Show simple item record

dc.contributor.authorPettersson, Irina
dc.contributor.authorPiatnitski, Andrey
dc.date.accessioned2018-04-10T08:12:30Z
dc.date.available2018-04-10T08:12:30Z
dc.date.issued2017-12-21
dc.description.abstractWe study the existence and uniqueness of a solution to a linear stationary convection–diffusion equation stated in an infinite cylinder, Neumann boundary condition being imposed on the boundary. We assume that the cylinder is a junction of two semi-infinite cylinders with two different periodic regimes. Depending on the direction of the effective convection in the two semi-infinite cylinders, we either get a unique solution, or one-parameter family of solutions, or even non-existence in the general case. In the latter case we provide necessary and sufficient conditions for the existence of a solution.en_US
dc.descriptionAccepted manuscript version. Published version available at <a href=https://doi.org/10.1016/j.jde.2017.12.015>https://doi.org/10.1016/j.jde.2017.12.015</a>.en_US
dc.identifier.citationPettersson, I. & Piatnitski, A. (2018). Stationary convection-diffusion equation in an infinite cylinder. <i>Journal of Differential Equations, 264</i>(7), 4456-4487. https://doi.org/10.1016/j.jde.2017.12.015en_US
dc.identifier.cristinIDFRIDAID 1530721
dc.identifier.doi10.1016/j.jde.2017.12.015
dc.identifier.issn0022-0396
dc.identifier.issn1090-2732
dc.identifier.urihttps://hdl.handle.net/10037/12505
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Differential Equations
dc.rights.accessRightsopenAccessen_US
dc.subject.keywordConvection–diffusion equation
dc.subject.keywordInfinite cylinder
dc.subject.keywordStabilization at infinity
dc.subject.keywordEffective drift
dc.subjectVDP::Mathematics and natural science: 400en_US
dc.titleStationary convection-diffusion equation in an infinite cylinderen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelno
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record