Show simple item record

dc.contributor.authorAhluwalia, Balpreet Singh
dc.contributor.authorHelle, Øystein Ivar
dc.contributor.authorDiekmann, Robin
dc.contributor.authorØie, Cristina Ionica
dc.contributor.authorMcCourt, Peter A. G.
dc.contributor.authorSchuttpelz, Mark
dc.date.accessioned2018-01-22T09:38:54Z
dc.date.available2018-01-22T09:38:54Z
dc.date.issued2017-04-24
dc.description.abstractPresent optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.en_US
dc.description.sponsorshipThe research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 336716 (B.S.A.). This work was also supported by the Research Council of Norway (grant no. 244764/F11 to B.S.A.), and the German Academic Exchange Service (grant no. 57160327 to M.S.). R.D. acknowledges additional support by grant no. KF2140610NT4 of the German Federal Ministry for Economic Affairs and Energy.en_US
dc.descriptionAccepted manuscript version. Published version available at <a href=http://doi.org/10.1038/nphoton.2017.55>http://doi.org/10.1038/nphoton.2017.55</a>.en_US
dc.identifier.citationDiekmann, R., Helle, Ø.I., Øie, C.I., McCourt, P., Huser, T.R, Schüttpelz, M. & Ahluwalia, B.S. (2017). Chip-based wide field-of-view nanoscopy. <i>Nature Photonics, 11</i>, 322-328. http://doi.org/10.1038/nphoton.2017.55en_US
dc.identifier.cristinIDFRIDAID 1482342
dc.identifier.doi10.1038/nphoton.2017.55
dc.identifier.issn1749-4885
dc.identifier.issn1749-4893
dc.identifier.urihttps://hdl.handle.net/10037/11998
dc.language.isoengen_US
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofHelle, Ø.I. (2019). On-chip optical nanoscopy: towards high throughput and multi-modality. (Doctoral thesis). <a href=https://hdl.handle.net/10037/16641>https://hdl.handle.net/10037/16641. </a>
dc.relation.journalNature Photonics
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336716////en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FundingProgram/244764/F11/Norway///
dc.rights.accessRightsopenAccessen_US
dc.subjectSuper-resolution microscopyen_US
dc.subjectTotal internal reflection microscopyen_US
dc.titleChip-based wide field-of-view nanoscopyen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record