Vis enkel innførsel

dc.contributor.authorSørbye, Sigrunn Holbek
dc.contributor.authorRue, Håvard
dc.date.accessioned2018-06-26T12:33:33Z
dc.date.available2018-06-26T12:33:33Z
dc.date.issued2017-07-07
dc.description.abstractFractional Gaussian noise (fGn) is a stationary stochastic process used to model anti-persistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (<i>H)</i>, which in Bayesian contexts typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for <i>H</i>. The PC prior is computed to penalise divergence from the special case of white noise, and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient <i>φ</i> of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding confounding effects of prior choices for the two hyperparameters <i>H</i> and <i>φ</i>. Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.en_US
dc.descriptionThis is the peer reviewed version of the following article: Sørbye, S. H. & Rue, H. (2017). Fractional Gaussian noise: Prior specification and model comparison. Environmetrics, 1-12., which has been published in final form at: <a href=http://doi.org/10.1002/env.2457> http://doi.org/10.1002/env.2457</a>. <br>This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."en_US
dc.identifier.citationSørbye, S. H. & Rue, H. (2017). Fractional Gaussian noise: Prior specification and model comparison. Environmetrics, 1-12.en_US
dc.identifier.cristinIDFRIDAID 1481429
dc.identifier.doi10.1002/env.2457
dc.identifier.issn1180-4009
dc.identifier.issn1099-095X
dc.identifier.urihttps://hdl.handle.net/10037/13007
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalEnvironmetrics
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRINATEK/240873/Norway/Penalised Complexity-priors: A new tool to define default priors and robustify Bayesian models//en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/ISPNATTEK/239048/Norway/Institution based strategic project - Mathematics and Statistics at UiT The Arctic University of Norway//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en_US
dc.titleFractional Gaussian noise: Prior specification and model comparisonen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel