding to real power flow measurements:

sin cosij

i j ij i j ij i j

i

P
VV g b ; (2.22)

sin cosij

i j ij i j ij i j

j

P
VV g b ; (2.23)

cos sin 2ij

j ij i j ij i j i ij i

i

P
V g b V g g

V
; (2.24)

cos sinij

j ij i j ij i j

j

P
V g b

V
; (2.25)

- elements corresponding to reactive power flow measurements:

cos sinij

i j ij i j ij i j

i

Q
VV g b ; (2.26)

cos sinij

i j ij i j ij i j

j

Q
VV g b ; (2.27)

sin cos 2ij

j ij i j ij i j i ij i

i

Q
V g b V b b

V
; (2.28)

9

sin cosij

j ij i j ij i j

j

Q
V g b

V
; (2.29)

- elements corresponding to voltage magnitude measurements:

0; 0; 1; 0;i i i i

i j i j

V V V V

V V
 (2.30)

- elements corresponding to current magnitude measurements:

2 2

sinij ij ij

i j i j

i ij

I g b
VV

I
; (2.31)

2 2

sinij ij ij

i j i j

j ij

I g b
VV

I
; (2.32)

2 2

cosij ij ij

i j i j

i ij

I g b
V V

V I
; (2.33)

2 2

cosij ij ij

j i i j

j ij

I g b
V V

V I
. (2.34)

The state vector obtained by classic state estimator is in the form:

 1 2 1 2, , ..., , , , ...,
T

CSE n nx V V V , (2.35)

where n is total number of buses; Vi, θi – voltage magnitude and phase at the

i-th bus.

10

3 STATE ESTIMATION UTILIZING PMU MEASUREMENTS

With the ability of PMUs to measure the system state directly, the use of

phasor measurements for state estimation enhances both speed and accuracy

of the process. Unlike classic estimation technique which has to deal with

iterative solution of non-linear equations, the PMU measurements are linear

functions of state variables. Therefore, the computation process can be

significantly simplified.

Direct measurements of state variables can also be augmented by the state

vector obtained in the classic estimator. This so called hybrid linear state

estimation with a post-processing step [10] will also be discussed in this

chapter.

3.1 Phasor measurement unit

A phasor measurement unit (PMU) is a device that measures the

parameters of the electrical waves and produces output time-stamped

measurement data. The hardware configuration of PMUs may depend on the

manufacturer; however, its common components are depicted in Figure 3.1.

Fig. 3.1. Configuration of modern PMU [11]

The analog inputs are voltages and currents obtained via measurement

transformers. These signals are converted to suitable format for the analog-to-

digital converters and sampled typically at a rate of 48 samples per second [4].

11

The Global Positioning System (GPS) acts as a common time source. With

a GPS receiver, all measurements are assigned a time stamp to synchronize the

data that is time-skewed during transmission via communication link. The

sampling clock is also phase-locked with the GPS clock pulse.

Phasor microprocessor calculates positive-sequence estimates of the

current and voltage signals using techniques based on discrete Fourier

transform (DFT).

Finally, the time-tagged measurement data is transferred via modems to

higher levels of the measurement system hierarchy.

Detailed structure of PMU devices, its hierarchy, communication options

and applications are discussed in [3] and [12].

Table 3.1 illustrates the key advantages of PMU measurements compared

to conventional SCADA measurements.

 SCADA PMU
Resolution 1 sample every 2-4 seconds

(steady state observability)
10-60 samples per second

(dynamic observability)
Measured quantities magnitude only magnitude and phase
Time synchronization no yes
Total input/output
channels

100+ analog and digital ~10 phasors, 16+ analog,
16+ digital

Focus local monitoring and
control

wide area monitoring and
control

Table 3.1. Comparison of SCADA and PMU measurement systems [13]

3.2 Mathematical basis of linear state estimation

As it was mentioned above, PMUs provide direct measurements of system

state variables, making the relation between state vector and measurements

vector linear.

The objective function that must be minimized, is the same as in chapter 2:

1T

J x z h x R z h x . (3.1)

The only difference is that measurement functions h(x) are now linear.

Therefore, equation (2.1) can be expressed as follows:

12

 z h x Bx , (3.2)

where B is the system matrix.

The state vector x can therefore be calculated as follows [3]:

11 1T Tx B R B B R z Mz , (3.3)

where R is the diagonal weighting matrix of measurement variances 2
i ;

2
1

2
2

2

...

m

R (3.4)

The matrix M is constant as long as the system structure and parameters

do not change. It can be computed offline and stored for real-time use [3].

3.3 Power system application

Consider again the π-equivalent model of a transmission line, shown in

Figure 3.2:

Fig. 3.2. The π-equivalent model of a transmission line

Here Vi, Vj – complex voltages measured at bus i and j respectively; Iij, Iji –

complex line currents measured near bus i and j respectively.

Assuming state vector:

bus i bus j
yij

yi yj

Vi Vj
Iij Iji

13

i

j

V
x

V
 (3.5)

and measurements vector:

i

j

ij

ji

V

V
z

I

I

, (3.6)

equation (3.2) is then expressed as follows [3]:

1 0

0 1
i

j i

ij ij i ij j

ji ij ij j

V

V V

I y y y V

I y y y

, (3.7)

where the system matrix B:

1 0

0 1

ij i ijs

ij ij j

II
B

y y yyA y

y y y

 (3.8)

To explain how the elements of the matrix B are constructed, consider

4-bus system, shown in Figure 3.3 with PMUs installed at buses 1, 2 and 4.

Fig. 3.3. Example 4-bus system

14

The elements of the matrix B are as follows [3]:

II – a unit matrix of width n (n – number of buses). Rows corresponding to

buses without voltage measurements, are removed:

1 0 0 0

0 1 0 0

0 0 0 1

II (3.9)

A – current measurement incidence matrix. Rows correspond to current

measurements, columns correspond to buses; 1 and –1 indicate respectively

the start and the end of the line being measured:

1 1 0 0

1 1 0 0

0 1 0 1

0 1 1 0

0 1 0 1

0 0 1 1

A (3.10)

y – diagonal matrix of series admittances of measured branches:

1

1

3

2

3

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

y

y

y
y

y

y

y

 (3.11)

ys –matrix of shunt admittances of measured branches. Rows correspond

to measurements, columns correspond to buses:

10

10

30

20

30

40

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

s

y

y

y
y

y

y

y

 (3.12)

15

The resulting system matrix:

1 10 1

1 1 10

3 30 3

2 20 2

3 3 30

4 4 40

1 0 0 0

0 1 0 0

0 0 0 1

0 0

0 0

0 0

0 0

0 0

0 0

s

y y y
II

B y y y
yA y

y y y

y y y

y y y

y y y

 (3.13)

The measurement function is

PMU

PMU s

V II
V

I yA y
, (3.14)

where VPMU, IPMU – vectors of measured complex voltages and currents; V – state

vector of complex voltages.

Note that this method described in [3] utilizes complex voltages as state

variables, which is suitable for simulations in MATLAB. Other papers [11][14]

use the notation with voltage real and imaginary parts as separate state

variables.

3.4 Hybrid linear state estimation

There are two general techniques that are used to combine PMU

measurements with traditional SCADA data.

The first method integrates PMU measurements into classic state

estimator and processes them in the same iterative procedure.

Another algorithm utilizes the estimate obtained in classic state estimator

through a post-processing step. The state vector is converted to rectangular

form, comprising real and imaginary parts of bus voltages. Then it is fed into

the linear estimator along with voltage and current measurements.

16

Tests show [10], that the results of both methods are identical. Therefore,

it is preferable to use linear estimator as less complicated and non-iterative

algorithm. Also, such approach avoids the problem of physical integration of

PMU measurements and rewiring existing traditional estimators.

The measurements vector is augmented by the estimate from the classic

state estimator VCSE (in complex form):

CSE

H PMU

PMU

V

z V

I

 (3.15)

The derived earlier system matrix B is augmented by unit matrix I:

H

s

I

B II

yA y

 (3.16)

Also, the covariance matrix of linear estimator, defined here as R2, is

diagonally concatenated with the CSE covariance matrix:

1
1 1 1

2

0

0

T

H

H R H
R

R
 (3.17)

The state variable in this case is calculated as follows (index H refers to

hybrid linear state estimation):

11 1T T

H H H H H H Hx B R B B R z . (3.18)

17

4 OPTIMAL PLACEMENT PROBLEM

Placing PMUs at all buses in a power system results in direct measuring of

the system state instead of estimating it. However, such a solution could be

rather costly. On the other hand, measuring line currents can extend voltage

measurements to the buses where no PMUs are installed. Therefore, a minimal

number of PMUs can be installed to indirectly measure all the bus voltages in

the system. Finding out this smallest number of PMUs as well as their locations

in the network has always been a subject to optimization problem. An overview

of solution methods for this problem is discussed in [15]. In this project the

methods discussed in [16], [17], [18] and [3] were used. All of the methods

utilize integer linear programming (ILP) to solve optimization problems.

4.1 Complete observability case

As it was mentioned above, a PMU can make installed bus and all

connected buses observable. Figure 4.1 describes a system completely

observed by two PMUs (marked by large circles). The shade of smaller circles

indicates which PMU provides observability to the neighboring buses [3].

Fig. 4.1. Example of fully observable bus system [3]

The placement problem for complete observability is solved by finding a

minimal set of PMUs such that each bus is reached by a PMU at least once [17].

Define incidence matrix TPMU:

18

,

1, if

1, if and are connected

1, otherwise.
PMU i j

i j

T i j (4.1)

Fig. 4.2. Example 7-bus system [16]

For a 7-bus system illustrated in Figure 4.2 the incidence matrix is

constructed as follows [16]:

1 1 0 0 0 0 0

1 1 1 0 0 1 1

0 1 1 1 0 1 0

0 0 1 1 1 0 1

0 0 0 1 1 0 0

0 1 1 0 0 1 0

0 1 0 1 0 0 1

PMUT (4.2)

Formulation of the optimal placement problem in terms of ILP for N-bus

system is the following:

1

1 2

min

subject to

0,1

N

k
k

PMU PMU

T

N

i

x

T X b

X x x x

x

 (4.3)

where X is PMU placement vector of binary values, with 1 (ones) indicating

placement buses; bPMU is the inequality constraints vector:

1

1 1 1
T

PMU N
b (4.4)

19

The solution for the example 7-bus system is

 0 1 0 0 1 0 0
T

X (4.5)

This means that PMUs should be installed at buses 2 and 5.

4.2 Incomplete observability cases

The system is incompletely observable when some of the buses cannot be

reached by a PMU i.e. the voltages of such buses cannot be indirectly measured

by PMUs.

Fig. 4.3. Example of incompletely observable bus system [3]

4.2.1 Depth-of-one unobservability

Depth-of-one unobservability implies that all unobserved buses must be

connected only to observed buses. Such condition is illustrated in Figure 4.3.

The ILP formulation for depth-of-one unobservability case is similar to

that for full observability. The difference is that the incidence matrix TPMU is

modified by matrix A [16]:

1
1

1

1 2

min

subject to

0,1

N

k
k

PMU

T

N

i

x

AT X b

X x x x

x

 (4.6)

where A is the branch-to-node incident matrix; b1 is a unit vector of the same

length as the number of branches.

20

Each row in matrix A corresponds to its respective branch and the indexes

of 1’s (ones) in that row indicate the two buses connected by that branch. For

the 7-bus system in Figure 4.2 matrix A is constructed as follows [16]:

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 0 0 1

0 0 1 1 0 0 0

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 0 0 1

A (4.7)

The solution for this system is

 0 0 1 0 0 0 0
T

X (4.8)

This means that for depth-of-one unobservable system a PMU should be

installed at bus 3.

4.2.2 Larger depths of unobservability

For larger depths of unobservability an approach proposed in [3] appears

to be preferable due to its simplicity. According to that, the depth-of-M

unobservability is achieved by taking (M+1)-th power of the incidence matrix

TPMU.

The ILP formulation of this problem is as follows [3]:

1

1

1

1 2

min

subject to

1̂ 0

0,1

N

M k
k

M

PMU M PMU

T

M M

T

M N i

x

T X b

X X

X x x x x

 (4.9)

where 1̂ is a unit vector; XM–1 is the set of PMU locations calculated for depth

(M–1) unobservability case.

21

4.3 Inclusion of conventional measurements

4.3.1 Complete observability case

If the conventional measurements (flow, injection) are considered in

optimal placement problem, then some modifications must be made to ILP

algorithm.

In previous cases when PMU measurements were utilized exclusively, the

constraints were defined in the form:

 1̂PMUT X (4.10)

Each element yi of the vector PMUY T X represent the number of times bus

i is reached by PMUs.

Conventional measurements also introduce inequalities that must be

considered in ILP [17]:

 if a power flow measurement in on line i–j, then the following needs to

be held:

 1i jy y (4.11)

which means that at least one of two buses must be reached by PMU.

 if an injection measurement is at bus k which is connected to buses l, p

and q, then the following needs to be held:

 3k l p qy y y y (4.12)

These constraints form a matrix Tmeas in the way which is explained in the

following example.

Recall the 7-bus system in Figure 4.2 and consider injection measurement

at bus 2 and flow measurement on the line between buses 2 and 3 [16]. These

measurements introduce the following constraints:

2 3

1 2 3 6 7

1

4

y y

y y y y y
 (4.13)

22

In matrix form:

0 1 1 0 0 1
;

1 1 1 1 1 4
meas measT b (4.14)

where each column represents a bus associated to conventional measurements

(respectively 1, 2, 3, 6, 7).

The matrices can be reduced:

0 1 1 0 0 1
;

1 0 0 1 1 2
meas measT b (4.15)

Buses that are not associated to conventional measurements are added in

the following way:

1 0 0 0 0 0 0 1

0 1 0 0 0 0 00 1
;

0 0 0 1 1 0 00 1

0 0 1 0 0 1 1 2

M M

con con

meas

I
T b

T
 (4.16)

where
M MI is a unit matrix; M is the number of buses not associated to

conventional measurements.

Formulation of the optimization problem in terms of ILP:

1

1 2

min

subject to

0,1

N

k
k

con PMU con

T

N

i

x

T PT X b

X x x x

x

 (4.17)

where P is a permutation matrix.

As the order of columns (buses) in matrix Tcon was changed, matrix P

changes the order of rows in TPMU in the same manner.

23

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

P (4.18)

The optimal solution for the given example is

 0 1 0 0 1 0 0
T

X (4.19)

This means that PMUs should be installed at buses 2 and 5.

4.3.2 Depth-of-one unobservability case

The ILP formulation for depth-of-one unobservability case with the

inclusion of conventional measurements is similar to that with exclusive PMU

measurements. The difference is that matrix P1 is introduced [16]:

1
1

1 1 1

1 2

min

subject to

0,1

N

k
k

PMU

T

N

i

x

P AT X P b

X x x x

x

 (4.20)

where P1 is the matrix that removes the branches associated to conventional

measurements.

Fig. 4.4. Example 7-bus system for incomplete observability [16]

24

For the 7-bus example (branches are numbered in Figure 4.4) with

injection measurement at bus 2, the matrix P1 is set as follows:

1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

P (4.21)

25

5 MODEL DESCRIPTION

The state estimation model is based on the theory discussed in previous

chapters. It was constructed and run in MATLAB version R2016a with

reference to [19].

Required input for the model is the following:

1) bus data in IEEE common data format [20].

Bus parameters must be stored in a matrix described in Table 5.1.

Column Value
1 Bus number
2 Bus type:

0 – Unregulated (load, PQ)
1 – Hold MVAR generation within voltage limits, (PQ)
2 – Hold voltage within VAR limits (gen, PV)
3 – Hold voltage and angle (swing)

3 Voltage, pu
4 Angle, degrees
5 Active load, MW
6 Reactive load, MVAR
7 Active generation, MW
8 Reactive generation, MVAR
9 Base voltage, kV

10 Desired voltage (for buses of type 2 and 3), kV
11 Maximum MVAR or voltage limit
12 Minimum MVAR or voltage limit
13 Shunt conductance, pu
14 Shunt susceptance, pu

Table 5.1. Bus data format

2) branch data in IEEE common data format [20].

Branch parameters must be stored in a matrix described in Table 5.2.

Column Value
1 Start bus number
2 End bus number
3 Branch resistance, pu
4 Branch reactance, pu
5 Line charging susceptance, pu
6 Transformer turns ratio
7 Transformer phase shift angle
8 Minimum tap or phase shift
9 Maximum tap or phase shift

10 Step size

Table 5.2. Branch data format

26

Bus and branch data for IEEE 14-, 30-, 57- and 118-bus systems [20] are

stored in files ieee14.m, ieee30.m, ieee57.m and ieee118.m respectively.

However, any other bus system can be loaded to the model if it is stored in the

format described earlier.

Optional input that can be fed to the model:

1) conventional measurements;

2) phasor measurements.

The format for measurements matrix is presented in Table 5.3.

Column Value
1 Measurement number
2 Type of measurement

For conventional measurements:
1 – voltage magnitude
2 – real power injection
3 – reactive power injection
4 – real power flow
5 – reactive power flow

For phasor measurements:
1 – voltage in complex form
2 – current in complex form

3 Measured value, pu
4 Bus number (for bus measurements)

Start bus number (for branch measurements)
5 End bus number (for branch measurements)
6 Measurement variance

Table 5.3. Measurements data format

The model script is divided into consecutive sections for clear overview of

each step and better understanding of the whole process. The full script can be

found in Appendix A as well as on the attached CD.

5.1 Conventional measurements setup

As it was mentioned earlier, the conventional measurements matrix is an

optional input. If user does not have a pre-defined measurements data set, it

can be created during this section.

The measurements positions are defined with vectors. Vectors volt and inj

contain bus numbers with respectively voltage magnitude and power injection

27

measurements on them. Vector flow contains branch numbers with power flow

measurements on them. These vectors can be set manually or using function

randperm, which picks N random buses/branches for measuring.

Measurement variances are also set in vectors Rvolt, Rinj and Rflow,

corresponding to vectors of measurement positions.

Function createZdatas generates “measured” values on specified positions

with specified error variance and writes them to the file zdatas.m.

5.2 Classic state estimation

This section utilizes measurements stored in zdatas.m to produce the best

estimate of the system state applying non-linear weighted least squares

method (function WLS.m). This function is based on [21] with some

modifications made. The output is stored in vectors of bus voltage angles th_est

and magnitudes V_est. They are combined to produce state vector of complex

voltages X_est, which will be used for hybrid linear state estimation in

section 5.5.

5.3 Optimal placement problem

This section utilizes MATLAB function intlinprog to solve optimal

placement problems. The constraints matrices for ILP are formed as described

in chapter 4.

For the cases when PMU measurements are used exclusively, the output is

stored in vectors pmu0, pmu1 and pmu2 for complete observability, depth-of-

one and depth-of-two unobservability respectively. These vectors contain

binary values, indicating incidence of PMU measurements on the bus.

For the cases when PMU measurements are complemented by

conventional measurements, the output is stored in vectors pmu0conv for

complete observability case and pmu1conv for depth-of-one unobservability.

The numbers of buses and branches with conventional measurements are set

for these cases in vectors inj2 and flow2.

28

5.4 PMU measurements setup

The PMU measurements file PMUdatas.m is constructed in the same way

as described in 5.1. The only difference is that the measurement positions are

defined by PMU incidence vectors obtained in previous section.

5.5 Linear state estimation

This section utilizes PMU measurements data stored in PMUdatas.m to

produce the best estimate of the system state applying linear weighted least

squares method.

The matrix components are formed in a way explained in chapter 3.

Function LSE.m produces linear estimate of bus voltage magnitudes V_lse and

angles th_lse with phasor measurements from PMUdatas.m only. Function

LSEconv.m also includes vector X_est as a measurement to produce hybrid state

estimate V_hyb and th_hyb.

29

6 SIMULATION RESULTS

6.1 Optimal placement simulation

The optimal placement algorithm was tested on IEEE 14-, 30-, 57- and 118-

bus systems. Simulation results for cases with no conventional measurements

are shown in Table 6.1.

Bus
system

Complete
observability

Depth-of-one
unobservability

Depth-of-two
unobservability

IEEE 14 Bus 4 2 4
IEEE 30 Bus 10 4 3
IEEE 57 Bus 17 11 7
IEEE 118 Bus 32 18 9

Table 6.1. Optimal number of PMUs for exclusive PMU measurements

Simulation results for cases when conventional measurements are

included, are shown in Table 6.2.

Bus
system

Number of conven-
tional measurements

Complete
observability

Depth-of-one
unobservability

IEEE 14 Bus 2 3 2
IEEE 30 Bus 6 7 4
IEEE 57 Bus 15 7 11
IEEE 118 Bus 30 23 15

Table 6.2. Optimal number of PMUs for inclusion of conventional measurements

The results correlate to those shown in [16], so the algorithm can be

considered effective. However, it must be taken into consideration, that the

results in Table 6.2. depend on the number of conventional measurements and

their locations in the system.

6.2 Linear state estimation simulation

The state estimation algorithms were tested on IEEE 14-, 30-, 57- and 118-

bus systems. Simulation results are shown graphically on the following figures

for comparison of effectiveness of different estimation methods.

30

Fig. 6.1. State estimation simulation results for IEEE 14 bus system

Fig. 6.2. State estimation simulation results for IEEE 30 bus system

31

Fig. 6.3. State estimation simulation results for IEEE 57 bus system

Fig. 6.4. State estimation simulation results for IEEE 118 bus system

The results show, that CSE algorithm shows large deviation of estimated

value from the true value as the number of buses increases. It may be caused

32

by imperfection of the estimation technique for large bus systems or errors in

derivation of system equations.

On the other hand, the LSE algorithm with PMUs located at the optimal

positions shows very good precision of estimate and little estimation error.

The inclusion of classic estimate in linear estimator does not affect much

the overall result obtained in hybrid estimator.

33

7 CONCLUSIONS AND FUTURE WORK

State estimation is a key function in determining real-time models for

power system networks. This thesis discusses how the estimation algorithm is

enhanced by placement of PMUs. A short overview of the problem background

is followed by theoretical concepts that are implemented in practice, such as

classic state estimation, linear state estimation incorporating phasor

measurements as well as conventional measurements. Optimal placement

problem was also addressed. The discussed theory was implemented in

MATLAB model to simulate different test cases.

All simulations were made in MATLAB, however the future work can

include translating the existing algorithms to another programming language

that is used in real measuring and estimating systems.

34

REFERENCES

[1] Nordic Grid Code (Nordic collection of rules), 2007.

[2] A. J. Wood, B. F. Wollenberg, G. B. Sheble, Power generation, operation, and

control, 3rd ed., Wiley, 2014.

[3] A. G. Phadke, J. S. Thorp, Synchronized Phasor Measurements and Their

Applications. New York: Springer, 2008.

[4] “Phasor measurement unit” [Online]. Available:

https://en.wikipedia.org/wiki/Phasor_measurement_unit [Accessed

03.07.2016]

[5] U.S. Department of Energy, Factors Affecting PMU Installation Costs. Oct.

2014.

[6] V. Presada, M. Eremia, L. Toma, “Modified state estimation in presence of

PMU measurements”, UPB Scientific Bulletin, Series C: Electrical

Engineering, vol. 76(1), pp 237–248, Jan. 2014.

[7] A. Monticelli, “Electric power system state estimation”, Proceedings of the

IEEE, vol. 88, no. 2, pp 262–282, Feb. 2000.

[8] J. D. Glover, M. S. Sarma, T. J. Overbye, Power System Analysis and Design,

5th ed., Cengage Learning, 2012.

[9] Y. Chen, YBUS Admittance Matrix Formulation [Online] NPPL, Dec. 2015.

Available: https://www.gridpack.org/wiki/images/7/7e/Ybus.pdf

[Accessed 03.07.2016]

[10] M. Zhou, V. Centeno, J. S. Thorp and A. G. Phadke, “An Alternative for

Including Phasor Measurements in State Estimators”, IEEE Transactions

on Power Systems, vol. 21, no. 4, pp. 1930–1937, Nov. 2006.

[11] S. Soni, S. Bhil, D. Mehta, S. Wagh, “Linear state estimation model using

phasor measurement unit (PMU) technology”, Electrical Engineering,

Computing Science and Automatic Control (CCE), 2012 9th International

Conference, pp 1–6, Sep. 2012.

35

[12] J. De La Ree, V. Centeno, J. S. Thorp and A. G. Phadke, “Synchronized

Phasor Measurement Applications in Power Systems”, IEEE Transactions

on Smart Grid, vol. 1, no. 1, pp. 20–27, June 2010.

[13] D. Kajjam, K. R. Mekala, Phasor Measurement Unit or Synchrophasors

[Online] The BEST Group. Available:

http://best.eng.buffalo.edu/Teaching/EE611/Phasor_Measurement_Un

it.pdf [Accessed 03.07.2016]

[14] R. F. Nuqui and A. G. Phadke, “Hybrid linear state estimation utilizing

synchronized phasor measurements”, Power Tech, 2007 IEEE Lausanne,

pp 1665–1669, Jul. 2007.

[15] R. F. Nuqui and A. G. Phadke, “Phasor Measurement Unit Placement

Techniques for Complete and Incomplete Observability”, IEEE

Transactions on Power Delivery, vol. 20, no. 4, pp 2381–2388, Oct. 2005.

[16] B. Gou, “Generalized integer linear programming formulation for optimal

PMU placement”, IEEE Transactions on Power Systems, vol. 23, no. 3, pp

1099–1104, Aug. 2008.

[17] B. Gou, “Optimal placement of PMUs by integer linear programming”,

IEEE Transactions on Power Systems, vol. 23, no. 3, pp 1525–1526, Aug.

2008.

[18] B. Xu and A. Abur, “Observability analysis and measurement placement

for systems with PMUs”, Power System Conference and Exposition, vol. 2,

pp 943–946, Oct. 2004.

[19] “MATLAB Documentation – MathWorks Nordic” [Online]. Available:

http://se.mathworks.com/help/matlab/index.html [Accessed

03.07.2016]

[20] “Power Systems Test Case Archive - UWEE” [Online]. Available:

http://www.ee.washington.edu/research/pstca/ [Accessed 03.07.2016]

[21] “Power System State Estimation using WLS by Praviraj PG” [Online].

Available:

36

http://www.mathworks.com/matlabcentral/fileexchange/23052-

power-system-state-estimation-using-wls [Accessed 03.07.2016]

37

APPENDIX A. MATLAB MODEL SCRIPT
clear all;

clc;

% 1. CONVENTIONAL MEASUREMENTS SET-UP

% ===

% This section automatically creates the measurements file 'zdatas.m'

% from bus matrix, according to specified measurement positions and

% specified measurement errors.

global bus branch nbus nbra ybus bbus zdata;

% Set up bus and branch matrices, pick up from corresponding data file

% (ieee14, ieee30, ieee57, ieee118):

[bus, branch] = ieee14;

nbus = size(bus,1); % Get number of buses

nbra = size(branch,1); % Get number of branches

% Get the Ybus matrix:

ybus = getybus();

% Get the Bbus matrix:

bbus = getbbus();

% Set up voltage magnitude measurement positions (buses) and measurement

% variances:

volt = [1];

% ...or use the following to pick slack bus and PV buses from bus matrix:

% volt = find(bus(:,2) >= 2);

Rvolt = 9e-4 * ones(length(volt),1);

% Set up injection measurement positions (buses) and measurement

% variances:

inj = [2 3 7 8 9 10 11 12 13 14];

%inj = [4 5 6 8 10 11 12 14 15 16 18 20 22 23 24 25 26 27 29]; % ieee30

% ...or use the following to pick N random buses:

% rng;

% inj = sort(randperm(nbus, N));

Rinj = 1e-4 * ones(length(inj),1);

% Set up flow measurement positions (branches) and measurement variances:

flow = [1 3 4 8 9 5 7 10 13 15 11 19];

%flow = [1 3 5 6 8 10 11 12 13 15 16 17 19 20 21 25 26 28 29 30 31 32 ...

% 34 36 37 38 39 41]; % ieee30

% ...or use the following to pick N random branches:

% rng;

% flow = sort(randperm(nbra, N));

Rflow = 64e-6 * ones(length(flow),1);

createZdatas(volt, Rvolt, inj, Rinj, flow, Rflow)

% Set up a matrix with conventional measurements from the file:

zdata = zdatas();

clear volt inj flow Rvolt Rinj Rflow;

% ===

38

% Function creates and fills the file 'zdatas.m' with conventional
% measurements.

function [] = createZdatas(volt, Rvolt, inj, Rinj, flow, Rflow)

global bus branch ybus;

% Create a file 'zdatas.m':
fid = fopen('1 Measurements Set-up\zdatas.m','w');
fprintf(fid, '%s\n%s\n%s\n%s\n%s\n%s\n\n%s\n\n%s\n%s\n',...
'% Measurement data', ...
'% =============================', ...
'% Type of measurement:', ...
'% 1 - Voltage magnitude; 4 - Real power flow;', ...
'% 2 - Real power injection; 5 - Reactive power flow.', ...
'% 3 - Reactive power injection;', ...
'function zdata = zdatas()', ...
'zdata = [',...
'% |Msnt |Type | Value | From | To | Rii |');

count = 1;

% Print voltage magnitude measurements:
fprintf(fid, '%s\n',...
' %---- Voltage Magnitude --------------%');
type = 1;
rng; % Randomize...
for i = 1:length(volt)
 % Generate a random value from a normal distribution with actual
 % voltage as a mean value and R as variance:
 value = sqrt(Rvolt(i)).*randn(1) + bus(volt(i),3);
 from = volt(i);
 to = 0;
 R = Rvolt(i);
 fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',...
 count, type, value, from, to, R,';');
 count = count + 1;
end
fprintf(fid, '%s\n',...
' %-------------------------------------%');

% Print power injection measurements:
fprintf(fid, '%s\n',...
' %---- Real Power Injection -----------%');
type = 2;
rng;
for i = 1:length(inj)
 value = sqrt(Rinj(i)).*randn(1) + 0.01*(bus(inj(i),7)-bus(inj(i),5));
 from = inj(i);
 to = 0;
 R = Rinj(i);
 fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',...
 count, type, value, from, to, R,';');
 count = count + 1;
end
fprintf(fid, '%s\n',...
' %-------------------------------------%');

fprintf(fid, '%s\n',...
' %---- Reactive Power Injection -------%');
type = 3;
for i = 1:length(inj)
 value = sqrt(Rinj(i)).*randn(1) + 0.01*(bus(inj(i),8)-bus(inj(i),6));

39

 from = inj(i);
 to = 0;
 R = Rinj(i);
 fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',...
 count, type, value, from, to, R,';');
 count = count + 1;
end
fprintf(fid, '%s\n',...
' %-------------------------------------%');

% Print power flow measurements:
fprintf(fid, '%s\n',...
' %------ Real Power Flow ------------- %');
type = 4;
rng;
for i = 1:length(flow)
 from = branch(flow(i),1);
 to = branch(flow(i),2);
 R = Rflow(i);
 % Calculate the actual power flow according to the bus data:
 vs = bus(from,3).* exp(1j*deg2rad(bus(from,4)));
 vr = bus(to,3).* exp(1j*deg2rad(bus(to,4)));
 value = real(vr * conj(ybus(from,to)) * (vs - vr));
 value = sqrt(Rflow(i)).*randn(1) + value;
 fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',...
 count, type, value, from, to, R,';');
 count = count + 1;
end
fprintf(fid, '%s\n',...
' %-------------------------------------%');

fprintf(fid, '%s\n',...
' %------ Reactive Power Flow --------- %');
type = 5;
for i = 1:length(flow)
 from = branch(flow(i),1);
 to = branch(flow(i),2);
 R = Rflow(i);
 % Calculate the actual power flow according to the bus data:
 vs = bus(from,3).* exp(1j*deg2rad(bus(from,4)));
 vr = bus(to,3).* exp(1j*deg2rad(bus(to,4)));
 value = imag(vr * conj(ybus(from,to)) * (vs - vr));
 value = sqrt(Rflow(i)).*randn(1) + value;
 fprintf(fid, '%13d %5d %8.3f %5d %5d %9g%s\n',...
 count, type, value, from, to, R,';');
 count = count + 1;
end

fprintf(fid, '%s\n%s\n',...
' %-------------------------------------%',...
'];');

fclose(fid);
disp('File "zdatas.m" was updated!');

end

40

% Function returns shunt susceptance matrix Bbus.

function bbus = getbbus()

global branch nbus nbra;

fb = branch(:,1); % From bus
tb = branch(:,2); % To bus
b = branch(:,5); % Charging susceptance, B/2 (pu)

% Populate Bbus:
bbus = zeros(nbus,nbus);
 for k=1:nbra
 bbus(fb(k),tb(k)) = b(k);
 bbus(tb(k),fb(k)) = bbus(fb(k),tb(k));
 end

% Function returns admittance matrix Ybus.

function ybus = getybus()

global branch nbus nbra;

fb = branch(:,1); % From bus
tb = branch(:,2); % To bus
r = branch(:,3); % Resistance, R (pu)
x = branch(:,4); % Reactance, X (pu)
b = branch(:,5); % Charging susceptance, B/2 (pu)
t = branch(:,6); % Turns ratio
for i = 1:nbra
 if t(i) == 0
 t(i) = 1;
 end
end

z = r + 1i*x; % Impedance, Z (pu)
y = 1./z; % Invert each element
b = 1i*b; % Make B imaginary

% Initialize Ybus:
ybus = zeros(nbus,nbus);

% Populate the diagonal elements:
for m =1:nbus
 for n =1:nbra
 if fb(n) == m
 ybus(m,m) = ybus(m,m) + y(n)/(t(n)^2) + b(n);
 elseif tb(n) == m
 ybus(m,m) = ybus(m,m) + y(n) + b(n);
 end
 end
 end

% Populate the off-diagonal elements:
for k=1:nbra
 ybus(fb(k),tb(k)) = ybus(fb(k),tb(k))-y(k)/t(k);
 ybus(tb(k),fb(k)) = ybus(fb(k),tb(k));
end

41

% 2. CLASSIC STATE ESTIMATION
% ===
% This section estimates the state variables using non-linear weighted
% least squares method (Newton-Raphson method):

global nbus Xest;

% Estimate the power system state:
[th_est, V_est] = WLS();

Xest = V_est.*exp(1j*deg2rad(th_est)); % Estimated state vector

disp('WLS State Estimation');
disp(' Bus | V (pu) | Angle (Deg)');
disp('--------------------------');
for i = 1:nbus
 fprintf('%4g', i); fprintf(' %8.4f', V_est(i)); fprintf(' %8.4f',...
 th_est(i)); fprintf('\n');
end
fprintf('\n');
clear i;

% NB. If there is singularity warning, consider increasing the number of
% conventional measurements in (1).

% ===

% Function returns two vectors of state variables (angles and voltages)
% after the state estimation using Weighted Least Squares method.

function [Th, V] = WLS()

global zdata nbus ybus bbus;

set_tol = 1e-4; % Set tolerance for iterations

type = zdata(:,2); % Type of measurement:
% 1 - Voltage measurement; 4 - Real power flow;
% 2 - Real power injection; 5 - Reactive power flow.
% 3 - Reactive power injection;
z = zdata(:,3); % Measuement values
fbus = zdata(:,4); % From bus
tbus = zdata(:,5); % To bus
Ri = diag(zdata(:,6)); % Make diagonal matrix of covariances
V = ones(nbus,1); % Initialize the bus voltages
th = zeros(nbus,1); % Initialize the bus angles (theta)
X = [th(2:end); V]; % State Vector
G = real(ybus);
B = imag(ybus);

vm = find(type == 1); % Indices of voltage magnitude measurements
pin = find(type == 2); % ---------- real power injection measurements
qin = find(type == 3); % ---------- reactive power injection measurements
pf = find(type == 4); % ---------- real power flow measurements
qf = find(type == 5); % ---------- reactive power flow measurements

nvi = length(vm); % Number of voltage measurements
npin = length(pin); % --------- real power injection measurements
nqin = length(qin); % --------- reactive power injection measurements
npf = length(pf); % --------- real power flow measurements

42

nqf = length(qf); % --------- reactive power flow measurements

iter = 1;
tol = 5;

while(tol > set_tol)

 % Measurement Function, h
 h1 = V(fbus(vm),1);
 h2 = zeros(npin,1);
 h3 = zeros(nqin,1);
 h4 = zeros(npf,1);
 h5 = zeros(nqf,1);

 for i = 1:npin
 m = fbus(pin(i));
 for k = 1:nbus
 h2(i) = h2(i) + V(m)*V(k)*(G(m,k)*cos(th(m)-th(k)) + ...
 B(m,k)*sin(th(m)-th(k)));
 end
 end

 for i = 1:nqin
 m = fbus(qin(i));
 for k = 1:nbus
 h3(i) = h3(i) + V(m)*V(k)*(G(m,k)*sin(th(m)-th(k)) - ...
 B(m,k)*cos(th(m)-th(k)));
 end
 end

 for i = 1:npf
 m = fbus(pf(i));
 n = tbus(pf(i));
 h4(i) = -V(m)^2*G(m,n) - V(m)*V(n)*(-G(m,n)*cos(th(m)-th(n)) - ...
 B(m,n)*sin(th(m)-th(n)));
 end

 for i = 1:nqf
 m = fbus(qf(i));
 n = tbus(qf(i));
 h5(i) = -V(m)^2*(-B(m,n)+bbus(m,n)) - V(m)*V(n)*(-G(m,n)* ...
 sin(th(m)-th(n)) + B(m,n)*cos(th(m)-th(n)));
 end

 h = [h1; h2; h3; h4; h5];

 % Residual
 r = z - h;

 % Jacobian
 % H11 - Derivative of V with respect to theta
 H11 = zeros(nvi,nbus-1);

 % H12 - Derivative of V with respect to V
 H12 = zeros(nvi,nbus);
 for k = 1:nvi
 for n = 1:nbus
 if n == k
 H12(k,n) = 1;
 end
 end
 end

43

 % H21 - Derivative of real power injections with respect to theta
 H21 = zeros(npin,nbus-1);
 for i = 1:npin
 m = fbus(pin(i));
 for k = 1:(nbus-1)
 if k+1 == m
 for n = 1:nbus
 H21(i,k) = H21(i,k) + V(m)* V(n)*(-G(m,n)* ...
 sin(th(m)-th(n)) + B(m,n)*cos(th(m)-th(n)));
 end
 H21(i,k) = H21(i,k) - V(m)^2*B(m,m);
 else
 H21(i,k) = V(m)* V(k+1)*(G(m,k+1)*sin(th(m)-th(k+1)) - ...
 B(m,k+1)*cos(th(m)-th(k+1)));
 end
 end
 end

 % H22 - derivative of real power injections with respect to V
 H22 = zeros(npin,nbus);
 for i = 1:npin
 m = fbus(pin(i));
 for k = 1:(nbus)
 if k == m
 for n = 1:nbus
 H22(i,k) = H22(i,k) + V(n)*(G(m,n)*cos(th(m)-th(n)) ...
 + B(m,n)*sin(th(m)-th(n)));
 end
 H22(i,k) = H22(i,k) + V(m)*G(m,m);
 else
 H22(i,k) = V(m)*(G(m,k)*cos(th(m)-th(k)) + B(m,k)* ...
 sin(th(m)-th(k)));
 end
 end
 end

 % H31 - Derivative of reactive power injections with respect to theta
 H31 = zeros(nqin,nbus-1);
 for i = 1:nqin
 m = fbus(qin(i));
 for k = 1:(nbus-1)
 if k+1 == m
 for n = 1:nbus
 H31(i,k) = H31(i,k) + V(m)* V(n)*(G(m,n)* ...
 cos(th(m)-th(n)) + B(m,n)*sin(th(m)-th(n)));
 end
 H31(i,k) = H31(i,k) - V(m)^2*G(m,m);
 else
 H31(i,k) = V(m)* V(k+1)*(-G(m,k+1)*cos(th(m)-th(k+1)) - ...
 B(m,k+1)*sin(th(m)-th(k+1)));
 end
 end
 end

 % H32 - Derivative of reactive power injections with respect to V
 H32 = zeros(nqin,nbus);
 for i = 1:nqin
 m = fbus(qin(i));
 for k = 1:(nbus)
 if k == m
 for n = 1:nbus
 H32(i,k) = H32(i,k) + V(n)*(G(m,n)*sin(th(m)-th(n)) ...

44

 - B(m,n)*cos(th(m)-th(n)));
 end
 H32(i,k) = H32(i,k) - V(m)*B(m,m);
 else
 H32(i,k) = V(m)*(G(m,k)*sin(th(m)-th(k)) - B(m,k)* ...
 cos(th(m)-th(k)));
 end
 end
 end

 % H41 - Derivative of real power flows with theta
 H41 = zeros(npf,nbus-1);
 for i = 1:npf
 m = fbus(pf(i));
 n = tbus(pf(i));
 for k = 1:(nbus-1)
 if k+1 == m
 H41(i,k) = V(m)* V(n)*(-G(m,n)*sin(th(m)-th(n)) + ...
 B(m,n)*cos(th(m)-th(n)));
 else if k+1 == n
 H41(i,k) = -V(m)* V(n)*(-G(m,n)*sin(th(m)-th(n)) + ...
 B(m,n)*cos(th(m)-th(n)));
 else
 H41(i,k) = 0;
 end
 end
 end
 end

 % H42 - Derivative of real power flows with V
 H42 = zeros(npf,nbus);
 for i = 1:npf
 m = fbus(pf(i));
 n = tbus(pf(i));
 for k = 1:nbus
 if k == m
 H42(i,k) = -V(n)*(-G(m,n)*cos(th(m)-th(n)) - ...
 B(m,n)*sin(th(m)-th(n))) - 2*G(m,n)*V(m);
 else if k == n
 H42(i,k) = -V(m)*(-G(m,n)*cos(th(m)-th(n)) - ...
 B(m,n)*sin(th(m)-th(n)));
 else
 H42(i,k) = 0;
 end
 end
 end
 end

 % H51 - Derivative of reactive power flows with theta
 H51 = zeros(nqf,nbus-1);
 for i = 1:nqf
 m = fbus(qf(i));
 n = tbus(qf(i));
 for k = 1:(nbus-1)
 if k+1 == m
 H51(i,k) = -V(m)* V(n)*(-G(m,n)*cos(th(m)-th(n)) - ...
 B(m,n)*sin(th(m)-th(n)));
 else if k+1 == n
 H51(i,k) = V(m)* V(n)*(-G(m,n)*cos(th(m)-th(n)) - ...
 B(m,n)*sin(th(m)-th(n)));
 else
 H51(i,k) = 0;
 end
 end

45

 end
 end

 % H52 - Derivative of reactive power flows with V
 H52 = zeros(nqf,nbus);
 for i = 1:nqf
 m = fbus(qf(i));
 n = tbus(qf(i));
 for k = 1:nbus
 if k == m
 H52(i,k) = -V(n)*(-G(m,n)*sin(th(m)-th(n)) + ...
 B(m,n)*cos(th(m)-th(n))) - 2*V(m)*(-B(m,n)+ bbus(m,n));
 else if k == n
 H52(i,k) = -V(m)*(-G(m,n)*sin(th(m)-th(n)) + ...
 B(m,n)*cos(th(m)-th(n)));
 else
 H52(i,k) = 0;
 end
 end
 end
 end

 % Measurement Jacobian, H
 H = [H11 H12; H21 H22; H31 H32; H41 H42; H51 H52];

 % State Vector
 dX = (H'*(Ri\H))\(H'*(Ri\r));
 X = X + dX;
 th(2:end) = X(1:nbus-1);
 V = X(nbus:end);
 iter = iter + 1;
 tol = max(abs(dX));

end

Th = 180/pi*th; % Convert radians to degrees

end

46

% 3. OPTIMAL PLACEMENT PROBLEM
% ===
% This section produces optimal placement schemes for PMUs considering
% branch topology of the system, depth of unobservability and conventional
% measurements.

global Tpmu nbus nbra A pmu0 pmu0conv pmu1 pmu1conv pmu2;

% COMPLETE OBSERVABILITY CASE
% Set up the connectivity matrix Tpmu:
Tpmu = getTpmu();

% Calculate the optimal positions of PMUs for exclusive PMU measurements:
pmu0 = optimal(1, ones(nbus,1));

% Set up conventional measurement positions:
inj2 = [1]; % Buses with injection measurements
flow2 = [1]; % Branches with flow measurements

% Set up connectivity matrix Tcon, permutation matrix P and vector bcon:
[Tcon, P, bcon] = getTcon(inj2, flow2);

% Calculate the optimal positions of PMUs for the case when PMU
% measurements complement conventional measurements:
pmu0conv = optimal(Tcon*P, bcon);

fprintf('\n');
disp('===========================');
disp('COMPLETE OBSERVABILITY CASE');
fprintf('\n');
disp('No conventional measurements:');
fprintf(' PMU locations: '); fprintf('%d ',(find(pmu0 == 1)).'); ...
 fprintf('\n');
fprintf(' Number of PMUs: '); fprintf('%d ', ...
 length((find(pmu0 == 1)).')); fprintf('\n');
disp('With conventional measurements:');
fprintf(' PMU locations: '); fprintf('%d ',(find(pmu0conv == 1)).'); ...
 fprintf('\n');
fprintf(' Number of PMUs: '); fprintf('%d ', ...
 length((find(pmu0conv == 1)).')); fprintf('\n');

% ----------------------------------
% DEPTH-OF-ONE UNOBSERVABILITY CASE
% ----------------------------------
% Set up branch-to-node incident matrix A:
A = getA();

% Calculate the optimal positions of PMUs for Do1 unobservability
% (no injections measurements):
pmu1 = optimal(A, ones(nbra,1));

% Determine the number of unobserved buses:
nuob1 = unobserved(A, pmu1);

% Set up matrix P1 which removes branches associated to zero injection
% measurements:
P1 = getP1(inj2);

% Calculate the optimal positions of PMUs for Do1 unobservability
% (with injections measurements):
pmu1conv = optimal(P1*A, P1*ones(nbra,1));

