Vis enkel innførsel

dc.contributor.authorNovotný, Jan
dc.contributor.authorSojka, Martin
dc.contributor.authorKomorovsky, Stanislav
dc.contributor.authorNečas, Marek
dc.contributor.authorMarek, Radek
dc.date.accessioned2017-03-15T13:46:11Z
dc.date.available2017-03-15T13:46:11Z
dc.date.issued2016-06-16
dc.description.abstractRuthenium-based compounds are potential candidates for use as anticancer metallodrugs. The central ruthenium atom can be in the oxidation state +2 (e.g., RAPTA, RAED) or +3 (e.g., NAMI, KP). In this study we focus on paramagnetic NAMI analogs of a general structure [4-R-pyH]+ <i>trans</i>-[Ru<sup>III</sup>Cl<sub>4</sub>(DMSO)(4-R-py)]<sup>−</sup>, where 4-R-py stands for a 4-substituted pyridine. As paramagnetic systems are generally considered difficult to characterize in detail by NMR spectroscopy, we performed a systematic structural and methodological NMR study of complexes containing variously substituted pyridines. The effect of the paramagnetic nature of these complexes on the <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts was systematically investigated by temperature-dependent NMR experiments and density-functional theory (DFT) calculations. To understand the electronic factors influencing the orbital (δ<sup>orb</sup>, temperature-independent) and paramagnetic (δ<sup>para</sup>, temperature-dependent) contributions to the total NMR chemical shifts, a relativistic twocomponent DFT approach was used. The paramagnetic contributions to the <sup>13</sup>C NMR chemical shifts are correlated with the distribution of spin density in the ligand moiety and the <sup>13</sup>C isotropic hyperfine coupling constants, A<sub>iso</sub> (<sup>13</sup>C), for the individual carbon atoms. To analyze the mechanism of spin distribution in the ligand, the contributions of molecular spin−orbitals (MSOs) to the hyperfine coupling constants and the spatial distribution of the z-component of the spin density in the MSOs calculated at the relativistic four-component DFT level are discussed and rationalized. The significant effects of the substituent and the solvent on δ<sup>para</sup>, particularly the contact contribution, are demonstrated. This work should contribute to further understanding of the link between the electronic structure and the NMR chemical shifts in open-shell systems, including the ruthenium-based metallodrugs investigated in this account.en_US
dc.descriptionSource:<a href=http://pubs.acs.org/doi/pdf/10.1021/jacs.6b02749>DOI: 10.1021/jacs.6b02749</a>en_US
dc.identifier.citationNovotný J, Sojka, Komorovsky S, Nečas, Marek R. Interpreting the paramagnetic NMR spectra of potential Ru(III) metallodrugs: synergy between experiment and relativistic DFT calculations. Journal of the American Chemical Society. 2016;138(27):8432-8445en_US
dc.identifier.cristinIDFRIDAID 1419471
dc.identifier.doi10.1021/jacs.6b02749
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttps://hdl.handle.net/10037/10708
dc.language.isoengen_US
dc.publisherAmerican Chemical Society. Journal of the American Chemical Societyen_US
dc.relation.journalJournal of the American Chemical Society
dc.relation.projectIDNorges forskningsråd: 179568en_US
dc.relation.projectIDNorges forskningsråd: 214095en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400en_US
dc.titleInterpreting the paramagnetic NMR spectra of potential Ru(III) metallodrugs: synergy between experiment and relativistic DFT calculationsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel