
Faculty of Science and Technology
Department of Physics and Technology

Numerical computations of turbulent motions inmagnetized plasmas
—
Gregor Decristoforo
FYS-3900 Master’s thesis in physics May 2016

Abstract
Intermittent fluctuations and turbulence-induced transport of magnetically con-
fined fusion plasmas are investigated by numerical computations. A reduced
fluid model describing the evolution of plasma pressure and electric drift vor-
ticity in a two-dimensional plane perpendicular to the magnetic field is derived.
A numerical simulation code implemented on graphical processing units is
presented. We observe significant speedup compared to sequential Fortran
implementations.

The convective motions are driven by a constant incoming heat flux at the
inner radial boundary of the domain. We identify different transport and con-
finement states. We observe stationary convection and self-sustained shared
flows for low heat flux drive. For increasing drive, oscillatory motion with
sheared flows arise until the system enters a state of turbulent convection.

At the onset of turbulent convection we observe that the probability den-
sity functions of the normalized radial velocity, pressure and flux fluctuations
show nearly Gaussian form. This distributions get increasingly non-Gaussian
and develop exponential tails for increasing heat flux drive. We observe quasi-
periodic bursts at the state of intermittent convection, separated by quiescent
periods. The waiting time and amplitude distribution of these bursts take a
nearly exponential form. The conditionally averaged waveform and the auto-
correlation function of the normalized pressure fluctuations are discussed. We
further compare those results to experimental measurements and predictions
from stochastic modelling and find very good agreement.

Acknowledgements
First, I want to thank my co-supervisor, Ph.D. Ralph Kube. Ralph introduced
me to CUDA- and object orientated programming and always found time to
discuss mostly numeric related issues, regardless how complex or trivial they
turned out to be. This thesis wouldn’t have been possible without him.

I would also like to thank my supervisor Professor Odd Erik Garcia for his
excellent guidance. I have learned a lot through the last year while working
on this thesis and want to thank him for his time and effort.

In addition a big thank you to Bjørn Fjukstad and Erlend Graff is appropriate,
whose UiT thesis LATEXtemplate I used.

On a personal note, many thanks to my friends and family who supported me
throughout my studies in Norway. It has been two very exciting years that gave
me a lot of experience and joy.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables xi

1 Introduction 1

2 Model Equations 7
2.1 Model setting . 7
2.2 Drift terms in toroidal geometry 9
2.3 Two field equations . 14
2.4 Dimensionless variables . 15

3 Numerical Methods 19
3.1 Simulation domain . 20
3.2 Finite differences . 21
3.3 Ghost points . 22
3.4 Spectral transformations . 23
3.5 Elliptic equations . 26
3.6 Time integration . 30
3.7 Arakawa scheme . 33
3.8 Matrix factorisations . 34
3.9 Computational complexity 35

4 Parallel Computing 37
4.1 Parallel programming concepts 39
4.2 Graphical processing units 41
4.3 Programming in CUDA . 41
4.4 Speedup of 2dads code . 46

5 Code Testing 49

v

vi CONTENTS

5.1 Blob diffusion . 49
5.2 Non-linear advection . 50
5.3 Simple blob simulation . 51

6 Transport in flux-driven convection models 57
6.1 Stationary convection . 59
6.2 Convection with sheared flows 60
6.3 Oscillatory motion with shared flows 63
6.4 Onset of turbulent convection 67
6.5 Intermittent convection . 68

7 Statistical analysis of fluctuations 73
7.1 Statistical concepts . 73
7.2 Probability density functions 76
7.3 Waiting time distribution 80
7.4 Amplitude distribution . 82
7.5 Conditionally averaged waveform 83
7.6 Autocorrelation function . 85

8 Conclusion and Outlook 87

Bibliography 91

List of Figures
1.1 Progress towards harnessing fusion as a power source com-

pares very favourably with the progress in other high-technologies
such as computing performance and particle accelerators [1]. 2

1.2 Shematic structure of a tokamak, showing the trajectory of
charged particles [4]. 3

1.3 Poloidal cross-section of a tokamak including divertors and
the SOL [5]. 4

1.4 Plasma streaming into the SOL of the NSTX expreiment in the
form of blob-like structures with an area of (23cm)2 and 10
µs between each frame. Image from Princeton Plasma Physics
Laboratory [8]. 5

1.5 Time series of ion saturation current fluctuations of large am-
plitude bursts [14]. 6

2.1 Charged particles in presence of a magnetic field on the left
side and in absence on the right side [15]. 8

2.2 Illustration of the simulation domain in a toroidally magne-
tized plasma [17]. 8

3.1 Illustration of the two dimensional simulation domain using
a cell centered grid and ghost points. The grid points inside
the physical domain are represented as filled circles and the
ghost points by open circles [20]. 20

3.2 Discretisation of a sin-function with the period L = 2 on a cell
centered grid with 8 gridpoints in the domain (0,2)[17]. . . 21

3.3 Convergence rate of the finite difference method at the exam-
ple of a first order derivative of a sin function. 22

3.4 Convergence rate of the finite difference method at the exam-
ple of a second order derivative of a sin function. 23

3.5 Convergence rate of the spectral derivation scheme at the ex-
ample of a first order derivative of a Gaussian function. . . . 26

3.6 Convergence rate of the spectral derivation scheme at the ex-
ample of a second order derivative of a Gaussian function. . 27

vii

viii L IST OF FIGURES

3.7 Convergence rate of QR-factorisation at the example of a sec-
ond order derivative in x - and y-direction of a Gaussian func-
tion. 35

4.1 Performance increase at the example of Intel CPUs [31]. . . . 38
4.2 Comparison of the increase of floating-point operations per

second for CPUs and GPUs [35]. 42
4.3 Illustration of the processor architectures of conventional CPUs

and GPUs [35]. 42
4.4 Runtime t of the CUDA/Fortran code for different numbers of

grid points. The runtime is measured for 1000 time iterations
and averaged over 5 executions. 47

5.1 Comparison of the numerical result (blue points) of the diffu-
sion equation 5.2 with starting conditions 5.1 and the analytic
solution 5.3 (green line). 50

5.2 The average error of the simulation of the diffusion equation
5.2 as a function of discretization points. This is compared to
the expected rate of convergence for a second order scheme. 51

5.3 The average and standard deviation of critical parameters . 52
5.4 Vertical profile of the plasma density for different t 53
5.5 Radial variation of the plasma density for different t 54
5.6 Radial advection of a localized blob structure initialized at

x0 = (5, 35) showing the plasma density n in the left column
and the potential ϕ in the right column for different t 55

6.1 Evolution of the kinetic energy in fluctuating motions mea-
sured at (x,y) = (0.5,0.5) for the diffusion coefficients κ =
µ = 0.0183. The fluctuation amplitude saturates at t ≈ 750. . 59

6.2 Evolution of the kinetic energy (blue line) and the radial heat
flux (green line) measured at (x,y) = (0.5,0.5) for the diffu-
sion coefficients κ = µ = 0.0183. 60

6.3 Spatial structure of the pressure and electrostatic potential,
pressure fluctuations and radial heat flux in the stationary
state at t = 1000 for the diffusion coefficients κ = µ = 0.0183. 61

6.4 Pressure profile p0 at t = 1000. 62
6.5 Potential profile ϕ0 at t = 1000. 62
6.6 Vorticity profile Ω0 at t = 1000. 62
6.7 Evolution of the kinetic energy integrals 𝒦 (green) and 𝒰

(blue) for the diffusion coefficients κ = µ = 0.012. The energy
integral of the fluctuating motion decreases after the appear-
ance of the sheared mean flow at t ≈ 750. 63

L IST OF FIGURES ix

6.8 Spatial tilted structure of the pressure and electrostatic poten-
tial, pressure fluctuations and radial heat flux in the station-
ary state at t = 1000 for the diffusion coefficients κ = µ = 0.012. 64

6.9 Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰
(blue line) for the diffusion coefficients κ = µ = 0.011. . . . 65

6.10 Evolution of the plasma pressure and the electrostatic poten-
tial over one period of oscillation for the diffusion coefficients
κ = µ = 0.011. 66

6.11 Evolution of the integrated convective heat flux Γp (green
line) and the integrated pressure ℰ (blue broken line) for the
diffusion coefficients κ = µ = 0.011, showing the oscillatory
convection from t ≈ 750 on. 67

6.12 Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰
(blue line) for the diffusion coefficients κ = µ = 0.0016. . . . 68

6.13 Evolution of the integrated convective heat flux Γp (green
line) and the integrated pressure ℰ (blue broken line) for the
diffusion coefficients κ = µ = 0.0016. The system shows no
clear periodicity after t ≈ 100. 68

6.14 Spatial structures of the pressure and electrostatic potential,
pressure fluctuations and radial heat flux at t = 1000 for the
diffusion coefficients κ = µ = 0.0016. 69

6.15 Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰
(blue line) for the diffusion coefficients κ = µ = 0.0007. . . . 70

6.16 Evolution of the integrated convective heat flux Γp (green
line) and the integrated pressure ℰ (blue broken line) for the
diffusion coefficients κ = µ = 0.0007. 71

6.17 Spatial structures of the pressure and electrostatic potential,
pressure fluctuations and radial heat flux at t = 1000 for the
diffusion coefficients κ = µ = 0.0007. 72

7.1 Time series of the normalized radial flux for the diffusion co-
efficients κ = µ = 0.0016. The threshold at Γ̃x = 1.5 is rep-
resented by the reed broken line. The local maxima are dis-
played by the black circles. 74

7.2 Time series of the normalized radial flux for the diffusion co-
efficients κ = µ = 0.0007. The threshold at Γ̃x = 1.5 is rep-
resented by the reed broken line. The local maxima are dis-
played by the black circles. 75

7.3 Normalized PDF for the radial velocity fluctuation ṽx mea-
sured at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ =
µ = 0.0016, showing nearly Gaussian statistics. 77

x L IST OF FIGURES

7.4 Normalized PDF for the radial velocity fluctuation ṽx mea-
sured at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ =
µ = 0.0007, revealing exponential tails for large fluctuation
amplitudes. 77

7.5 Probability distribution functions of the normalized pressure
p̃, potential ϕ̃, vorticity Ω̃ and the radial heat flux Γ̃, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ =
0.0016. 79

7.6 Probability distribution functions of the normalized pressure
p̃, potential ϕ̃, vorticity Ω̃ and the radial heat flux Γ̃, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ =
0.0007. 80

7.7 Waiting time distribution of the normalized pressure, mea-
sured at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ =
µ = 0.0016. An event is registered if the normalized pressure
exceeds the threshold value of p̃ = 1.5. 81

7.8 Waiting time distribution of the normalized pressure, mea-
sured at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ =
µ = 0.0007. An event is registered if the normalized pressure
exceeds the threshold value of p̃ = 1.5. 81

7.9 Amplitude distribution of the normalized pressure, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ =
0.0016. An event is registered if the normalized pressure ex-
ceeds the threshold value of p̃ = 1.5. 82

7.10 Amplitude distribution of the normalized pressure, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ =
0.0007. An event is registered if the normalized pressure ex-
ceeds the threshold value of p̃ = 1.5. 83

7.11 Conditionally averaged waveform of the normalized pressure,
measured at (x ,y) = (0.5, 0.5) for the diffusion coefficients
κ = µ = 0.0016. 84

7.12 Conditionally averaged waveform of the normalized pressure,
measured at (x ,y) = (0.5, 0.5) for the diffusion coefficients
κ = µ = 0.0007. 84

7.13 Autocorrelation function of the normalized pressure measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ =
0.0016. 85

7.14 Autocorrelation function of the normalized radial velocity mea-
sured at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ =
µ = 0.0007. 86

List of Tables
3.1 Coefficients of the stiffly stable time integration for K -th order

accuracy. 32

xi

1
Introduction
During the last couple of decades there has been a growing need for alterna-
tive energy sources. CO2 emissions from combustions of fossil fuels contribute
significantly to global warming and shortages of these fuels have the potential
to cause enormous political problems. Fusion power has the potential to pro-
vide large-scale energy without contributing to global warming or generating
long-term radioactive waste as nuclear fission [1].

Since the second world war it has been a goal of the scientific community
to harvest the energy released by fusion reactions of light atomic nuclei. The
progress toward this goal is so far comparable to the progress in computer
performance and particle accelerators, see figure 1.1. In order to fuse into
heavier elements, the particles must overcome the Coulomb barrier to get close
enough that the strong nuclear force can fuse the particles. For thermonuclear
fusion, extremely high temperatures are required. In a medium where these
conditions are met all particles are ionized and can therefore be confined by
strong magnetic fields. Since the beginning of fusion research, several differ-
ent types of fusion devices have been developed. One of the most promising
designs is the tokomak, developed by Soviet physicists Igor Tamm and Andrei
Sakharov [2].

A tokamak is a candidate for the world’s first fusion reactor design, due to
its excellent performance. It is a toroidal device designed to confine a high-
temperature plasma using strong magnetic fields, as shown in figure 1.2. The
principal magnetic field is toroidal and generated by the field coils around the

1

2 CHAPTER 1 INTRODUCT ION

Figure 1.1: Progress towards harnessing fusion as a power source compares very
favourably with the progress in other high-technologies such as computing
performance and particle accelerators [1].

vacuum vessel walls. In addition, a toroidal electric current is induced in the
plasma by a central solenoid. This current induces a poloidal magnetic field
which, together with the toroidal field, results in a helical magnetic field. This
field confines the charged particles in the plasma along helical paths within
the vacuum chamber [3].

The magnetic field strength produced by the primary field coils is commonly
in the range of several Tesla. To achieve such strong magnetic fields without
enormous ohmic heating losses some present devices and future reactors use
superconducting magnets, making these coils the most costly components of
the whole device.

Unfortunately this geometry still does not entirely avoid losses of plasma and
heat across magnetic field lines. Plasma-wall interactions lead to erosion of the
vessel walls and release impurities into the plasma. A design to keep these in-
teractions away from the main vessel wall to a remote region is by diverting the
outer part of the magnetic field such that field lines intersect specially designed
material surfaces. These surfaces are called the divertor targets. A schematic
structure of the poloidal cross-section of a tokamakwith divertor plates is shown
in 1.3. The interior of the plasma can be divided into three different regions:
the centre of the plasma is the so-called plasma core, where the magnetic field
lines lie on toroidal surfaces of constant pressure and are closed. This region is
bordered by the scrape off layer (SOL). In this region, the magnetic field lines

3

intersect with the divertor plates. These areas are separated by the so-called
separatrix, or last closed flux surface (LCFS). Closer to the wall is the wall
shadow, where the field lines intersect the vessel wall instead of the divertor.
In an ideal case, all plasma that crosses the separatrix will stream along the
field lines towards the divertor target without reaching the vacuum vessel walls.

Figure 1.2: Shematic structure of a tokamak, showing the trajectory of charged parti-
cles [4].

In the following we discuss the SOL region in further detail. As mentioned
before, it is designed to scrape off plasma which is then transported on to the
divertor plates. The physical properties of the SOL plasma differs strongly from
the core plasma. Particle densities and temperatures in the SOL are lower by
several orders of magnitude than in the core. Despite the divertor geometry
some plasma will escape the magnetic confinement and may interact with the
vessel wall. This transport across the magnetic field lines is dominated by the
radial motion of filament structures. These structures contain excess particles
and heat compared to the background plasma and are therefore referred to as
plasma blobs [6, 7]. Figure 1.4 shows the radial propagation of such a blob-like
structure through the SOL into the wall shadow. The solid line represents
the location of the separatrix and the dotted line stands for the beginning
of the wall shadow. This phenomena is universally observed in all toroidal
confinement devices.

The radial transport of plasma through the SOL has therefore been of great
interest in the last years [7, 9]. Turbulent structures moving towards the
main chamber wall have been studied in many tokamak experiments. An
accepted mechanism for radial transport of coherent structures is given by
the interchange mechanism [10, 11]. Curvature drifts and gradient-B drifts,
produced by non-uniform magnetic fields, are charge dependent and cause

4 CHAPTER 1 INTRODUCT ION

Figure 1.3: Poloidal cross-section of a tokamak including divertors and the SOL [5].

charge polarisation. The so produced electric field results in a electric drift
pointing radially outwards the vacuum vessel. Numerical investigations of the
interchange model [12] as well as experimental observastions [13] have been
considered in previous studies.

Blob dynamics and SOL turbulence have a significant effect on plasma losses
in present-day and future fusion plasma devices. It is therefore necessary to
develop a theoretical understanding of the dominant physical mechanisms
behind blob motion and SOL turbulence. In addition it is of big importance to
reveal the statistical properties of plasma fluctuations in the SOL. The average
particle density and radial flux in the SOL strongly depends on the ampli-
tude distribution of blob-like structures and their frequency of occurrence.
Statistical studies of SOL fluctuations are therefore crucial for predictions of
plasma-surface interactions [14]. As an example the raw time series of the ion
saturation current fluctuation J̃ of large amplitude bursts is shown in 1.5. We
see a frequent appearance of bursts with peak amplitudes several times higher
than the root men square (rms) value Jrms. In addition to the raw time series
it is necessary to investigate other properties such as amplitude and waiting
time distributions.

In order to gain statistically conclusive results we desire long data time series.
To achieve this goal with numerical studies it is thus crucial to develop efficient
numerical solvers to run long term simulations. In this thesis we develop im-
plementations of numerical solvers suitable for studying simple models of SOL

5

Figure 1.4: Plasma streaming into the SOL of the NSTX expreiment in the form of
blob-like structures with an area of (23cm)2 and 10 µs between each frame.
Image from Princeton Plasma Physics Laboratory [8].

turbulence and blob dynamics. These solvers are implemented on graphical
processing units which offer high performance for scientific applications.

This thesis is structured as the following: In chapter two we present the model
equations that describe the collective motion of a magnetized plasma and are
derived from the fluid description of a plasma. We describe the numerical
methods implemented in chapter three and present code validation. In chapter
four we give an overview on parallel computing and programming on graphical
processing units and present speed comparisons to previous implementations.
We benchmark the code on simplified models such as blob diffusion and non-
linear advection models in chapter five. We present the simulation results for
different transport and confinement states in flux driven thermal convection
in chapter six. In the last chapter we perform statistical analysis of long time
series from single-point recordings.

6 CHAPTER 1 INTRODUCT ION

J~
/

J
rm

s

t [ms]

max J
~

max J
~

max J
~

twait

twait

-2

-1

 0

 1

 2

 3

 4

 5

 6

0 0.5 1.0

Figure 1.5: Time series of ion saturation current fluctuations of large amplitude bursts
[14].

2
Model Equations
In this chapter we present the model equations to be solved numerically. The
model equations describe collective motions of non-uniformly magnetized plas-
mas and are derived from the fluid description of a plasma. In the following
we present the derivation of the used model equations step by step.

We start with the momentum equation and derive the resulting drifts in toroidal
geometry assuming local slab coordinates. The model equations are expressed
in terms of the particle continuity equations. In addition we present the nor-
malization used for numerical simulations.

2.1 Model setting
We start the derivation by considering a plasma in a purely toroidal magnetic
field, using a cylindrical coordinate system (R,Θ,Z). We further assume that
the magnetic field B, given by

B =
B0R0

R
b, (2.1)

is inhomogeneous and assume low-β plasma, which means that the magnetic
field due to internal currents can be neglected. This regime resembles the SOL
of large aspect ratio tokamaks. In this magnetized plasma the charged particles
are affected by the Lorentz force. If the particle velocity has a component

7

8 CHAPTER 2 MODEL EQUAT IONS

perpendicular to the magnetic field the particles are deflected. That leads to
the characteristic gyro-motion of the particles around the magnetic field lines,
shown in figure 2.1. We assume that the plasma contains only electrons and

Figure 2.1: Charged particles in presence of a magnetic field on the left side and in
absence on the right side [15].

one ion species.

Due to its toroidal geometry the magnetic field is not homogeneous. Consider
the curvature vector κ = b · ∇b which points radially inwards and opposite
to ∇R. The magnetic field decreases as 1/R due to the toroidicity which leads
to ∇B pointing inwards in the same direction as κ . We now introduce a slab
coordinate system with x pointing along the R direction and y pointing along
the Z-direction. This geometry is shown in figure 2.2. The simulation domain
is marked by the dashed rectangle. Note that the simulation domain shown in
figure 2.2 is not to scale, the characteristic filament length in the SOL in the
radial-poloidal plane is usually of the order of 1 cm or smaller [16].

x

y

B

R

Z

ln

Figure 2.2: Illustration of the simulation domain in a toroidally magnetized plasma
[17].

2.2 DR IFT TERMS IN TORO IDAL GEOMETRY 9

The momentum equation for particle species α is given by

mαnα

(
∂

∂t
+ uα · ∇

)
uα = qαnα (E + uα × B) − ∇pα

−∇ · πα −
∑
β

mαnανα β
�
uα − uβ

�
,

(2.2)

wheremα labels the mass of one particle of species α , nα the particle density,
uα the velocity, qα the particle charge, E and B for the electric and magnetic
field respectively, pα the pressure, πα the viscous stress tensor and να β the
collision frequency between particle species α and β . The particle species is
indexed by α = e,i , denoting electrons and ions, respectively. We further intro-
duce the subscripts ⊥ and ‖ on vector quantities to symbolize the components
perpendicular and parallel to the magnetic field unit vector b, u‖ = b(u · b)
andu⊥ = b×(u×b). In the samewaywe split up the∇-operator into∇⊥ and∇‖ .

The term ∇ · πα describes the momentum transfer due to the change in
velocity along different directions. Because of its complex structure we look
for a way to approximate this term in an elegant way. In case of strongly
magnetized plasmas the gyration frequency ωc , given by ωc = qB/m, is large
compared to the collision frequency να β . In this case the gyrating particles
complete Larmor gyrations before they collide with another particle. In this
particular case we approximate the viscous stress tensor term by

∇ · πα ≈ ηα⊥∇
2
⊥uα + ηα ‖∇

2
‖
uα (2.3)

with the viscosity coefficients η ‖ and η⊥ in parallel and perpendicular direction,
respectively. A more detailed discussion of this term is given in [18].

2.2 Drift terms in toroidal geometry
We now determine the dominant cross-field drifts of the plasma in a toroidal
geometry. We obtain the expressions of those drifts by crossing the momentum
equation 2.2 by the magnetic field vector B and obtain an expression for
the velocity of particle species α perpendicular to the magnetic field in the
form

B ×

(
mαnα

d

dt
uα

)
=B × [qαnα (E + uα × B)] − B × ∇pα − B × ∇πα

+ B ×mαnανα β
�
uα − uβ

�
.

(2.4)

We nowdivide this expression bymαnα and introduce the electrostatic potential
ϕ, assuming electrostatic perturbations via E = −∇ϕ. We furthermore divide

10 CHAPTER 2 MODEL EQUAT IONS

the fluid velocity into its parallel and perpendicular components. In addition,
we use pα = nαTα and assume an isothermal plasma, ∇Tα = 0. Equation 2.4
then reads

B ×
d

dt
uα = −

qα
mα

(B × ∇ϕ) − Tα
mαnα

(B × ∇nα) + qαB
2

mα
uα⊥

− B × (∇ · πα) − να βB ×
�
uα − uβ

� (2.5)

which we rewrite as an expression for the perpendicular velocity

uα⊥ =
(b × ∇ϕ)

B
+
Tα (b × ∇nα)

qαnαB
+

b × (∇πα)
ωcα

+
mαnανα β

ωcα
b ×

�
uα − uβ

�
+

1
ωcα

(
b ×

d

dt
uα

) (2.6)

where ωcα is the cyclotron frequency of particle species α . Each term on the
right hand side corresponds to a drift perpendicular to the magnetic field which
we will now discuss in further detail.

• The first drift on the right hand side given by (b × ∇ϕ) /B is the so-called
E × B or electric drift. It appears in the presence of an electric field and
leads to a drift perpendicular to both E and B. Note that this drift is
independent of the particle mass and charge and is therefore the same
for all particle species.

• The second drift on the right hand side, Tα (b × ∇nα) /qαnαB, results
from the inhomogeneous particle density. This so-called diamagnetic
drift does not equal a guiding center motion in contrast to the electric
drift but is related to gradient and curvature drifts.

• b × (∇ · πα) /ωcα is the viscous drift due to the viscous stress in the
plasma.

• The drift (mαnανα β/ωcα)b × �
uα − uβ

�
is the resistive drift resulting

from the momentum transfer due to collisions between different particle
species.

• The term 1/ωcα (b × duα/dt) is called the polarization drift. For a charac-
teristic scale of the perpendicular dynamicsωα this term is of𝒪(ωα/ωαc).

For a strongly magnetised plasma we assume that the Larmor gyration is the
dominant motion perpendicular to the magnetic field, which means that any
change in the perpendicular particle velocity takes place on larger time scales
than gyration. Under this assumption we order the resistive drift, the viscous

2.2 DR IFT TERMS IN TORO IDAL GEOMETRY 11

drift and the time derivative in equation 2.6 as

uα⊥ = uαE + uαd +𝒪(ωα/ωcα) (2.7)

which implied drift ordering. Here uE denotes the electric drift and uαd as
the diamagnetic drift. Note that the viscous drift uπα is not of lowest order
because the tensor itself is of order 𝒪(ν/ωc). In addition the viscous drift is
proportional to the particle mass which is the reason why we include this term
when we discuss the ion momentum equation. We now insert these lowest
order drifts for uα into the time derivative term in equation 2.6, to obtain the
so called polarisation drift given by

uαp =
mα

qαB
b ×

(
∂

∂t
+ uE · ∇ + udα · ∇ + uα ‖ · ∇

) �
uE + udα + uα ‖

�
, (2.8)

where uα ‖ stands for the plasma velocity in parallel direction.

We now take a separate look at the electron and ion momentum equations. In
the parallel direction we assume that the ions have no velocity component i.e.,
ui‖ = 0. For Boltzmann distributed electrons of the form n = n0 exp(eϕ/T)
we can show that the parallel motion of the electrons is zero as well. Another
possible assumption for the electron motion is force balance for the electrons
mene

d
dt ue‖ = 0. We ignore the electron mass and find under the assumption

of expression 2.7

ue‖ =
e∇‖ϕ −T∇‖ lnn

meνei
. (2.9)

For the parallel component we use the mass and temperature difference be-
tween electrons and ions to simplify the expression 2.6. The electron mass is
given by 9.11× 10−31 kg, the mass of the lightest ion, a proton, is 1.67× 10−27

kg, which implies that the ion mass is 1839 times larger than the electron mass.
In the electron momentum equation we therefore neglect the polarisation drift
because it is proportional to the electron mass and thus transfers only little
momentum. The electron momentum equation then reads

ue⊥ =
1
B
b × ∇ϕ −

Te
eneB

b × ∇ne. (2.10)

We assume cold ions as to neglect the diamagnetic drift in the ion momentum
equation. Writing out the ion momentum equation we get

ui⊥ =
1
B
b × ∇ϕ −

e

miB2

(
∂

∂t
+ uE · ∇

)
∇⊥ϕ +

b × (∇ · πi)
ωc i

, (2.11)

where the polarisation drift takes the form

upi =
q

mB
b ×

(
∂

∂t
+ uE · ∇

)
uE = −

q

mB2

(
∂

∂t
+ b × ∇ϕ · ∇

)
∇⊥ϕ (2.12)

12 CHAPTER 2 MODEL EQUAT IONS

Note that the cross product commutes with both differential operators for a
uniform magnetic field that is constant in time.

We now consider the the charge continuity equation given by

∂ρ

∂t
+ ∇ · j = 0. (2.13)

Here ρ symbolizes the charge density summed over all particle species and j is
the current density given by

j =
∑
α

jα =
∑
α

nαuαqα . (2.14)

The continuity equation for both particle species now read

∂ne
∂t
+ ∇ · (neuE + neude + neue)‖ = 0, (2.15)

∂ni
∂t
+ ∇ ·

�
niuE + niupi + niuπ i

�
= 0 (2.16)

We now assume quasi-neutrality i.e. ni ≈ ne which is valid for λs∇ � 1,
where λs is the Debye length. In addition we neglect the explicit appearance
of space charges. This leads to ∂ρ

∂t = 0. We subtract the continuity equations
for electrons and ions from each other and obtain

∇ ·
�
nude + nu‖e − nupi − nuπ i

�
= 0 (2.17)

Because of quasi-neutrality equation 2.17 expresses that the electric current in
the plasma is divergence free i.e. ∇ · j = ∇ ·

�
j⊥ + j‖

�
= 0.

We start with the electron continuity equation 2.15 and include this time
the collision term from equation 2.2. This comes from the fact that collision be-
tween electrons and ions result in a random deflection of the electrons whereas
the heavy ions momentum feels almost no change. This net drift acting on the
electrons is called the resistive drift and is given to lowest order by

ur⊥ =menνei (ue⊥ − ui⊥) =meνei b × ude, (2.18)

where νei is the collision frequency between electrons and ions and ui and ue

are approximated by the lowest order drifts. Under this approximations we can
derive an expression for the divergence of the resistive drift which takes the
form

∇ · (nur⊥) = ∇ ·
(
men

2νei b ×
Te
−enB

(b × ∇n)
)
'
meνeiTe
eB

∇2⊥n (2.19)

2.2 DR IFT TERMS IN TORO IDAL GEOMETRY 13

where we neglect the term (∇n)2 because we assume that the density fluctu-
ation amplitudes are much smaller than n. As we see the divergence of the
resistive drift hives rise to diffusion in the perpendicular plane for the particle
density and that its coefficient is of order 𝒪(νei/ωce).
Equation 2.15 can be rewritten in the form

∂n

∂t
+ ∇ ·

�
nuE + nude + nue‖

�
=

(
∂

∂t
+ uE · ∇

)
n + n∇ · uE + ∇ · (nude) + ∇ ·

�
nue‖

�

=

(
∂

∂t
+

1
B
b × ∇ϕ · ∇

)
n + ∇ · (nude) + ∇ ·

�
nue‖

�

= 0.
(2.20)

Aswe see the divergence of the diamagnetic particle flux occurs. In the following
we derive an explicit expression for that. We obtain for a low-β plasma

∇ · (nude) = ∇ ·
(Te
eB

b × ∇n
)
=

2Te
eB

b × ∇lnB · ∇n. (2.21)

Note that the expression ∇ × b can be rewritten as

∇ × B = ∇ × (bB) = B (∇ × b) + (∇B) × b ' 0, (2.22)

which is equivalent to

∇ × b = − (∇B × b) /B = b × (∇B/B) = b × ∇ lnB, (2.23)

with
∇ × b = b × κ . (2.24)

In case of a purely toroidal magnetic field the field is given by

B = −B Θ̂. (2.25)

The ∇ lnB then reads

∇ lnB =
∇B

B
=

1
B

∂B

∂R
R̂ = −

1
R
R̂. (2.26)

For a inhomogeneous toroidal field in this geometry with the magnetic field in
the negative θ -direction the divergence of the diamagnetic electron drift takes
the form

∇ · (n ude) = 2Te
eBR

∂n

∂Z
. (2.27)

Next we calculate the divergence of the ion polarisation drift from equation
2.12:

∇ ·
�
n upi

�
= ∇ ·

(
−
min

eB2

(
∂

∂t
+ uE · ∇

)
∇⊥ϕ

)
=
min

eB2 (∇lnn + ∇) ·
(
∂

∂t
+

1
B
b × ∇⊥ϕ · ∇

)
∇⊥ϕ .

(2.28)

14 CHAPTER 2 MODEL EQUAT IONS

Note that the nabla operator acts on both the particle density n and on ϕ where
it commutes to lowest order with the total time derivative.

In the same manner we take a look at the divergence of the viscous drift,
which results in

∇ · (n uπ) = ∇ · (nη⊥ b × uE) = n

B
η⊥∇

4
⊥ϕ (2.29)

where we neglect the density gradients and replace it by the approximation
∇ · uπ ≈ η⊥∇4⊥ϕ.

Next we calculate the divergence of the electric drift and find

∇ · uE = ∇ ·
(1
B
× ∇ϕ

)
=

1
B
b × ∇lnB · ∇ϕ +

1
B
∇ × b · ∇ϕ (2.30)

where the first term descends from the divergence of the current and the
second term results from the field curvature in the toroidal geometry. For a
toroidal field along the negative Θ-axis and find

∇ · uE = −
2
BR

∂ϕ

∂Z
. (2.31)

With these expressions for the compressions of the different drifts we are able
to assemble them to the model equations.

2.3 Two field equations
We now introduce the vorticity Ω, which is defined as Ω = b · ∇ × uE . This
quantity is often used in fluid dynamics to describe the rotational motion
of fluids and plasmas. For the electric drift velocity we can show that Ω =
b(∇2ϕ)/B holds to lowest order:

∇ × uE = ∇ ×
(1
B
b × ∇ϕ

)
=

1
B
(∇ · ∇⊥ϕ) b − ∇⊥ϕ

(
∇ ·

1
B
b
)
+ (∇⊥ϕ · ∇) 1

B
b −

(1
B
b · ∇

)
ϕ

'
1
B
∇2⊥ϕ

(2.32)

because we assumed a homogeneous magnetic field, which implies that the
characteristic length scale ofB is much larger than the scale onwhich the electro-
static potential varies, i.e.𝒪(∇B) = 1/L,𝒪(∇ϕ) = 1/` with∇ = ∂

∂x ∼ 1/length
and `

L � 1 where ` is the characteristic length scale for the electrostatic po-
tential where we assume `/R � 1. Additionally we used that the gradients of

2.4 D IMENS IONLESS VAR IABLES 15

the field are of the same magnitude as the fields themselves.

If we now insert equations 2.27 and 2.28 into 2.15 and 2.17 to get the two-
field model for strongly magnetised plasma(
∂

∂t
+ uE · ∇

)
n +

2n
BR

∂ϕ

∂Z
+

2T
eBR

∂n

∂Z
=

Te
meνei

∇2
‖

(
eϕ

T
− lnn

)
+
mνeiT

qB
∇2⊥n

(2.33a)

min

eB2 (∇ lnn + ∇)·
(
∂

∂t
+ uE · ∇

)
∇⊥ϕ+

2T
eBR

∂n

∂Z
=

Te
meνei

∇2
‖

(
eϕ

T
− lnn

)
+η⊥∇

4
⊥ϕ .