47

% Determine the number of unobserved buses:
nuob1conv = unobserved(A, pmu1conv);

fprintf('\n');
disp('=================================');
disp('DEPTH-OF-ONE UNOBSERVABILITY CASE');
fprintf('\n');
disp('No conventional measurements:');
fprintf(' PMU locations: '); fprintf('%d ',(find(pmu1 == 1)).'); ...
 fprintf('\n');
fprintf(' Number of PMUs: '); fprintf('%d ', ...
 length((find(pmu1 == 1)).')); fprintf('\n');
fprintf(' Number of unobserved buses: '); fprintf('%d ',nuob1); ...
 fprintf('\n');
disp('With conventional measurements:');
fprintf(' PMU locations: '); fprintf('%d ',(find(pmu1conv == 1)).'); ...
 fprintf('\n');
fprintf(' Number of PMUs: '); fprintf('%d ', ...
 length((find(pmu1conv == 1)).')); fprintf('\n');
fprintf(' Number of unobserved buses: '); ...
 fprintf('%d ',nuob1conv); fprintf('\n');

% ----------------------------------
% DEPTH-OF-TWO UNOBSERVABILITY CASE
% ----------------------------------
% Calculate the optimal positions of PMUs for Do2 unobservability
% (no injections measurements):
pmu2 = optimal2(2, 1, ones(nbus,1), pmu1);

% Determine the number of unobserved buses:
nuob2 = unobserved(A, pmu2);

fprintf('\n');
disp('=================================');
disp('DEPTH-OF-TWO UNOBSERVABILITY CASE');
fprintf('\n');
disp('No conventional measurements:');
fprintf(' PMU locations: '); fprintf('%d ',(find(pmu2 == 1)).'); ...
 fprintf('\n');
fprintf(' Number of PMUs: '); fprintf('%d ', ...
 length((find(pmu2 == 1)).')); fprintf('\n');
fprintf(' Number of unobserved buses: '); fprintf('%d ',nuob2); ...
 fprintf('\n');

% ===

48

% Function returns branch-to-node incident matrix A.

function A = getA()

global nbus nbra branch;

A = zeros(nbra, nbus); % Initialize A
fb = branch(:,1); % From bus
tb = branch(:,2); % To bus
for i = 1:nbra
 A(i, fb(i)) = 1;
 A(i, tb(i)) = 1;
end

end

% Function returns matrix P1 which removes branches associated to zero
% injection measurements.

function P1 = getP1(inj)

global A nbra;

npin = length(inj); % Number of power injection measurements

% Determine all branches not associated to zero injection buses:
s = zeros(nbra,1);
for i = 1:npin
 s = s + A(:, inj(i));
end

% Zero values of 's' indicate branches that are not associated to any of
% zero injection buses:
na_branches = find(s == 0);

% Populate matrix P1:
P1 = zeros(length(na_branches), nbra);
for i = 1:length(na_branches)
 P1(i, na_branches(i)) = 1;
end

end

49

% Function returns a connectivity matrix Tpmu.

function Tpmu = getTpmu()

global branch nbra nbus;

% Initialize Tpmu:
Tpmu = ones(nbus,1);
Tpmu = diag(Tpmu);

% Populate non-diagonal elements:
fb = branch(:,1); % From bus
tb = branch(:,2); % To bus
for i = 1:nbra
 Tpmu(fb(i),tb(i)) = 1;
 Tpmu(tb(i),fb(i)) = 1;
end

end

% Function returns a connectivity matrix Tcon.

function [Tcon, P, bcon] = getTcon(inj, flow)

global nbus Tpmu branch;

npf = length(flow); % Number of power flow measurements
npin = length(inj); % Number of power injection measurements
fbus = zeros(npf + npin, 1); % From bus
tbus = fbus; % To bus
for i = 1:npf
 fbus(i) = branch(flow(i), 1);
 tbus(i) = branch(flow(i), 2);
end
for i = 1:npin
 fbus(npf + i) = inj(i);
end

% Initialize Tmeas and bmeas:
Tmeas = zeros(npin + npf, nbus);
bmeas = ones(npin + npf, 1);

% Set up matrix Tmeas.
% Power flow measurements bus incidence:
for i = 1:npf
 Tmeas(i, fbus(i)) = 1;
 Tmeas(i, tbus(i)) = 1;
end

% Power injection measurements bus incidence:
for i = 1:npin
 for k = 1:nbus
 Tmeas(npf + i, k) = Tpmu(fbus(npf + i), k);
 bmeas(npf + i) = bmeas(npf + i) + Tmeas(npf + i, k);
 end
 bmeas(npf + i) = bmeas(npf + i) - 2;
end

50

% Find indices of buses not associated to conventional measurements
% (zero columns in Tmeas):
na_buses = find(any(Tmeas,1) == 0);
M = length(na_buses);

% Remove zero columns from Tmeas:
Tmeas = Tmeas(:, any(Tmeas,1));

% Set up permutation matrix P:
P = zeros(nbus);
for i = 1:M
 P(i, na_buses(i)) = 1;
end
k = M + 1;
for i = 1:nbus
 if isempty(find(na_buses == i))
 P(k,i) = 1;
 k = k + 1;
 end
end

Tcon = blkdiag(eye(M),Tmeas);
bcon = [ones(M,1); bmeas];

end

% Function returns a vector of optimal PMU positions according to
% requirements specified by matrix G and redundancy requirements specified
% by vector Bg

function pmu = optimal(G, Bg)

global nbus Tpmu;

% Solve mixed-integer linear programming with linear inequalities:
f = ones(nbus,1); % Objective function;
intcon = 1:nbus; % Vector of integer variables;
A = -1*G*Tpmu; % Inequality coefficients in
b = -1*Bg; % form A*x <= b;
Aeq = zeros(nbus);
beq = zeros(nbus,1);
lb = zeros(nbus,1); % Bounds to produce binary
ub = ones(nbus,1); % values.
options = optimoptions('intlinprog','Display','off','LPPreprocess','none');

pmu = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options);

end

51

% Function returns a vector of optimal PMU positions with depth N
% unobservability according to linear inequality constraints specified by
% matrix G and vector Bg and optimal placement positions (x0) of N-1 depth.

function pmu = optimal2(N, G, Bg, x0)

global nbus Tpmu;

% Solve mixed-integer linear programming with linear inequalities:
f = ones(nbus,1); % Objective function;
intcon = 1:nbus; % Vector of integer variables;
A = -1*G*Tpmu^(N+1); % Inequality coefficients in
b = -1*Bg; % form A*x <= b;
Aeq = (f - x0)'; % Equality constraints
beq = 0;
lb = zeros(nbus,1); % Bounds to produce binary
ub = ones(nbus,1); % values.
options = optimoptions('intlinprog','Display','off');

pmu = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options);

end

% Function returns a number of unobserved buses (depth-of-one) in a system
% determined by branch-to-node matrix M and PMU position determined by
% vector 'pmu'.

function nuob = unobserved(M, pmu)

global nbus;

p = find(pmu == 1); % Indices of buses with PMUs
s = zeros(1, nbus);
for i = 1:length(p)
 br = find(M(:,p(i)) == 1); % Indices of branches connected to
 br = br.'; % i-th PMU
 s = s + sum(M(br, :));
end

uob = find(s == 0); % Determine indices of unobserved buses
nuob = length(uob); % Determine the total number of unobserved buses

end

52

% 4. PMU MEASUREMENTS SET-UP
% ===
% This section creates the measurements file 'PMUdatas.m' of PMU
% measurements from the bus matrix, according to specified PMU positions
% and specified measurement errors.

global pmu0 pmu0conv pmu1 pmu1conv pmu2 pmudata nbus;

pmu = pmu0; % Set PMU incidence vector from section 3
% pmu0, pmu0conv - for complete observability
% pmu1, pmu1conv - for Do1 unobservability
% pmu2 - for Do2 unobservability
% ...or use the following to install PMUs to all buses (redundancy):
% pmu = ones(1, nbus);

pmubus = find(pmu == 1); % Indices of buses with PMUs
Rpmu = 1e-6 * ones(length(pmubus),1); % Set PMU variances

% Get PMU measurements from specified PMU placement positions:
createPMUdatas(pmubus, Rpmu);
pmudata = PMUdatas();

% ===

% Function creates and fills the file 'PMUdatas.m' with PMU voltage and
% current measurements.

function [] = createPMUdatas(pmubus, Rpmu)

global bus Tpmu ybus;

% Create a file 'PMUdatas.m':
fid = fopen('4 PMU Measurements Set-up\PMUdatas.m','w');
fprintf(fid, '%s\n%s\n%s\n%s\n%s\n\n%s\n\n%s\n%s\n',...
'% PMU measurement data', ...
'% =============================', ...
'% Type of measurement:', ...
'% 1 - Voltage measurement;', ...
'% 2 - Current measurement;', ...
'function pmudata = PMUdatas()', ...
'pmudata = [',...
'% |Msnt |Type | Value | From | To | Rii |');

count = 1;

% Print voltage measurements:
fprintf(fid, '%s\n',...
'%--------------------- Voltage ---------------------------------%');
type = 1;
to = 0;
rng; % Randomize...
for i = 1:length(pmubus)
 from = pmubus(i);
 value = bus(from,3).* exp(1j*deg2rad(bus(from,4)));
 % Generate a random value from a normal distribution with actual
 % voltage as a mean value and R as variance:
 value = value + (1 + 1j)*sqrt(Rpmu(i)).*randn(1);
 R = Rpmu(i);
 fprintf(fid, '%8d %5d %14.4g%+1.4fi %7d %4d %7g%s\n',...

53

 count, type, [real(value) imag(value)], from, to, R,';');
 count = count + 1;
end
fprintf(fid, '%s\n',...
'%---%');

% Print current measurements:
fprintf(fid, '%s\n',...
'%--------------------- Current ---------------------------------%');
type = 2;
rng; % Randomize...
for i = 1:length(pmubus)
 from = pmubus(i);
 temp = find(Tpmu(from,:) == 1); % Find all buses connected to 'from'
 temp = setdiff(temp, from); % Remove bus 'from'
 if isempty(temp) == 0
 for k = 1:length(temp)
 to = temp(k);
 vs = bus(from,3).* exp(1j*deg2rad(bus(from,4)));
 vr = bus(to,3).* exp(1j*deg2rad(bus(to,4)));
 value = ybus(from,to) * (vs - vr);
 value = value + (1 + 1j)*sqrt(Rpmu(i)).*randn(1);
 R = Rpmu(i);
 fprintf(fid, '%8d %5d %14.4g%+1.4fi %7d %4d %7g%s\n',...
 count, type, [real(value) imag(value)], from, to, R,';');
 count = count + 1;
 end
 end
end

fprintf(fid, '%s\n%s\n',...
'%---%',...
'];');

fclose(fid);
disp('File "PMUdatas.m" was updated!');

end

54

% 5. LINEAR STATE ESTIMATION
% ===
% This section produces the state vector using the direct PMU measurements.
% The PMU measurements can be used exclusively or complemented with WLS-
% estimated state vector.

global nbus;

% Set up current measurement bus incedence matrix:
Apmu = getApmu();

% Set up voltage measurement bus incedence matrix:
II = getII();

% Set up matrix of series admittances:
y = gety();

% Set up matrix of shunt admittances:
ys = getys();

% LINEAR STATE ESTIMATION UTILIZING PMU MEASUREMENTS EXCLUSIVELY:
% Set up system matrix:
B1 = [II; y * Apmu + ys];

% Estimate the state vector:
[th_lse, V_lse] = LSE(B1);

disp('Linear State Estimation utilizing PMU measurements exclusively:');
disp(' Bus | V (pu) | Angle (Deg)');
disp('--------------------------');
for i = 1:nbus
 fprintf('%4g', i); fprintf(' %8.4f', V_lse(i)); fprintf(' %8.4f', ...
 th_lse(i)); fprintf('\n');
end
fprintf('\n');
clear i;

% LINEAR STATE ESTIMATION UTILIZING BOTH PMU AND CONVENTIONAL MEASUREMENTS:
% Set up system matrix
B2 = [diag(ones(nbus,1)); II; y * Apmu + ys];

% Estimate the state vector:
[th_hyb, V_hyb] = LSEconv(B2);

disp('Linear State Estimation with added conventional measurements:');
disp(' Bus | V (pu) | Angle (Deg)');
disp('--------------------------');
for i = 1:nbus
 fprintf('%4g', i); fprintf(' %8.4f', V_hyb(i)); fprintf(' %8.4f', ...
 th_hyb(i)); fprintf('\n');
end
fprintf('\n');
clear i;

% ===

55

% Function returns the current measurement bus incidence matrix Apmu.

function Apmu = getApmu()

global pmudata nbus;

im = find(pmudata(:,2) == 2); % Indices of current measurements
nim = length(im); % Number of current measurements
fbus = pmudata(:,4); % From bus
tbus = pmudata(:,5); % To bus

Apmu = zeros(nim, nbus);
for i = 1:nim
 Apmu(i, fbus(im(i))) = 1;
 Apmu(i, tbus(im(i))) = -1;
end

end

% Function returns the voltage measurement bus incidence matrix II.

function II = getII()

global pmudata nbus;

vm = find(pmudata(:,2) == 1); % Indices of voltage measurements
nvm = length(vm); % Number of voltage measurements
fbus = pmudata(:,4); % Measurement bus

II = zeros(nvm, nbus);
for i = 1:nvm
 II(i, fbus(vm(i))) = 1;
end

end

% Function returns the diagonal matrix 'y' of series admittances of
% measured branches.

function y = gety()

global pmudata ybus;

im = find(pmudata(:,2) == 2); % Indices of current measurements
nim = length(im); % Number of current measurements
fbus = pmudata(:,4); % From bus
tbus = pmudata(:,5); % To bus

y = zeros(nim);
for i = 1:nim
 y(i,i) = ybus(fbus(im(i)), tbus(im(i)));
end

end

56

% Function returns the matrix 'ys' of shunt admittances.

function ys = getys()

global pmudata nbus bbus;

im = find(pmudata(:,2) == 2); % Indices of current measurements
nim = length(im); % Number of current measurements
fbus = pmudata(:,4); % From bus
tbus = pmudata(:,5); % To bus

ys = zeros(nim, nbus);
for i = 1:nim
 ys(i,fbus(im(i))) = bbus(fbus(im(i)), tbus(im(i)));
end

end

% Function returns state vector in the form of complex voltages after
% performing linear state estimation utilizing PMU measurements
% exclusively.

function [Th, V] = LSE(B)

global pmudata;

% Make diagonal matrix of covariances:
W = diag(pmudata(:,6));

% Make the measurements vector:
Z = pmudata(:,3);

% Linear State Estimation:
X = (B'*(W\B))\B'*(W\Z);

Th = rad2deg(angle(X));
V = abs(X);

end

57

% Function returns state vector in the form of complex voltages after
% performing linear state estimation utilizing both PMU and conventional
% measurements.

function [Th, V] = LSEconv(B)

global pmudata nbus Xest;

% Make diagonal matrix of covariances:
W1 = diag(1e-4 * ones(nbus,1)); % Covariance of WLS estimated vector
W2 = diag(pmudata(:,6)); % Covariance of PMU measurements
W = blkdiag(W1, W2);

% Make the measurements vector:
Z1 = Xest;
Z2 = pmudata(:,3);
Z = [Z1; Z2];

% Linear State Estimation:
X = (B'*(W\B))\B'*(W\Z);

Th = rad2deg(angle(X));
V = abs(X);

end

	Title Page
	Thesis