(2.33b)
As we see these two coupled non-linear partial differential equations for the
evolution of the physical fields of the particle density n and the the electrostatic
potential ϕ is fairly complex. We therefore assume that the length on which
the density varies is much smaller than the length scale of the electrostatic
potential. We therefore can neglect the first term on the left hand side of
equation 2.33b.

We now take a closer look at the electric drift advection terms uE · ∇n and
uE · ∇2⊥ϕ. These non-linear terms introduce a coupling between all length
scales of the system. These terms therefore require special treatment in the
numerical simulation that conserves energy to produce accurate results. We
will introduce a solution for this case in the chapter Numerical Methods.

We insert the definition of the electric drift and the vorticity Ω, and neglect the
parallel current since we are only interested in the perpendicular motion and
obtain (

∂

∂t
+

1
B
z × ∇ϕ · ∇

)
n +

2
BR

∂ϕ

∂Z
+

2T
eBR

∂n

∂Z
= χ∇2⊥n(

∂

∂t
+

1
B
z × ∇ϕ · ∇

)
Ω +

2T
mnR

∂n

∂Z
= η∇2⊥Ω.

(2.34)

Here the dissipation coefficient η stands for the kinematic viscosity of the fluid
and the other dissipation coefficient χ is the collisional diffusivity. Note that
both equations include the non-linear advection by the electric drift.

2.4 Dimensionless variables
In order to reduce the number of model parameters we introduce dimensionless
variables. We therefore take advantage of the fact that each physical quantity

16 CHAPTER 2 MODEL EQUAT IONS

can be normalized by a characteristic value.

We introduce the following dimensionless variables:

t̂ = γ t Ẑ =
Z

`
ϕ̂ =

ϕ

γB `2

∇̂ = `∇ n̂ =
n

N
R̂ =

R

`
,

(2.35)

where γ is the characteristic freqency, ` is a characteristic length scale and N
a characteristic particle density. We substitute these variables into equations
2.34 and divide the particle continuity equation by Nγ to normalize the first
time derivative-term of the density function which leads for the second term
to

1
Nγ

n
2
BR

∂ϕ

∂Z
=

1
Nγ

γB `2

`

2n
BR

∂ϕ̂

∂Ẑ
=

2 `
R
n̂
∂ϕ̂

∂Ẑ
. (2.36)

The factor 2`/R is small as we assume that the characteristic length scale ` of
the system is much smaller than the major radius R. We therefore neglect this
term in the model equations,which arises from compression of the electric drift.

The third term of the density equation becomes

1
Nγ

2Te
eBR

∂n

∂Z
=

2Tmi

γeBR `mi

∂n̂

∂Ẑ
=

γ

ωc i

∂n̂

∂Ẑ
=

√
2ρ2s
R `

∂n̂

∂Ẑ
, (2.37)

where (2ρ2s /R`)1/2 is small and will therefore be neglected as well.

For the vorticity expression we obtain for the second term

2Te
miR

1
γ 2`2N

∂n

∂Z
=

2Te
miRγ 2`

∂n̂

∂Ẑ
(2.38)

which leads us to the dimensionless model equations(
∂

∂̂t
+ ẑ × ∇̂φ̂ · ∇̂

)
n̂ = κ̂ ∇̂2⊥n̂(

∂

∂̂t
+ ẑ × ∇̂φ̂ · ∇̂

)
Ω̂ +

2Te
γ 2mi`R

∂

∂Ẑ
n̂ = µ̂ ∇̂2⊥Ω̂

(2.39)

where we summarize the remaining pre-factors on the right side of the equa-
tions in κ̂ respectively η̂. We chose γ 2 to be

γ 2 =
2Te
mi`R

(2.40)

2.4 D IMENS IONLESS VAR IABLES 17

so that we obtain no pre-factor for the collective dynamics. We now introduce
local slab coordinates as shown in figure 2.2 and insert the Poisson bracket as

{ω,ϕ} =
(
∂ω

∂x

∂ϕ

∂y
−
∂ω

∂y

∂ϕ

∂x

)
. (2.41)

For simplicity reasons we drop the hat notation in equation 2.39 which leads
to the final model equations:

∂n

∂t
+ {ϕ,n} = κ∇2⊥n,

∂Ω

∂t
+ {ϕ,Ω} + ∂n

∂y
= µ∇2⊥Ω.

(2.42)

Note that for each additional term the same normalizations as in expression
2.35 have to be applied. These two coupled differential equations can now be
solved as an initial value problem with suitable boundary conditions.

This model is analogous to the Rayleigh-Bénard convection model which uses
other coefficients, the so called Rayleigh number Ra and the Prandtl number
Pr . These coefficients are related to the friction coefficients for each variable
used in Equations 2.42 as

Ra =
1
κµ

Pr =
κ

µ
. (2.43)

The concrete meaning of the Rayleigh number is the ratio between diffusion
which acts as a stabilizing force to the system, and the buoyancy which tends
to destabilize the system. The Prandtl number represents the ration between
viscosity and collisional diffusion [19].

3
Numerical Methods
In this chapter we describe the numerical methods implemented in the two-
dimensional advection-diffusion solver, abbreviated 2dads [20]. We use the
code to integrate the model equations 2.42 in time. They are both advection-
diffusion equations of the form

∂u

∂t
+ v · ∇u = κ∇2u + ℒ(u) (3.1)

where ℒ is a well defined differential operator acting on the variable u. We
require that u is periodic in one direction. The code uses finite difference
approximations in one spatial direction and spectral expansion in the other
to solve the model equations on a rectangular domain. As part of the work
presented in this thesis, the majority of the methods have been re-implemented
on graphical processing units. We use the NVIDIA CUDA Fast Fourier Transform
library (cuFFT) [21] for spectral transformations and the NVIDIA cuSOLVER
library [22] for matrix factorisations. We further present a stiffly stable scheme
for the time integration that treats diffusion implicitly. In addition we present
the energy and enstrophy conserving finite difference scheme used for non-
linear advection terms and discuss both Dirichlet and Neumann boundary
conditions.

A large portion of the following methods are derived from the documenta-
tion for the 2dads code written by Odd Erik Garcia and originally implemented
in a low level Fortran code [20].

19

20 CHAPTER 3 NUMER ICAL METHODS

3.1 Simulation domain
The model equations 2.42 are discretized on a rectangular domain of the size
(−Lx/2,Lx/2)×(−Ly/2,Ly/2). We use a cell centered grid withNx equidistant
grid points in x -direction and My equidistant grid points in y-direction. The
position of the grid points is given by

xn = −
Lx
2
+ (n − 1

2
)∆x forn = 0, ... ,Nx + 1, (3.2a)

yn = −
Ly

2
+ (n − 1

2
)∆y forn = 0, ... ,My + 1, (3.2b)

where ∆x = Lx/Nx and ∆y = Ly/My . Here we have implicitly introduce ghost
points just outside of the physical domain as shown in Figure 3.1, so that we
have (Nx + 2) × (My + 2) discretization points in total.

Figure 3.1: Illustration of the two dimensional simulation domain using a cell centered
grid and ghost points. The grid points inside the physical domain are
represented as filled circles and the ghost points by open circles [20].

Figure 3.2 shows how a one-dimensional function is discretisized on a cell
centered grid with the ghost points x0 = xN and xN+1 = x1. This concept can
easily be expanded to two dimensions.

3.2 FIN ITE D IFFERENCES 21

0.0 0.5 1.0 1.5 2.0

x

1.0

0.5

0.0

0.5

1.0
f(
x
) x0

x1

xN

xN+1

Figure 3.2: Discretisation of a sin-function with the period L = 2 on a cell centered
grid with 8 gridpoints in the domain (0,2)[17].

3.2 Finite differences
The 2dads code uses finite difference approximations in the x -direction, which
have the advantage that they are easy to implement, computationally fast and
easily adaptable to boundary conditions [23]. We define the centered difference
approximation for the first order derivative as

∂u

∂x
(xn) = 1

2∆x
[un+1 − un−1] +𝒪(42x), (3.3)

where un is the discretized function value at the grid point xn . Note that this
scheme is of second order accuracy. Analogously we approximate the second
order derivative by centered differences as

∂2u

∂x2 (xn) =
1

∆2
x
[un−1 − 2un + un+1] +𝒪(42x). (3.4)

Note that both approximations only involve function values at xn and the
neighbour points xn−1 and xn+1.

The schemes 3.6 and 3.4 have been implemented for graphical processing
units. To verify the implementation we compare the numerically obtained
derivative to the analytical derivative of the test function f (x) = sin(2πx)
with x ∈ (0, 1). We determine the average error by calculating the error at
each grid point by |fnum − fan | and determine the average value. We wary
the resolution of the numerical derivative in order to verify that 3.6 has a
quadratically decreasing error as shown in figure 3.3.

22 CHAPTER 3 NUMER ICAL METHODS

16 32 64 128 256 512 1024 2048
Nx ,My

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|f n
u
m
−f

a
n
|/N

x
M

y

error

N−2

Figure 3.3: Convergence rate of the finite difference method at the example of a first
order derivative of a sin function.

We now test the convergence rate of the finite difference method at the example
of a second order derivative 3.4 in figure 3.4 tested with the same test function
as in figure 3.3. Again, the error decreases quadratically.

3.3 Ghost points
We now discuss the boundary conditions. For Dirichlet boundary conditions
the values on the boundary are specified. We use a linear extrapolation across
the boundary of the domain to relate the values of the domain boundaries to
the value at the cell centers by

U1/2 =
1
2
(u0 + u1) +𝒪(42x), (3.5a)

UN+1/2 =
1
2
(uN + uN+1) +𝒪(42x). (3.5b)

From these equations we evaluate the function values at the ghost points to be

u0 = 2U1/2 − u1 +𝒪(42x), (3.6a)

uN+1 = 2UN+1/2 − uN +𝒪(42x). (3.6b)

3.4 SPECTRAL TRANSFORMAT IONS 23

16 32 64 128 256 512 1024 2048
Nx ,My

10-7

10-6

10-5

10-4

10-3

10-2

|f n
u
m
−f

a
n
|/N

x
M

y

error

N−2

Figure 3.4: Convergence rate of the finite difference method at the example of a
second order derivative of a sin function.

In case of Neumann boundary conditions where the gradient of the function
at the boundary is specified we use equation 3.6 to obtain

U ′1/2 =
1
∆x

(u1 − u0) +𝒪(42x), (3.7a)

U ′N+1/2 =
1
∆x

(uN+1 − uN) +𝒪(42x). (3.7b)

This yields

u0 = u1 − ∆xU
′
1/2 +𝒪(42x), (3.8a)

uN+1 = uN + ∆xU
′
N+1/2 +𝒪(42x) (3.8b)

for the numerical values at the ghost points.

Given a numerical solution for the internal domain and the boundary conditions,
the solution at the ghost points can be found from the above equations.

3.4 Spectral transformations
The only natural boundary conditions in y-direction is to assume periodic
boundaries. As part of this thesis work, we implemented a spectral transfor-

24 CHAPTER 3 NUMER ICAL METHODS

mation along the y-direction. Spectral transformations make it relatively easy
to implement derivatives and the rate of convergence is better than the one
of finite differences schemes, partly explaining the widespread use of periodic
boundary conditions in numerical simulations [23].

We consider a function U (y) which is periodic in its argument y with peri-
odicity length Ly , U (y) = U (y + Ly). Furthermore we define the discrete
sampled values as Um = U (ym) and ym = m∆y for m = 0, ...,My − 1. We
now calculate the Fourier coefficients by a discrete Fourier transform (DFT) by

Ûm =

My−1∑
n=0

Un exp

(
i2πnm
My

)
for m = 0, ...,My − 1. (3.9)

The inverse transform (IDFT) is given by

Um =
1
My

My−1∑
n=0

Ûn exp

(
−
i2πnm
My

)
for m = 0, ...,M − 1. (3.10)

To see that 3.10 is indeed the inverse transformation of 3.9 we write

1
My

My−1∑
n=0

exp

(
−
i2πnm
My

)
Ûn =

1
My

My−1∑
n=0

exp

(
−
i2πnm
My

) My−1∑
`=0

U` exp

(
i2πn`
My

)

=
1
My

My−1∑
`=0

U`

My−1∑
n=0

exp

(
i2πn(` −m)

My

)

=
1
My

My−1∑
`=0

U`

My−1∑
n=0

{
exp

(
i2π (` −m)

My

)}n

=
1
My

My−1∑
`=0

MyU`δm, `

= Um .
(3.11)

On a computer the Ûn can be computed from the Un , or vice versa, in
𝒪(N logN) operations by the fast Fourier transform (FFT) [24], which makes
working with Fourier series practical. The 2dads code uses the NVIDIA CUDA
Fast Fourier Transform library (cuFFT) which provides routines for arbitrary
size DFTs for graphical processing units [21].

We now describe how to calculate the derivatives U ′(y) and U ′′(y). The first

3.4 SPECTRAL TRANSFORMAT IONS 25

derivative of U evaluated at the sample point ym is:

U ′m =U
′(mLy/My)

=
1
My

∑
0<m<My /2

2πi
Ly

m

(
Ûm exp

(
−
2πi
My

mn

)
− ÛMy−m exp

(
+
2πi
My

mn

))

=
1
My

My−1∑
m=0

Û ′m exp

(
−
2πi
My

nm

)
.

(3.12)

Note that the Û ′Ny /2 term vanishes. If we want to calculate the first derivative

U ′(y) fromU (y) we therefore use a FFT to compute Ûm for 0 ≤ m < My . Then
we multiply Ûm by 2πi/Lym form < My/2, by 2πi/Ly(m−My) form > My/2,
and zero form = My/2 (ifMy is even). Finally we computeU ′n from Û ′n via an
inverse FFT.

On the other hand, the second derivation of U (ym) is given by:

U ′′m =U
′′(mLy/My)

= −
1
My

∑
0<m<My /2

[
2π
Ly

m

]2 (
Ûm exp

(
−
2πi
My

mn

)
+ ÛMy−m exp

(
+
2πi
My

mn

))

−

[
π

Ly
My

]2
ÛMy /2(−1)n

=
1
My

My−1∑
m=0

Û ′′m exp

(
−
2πi
My

nm

)
.

(3.13)

Note that the ÛMy /2 term does not vanish. To calculate the second derivative
U ′′(y) fromU (y) we use the same procedure as to calculate the first derivative

but multiply Ûm by −
[
2π
Ly
m

]2
for m ≤ My/2 and by −

[
2π
Ly
(m −My)

]2
for

m > My/2 to obtain U ′′(y) [25].
We now again take a look at the convergence rate of the spectral derivation
scheme at the example of the first derivation of a one-dimensional gaussian
function f (x) = exp

�
−x2/2

�
with x ∈ (−10, 10). The numerical solution is

compared to the analytical one and the average error given is plotted against
the resolution of the simulation domain in Figure 3.5. The error converges
against the machine epsilon, note that the error decreases much faster than at
the finite difference scheme in Figure 3.4. For completeness we take a look at
the second derivative for the same function as well. The outcome is given in

26 CHAPTER 3 NUMER ICAL METHODS

16 32 64 128 256 512 1024 2048
Nx ,My

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|f n
u
m
−f

a
n
|/N

x
M

y

Figure 3.5: Convergence rate of the spectral derivation scheme at the example of a
first order derivative of a Gaussian function.

Figure 3.6. As expected the convergence rate for the second derivative behaves
the same as for the first derivative.

3.5 Elliptic equations
For calculating the electrostatic potential from the vorticity in equation 8.1 we
have to solve the elliptic equation ∂2Φ/∂x2 = Ω. We discretize this equation
by approximating the second order derivative as in equation 3.4 and obtain
(ϕn−1 − 2ϕn + ϕn+1) = 42xωn where ϕ and ω represent the numerical approxi-
mation to the exact function values. Now we rewrite this expression in matrix
notation to

*........
,

. . .
. . .

. . .

1 −2 1
1 −2

1 −2 1
. . .

. . .
. . .

+////////
-

*........
,

...
ϕn−1
ϕn
ϕn+1
...

+////////
-

= 42x

*........
,

...
ωn−1
ωn
ωn+1
...

+////////
-

. (3.14)

Thus, the elliptic equation may be solved by inverting the triangular matrix.
To consider the boundary conditions we need to modify the first and the last

3.5 ELL IPT IC EQUAT IONS 27

16 32 64 128 256 512 1024 2048
Nx ,My

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|f n
u
m
−f

a
n
|/N

x
M

y

Figure 3.6: Convergence rate of the spectral derivation scheme at the example of a
second order derivative of a Gaussian function.

row of the matrix. We use equation 3.6 for Dirichlet boundary conditions and
obtain

−3ϕ1 + ϕ2 = 4
2
xω1 − 2Φ1/2, (3.15a)

ϕN−1 − 3ϕN = 4
2
xωN − 2ΦN+1/2. (3.15b)

In matrix form the finite difference approximation of the elliptic equation with
Dirichlet boundary conditions takes therefore the form

*.......
,

−3 1
1 −2 1
. . .

. . .
. . .

1 −2 1
1 −3

+///////
-

*.......
,

ϕ1

ϕ2
...

ϕN−1
ϕN

+///////
-

= 42x

*.......
,

ω1

ω2
...

ωN−1
ωN

+///////
-

−

*.......
,

2Φ1/2

0
...
0

2ΦN+1/2

+///////
-

.

(3.16)

For Neumann boundary conditions the first and the last rows read

−ϕ1 + ϕ2 = 4
2
xω1 + 4xΦ

′
1/2, (3.17a)

ϕN−1 − ϕN = 4
2
xωN − 4xΦ

′
N+1/2. (3.17b)

28 CHAPTER 3 NUMER ICAL METHODS

Again we write this in matrix form as

*.......
,

−1 1
1 −2 1
. . .

. . .
. . .

1 −2 1
1 −1

+///////
-

*.......
,

ϕ1

ϕ2
...

ϕN−1
ϕN

+///////
-

= 42x

*.......
,

ω1

ω2
...

ωN−1
ωN

+///////
-

+ 4x

*.......
,

Φ′1/2
0
...
0

Φ′N+1/2

+///////
-

.

(3.18)
Note that the boundary conditions themselves appear explicitly as a source
together with the vorticity.

In case of a two dimensional problem there are several possibilities to solve the
elliptic equation. The approach we present in the following solves the problem
approximating the second order derivative in x -direction by central differences
as given in 3.4 and treating the y-direction spectrally. In this case the potential
Φ is given by the two dimensional elliptic equation(

∂2

∂x2 +
∂2

∂y2

)
Φ = Ω. (3.19)

Assuming Φ and Ω is periodic in y with periodicity length Ly we take a discrete
spectral transformation as given in 3.9 in y-direction which leads us to(

∂2

∂x2 − k
2
y

)
Φ̂m = Ω̂m . (3.20)

where thewave numberky is given byky =m 2π
Ly

andm = −
My
2 +1, ..., 0, ...,

My
2 .

In matrix notation this can be written as

*........
,

. . .
. . .

. . .

1 −2 − 42xk
2
y 1

1 −2 − 42xk
2
y 1

1 −2 − 42xk
2
y 1

. . .
. . .

. . .

+////////
-

*.........
,

...

ϕ̂n−1
ϕ̂n
ϕ̂n+1
...

+/////////
-

= 42x

*........
,

...
ω̂n−1
ω̂n
ω̂n+1
...

+////////
-

(3.21)

which has to be solved for each wave number ky .

3.5 ELL IPT IC EQUAT IONS 29

As in the one dimensional case, the boundary conditions change the first
and the last rows of the matrix. For Dirichlet boundary conditions we use 3.6
to obtain

−
(
3 + 42xk

2
y

)
ϕ̂1 + ϕ̂2 = 4

2
x ω̂1 − δky2Φ̂1/2, (3.22a)

ϕ̂N−1 −
(
3 + 42xk

2
y

)
ϕ̂N = 4

2
x ω̂N − δky2Φ̂N+1/2 (3.22b)

which reads in matrix form

*.......
,

−3 − 42xk
2
y 1

1 −2 − 42xk
2
y 1

. . .
. . .

. . .

1 −2 − 42xk
2
y 1

1 −3 − 42xk
2
y

+///////
-

*........
,

ϕ̂1

ϕ̂2
...

ϕ̂N−1
ϕ̂N

+////////
-

= 42x

*.......
,

ω̂1

ω̂2
...

ω̂N−1
ω̂N

+///////
-

− δky

*.......
,

2Φ̂1/2

0
...
0

2Φ̂N+1/2

+///////
-

.

.

where δky is the Kronecker delta given by

δky =

1, if ky = 0,

0, if ky , 0.
(3.23)

In the case of Neumann boundary conditions we use 3.7 to get

−
(
3 + 42xk

2
y

)
ϕ̂1 + ϕ̂2 = 4

2
x ω̂1 + δky4

2
x Φ̂
′
1/2, (3.24a)

ϕ̂N−1 −
(
3 + 42xk

2
y

)
ϕ̂N = 4

2
x ω̂N + δky4

2
x Φ̂
′
N+1/2 (3.24b)

In matrix form the elliptic equation with fixed stream function gradients on

30 CHAPTER 3 NUMER ICAL METHODS

the boundaries can therefore be written as

*.......
,

−3 − 42xk
2
y 1

1 −2 − 42xk
2
y 1

. . .
. . .

. . .

1 −2 − 42xk
2
y 1

1 −3 − 42xk
2
y

+///////
-

*........
,

ϕ̂1

ϕ̂2
...

ϕ̂N−1
ϕ̂N

+////////
-

= 42x

*.......
,

ω̂1

ω̂2
...

ω̂N−1
ω̂N

+///////
-

+ δky4x

*........
,

Φ̂′1/2
0
...
0

Φ̂′N+1/2

+////////
-

.

.

(3.25)

Note that the boundary conditions only affect the zero-mode in Fourier space.

3.6 Time integration
We start with the simple case of a one-dimensional diffusion problem given by

∂U

∂t
= κ
∂2U

∂x2 (3.26)

with some initial conditions U (x , t = 0) = U 0(x) and boundary conditions at
−Lx/2 and Lx/2. In case of the simplest possible implicit scheme by a forward
difference in time we get

∂U

∂t
=

1
4t

�
ui − ui−1

�
+𝒪(4t) (3.27)

with 4t as the numerical time step and results in the temporally discretisized
diffusion equation

ui = ui−1 + κ4t
∂2U i

∂x2 +𝒪(4t). (3.28)

For second order spatial derivative, given by equation , this expression is written
as

−rxu
i
n−1 + (1 + 2rx)uin − rxuin+1 = ui−1n (3.29)

3.6 T IME INTEGRAT ION 31

with rx = κ4t/42x . In matrix form this equation takes the form

*...
,

. . .
. . .

. . .

−rx 1 + 2rx −rx
. . .

. . .
. . .

+///
-

*........
,

...
uin−1
uin
uin+1
...

+////////
-

=

*........
,

...
ui−1n−1
ui−1n
ui−1n+1
...

+////////
-

, (3.30)

which has to be solved for ui at time step ti given the solution ui−1 at the
previous step ti−1. Boundary conditions can be implemented analogous to
equation 3.6 and equation 3.7 which leads to the diffusion equation in matrix
form

*.......
,

1 + 3r −r
−r 1 + 2r −r

. . .
. . .

. . .

−r 1 + 2r −r
−r 1 + 3r

+///////
-

*.......
,

ui1
ui2
...

uiN−1
uiN

+///////
-

=

*.......
,

ui−11 + 2rU1/2

ui−12
...

ui−1N−1
ui−1N + 2rUN+1/2

+///////
-

,

(3.31)
for Dirichlet boundary conditions and

*.......
,

1 + r −r
−r 1 + 2r −r

. . .
. . .

. . .

−r 1 + 2r −r
−r 1 + r

+///////
-

*.......
,

un1
un2
...

unN−1
unN

+///////
-

=

*.......
,

un−11 + r4x U
′
1/2

un−12
...

un−1N−1
un−1N + r4x U

′
N+1/2

+///////
-

(3.32)
for Neumann boundary conditions. The extension to the two dimensional
diffusion problem treating the y-direction spectrally is analogous to the two
dimensional elliptic equation discussed above and is therefore not described
in detail again.

We now introduce the K -th order stiffly stable integration, presented in [26],
which is used in the 2dads code. We generalize Equation 3.26 to the form

∂U

∂t
= κ
∂2U

∂x2 + ℒU (3.33)

where ℒ stands for a differential operator acting on the variable U . For u as a
discretisation ofU , the stiffly stable time integration scheme is given by

1
4t

*
,
α0u

i −

K∑
k=1

αku
i−k+

-
= κδ2xu

i +

K∑
k=1

βkℒui−k +𝒪(4Kt) (3.34)

where the discretization of the second order spatial derivative is symbolised by
the operatorδ2x . Approximating the differential operatorδ2x by the second order

32 CHAPTER 3 NUMER ICAL METHODS

central difference scheme, as given in equation 3.4, we reorder the equation
above as

−rxu
i
n−1 + (α0 + 2rx)uin − rxuin+1 =

K∑
k=1

(
αku

i−k
n + 4tβkℒui−kn

)
+𝒪(4Kt +42x),

(3.35)
where rx = κ4t/4

2
x and the coefficients αk and βk are determined by the

order of the scheme K and presented in table 3.1. We now write this equation
in matrix form again and obtain

*...
,

. . .
. . .

. . .

−rx α0 + 2rx −rx
. . .

. . .
. . .

+///
-

*...
,

...
uin
...

+///
-

=

K∑
k=1

(αk + βkℒ)
*...
,

...

ui−kn
...

+///
-

.

(3.36)

As we see in equation 3.35 the stiffly stable integration scheme treats diffusion
implicitly and any other terms explicitly. For K = 1 we get the simplest case
which is used in equation 3.28. Because of the higher accuracy of higher
order integration schemes we use the third order integration scheme wherever
possible. For the first two time steps we are obviously forced to use the first
respectively second order integration scheme.

K α0 α1 α2 α3 β1 β2 β3
1 1 1 0 0 1 0 0
2 3/2 2 -1/2 0 2 -1 0
3 11/6 3 -3/2 1/3 3 -3 1

Table 3.1: Coefficients of the stiffly stable time integration for K -th order accuracy.

As in the previous scheme the first and last row of the matrix require special
treatment because of the boundary conditions. In the case of Dirichlet boundary
conditions we use equation 3.15a to get

(α0 + 3rx)ui1 − rxui2 =
K∑
k=1

(
αku

i−k
1 + βkℒui−k1

)
+ 2rxU1/2, (3.37a)

−rxu
i
N−1 + (α0 + 3rx)uiN =

K∑
k=1

(
αku

i−k
N + βkℒui−kN

)
+ 2rxUN+1/2. (3.37b)

3.7 ARAKAWA SCHEME 33

In case of Neumann boundary conditions, equation 3.17a leads to

(α0 + rx)ui1 − rxui2 =
K∑
k=1

(
αku

i−k
1 + βkℒui−k1

)
− 4xrxU

′
1/2, (3.38a)

−rxu
i
N−1 + (α0 + rx)uiN =

K∑
k=1

(
αku

i−k
N + βkℒui−kN

)
+ 4xrxU

′
N+1/2. (3.38b)

Note that the extension to the two dimensional problem treating they-direction
spectrally is analogous to the two dimensional elliptic equation discussed above
[20].

3.7 Arakawa scheme
The non-linear advection terms are computed in configuration space, and
are calculated using the Arakawa scheme [27]. The Arakawa scheme has the
advantage that it conserves energy and enstrophy exactly. Particularly this
scheme calculates the advection terms via

{ω,ϕ} = − 1
124x4y

[�
ϕi, j−1 + ϕi+1, j−1 − ϕi, j+1 − ϕi+1, j+1

� �
ωi+1, j + ωi, j

�

−
�
ϕi−1, j−1 + ϕi, j−1 − ϕi−1, j+1 − ϕi, j+1

� �
ωi, j + ωi−1, j

�

+
�
ϕi+1, j + ϕi+1, j+1 − ϕi−1, j − ϕi−1, j+1

� �
ωi, j+1 + ωi, j

�

−
�
ϕi+1, j−1 + ϕi+1, j − ϕi−1, j−1 − ϕi−1, j

� �
ωi, j + ωi, j−1

�

+
�
ϕi+1, j − ϕi, j+1

� �
ωi+1, j+1 + ωi, j

�

−
�
ϕi, j−1 − ϕi−1, j

� �
ωi, j + ωi−1, j−1

�

+
�
ϕi, j+1 − ϕi−1, j

� �
ωi−1, j+1 + ωi, j

�

−
�
ϕi+1, j − ϕi, j−1

� �
ωi, j + ωi+1, j−1

�].
(3.39)

Note that the error of the Arakawa scheme is 𝒪(44x) and 𝒪(44y), two orders
of magnitude smaller than the error of the finite differences schemes used to
discretize spatial derivatives (equation 3.6). We have to evaluate this expression
for each grid point inside the physical domain. As we see this is dependent on
the nearest neighbours in x and y direction which demonstrates the usefulness
of ghost points in the y-direction in the numerical simulation.

34 CHAPTER 3 NUMER ICAL METHODS

3.8 Matrix factorisations
Solving the elliptic equation and the time integration require a matrix factori-
sation to solve the equation system. The factorisation itself is solved by the
cuSOLVER library. The cuSOLVER library is a package that provides common
numerical linear algebra routines, such as matrix factorization and triangular
solver routines for dense matrices, sparse least-squares solvers and eigenvalue
solvers for GPUs [22].

In this thesis we employed the QR solver in the 2dads code to solve the
equation systems in matrix form described in the previous sections such as 3.25
and 3.36. A QR-decomposition is a composition of a Matrix A into

A = Q · R, (3.40)

where R is a upper triangular matrix and Q an orthogonal matrix, that is
Qᵀ · Q = 1, where Qᵀ is the transpose matrix of Q. QR-decompositions can be
used to solve systems of linear equations like

A · x = b. (3.41)

This can be done by forming Qᵀ · b and then solving

R · x = Qᵀ · b (3.42)

by back substitution [28]. The QR-decomposition is the only solver included in
the cuSOLVER library that provides a batch size bigger than one, which means
that several equation systems can be executed in parallel.

Both the elliptic equation 3.25 and time integration 3.36 have to be solved
for each time step. These matrices can be pre-factorized and stored at the
start of the numerical simulation and reused at each time step. We therefore
pre-calculate the matrix factorizations at the start of each numerical simulation.

We now take a look at the convergence rate at the example of(
∂2

∂x2 +
∂2

∂y2

)
f = Ω (3.43)

where Ω is the second derivative in x - and y-direction of a gaussian function
given by f (x ,y) = exp

�
−(x2 + y2)/2�

which takes the form

Ω(x ,y) = exp
�
−(x2 + y2)/2� �

x2 + y2 − 2
�

(3.44)

with x ,y ∈ (−10, 10). The numerical solution f of the QR-factorisation is
compared to the analytical one. We calculated the error at each grid point
by |fnum − fan | and determine the average value which is plotted against the
resolution of the simulation domain in Figure 3.7. As we expect the error
decreases quadratically.

3.9 COMPUTAT IONAL COMPLEX ITY 35

16 32 64 128 256 512 1024
Nx ,My

10-7

10-6

10-5

10-4

10-3

10-2

|f n
u
m
−f

a
n
|/N

x
M

y

error

N−2

Figure 3.7: Convergence rate of QR-factorisation at the example of a second order
derivative in x - and y-direction of a Gaussian function.

3.9 Computational complexity
In order to minimize the runtime of the numerical simulation it is necessary to
consider the computational complexity of the numerical algorithms.

Finite differences algorithms have a computational complexity of𝒪(n) and the
spectral method, using fast fourier transformations, is of order 𝒪(n lnn). This
complexity makes this method suitable for numerical simulations considering
its high accuracy for derivatives.

The highest computation complexity belongs to the matrix factorisation. The
QR-decomposition implemented in this code is of complexity 𝒪(n3) and the
most computationally intensive algorithm of this simulation. This fact can easily
be confirmed by taking a look at the runtime of the functions of the different
algorithms. As an example we chose the model described in chapter 5.3 with
Nx = Ny = 1024. The runtime measurements have been performed using the
NVIDIA Visual Profiler [29].

The measurements show that the QR-decomposition demands around 90 %
of the total runtime of the simulation. To achieve a significantly better per-
formance of the code it therefore would be necessary to further optimize the
QR-decomposition. If we consider that we used the cuSOLVER library to per-

36 CHAPTER 3 NUMER ICAL METHODS

forme the decomposition, it would be substantially more time consuming to
implement this method by our own, without the guaranty that our implemen-
tation would run faster than the cuSOLVER routine. We therefore consider
ourself satisfied with the code performance.

4
Parallel Computing
In this chapter we give an overview on parallel computing and programming
on graphical processing units.

Over the last decades central processing units (CPU) increased rapidly in
performance, as shown in figure 4.1, while their manufacturing costs steadily
decreased. This increase was obtained by increasing the clock speed of the
processors. These improvements made most software developers rely on the
advances in hardware to increase the speed of their application. The same piece
of software ran faster on each new generation of processing units. This drive of
improvement has slowed down in recent years. Especially energy consumption
and heat dissipation issues create an insurmountable wall for the clock rate
of newCPUs as frequencies beyond 5GHz lead tomeltingmicroprocessors [30].

However, the number of transistors on an integrated circuit (IC) still dou-
bles every 18 -24 months as shown in Figure 4.1. To keep up with previous
advances in performance, IC manufacturers started exploiting parallel archi-
tectures. This allows single processors to maintain an increase in theoretical
computing power with each new generation while not exceeding the clock rate
limit of 5 GHz. In order to utilize these new types of processors efficiently it is
necessary to implement algorithms that can be executed in parallel [31].

In the following section we will introduce the concepts of parallel compu-
tation and the architectures of graphical processing units (GPU).

37

38 CHAPTER 4 PARALLEL COMPUT ING

Figure 4.1: Performance increase at the example of Intel CPUs [31].

4.1 PARALLEL PROGRAMM ING CONCEPTS 39

4.1 Parallel programming concepts
A sequential program may be split up into several processes (instances of a
computer program that are being executed) which can be executed simultane-
ously if certain conditions are fulfilled. This set of conditions was established by
Bernstein in 1966 and relates to memory locations used by the processes to hold
variables that are read and altered during the execution of the processes. Let us
define Ii as the set of input andOi as the set of output memory locations of the
process Pi . For two processes P1 and P2 the Bernstein Conditions read

I1 ∩O2 = ∅ (4.1)

I2 ∩O1 = ∅ (4.2)

O1 ∩O2 = ∅ (4.3)

where ∅ is the empty set. If those three conditions are satisfied the two pro-
cesses can be executed in parallel. If one of the first two conditions is violated
the input memory location of one process may be overwritten by another pro-
cess. This case leads to non-deterministic results because the runtime of the
processes might vary between different executions of the program. In case of
violation of the third condition several processes write to the same memory
location. Here, obviously only the output of the last process will be saved and
the output of the other processes is lost.

Maybe the most important question when developing solutions for parallel
architectures is howmuch faster a parallelmethod solves the problem compared
to a sequential method. This relative performance is described by the Speedup
Factor. For a program running on p processors it is defined as

S(p) = ts
tp
, (4.4)

where ts is the execution time of the sequential algorithm running on a single
processor and tp is the execution time of the parallel algorithm on a multipro-
cessor. The maximum speedup is p and is achieved when the computation can
be divided into p equal-duration parts assuming no additional overhead in the
parallel algorithm.

Usually several factors will appear as overhead in the parallel method that
decrease the speedup. This is the case if the computation task is not dividable
into p equally sized parts and if there is extra communication in the parallel
algorithm that does not appear in the sequential version. Keeping that in mind
we assume that a fraction of the the computation f cannot be parallelized.
In this case the time to perform the computation on p processes is given by

40 CHAPTER 4 PARALLEL COMPUT ING

f ts + (1 − f)ts/p. The speedup factor is then given by

S(p) = ts
f ts + (1 − f)ts/p =

p

1 + (p − 1)f , (4.5)

which is also known as Amdahl’s law. The speedup is therefore limited to
lim
p→∞

S(p) = 1
f .

Another useful quantity is the efficiency of the parallel solution, defined by

E =
ts

tp × p
. (4.6)

This quantifies how long processes are being used on the computation and to
which extent it is reasonable to increase the number of processors p. Obviously
the efficiency equals 1 in case of linear speedup.

A classification for computers created by Michael Flynn in 1966 is based on
the two dimensions of Instruction and Data. Each of the dimensions has two
possible states: Single and Multiple. This results in four possible classes:

• Single Instruction, Single Data (SISD): This corresponds to a classical
serial computer. During one clock cycle one instruction is executed by
the CPU on one data stream. This is the oldest and most common type
of a single core computer.

• Single Instruction Multiple Data (SIMD): This is a type of a paral-
lel computer. Each processing unit executes the same instruction on a
different data element. Graphical Processing Units (GPU) are a SIMD
architecture and will be discussed in detail later. Other examples would
be MMX and SSE extensions of pentium CPUs.

• Multiple Instruction Single Data (MISD): This class corresponds to
computers using different introduction streams on the same data stream.
There are only few actual examples such as multiple frequency filters or
multiple cryptography algorithms.

• Multiple Instructions Multiple Data (MIMD): This describes the most
common type of parallel computers. Each processor has its own instruc-
tion and data stream. Most current multi-core computers, supercomput-
ers and clusters use this class [32].

In the following I will discuss graphical processing units more detailed. The
solvers discussed in Chapter Numerical Methods are implemented on this
architecture.

4.2 GRAPH ICAL PROCESS ING UN ITS 41

4.2 Graphical processing units
Since the performance increase of classical single core processors slowed down
in 2003, processor vendors have settled on two different designs of micropro-
cessors [33]. Firstly, multicore CPUs, typically using two to a few tens of cores,
are designed to maintain the highest possible execution speed of sequential
programs. In addition these processing units are designed to perform well
on a broad variety of tasks. Architectural advances are for instance branch
prediction and large caches. In contrast to this, the many-core trajectory, typi-
cally using hundreds of cores, follows a fundamentally different strategy. These
multiprocessors are SIMD computers and are build specially for applications
that present a large degree of data parallelism [34]. Another important issue
is the memory bandwidth. GPUs bandwith is approximately 5 to 10 times
the bandwidth of CPU chips. The reason for this is that GPUs feaure simpler
memory models and are bound by fewer legacy constrains [30]. This makes
GPUs suitable for numerical methods such as the Fast Fourier Transformations
or the matrix factorization as described in the previous chapter.

While the performance of general-purpose CPUs increased slowly, GPUs im-
proved relentlessly as shown in Figure 4.2. The reason for this large gap in
theoretical GFLOPs between many-core GPUs and multicore CPUs lies in the
design philosophies discussed above. Both processor architectures are illus-
trated in figure 4.3.

Nevertheless, one has to consider claims about GPUs delivering substantial
speedups of up to 1000X over multi-core CPUs [36, 37, 38] have to be treated
with caution. CPUs still provide numerous possibilities for optimization such
as multithreading or cache blocking. The comparison of fully optimized code
for CPUs and GPUs still delivers a 5X to 10X better performance of the GPUs
for algorithms that are relevant for simulations as described in the previous
chapter [34].

4.3 Programming in CUDA
In the following we present the basic concepts of programming on graphical
processing units. As an application programming interface (API) for the GPU
we use CUDA which is created by NVIDIA. CUDA is an acronym for Computer
Unified Device Architecture and provides an extention to C [30].

As an example of how to use this API we compare the implementation of the
finite difference scheme in chapter 3.6 for a serial computer and using CUDA.
An implementation in conventional C could look like the following.

42 CHAPTER 4 PARALLEL COMPUT ING

Figure 4.2: Comparison of the increase of floating-point operations per second for
CPUs and GPUs [35].

Figure 4.3: Illustration of the processor architectures of conventional CPUs and GPUs
[35].

4.3 PROGRAMM ING IN CUDA 43

1 #include <stdio.h>
2
3 void fd_CPU (double * in , double * out ,
4 int Nx , double delta_x);
5
6 double f(double x, double Lx);
7
8 int main (){
9 const int Nx = 128;

10 const double Lx = 42;
11 double data[Nx];
12 double CPU_out [Nx -2];
13
14 double delta_x = Lx/Nx;
15
16 // initialize array
17 for(int i = 0; i < Nx; i++){
18 data[i] = f(i*delta_x , double Lx);
19 }
20
21 fd_CPU (data , CPU_out , Nx , delta_x);
22
23 return 0;
24 }
25
26 double f(double x, double Lx){
27 // assign function value
28
29 return value;
30 }
31
32 void fd_CPU (double * in , double * out ,
33 int Nx , double delta_x){
34
35 for(int i = 1; i< Nx -1; i++){
36 out[i] = (in[i+1] - in[i -1])/(2* delta_x);
37 }
38 }

For simplicity we ignore boundary conditions. In this code we initialize the
input for the computation in CPU memory in line 16 and calculate the first
derivative by the function finite_differences, defined in line 24. The result
of the computation is stored in CPU memory, pointed to by CPU_out.

44 CHAPTER 4 PARALLEL COMPUT ING

To implement this finite difference scheme in CUDA several additional steps
are necessary. One possible implementation could look like:

1 #include <stdio.h>
2 #include < cuda_runtime_api .h>
3
4 __global__
5 void fd_GPU (double * in , double * out , int Nx ,

double delta_x);
6
7
8 int main (){
9

10 const int Nx = 128;
11 const double Lx = 42;
12 double data[Nx];
13 // double CPU_out [Nx -2];
14 double delta_x = Lx/Nx;
15
16 double * d_Lx , d_data , GPU_out , d_delta_x ;
17 int* d_Nx;
18
19 // initialize array
20 for(int i = 0; i < Nx; i++){
21 data[i] = f(i* delta_x);
22 }
23
24 cudaMalloc ((void **)& d_Lx , sizeof (double));
25 cudaMalloc ((void **)& d_data , sizeof (double)*Nx);
26 cudaMalloc ((void **)& d_delta_x , sizeof (double));
27 cudaMalloc ((void **)& GPU_out , sizeof (double)*(Nx -2));
28
29 cudaMemcpy (d_Lx , Lx , sizeof (double),

cudaMemcpyHostToDevice);
30 cudaMemcpy (d_delta_x , delta_x , sizeof (double),

cudaMemcpyHostToDevice);
31 cudaMemcpy (d_data , data , sizeof (double)*Nx ,

cudaMemcpyHostToDevice);
32
33 fd_GPU <<<dimGrid ,dimBlock >>>(d_data , GPU_out ,

d_Nx , d_delta_x);
34
35 cudaMemcpy (out , GPU_out , sizeof (double)*(Nx -2),

4.3 PROGRAMM ING IN CUDA 45

cudaMemcpyDeviceToHost);
36
37 cudaFree (d_data);
38 cudaFree (GPU_out);
39 cudaFree (d_Lx);
40 cudaFree (d_delta_x);
41
42 return 0;
43 }
44
45 __global__
46 void fd_GPU (double * in , double * out , int Nx ,

double delta_x)
47 {
48 int index = blockIdx .x* blockDim .x + threadIdx .x;
49
50 if(index < 0 && index < Nx){
51 out[index] = (in[index +1] - in[index -1])

/(2* delta_x);
52 }
53 }
54

As we see this code contains a number of additional function calls compared
to the previous example. The code can be divided into four parts:

1 initializing input data on the host (CPU)

2 copying data from host memory to device memory (GPU)

3 performing calculations on the device

4 copying results back to host memory

In the following we explain each step in further detail at the example above.

1. As in the previous example we initialize the input for the computation
in CPU memory in line 19.

2. The first difference to the previous code is the function call cudaMalloc in
line 22. cudaMalloc allocates memory on the GPU analogous to malloc. In
line 27 we copy data from the CPU to the GPU using the function cudaMemcpy.
The keyword cudaMemcpyHostToDevice specifies the direction of the copy.

46 CHAPTER 4 PARALLEL COMPUT ING

3. In CUDA a function that is executed on the GPU is called kernel. The
definition of a kernel requires an additional specifier, indicated in front of the
name of the function, which declares where this function can be called from.
In line 42 __global__ defines a kernel that is called from host code. We call
the kernel in line 31 where we specify the execution configuration between
the triple chevrons. This defines how many instances of execution, so called
threads, are executed in parallel and how they are structured. Threads are
organized in blocks and blocks are organized in a grid. The logical separation
between thread blocks and grids is a logical abstraction of the memory hier-
archy implementd in GPU hardware. In the example the number of blocks is
represented by dimGrid which we did not declare in the code for simplicity.
The number of threads in one block is given by dimBlock. When a kernel is
executed, each worker thread is assigned to a bloxkIdx and threadIdx and
uses those to find the data element to operate on.

4. After the kernel is executed we copy the result back to host memory us-
ing the function cudaMemcpy (line 32). Finally we free the memory allocated
at the device by cudaFree, analogous to free, in line 34 to 37.

This code is a typical example of SIMD computation. All threads have the
same instruction stream but operate on different array elements.

4.4 Speedup of 2dads code
In this section we compare the runtime of our implementation using CUDA to
a sequential Fortran code that uses mostly the same methods to solve model
equations of the same shape [20].

We therefore measure the runtime of the two programs for different reso-
lutions, shown in figure 4.4. We use a rectangular grid with 322 to 10242 grid
points and solve a perform a simple blob simulation as described in chapter 5.3.
For each program we perform 1000 time iterations and note the average run
time of 5 program executions. We use a GeForce GTX 680 as the GPU and a Intel
Xeon W3550 as a CPU. As we see the performance of the two different codes
strongly depends on the number of grid points. For very low resolutions the
sequential Fortran code is significantly faster than the parallelized CUDA imple-
mentation. With increasing Nx ,My the CUDA code increases in performance
and pass the Fortran version between Nx = My = 64 and Nx = My = 128. For
bigger resolution the parallelization of the CUDA code leads to a significant
runtime difference, according to equation 4.4 we gain a Speedup Factor of

4.4 SPEEDUP OF 2DADS CODE 47

32 64 128 256 512 1024
Nx ,My

100

101

102

103

t[
s]

cuda
fortran

Figure 4.4: Runtime t of the CUDA/Fortran code for different numbers of grid points.
The runtime is measured for 1000 time iterations and averaged over 5
executions.

S(p) ≈ 6 for Nx = My = 1024.

As we see the CUDA implementation only pays off for large simulations. Only
above Nx = My = 128 we gain significant speedup with the parallelized GPU
version.

The 2dads code, which is stil steadily enhanced, is available at [39].

5
Code Testing
5.1 Blob diffusion
To verify the implementations presented in Chapter 3 and the frame work in
which they are implemented we benchmark the code on simplified models. We
start comparing the diffusion of a symmetric blob to its analytical solution. The
blob structure is initialized with its peak in the center of the coordinate system
of the simulation domain in the form

n(x, t = 0) = exp
(
−
1
2
x2

)
. (5.1)

The diffusion equation is given by

∂n

∂t
= κ∇2⊥n (5.2)

where κ represents the diffusion coefficient and n is the particle density. We
perform a numerical simulation over 1000 time steps with a time step of
∆t = 10−2 and a diffusion coefficient of κ = 0.5 on a quadratic simulation
domain where x ∈ (−25, 25). The analytic solution of the diffusion equation
5.2 with the initial conditions 5.1 takes the form [12]

n (x, t) = 1
1 + 2κt

exp

[
−

x2

2(1 + 2κt)
]
. (5.3)

We now compare the analytic solution to the result from the numerical simula-
tion. As an example we show the case of a resolution of 128 × 128 grid points

49

50 CHAPTER 5 CODE TEST ING

−10 −5 0 5 10
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

n

t=2

numeric
analytic

Figure 5.1: Comparison of the numerical result (blue points) of the diffusion equation
5.2 with starting conditions 5.1 and the analytic solution 5.3 (green line).

and the same parameters as mentioned above in figure 5.1. The average error
at each grid point should decrease with the resolution of the simulation. To
verify this we measure the average error at the end of the simulation, given by
|fnum − fan |/NxMy for different resolutions. The results are shown in figure
5.2. We find that the error decreases almost quadratically with (Nx ×My)2. For
Nx ,My = 1024 we see that the converges rate flattens out due to the error of
the time derivative witch does not change for different resolutions.

5.2 Non-linear advection
We further test the code with a more complex model where we include a
non-linear advection term. This model is given by

∂n

∂t
+ {ϕ,n} = κ∇2⊥n (5.4)

where n stands for the plasma density and ϕ is the electrostatic potential which
we chose time independent and of the form

ϕ(x ,y) = ϕ21 sin

(
y

Ly

)
sin

(
x

2Lx

)
(5.5)

with box length Lx and Ly and the amplitude ϕ21 = 1. As an initial condition
for the density we chose a linearly decreasing density profile in x -direction,
n(x , t = 0) = (Lx − x) /Lx . We chose Dirichlet boundary conditions on both
boundaries in x -direction withU1/2 = 1 andUN+1/2 = 0, a diffusion coefficient

5.3 S IMPLE BLOB S IMULAT ION 51

16 32 64 128 256 512 1024
Nx ,My

10-7

10-6

10-5

10-4

10-3
|f n

u
m
−f

a
n
|/N

x
M

y
error

N−2

Figure 5.2: The average error of the simulation of the diffusion equation 5.2 as a
function of discretization points. This is compared to the expected rate of
convergence for a second order scheme.

of κ = 0.5 and Lx = Ly = 1.

The chosen potential gives rise to a electric drift of the form vE = ẑ × ∇ϕ.
We therefore expect the plasma to drift radially outwards in the middle part
of the simulation domain and inwards at the borders.

The simulation results are shown in figure 5.3 for t = 0, t = 0.01, t = 0.05 and
t = 20. We take a closer look at the vertical profile n0 of the plasma density
given by

〈n〉 = n0 (x , t) = 1
Ly

∫ Ly

0
dy n (x ,y, t) . (5.6)

The vertical profile is shown in figure 5.4 for t = 0, t = 0.05, t = 0.1 and t = 2.
As we expect the density profile flattens out as the simulation proceeds. Note
that the flattening is symmetric in x .

5.3 Simple blob simulation
For the last test we chose a minimal model for interchange motions. This
model is essentially a closure of the plasma vorticity equation, coupled with
an advection-diffusion equation for the plasma density n. The nondimensional

52 CHAPTER 5 CODE TEST ING

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

φ(t=0)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

φ(t=0.1)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

φ(t=0.5)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

φ(t=20)

Figure 5.3: Evolution of the plasma density according to the model 5.4 with a diffusion
coefficient κ = 0.5.

5.3 S IMPLE BLOB S IMULAT ION 53

0.0 0.2 0.4 0.6 0.8 1.0
Lx

0.0

0.2

0.4

0.6

0.8

1.0
<
n
>

t=0

t=0.05

t=0.1

t=2

Figure 5.4: Vertical profile of the plasma density for different t .

model equations may be written as

∂ n

∂t
+ {ϕ,n} = κ∇2⊥ n

∂Ω

∂t
+ {ϕ,Ω} + ∂ n

∂y
= µ∇2⊥Ω

∇2⊥ϕ = Ω.

(5.7)

We chose a quadratic simulation domain with Lx = Ly = 30 with a resolution
Mx = Ny = 1024. As Boundary conditions we chose Dirichlet conditions in
x -direction with U1/2 = UN+1/2 = 0. for the diffusion coefficients we chose
κ = µ = 0.0158. The simulation is initialized with a symmetric blob structure
for the plasma density centered at x0 = (5, 35),

n (x, t = 0) = exp
[
−
1
2
(x − x0)2

]
. (5.8)

The starting conditions of potential ϕ and vorticity Ω are ϕ(t = 0) = Ω(t =
0) = 0.

At the beginning of the simulation there is no flow field, which so follows
from the polarization of vorticity by the blob structure given by the ∂n/∂y-
term in equation 5.7. The blob structure is advected radially outwards, which
corresponds the x -direction in the domain. At t = 5 a density peak with a
steeper gradient at the front has developed, as vorticity is created through the
∂n/∂y-term. The flow field is now dipolar and transports the plasma radially

54 CHAPTER 5 CODE TEST ING

outwards at the position of the blob center. Subsequently, the plasma is cir-
culated into the lobes by the dipolar flow field as it is transported along the
equipotential lines. The advection of the blob structure is shown in figure 5.6.
The radial cross section of the density field is shown in more detail in figure 5.5.
As we see the the steep front is followed by a trailing wake while the amplitude
decays with increasing t .

0 5 10 15 20 25 30
x

0.0

0.2

0.4

0.6

0.8

1.0

n
(x

,t
)

t=0

t=5

t=10

t=20

t=30

Figure 5.5: Radial variation of the plasma density for different t .

We observe excellent agreement with previous studies [10] which gives us
reason to believe that the code solves the model equations 5.7 correctly.

5.3 S IMPLE BLOB S IMULAT ION 55

0 5 10 15 20 25

x

0

5

10

15

20

25

y

n(t=5)

0.0044

0.1056

0.2067

0.3078

0.4089

0.5100

0.6111

0.7122

0.8133

0 5 10 15 20 25

x

0

5

10

15

20

25

y

φ(t=5)

−3.710

−2.798

−1.887

−0.976

−0.065

0.846

1.757

2.668

3.579

0 5 10 15 20 25

x

0

5

10

15

20

25

y

n(t=10)

0.0044

0.1056

0.2067

0.3078

0.4089

0.5100

0.6111

0.7122

0.8133

0 5 10 15 20 25

x

0

5

10

15

20

25

y

φ(t=10)

−3.710

−2.798

−1.887

−0.976

−0.065

0.846

1.757

2.668

3.579

0 5 10 15 20 25

x

0

5

10

15

20

25

y

n(t=20)

0.0044

0.1056

0.2067

0.3078

0.4089

0.5100

0.6111

0.7122

0.8133

0 5 10 15 20 25

x

0

5

10

15

20

25

y

φ(t=20)

−3.710

−2.798

−1.887

−0.976

−0.065

0.846

1.757

2.668

3.579

Figure 5.6: Radial advection of a localized blob structure initialized at x0 = (5, 35)
showing the plasma density n in the left column and the potential ϕ in
the right column for different t .

6
Transport in flux-drivenconvection models
In this chapter we investigate the transport and confinement of a system driven
by a constant incoming heat flux at the inner radial boundary. We identify
different transport states, investigate the kinetic energy, the convective heat
flux and integrated pressure for various model parameters. In addition the
results are compared to previous studies [40].

Magnetized plasmas are usually driven far from thermodynamic equilibrium by
forced quasi-stationary fluxes of particles and energy. These fluxes frequently
lead to linear instabilities and fluctuation-induced transport which causes a
degradation of the particle and heat confinement in the plasma. In addition
quasi-two-dimensional fluctuations frequently lead to the generation of sheared
flows, that reduce the particle and heat transport and therefore improve the
plasma confinement. Therefore we investigate the basic physics of such a flux
driven convection-shear flow system. The instability mechanisms described by
this model are the most important mechanism of such diverse plasma systems
as the edge and scrape-off layer in magnetic confinement experiments [41, 42].

The model comprises only the pressure and vorticity equations and is therefore
the simplest possible self-cosistent model describing cross-phase and coherence
between those fields [43]. We assume that the system is driven by a constant
incoming heat flux ∆p/Lx at the inner radial boundary, where Lx represents

57

58 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

the radial width of the plasma layer and ∆p the associated radial pressure vari-
ation. We further assume slab coordinates which leads to the two-dimensional
convection model

∂p

∂t
+ {ϕ,p} = κ∇2⊥p,

∂Ω

∂t
+ {ϕ,Ω} + ∂p

∂y
= µ∇2⊥Ω,

(6.1)

where ϕ stands for the electrostatic potential, p for the plasma pressure and
Ω for the vorticity. The relation between ϕ and Ω is given by Ω = ∇2⊥ϕ. The
model is normalized the way described in the chapterModel Equations. In the
following we take the pressure and vorticity diffusion coefficients to be equal,
κ = µ. We use a Neumann condition for the left boundary of the domain for the
plasma pressure of the form ∂xp = −1 in non-dimensional units. For the right
boundary we use Dirichlet conditions with p = 0. In the poloidal direction we
chose periodic boundary conditions. The conditions for the potential and the
vorticity are chosen ϕ = Ω = 0 at x = 0, 1.

Before we present the simulation results we define the physical properties
that are examined. We define the poloidal average of any field as its profile,
which we indicate with a zero sub-script. The pressure profile for instance
takes the form

p0(x , t) = 1
Ly

∫ Ly

0
dy p(x ,y, t) (6.2)

Where Ly is the domain size in the poloidal direction. Furthermore we define
the spatial fluctuation by subtracting the poloidal average from the plasma
pressure and donate this by an over-tilde p̃ = p − p0. We use this to define the
radial velocity by ṽx = −∂ϕ̃/∂y. Furthermore we define the radial convective
heat flux profile by

Γ0(x , t) = 1
Ly

∫ Ly

0
dy p̃ ṽx . (6.3)

The energy integral of the mean and fluctuating motions are given by

𝒰 =
∫ Lx

0
dx

∫ Ly

0
dy

1
2
v2
0, (6.4)

and

𝒦 =
∫ Lx

0
dx

∫ Ly

0
dy

1
2

(
∇⊥ϕ̃

)2
. (6.5)

We further define the total thermal energy confined in the plasma layer by

ℰ =
∫ Lx

0
dx

∫ Ly

0
dy p. (6.6)

6.1 STAT IONARY CONVECT ION 59

In the following we use a quadratic domain with Lx = Ly = 1 and initialize
the simulations with a convective cell for the electrostatic potential of the form

ϕ (x ,y, t = 0) = ϕ12 sin (πx) sin
(
2πy

Ly

)
(6.7)

with an amplitude of ϕ12 = 10−5. The initial diffusive pressure profile takes
the form p(x ,y, t = 0) = 1 − x .

In the following we will investigate the described system for different diffusion
coefficients κ and µ and discuss the results.

6.1 Stationary convection
Firstly we investigate the model parameters slightly above the critical diffusion
coefficient for the onset of convective motions, which is approximately κ = µ =
0.0183. The initial convection cells are unstable and grow exponentially in
time until they reach a steady state at a time of approximately t ≈ 750. This
can be seen in the evolution of the energy integral of the fluctuating motions,
shown in figure 6.1.

0 500 1000 1500 2000
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K

Figure 6.1: Evolution of the kinetic energy in fluctuating motions measured at (x,y)
= (0.5,0.5) for the diffusion coefficients κ = µ = 0.0183. The fluctuation
amplitude saturates at t ≈ 750.

60 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

0 500 1000 1500 2000
t

0.500

0.505

0.510

0.515

0.520

0.525

E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Γ
p

Figure 6.2: Evolution of the kinetic energy (blue line) and the radial heat flux (green
line) measured at (x,y) = (0.5,0.5) for the diffusion coefficients κ = µ =
0.0183.

The kinetic energy grows exponentially until the state of stationary convection
is reached and the energy saturates. The spatial structure of pressure and
electrostatic potential as well as the pressure fluctuations and the radial heat
flux in the stationary state are shown in figure 6.3. The contour plots show the
rising and descending of high and low density plasma advected by symmetric
convection cells. We clearly observe the quasi-linear flattening of the pressure
profile due to large convective transport in the central region. In addition we
see that the structures of the plasma pressure fluctuations and the electrostatic
potential are π/2 out of phase. This maximizes the radial convective heat
transport which reduces the heat confinement and increases the heat flux as
shown in figure 6.2. We compared our results to previous studies [44, 40] and
find perfect agreement.

6.2 Convection with sheared flows
We now decrease the diffusion coefficients to κ = µ = 0.012. The system
reaches a quasi-stationary state at t ≈ 900 with convection cells as in the state
before, but with a seed azimuthal mean flow generated by numerical round-off
errors that are unstable to the tilting mechanism. This tilted cells are a direct
consequence of the azimuthal streaming motion in opposite directions at the
poloidal boundaries.

The physical mechanism of the tilting instability is well understood, the first
analytical work on the two-dimensional tilting instability was presented in [45].

6.2 CONVECT ION W ITH SHEARED FLOWS 61

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=1000)

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8
y

102 × p̃(t=1000)

−4.8

−3.6

−2.4

−1.2

0.0

1.2

2.4

3.6

4.8

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

103 × φ(t=1000)

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

6.0

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

105 × Γx (t=1000)

0.00

0.18

0.36

0.54

0.72

0.90

1.08

1.26

1.44

1.62

Figure 6.3: Spatial structure of the pressure and electrostatic potential, pressure fluc-
tuations and radial heat flux in the stationary state at t = 1000 for the
diffusion coefficients κ = µ = 0.0183.

62 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

The tilted cells are shown in figure 6.8 in addition to the pressure, pressure
fluctuation and the radial heat flux. The profiles of the plasma pressure p0, the
potential ϕ0 and the vorticity Ω0 at t = 1000 are shown in figures 6.4 - 6.6. The
appearance of the azimuthal streaming motion suppresses the convection cell
with the opposite vorticity of the mean flow while the other cell is increased. In
case of steady state this instability saturates through convective heat transport
and shear flow generation by vertical momentum transport. The shear flow
itself balances between the tilting instability and viscous dissipation.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

p0 (t=1000)

Figure 6.4: Pressure profile p0
at t = 1000.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y

102 × φ0 (t=1000)

Figure 6.5: Potential profile ϕ0
at t = 1000.

0.0 0.2 0.4 0.6 0.8 1.0
x

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

y

106 × Ω0 (t=1000)

Figure 6.6: Vorticity profile Ω0 at t = 1000.

As the shearedmean flow appears the amplitudes of the fluctuating motions are
reduced, as we see in figure 6.7. This leads to a decrease of the convective heat
flux which causes a reduction in the drive of the pressure motion. Compared
to the convective state discussed before the total heat flux is reduced. This

6.3 OSC ILLATORY MOT ION W ITH SHARED FLOWS 63

phenomenon is similar to the low to high confinement transition in magnetic
confinement experiments and therefore of great interest to the plasma physics
community [44].

0 200 400 600 800 1000
t

0

20

40

60

80

100

120

140

K,
 U

Figure 6.7: Evolution of the kinetic energy integrals 𝒦 (green) and 𝒰 (blue) for
the diffusion coefficients κ = µ = 0.012. The energy integral of the
fluctuating motion decreases after the appearance of the sheared mean
flow at t ≈ 750.

6.3 Oscillatory motion with shared flows
For further decrease of the diffusion coefficients to κ = µ = 0.011 we observe
that the system enters a state of oscillatory convection. The direction in which
the tilt initially develops depends on the numerical round-off errors and there-
fore can vary for different simulations with slightly different parameters. The
evolution of the energy integrals is shown in figure 6.9. We clearly see that the
system undergoes a stable limit cycle starting at t ≈ 750. Figure 6.10 shows
one period of oscillation. An explanation for this motion might be explained
as the following.

We start with the state at t = 873 where the fluctuations are driving the
mean flow through the tilting mechanism. The convective cells deposit almost
all their energy into the mean flow, which reduces the convective transport,
shown at t = 888. Now the low fluctuation level of the convection cells however
is not able to sustain the shared mean flow which leads to a decrease of this
flow due to viscous dissipation. Now the convective instability leads to a state
dominated by the spatial fluctuations again, shown at t = 900, and the cycle

64 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=1000)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

6.75

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

102 × p̃(t=1000)

−9.6

−7.2

−4.8

−2.4

0.0

2.4

4.8

7.2

9.6

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

102 × φ(t=1000)

−0.48

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

104 × Γx (t=1000)

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

1.08

Figure 6.8: Spatial tilted structure of the pressure and electrostatic potential, pressure
fluctuations and radial heat flux in the stationary state at t = 1000 for
the diffusion coefficients κ = µ = 0.012.

6.3 OSC ILLATORY MOT ION W ITH SHARED FLOWS 65

repeats. The time evolution of the spatial structure shows that the convection
cells swing forth and back with the oscillating mean flow without any net drift.

The integrated convective heat flux Γp and the integrated plasma pressure
ℰ , are shown in figure 6.11. We observe that the integrated pressure that repre-
sents the plasma confinement, shown by the blue line, oscillates at the same
time scale as the kinetic energy, whereas the convective heat flux, represented
by the green line, shows an additional oscillation on a bigger time scale. A pos-
sible explanation for this effect might be the instability mechanism described
in [46].

0 200 400 600 800 1000
t

0

20

40

60

80

100

120

140

160

180

K,
 U

Figure 6.9: Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰 (blue line)
for the diffusion coefficients κ = µ = 0.011.

66 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=873)

0.0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

102 × φ(t=873)

−4.9

−4.2

−3.5

−2.8

−2.1

−1.4

−0.7

0.0

0.7

1.4

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=888)

0.0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y
102 × φ(t=888)

−2.7

−2.4

−2.1

−1.8

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=900)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

6.75

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

102 × φ(t=900)

−4.9

−4.2

−3.5

−2.8

−2.1

−1.4

−0.7

0.0

0.7

Figure 6.10: Evolution of the plasma pressure and the electrostatic potential over one
period of oscillation for the diffusion coefficients κ = µ = 0.011.

6.4 ONSET OF TURBULENT CONVECT ION 67

0 500 1000 1500 2000
t

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Γ
p

Figure 6.11: Evolution of the integrated convective heat flux Γp (green line) and the
integrated pressure ℰ (blue broken line) for the diffusion coefficients
κ = µ = 0.011, showing the oscillatory convection from t ≈ 750 on.

6.4 Onset of turbulent convection
At κ = µ = 0.0016 the system enters a state of turbulent convection and
chaotic oscillations. The energy integrals shown in figure 6.12 show that the
energy of the mean flow U exceeds the fluctuating motion energy 𝒦 at t ≈ 75
and that 𝒰 lags 𝒦 which is consistent with the energy transfer due to tilting as
described above. The integrated pressure and the integrated convective heat
flux are shown in figure 6.13. The convective heat flux, being the product of
two strongly correlated fields, shows always strong spikes in the turbulent state.
Note that the integrated pressure shows that the plasma confinement is lower
than in the state of oscillatory convection. The spatial structures of the pressure
and the electrostatic potential, pressure fluctuations and radial heat flux are
shown in figure 6.14 exemplary at t = 1000. An explanation for this bursting
process and a stochastic analysis of this turbulent convection is presented in
the chapter Stochastic analysis of bursty transport.

68 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

0 200 400 600 800 1000
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10
4
×
K,
 U

Figure 6.12: Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰 (blue line)
for the diffusion coefficients κ = µ = 0.0016.

0 200 400 600 800 1000
t

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E

−1.0

−0.5

0.0

0.5

1.0

Γ
p

Figure 6.13: Evolution of the integrated convective heat flux Γp (green line) and the
integrated pressure ℰ (blue broken line) for the diffusion coefficients
κ = µ = 0.0016. The system shows no clear periodicity after t ≈ 100.

6.5 Intermittent convection
We further decrease the diffusion coefficients toκ = µ = 0.0007. The evolution
of the kinetic energies is shown in figure 6.15. We observe fewer but bigger

6.5 INTERM ITTENT CONVECT ION 69

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=1000)

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

4.32

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8
y

102 × p̃(t=1000)

−6.0

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

6.0

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

102 × φ(t=1000)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

y

105 × Γx (t=1000)

0.00

0.35

0.70

1.05

1.40

1.75

2.10

2.45

2.80

Figure 6.14: Spatial structures of the pressure and electrostatic potential, pressure
fluctuations and radial heat flux at t = 1000 for the diffusion coefficients
κ = µ = 0.0016.

70 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

peaks compared to the previous state. The evolution of the integrated convec-
tive heat flux and the integrated pressure show the same picture, presented in
figure 6.16. The spatial structures of the pressure and the electrostatic potential,
pressure fluctuations and radial heat flux are shown in figure 6.17 exemplary
shown at t = 1000. We observe that the spatial structures descending from
the initial convection cells are more elongated than in the state with higher
doffusion coefficients. Further investigations including a stochastic analysis of
this turbulent convection is presented in chapter Stochastic analysis of bursty
transport.

The observed bursty behaviour seems to be typical for strongly driven tur-
bulent convection systems with differential rotation [47, 48].

0 200 400 600 800 1000
t

0

2

4

6

8

10

10
4
×
K,
 U

Figure 6.15: Evolution of the kinetic energy integrals 𝒦 (green line) and 𝒰 (blue line)
for the diffusion coefficients κ = µ = 0.0007.

6.5 INTERM ITTENT CONVECT ION 71

0 200 400 600 800 1000
t

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Γ
p

Figure 6.16: Evolution of the integrated convective heat flux Γp (green line) and the
integrated pressure ℰ (blue broken line) for the diffusion coefficients
κ = µ = 0.0007.

72 CHAPTER 6 TRANSPORT IN FLUX-DR IVEN CONVECT ION MODELS

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× p(t=1000)

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

10× φ̃(t=1000)

−0.105

−0.070

−0.035

0.000

0.035

0.070

0.105

0.140

0.175

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

102 × φ(t=1000)

−7.2

−6.3

−5.4

−4.5

−3.6

−2.7

−1.8

−0.9

0.0

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

105 × Γx (t=1000)

−1.2

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

Figure 6.17: Spatial structures of the pressure and electrostatic potential, pressure
fluctuations and radial heat flux at t = 1000 for the diffusion coefficients
κ = µ = 0.0007.

7
Statistical analysis offluctuations
In this chapterwe present a statistical analysis of simulation data from turbulent
convection for two sets of diffusion coefficients discussed in chapters 6.4 and
6.5.

7.1 Statistical concepts
Before we present the results we need to define several statistical quantities
and concepts.

In the following we use besides the absolute values of the investigated physical
quantities normalized values as well. For a given time series of the quantity X
we define the normalized variable X̃ as

X̃ =
X − 〈X 〉
Xrms

(7.1)

where 〈X 〉 is the mean value of the series and Xrms its root mean square given
by

Xrms = 〈(X − 〈X 〉)2〉1/2 . (7.2)

73

74 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

Note that the expectation value of the new variable X̃ is zero, while the stan-
dard deviation is unity.

In order to investigate the properties of large-amplitude events we define
for each quantity a threshold value. If the investigated quantity exceeds this
value we search for its local maximum and note its position and amplitude.
In figure 7.1 and figure 7.2 we see this method at the example of the normal-
ized radial flux for the tubulent and intermittent case with a time window
t ∈ (100, 1000). The threshold of Γ̃x = 1.5 is represented by the red broken
line and the local maxima are displayed by the black circles. This allows us
to define the waiting time τk between two successive bursts at tk−1 and tk as
τk = tk − tk−1. In order to avoid counting two closely consecutive maxima as
two different events we chose a burst length of 20 in which all values exceeding
the threshold are counted at one burst.

100 200 300 400 500 600 700 800 900 1000
t

−4

−2

0

2

4

Γ̃
x

Figure 7.1: Time series of the normalized radial flux for the diffusion coefficients
κ = µ = 0.0016. The threshold at Γ̃x = 1.5 is represented by the reed
broken line. The local maxima are displayed by the black circles.

We define the cumulative distribution function (CDF) of a random variable X
as

CDFX (x) = 𝒫[X ≤ x], (7.3)

here 𝒫[X ≤ x] is the probability of X ≤ x . Note that CDFX (∞) = 1,
CDFX (−∞) = 0 and that CDFX (x) is a non-decreasing function. We now
use the CDF to define the probability density function (PDF) as

PDFX (x) = dCDFX (x)
dx

. (7.4)

This function has the following properties:

7.1 STAT IST ICAL CONCEPTS 75

100 200 300 400 500 600 700 800 900 1000
t

−6

−4

−2

0

2

4

6

8

10

Γ̃
x

Figure 7.2: Time series of the normalized radial flux for the diffusion coefficients
κ = µ = 0.0007. The threshold at Γ̃x = 1.5 is represented by the reed
broken line. The local maxima are displayed by the black circles.

• PDFX (x) ≥ 0

•
∫ ∞
−∞

dx PDFX (x) = 1

• CDFX (x) =
∫ x
−∞

dξ PDFX (ξ)

• 𝒫[a ≤ X ≤ b] = ∫ b
a dx PDFX (x)

We further define themoments 〈Xn〉wheren is an integer. The angular brackets
donate an average of a random variable over all its values. The raw moments
are given by

〈Xn〉 =
∫ ∞

−∞

dx xnPX (x), (7.5)

while the central moments are defined as

µn = 〈(X − 〈X 〉)n〉 , n > 1. (7.6)

The next property we need to define is the skewness, which is a measure of the
asymmetry of the distribution function. If this property is negative, the left tail
of the distribution is longer or fatter than the right tail, and reverse for positive
skewness. The skewness of a symmetric distribution is zero. The definition of
the skewness SX is given by

SX =
µ3

µ32/2
. (7.7)

76 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

The kurtosis or flatness of a distribution measures how peaked a distribution
is. In the case of a large kurtosis the distribution is sharp or has fatter tails,
while a distribution with a rounded peak and thin tails has a low kurtosis. The
flatness FX of X is defined by

FX =
µ4
µ2
. (7.8)

We further use the conditional average method to investigate the properties
of large-amplitude fluctuations in noisy signals, as used in previous studies
on fusion plasma devices such as [49, 50]. For a given time series Φ(t) we
require a condition C to pick out certain sub-intervals of Φ(t). An example for
such a condition would be the exceedance of a threshold as discussed before.
The conditionally averaged signal is then given by the ensemble average of all
sub-intervals

ΦC = 〈Φ|C〉 . (7.9)

For eachmaxima ofΦ above the threshold we pick a sub-interval (tm−∆, tm+∆)
where tm stands for the time of the maxima and 2∆ is the length of the
subinterval. We further require that those sub-intervals are not allowed to
overlap. The conditionally averaged signal is then given by

ΦC =
1
M

M∑
m=1

Φ(t − tm) for t − tm ∈ (−∆,∆), (7.10)

where M represents the total number on subintervals [51, 52].

7.2 Probability density functions
The first statistical analysis we perform is to investigate the distribution of the
radial velocity fluctuations ṽx , the radial heat flux Γ̃x as well as the fluctuations
of the electrostatic potential ϕ̃, the vorticity Ω̃ and the plasma pressure p̃. We
therefore measure these quantities at one point in the centre of the simulation
domain at (x ,y) = (0.5, 0.5). These quantities are recorded with a sampling
time of ∆t = 0.05. In figure 7.3 we present the normalized probability distribu-
tion function for the radial velocity fluctuation ṽx for the diffusion coefficients
κ = µ = 0.0016. The distribution function has a nearly Gaussian form with
vanishing skewness and kurtosis of Fv̂ = 3.08. We compare this distribution
to the high turbulence state with the diffusion coefficients of κ = µ = 0.0007,
shown in figure 7.4. The local fluctuations become increasingly non-Gaussian
and develop exponential tails. Again there is essentially no skewness of the
distribution and the kurtosis becomes Fv̂ = 4.87.

7.2 PROBAB IL ITY DENS ITY FUNCT IONS 77

−4 −2 0 2 4
ṽx

10-2

10-1

100

P
D
F
(ṽ

x
)

numerical result
Gaussian fit

Figure 7.3: Normalized PDF for the radial velocity fluctuation ṽx measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0016, showing nearly
Gaussian statistics.

−6 −4 −2 0 2 4 6
ṽx

10-3

10-2

10-1

100

P
D
F
(ṽ

x
)

numerical result
Gaussian fit
exponential fit

Figure 7.4: Normalized PDF for the radial velocity fluctuation ṽx measured at
(x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ = 0.0007, revealing
exponential tails for large fluctuation amplitudes.

In order to understand the non-Gaussian probability distribution for small
diffusion coefficients, we show the evolution of the normalized radial heat flux
in figure 7.2 for κ = µ = 0.0007. We observe that the plasma system displays
quasi-periodic bursting of the convective transport. Large amplitude events
follow after relatively quiescent periods with suppressed convective transport.

78 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

An explanation of this bursting process may be given as follows. Without
any significant mean flow energy the spatial structures grow exponentially in
amplitude until the convection cells give most of their energy to the sheared
mean flows due to the tilting instability. This leads to a differential advec-
tion that suppresses the remaining convective motion. This causes a temporal
decay of the mean flow energy due to viscous dissipation and increases the
confined heat. Now the gradient of the mean pressure becomes strong enough
again to drive the primary instability mechanism which leads to a new burst
of fluctuations and transport and the cycle repeats. The observed relatively
long periods of suppressed fluctuation levels broken by strong bursts lead to
the quasi-periodic occurrence of large amplitude events. This results in the
non-Gaussian shape of the PDFs [40].

The probability density functions of the normalized pressure p̃, electrostatic
potential ϕ̃, vorticity Ω̃ and radial heat flux Γ̃ are shown in figure 7.5 for the
diffusion coefficients κ = µ = 0.0016. The distributions are compared to
a fitted normal distribution and are measured in the centre of the domain
at (x,y) =(0.5,0.5) with a sampling time of t = 0.05. We observe that the
distribution functions of the normalized potential and vorticity show nearly
Gaussian statistics. The normalized pressure and the normalized radial heat
flux clearly deviate from the normal distribution. An explanation for this might
be the different boundary conditions used for the pressure field. Since we use
a Neumann condition at the inner radial boundary and a Dirichlet condition
at the outer boundary we do not expect the distribution functions to be sym-
metric. The radial heat flux, which depends on the pressure and the radial
velocity, thus deviates from the normal distribution as well. For the electrostatic
potential and vorticity we use Dirichlet conditions on both boundaries, which
is consistent the symmetric distribution.

We investigate the same properties for the intermittent convection with the
diffusion coefficients κ = µ = 0.0007, shown in figure 7.6. We observe that the
distributions become increasingly non-Gaussian and develop exponential tails
as for the radial velocity fluctuations shown in figure 7.4. The explanation for
this is the same as for the distribution function of the radial velocity explained
above.

7.2 PROBAB IL ITY DENS ITY FUNCT IONS 79

−3 −2 −1 0 1 2 3 4 5 6
p̃

10-3

10-2

10-1

100

P
D
F
(p̃
)

numerical result
Gaussian fit

−4 −3 −2 −1 0 1 2 3 4
φ̃

10-3

10-2

10-1

100

P
D
F
(φ̃
)

numerical result
Gaussian fit

−3 −2 −1 0 1 2 3
Ω̃

10-3

10-2

10-1

100

P
D
F
(Ω̃
)

numerical result
Gaussian fit

−6 −4 −2 0 2 4 6
Γ̃

10-3

10-2

10-1

100

P
D
F
(Γ̃
)

numerical result
Gaussian fit

Figure 7.5: Probability distribution functions of the normalized pressure p̃, potential
ϕ̃, vorticity Ω̃ and the radial heat flux Γ̃, measured at (x ,y) = (0.5, 0.5)
for the diffusion coefficients κ = µ = 0.0016.

80 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

−4 −2 0 2 4 6 8
p̃

10-3

10-2

10-1

100
P
D
F
(p̃
)

numerical result
Gaussian fit

−4 −3 −2 −1 0 1 2 3 4
φ̃

10-3

10-2

10-1

100

P
D
F
(φ̃
)

numerical result
Gaussian fit

−3 −2 −1 0 1 2 3
Ω̃

10-3

10-2

10-1

100

P
D
F
(Ω̃
)

numerical result
Gaussian fit

−6 −4 −2 0 2 4 6
Γ̃

10-3

10-2

10-1

100

P
D
F
(Γ̃
)

numerical result
Gaussian fit

Figure 7.6: Probability distribution functions of the normalized pressure p̃, potential
ϕ̃, vorticity Ω̃ and the radial heat flux Γ̃, measured at (x ,y) = (0.5, 0.5)
for the diffusion coefficients κ = µ = 0.0007.

7.3 Waiting time distribution
Next, we investigate the distribution of the waiting time between consecutive
large-amplitude bursts. The probability density function of the waiting time
of the normalized pressure for the diffusion coefficients κ = µ = 0.0016 is
presented in figure 7.7. The measurements are performed in the middle of
the domain at (x,y) = (0.5,0.5). The distributions are compared to a fitted
exponential distribution. The scale parameter of the exponential distribution
is 〈τ 〉 = 46.30.

We perform the same measurements for the intermittent convection case with
the diffusion coefficients κ = µ = 0.0007. The scale parameter becomes
〈τ 〉 = 74.78. This agrees with the results of chapter 6.5 where we observe

7.3 WA IT ING T IME D ISTR IBUT ION 81

fewer but stronger bursts compared to the states with κ = µ = 0.0016. In both
cases the waiting time distribution is well described by an exponential distri-
bution. This is in full agreement with previous studies [53] and experimental
observations [54, 55].

0 50 100 150 200 250 300 350
τ

10-4

10-3

10-2

P
D
F
p̃
(τ
)

numerical result
exponential fit

Figure 7.7: Waiting time distribution of the normalized pressure, measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0016. An event is
registered if the normalized pressure exceeds the threshold value of p̃ =
1.5.

0 50 100 150 200 250 300 350
τ

10-4

10-3

10-2

P
D
F
p̃
(τ
)

numerical result
exponential fit

Figure 7.8: Waiting time distribution of the normalized pressure, measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0007. An event is
registered if the normalized pressure exceeds the threshold value of p̃ =
1.5.

82 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

7.4 Amplitude distribution
Each time the normalized pressure exceeds the threshold value we measure
in addition to the waiting time also the peak amplitude of the event. The
amplitude distribution of the normalized pressure for the diffusion coefficients
κ = µ = 0.0016 is shown in figure 7.9. We perform the measurement again in
the middle of the domain at (x,y) = (0.5,0.5). The results are compared to a
fitted exponential distribution giving a mean amplitude of 〈A〉 = 2.27.

We compare the results to the highly turbulent state with κ = µ = 0.0007
shown in figure 7.10. The distribution is again fitted with an exponential dis-
tribution giving a mean amplitude of 〈A〉 = 2.80. The result agrees with the
observations of chapter 6.5. In the intermittent state we observe that the large-
amplitude bursts are rarer but have higher amplitudes.

1.5 2.0 2.5 3.0 3.5 4.0
A

10-2

10-1

100

P
D
F
p̃
(A
)

numerical result
exponetial fit

Figure 7.9: Amplitude distribution of the normalized pressure, measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0016. An event is
registered if the normalized pressure exceeds the threshold value of p̃ =
1.5.

7.5 COND IT IONALLY AVERAGED WAVEFORM 83

1 2 3 4 5 6
A

10-2

10-1

100

P
D
F
p̃
(A
)

numerical result
exponetial fit

Figure 7.10: Amplitude distribution of the normalized pressure, measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0007. An event is
registered if the normalized pressure exceeds the threshold value of
p̃ = 1.5.

7.5 Conditionally averaged waveform
We calculate the conditionally averaged waveform for the normalized pressure
p̃ of 2000 events for the state with κ = µ = 0.0016, shown in figure 7.11. As
we see, shortly before and after each event that exceeds the threshold density,
a smaller peak emerges. An explanation for this might be the poloidal prop-
agation of the spatial structures. Since we use periodic boundary conditions
in the poloidal direction the spatial structures, propagating in both poloidal
and radial directions, may pass the point where we perform the measurements
more than once during the time window we chose for one event. As we see
in figure 7.11 the spatial structures have a transit time in poloidal direction of
t ≈ 13 which is consistent with the values of v0.

We perform the same measurement for the intermittent state with κ = µ =
0.0007, shown in figure 7.12. We compare each tail separately to an expo-
nential function of the form f (τ) = exp(τ/τr) for τ ≤ 0 which results in a
characteristic rise time τr = 4.76 and f (τ) = exp(−τ/τr) for τ ≥ 0 which
results in a characteristic fall time τf = 7.14, giving the estimated duration
time τd = τr +τf = 11.9. Here, we do not observe any additional peak and the
distribution shows a nearly exponential shape. This indicates that the radial
velocity of the spatial structures is high enough for the entire structure to
traverse the point where the measurements are performed before the structure

84 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

traverses the whole length of the domain in poloidal direction.

Again, the shape of the waveform for the highly turbulent state agrees with
experimental observations [54, 55].

−20 −15 −10 −5 0 5 10 15 20
τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

p̃
C
(τ

)/
p̃
C
m
a
x

Figure 7.11: Conditionally averaged waveform of the normalized pressure, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ = 0.0016.

−20 −15 −10 −5 0 5 10 15 20 25
τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

p̃
C
(τ

)/
p̃
C
m
a
x

numerical result
exponential fit

Figure 7.12: Conditionally averaged waveform of the normalized pressure, measured
at (x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ = 0.0007.

7.6 AUTOCORRELAT ION FUNCT ION 85

7.6 Autocorrelation function
In figure 7.13 the autocorrelation function is shown for the normalized pressure
for the state withκ = µ = 0.0016. We observe that the exponential decay of the
autocorrelation function is superimposed by an oscillation with the frequency
ω ≈ 7. An explanation for this might be themechanism discussed in chapter 7.5.

For the intermittent state withκ = µ = 0.0007we observe that the autocorrela-
tion function of the normalized pressure takes an exponential form as we would
expect from the previous results for conditional averaging. We obtain a time
scale of τC = 2.7 which deviated clearly from the estimated duration time of
τd = 11.9. An explanation might be the fact, that the autocorrelation function
weights all amplitudes equally whereas the conditionally averaged waveform
counts only big amplitudes. This would indicate that small amplitudes with
small correlation times dominate the autocorrelation function.

0 10 20 30 40 50
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
p̃
(τ

)

Figure 7.13: Autocorrelation function of the normalized pressure measured at (x ,y) =
(0.5, 0.5) for the diffusion coefficients κ = µ = 0.0016.

86 CHAPTER 7 STAT IST ICAL ANALYS IS OF FLUCTUAT IONS

0 10 20 30 40 50
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
p̃
(τ

)

numerical result
exponential fit

Figure 7.14: Autocorrelation function of the normalized radial velocity measured at
(x ,y) = (0.5, 0.5) for the diffusion coefficients κ = µ = 0.0007.

8
Conclusion and Outlook
In this thesis we investigate convective motions in magnetized plasmas by
means of two-dimensional numerical simulations. In particular, our investiga-
tion focuses on intermittent fluctuations and turbulence-induced transport in
magnetically confined fusion plasmas. We derive a set of reduced fluid equa-
tions describing the evolution of plasma pressure and electric drift vorticity
for a two-dimensional plane describing the plasma motions perpendicular
to the magnetic field. We present a numerical simulation code implemented
and parallelized on graphical processing units on order to perform long time
simulations and compute time series of unprecedented duration. We observe
significant speedup compared to sequential Fortran implementations. In terms
of numerical results we perform a parameter scan for the diffusion coefficients
and identify different transport and confinement states. We observe states
of chaotic oscillations and intermittent convection which we investigate by
performing signal analysis techniques. We observe that the probability density
functions for the normalized radial velocity, heat flux and pressure fluctuations
starting from nearly Gaussian form at the onset of turbulent convection be-
come increasingly non-Gaussian and develop exponential tails with increasing
heat flux drive. In addition we observe that the waiting time and amplitude
distribution of quasi-periodic bursts take a nearly exponential form. We further
compare those results to experimental measurements and predictions from
stochastic modelling and find very good agreement.

A more detailed overview of the different chapters looks as the following:

87

88 CHAPTER 8 CONCLUS ION AND OUTLOOK

In chapter two we derive the model equations describing collective motions
of non-uniformly magnetized plasmas. These describe the evolution of plasma
pressure and electric drift vorticity for a two-dimensional plane perpendicular
to the magnetic field. The model equations are derived from the momentum
equation and the resulting drifts in toroidal geometry applying local slab coor-
dinates. We introduce dimensionless variables in order to reduce the parameter
scale to two free parameters, the pressure diffusion coefficient κ and the vor-
ticity equivalent µ.

Chapter three is dedicated to the numerical methods that are implemented in
the simulation code. We describe finite differences and spectral schemes and
Neumann, Dirichlet and periodic boundary conditions. We use an Arakawa
scheme for the two-dimensional advection and present the implementation of
a stiffly stable semi-implicit time integration scheme. In addition we discuss
the computational complexity of the different methods.

Code parallelization and graphical processing units are described in chap-
ter four. We present a short overview of CUDA programming and compare our
implementation to previous Fortran simulations in terms of performance. In
chapter five we evaluate the code with simplified but topic related models and
observe perfect agreement with theoretical predictions and previous studies.

In chapter six we finally present the simulation results for different trans-
port and confinement states in flux driven thermal convection. We identify
states of stationary convection, convection with sheared flows, oscillatory mo-
tion and finally turbulent and intermittent convection.

In the last chapter we perform statistical analysis of long time series from
single-point recordings. We compare the results to experimental measurements
and predictions of stochastic modelling.

Outlook
The developed GPU code is fully flexible in its treatment of initial and boundary
conditions and therefore suitable for numerous different models. Because of
its increasing speedup for an increasing number of grid points compared to se-
quential implementations, the code is highly suitable for more complex models
that require higher resolution. An example would be the implementation of
sheath losses on one side of the simulation domain corresponding to transport
along field lines in the SOL of a tokamak plasma. The simplest approach would
describe the sheath losses by linear damping terms. For that we would divide
the simulation domain in two parts: the SOL region and the wall shadow region.

89

The border between those regions is given by LSOL. The model equations would
take the form

∂ lnn
∂t
+ {ϕ, lnn} = κ∇2⊥ lnn + κ (∇⊥ lnn)2 − σn (x)
∂Ω

∂t
+ {ϕ,Ω} + ∂ lnn

∂y
= µ∇2⊥Ω − σΩ (x)Ω

(8.1)

where σn/Ω (x) is a linear damping term defined by

σn/Ω (x) =
{

0 for x < LSOL
σ̂n/Ω for x > LSOL

(8.2)

and where we use lnn instead of n, allowing order unity variations of the
particle density [56, 57].

The code will be merged with a GPU code using a spectral Fourier Galerkin
method written by Ph.D. Ralph Kube. This enables to chose between Neumann,
Dirichlet or periodic boundary conditions in the radial direction. The code will
therefore be used for further research.

In terms of statistical analysis, a study of the time series measured at different
positions in the simulation domain would be recommended. All measurements
in this thesis have been done at the middle of the domain, measurements near
the domain boundary would be relevant in order to investigate the effects of
the boundaries. In addition, further stochastic analysis of the time series is
recommended.

Bibliography
[1] Anthony J Webster. Fusion: Power for the future. Physics education,

38(2):135, 2003.

[2] T Kenneth Fowler. Nuclear power—fusion. Reviews of Modern Physics,
71(2):S456, 1999.

[3] Jeffrey P Freidberg. Plasma physics and fusion energy. Cambridge univer-
sity press, 2008.

[4] Richard Pitts, Richard Buttery, and Simon Pinches. Fusion: the way ahead.
Physics World, 19(3):20, 2006.

[5] European consortium for the development of fusion energy. https://www.
euro-fusion.org/. Accessed: 29.4.2016.

[6] Volker Naulin. Turbulent transport and the plasma edge. Journal of
nuclear materials, 363:24–31, 2007.

[7] OE Garcia. Blob transport in the plasma edge: a review. Plasma and
Fusion Research, 4:019–019, 2009.

[8] RJ Maqueda, DP Stotler, SJ Zweben, and NSTX The. Intermittency in the
scrape-off layer of the national spherical torus experiment during h-mode
confinement. Journal of nuclear materials, 415(1):S459–S462, 2011.

[9] SI Krasheninnikov, DA D’ippolito, and JR Myra. Recent theoretical
progress in understanding coherent structures in edge and sol turbu-
lence. Journal of Plasma Physics, 74(05):679–717, 2008.

[10] OE Garcia, NH Bian, V Naulin, AH Nielsen, and J Juul Rasmussen. Mech-
anism and scaling for convection of isolated structures in nonuniformly
magnetized plasmas. Physics of Plasmas (1994-present), 12(9):090701,
2005.

91

https://www.euro-fusion.org/
https://www.euro-fusion.org/

92 B IBL IOGRAPHY

[11] Sergei I Krasheninnikov. On scrape off layer plasma transport. Physics
Letters A, 283(5):368–370, 2001.

[12] OE Garcia, NH Bian, and W Fundamenski. Radial interchange motions of
plasma filaments. Physics of Plasmas (1994-present), 13(8):082309, 2006.

[13] Andreas Schmid, Albrecht Herrmann, HW Müller, et al. Experimental
observation of the radial propagation of elm induced filaments on asdex
upgrade. Plasma Physics and Controlled Fusion, 50(4):045007, 2008.

[14] OE Garcia, J Horacek, and RA Pitts. Intermittent fluctuations in the tcv
scrape-off layer. Nuclear Fusion, 55(6):062002, 2015.

[15] Harnessing the power of the sun: fusion reactors. http://www.
scienceinschool.org/2012/issue22/fusion. Accessed: 29.3.2016.

[16] RJ Maqueda, GA Wurden, DP Stotler, SJ Zweben, B LaBombard, JL Terry,
JL Lowrance, VJ Mastrocola, GF Renda, DA D’Ippolito, et al. Gas puff
imaging of edge turbulence. Review of Scientific Instruments, 74(3):2020–
2026, 2003.

[17] Ralph Kube. Numerical studies of radial filament motion in toroidally
confined plasmas. Master’s thesis, University of Tromsø, Faculty of Science
and Technology Department of Physics and Technology, 2010.

[18] SI Braginskii. Transport processes in a plasma. Reviews of plasma physics,
1:205, 1965.

[19] OE Garcia, NH Bian, V Naulin, AH Nielsen, and J Juul Rasmussen. Two-
dimensional convection and interchangemotions in fluids andmagnetized
plasmas. Physica Scripta, 2006(T122):104, 2006.

[20] OE Garcia. 2dads documentation. unpublished, 2011.

[21] cufft | nvidia developer. https://developer.nvidia.com/cufft. Ac-
cessed: 29.4.2016.

[22] cusolver :: Cuda toolkit documentation. http://docs.nvidia.com/cuda/
cusolver/. Accessed: 29.3.2016.

[23] Volker Naulin and Anders H Nielsen. Accuracy of spectral and finite
difference schemes in 2d advection problems. SIAM Journal on Scientific
Computing, 25(1):104–126, 2003.

http://www.scienceinschool.org/2012/issue22/fusion
http://www.scienceinschool.org/2012/issue22/fusion
https://developer.nvidia.com/cufft
http://docs.nvidia.com/cuda/cusolver/
http://docs.nvidia.com/cuda/cusolver/

B IBL IOGRAPHY 93

[24] S Lennart Johnsson and Robert L Krawitz. Cooley-tukey fft on the con-
nection machine. Parallel Computing, 18(11):1201–1221, 1992.

[25] Steven G Johnson. Notes on fft-based differentiation, 2011.

[26] George Em Karniadakis, Moshe Israeli, and Steven A Orszag. High-order
splitting methods for the incompressible navier-stokes equations. Journal
of computational physics, 97(2):414–443, 1991.

[27] Akio Arakawa. Computational design for long-term numerical integration
of the equations of fluid motion: Two-dimensional incompressible flow.
part i. Journal of Computational Physics, 1(1):119–143, 1966.

[28] William H Press. Numerical recipes in C/C++. Cambridge University
Press, 2002.

[29] Nvidia profiler user’s guide. http://docs.nvidia.com/cuda/profiler-
users-guide/#axzz46G2kPmNk. Accessed: 19.4.2016.

[30] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Newnes, 2012.

[31] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s journal, 30(3):202–210, 2005.

[32] Barry Wilkinson and Michael Allen. Parallel programming, volume 999.
Prentice hall Upper Saddle River, NJ, 1999.

[33] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone,
David B Kirk, and Wen-mei W Hwu. Optimization principles and appli-
cation performance evaluation of a multithreaded gpu using cuda. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, pages 73–82. ACM, 2008.

[34] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, et al. Debunking the 100x gpu vs. cpu
myth: an evaluation of throughput computing on cpu and gpu. In ACM
SIGARCH Computer Architecture News, volume 38, pages 451–460. ACM,
2010.

[35] Cuda c programming guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/. Accessed: 5.4.2016.

http://docs.nvidia.com/cuda/profiler-users-guide/#axzz46G2kPmNk
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz46G2kPmNk
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

94 B IBL IOGRAPHY

[36] L Genovese. Graphic processing units: A possible answer to hpc. In 4th
ABINIT Developer Workshop, 2009.

[37] Naga K Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and
John Manferdelli. High performance discrete fourier transforms on graph-
ics processors. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing, page 2. IEEE Press, 2008.

[38] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D
Owens. Efficient computation of sum-products on gpus through software-
managed cache. In Proceedings of the 22nd annual international conference
on Supercomputing, pages 309–318. ACM, 2008.

[39] Two-dimensional advection-diffusion solver. https://github.com/
gregordecristoforo/2dads. Accessed: 12.5.2016.

[40] OE Garcia, NH Bian, JV Paulsen, S Benkadda, and K Rypdal. Confinement
and bursty transport in a flux-driven convection model with sheared flows.
Plasma physics and controlled fusion, 45(6):919, 2003.

[41] Harold P Furth, John Killeen, andMarshall N Rosenbluth. Finite-resistivity
instabilities of a sheet pinch. Physics of Fluids (1958-1988), 6(4):459–484,
1963.

[42] M Berning and KH Spatschek. Bifurcations and transport barriers in the
resistive-g paradigm. Physical Review E, 62(1):1162, 2000.

[43] OE Garcia. Two-field transport models for magnetized plasmas. Journal
of plasma physics, 65(02):81–96, 2001.

[44] OE Garcia. Convective transport and sheared flows in fluids and magnetized
plasmas. PhD thesis, PhD thesis, University of Tromsø, Norway, 2002.

[45] LN Howard and R Krishnamurti. Large-scale flow in turbulent convection:
a mathematical model. Journal of fluid mechanics, 170:385–410, 1986.

[46] JM Finn, JF Drake, and PN Guzdar. Instability of fluid vortices and
generation of sheared flow. Physics of Fluids B: Plasma Physics (1989-1993),
4(9):2758–2768, 1992.

[47] V Naulin, J Juul Rasmussen, and J Nycander. Transport barriers and edge
localizedmodes-like bursts in a plasmamodelwith turbulent equipartition
profiles. Physics of Plasmas (1994-present), 10(4):1075–1082, 2003.

https://github.com/gregordecristoforo/2dads
https://github.com/gregordecristoforo/2dads

B IBL IOGRAPHY 95

[48] Zhihong Lin, TS Hahm, WW Lee, WM Tang, and RB White. Gyrokinetic
simulations in general geometry and applications to collisional damping
of zonal flows. Physics of Plasmas (1994-present), 7(5):1857–1862, 2000.

[49] GY Antar, G Counsell, and J-W Ahn. On the scaling of avaloids and
turbulence with the average density approaching the density limit. Physics
of Plasmas (1994-present), 12(8):082503, 2005.

[50] DL Rudakov, JA Boedo, RA Moyer, S Krasheninnikov, AW Leonard,
MA Mahdavi, GR McKee, GD Porter, PC Stangeby, JG Watkins, et al.
Fluctuation-driven transport in the diii-d boundary. Plasma physics and
controlled fusion, 44(6):717, 2002.

[51] Audun Theodorsen. Stochastic modelling of intermittent scrape-off layer
plasma fluctuations. 2015.

[52] HL Pécseli and J Trulsen. A statistical analysis of numerically simu-
lated plasma turbulence. Physics of Fluids B: Plasma Physics (1989-1993),
1(8):1616–1636, 1989.

[53] OE Garcia. Stochastic modeling of intermittent scrape-off layer plasma
fluctuations. Physical review letters, 108(26):265001, 2012.

[54] A Theodorsen, OE Garcia, J Horacek, R Kube, and RA Pitts. Scrape-
off layer turbulence in tcv: evidence in support of stochastic modelling.
Plasma Physics and Controlled Fusion, 58(4):044006, 2016.

[55] OE Garcia, I Cziegler, R Kube, B LaBombard, and JL Terry. Burst statistics
in alcator c-mod sol turbulence. Journal of Nuclear Materials, 438:S180–
S183, 2013.

[56] OE Garcia, J Horacek, RA Pitts, AH Nielsen, W Fundamenski, JP Graves,
V Naulin, and J Juul Rasmussen. Interchange turbulence in the tcv
scrape-off layer. Plasma physics and controlled fusion, 48(1):L1, 2005.

[57] DA Russell, JR Myra, and DA D’Ippolito. Collisionality and magnetic
geometry effects on tokamak edge turbulent transport. ii. many-blob
turbulence in the two-region model. Physics of Plasmas (1994-present),
14(10):102307, 2007.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Model Equations
	2.1 Model setting
	2.2 Drift terms in toroidal geometry
	2.3 Two field equations
	2.4 Dimensionless variables

	3 Numerical Methods
	3.1 Simulation domain
	3.2 Finite differences
	3.3 Ghost points
	3.4 Spectral transformations
	3.5 Elliptic equations
	3.6 Time integration
	3.7 Arakawa scheme
	3.8 Matrix factorisations
	3.9 Computational complexity

	4 Parallel Computing
	4.1 Parallel programming concepts
	4.2 Graphical processing units
	4.3 Programming in CUDA
	4.4 Speedup of 2dads code

	5 Code Testing
	5.1 Blob diffusion
	5.2 Non-linear advection
	5.3 Simple blob simulation

	6 Transport in flux-driven convection models
	6.1 Stationary convection
	6.2 Convection with sheared flows
	6.3 Oscillatory motion with shared flows
	6.4 Onset of turbulent convection
	6.5 Intermittent convection

	7 Statistical analysis of fluctuations
	7.1 Statistical concepts
	7.2 Probability density functions
	7.3 Waiting time distribution
	7.4 Amplitude distribution
	7.5 Conditionally averaged waveform
	7.6 Autocorrelation function

	8 Conclusion and Outlook
	Bibliography

