Vis enkel innførsel

dc.contributor.authorLamu, Admassu Nadew
dc.contributor.authorOlsen, Jan Abel
dc.date.accessioned2018-09-06T07:53:12Z
dc.date.available2018-09-06T07:53:12Z
dc.date.issued2018-09-01
dc.description.abstract<p><i>Purpose</i>: The purpose of the study was to compare alternative statistical techniques to find the best approach for converting QLQ-C30 scores onto EQ-5D-5L and SF-6D utilities, and to estimate the mapping algorithms that best predict these health state utilities.</p> <p><i>Methods</i>: 772 cancer patients described their health along the cancer-specific instrument (QLQ-C30) and two generic preference-based instruments (EQ-5D-5L and SF-6D). Seven alternative regression models were applied: ordinary least squares, generalized linear model, extended estimating equations (EEE), fractional regression model, beta binomial (BB) regression, logistic quantile regression and censored least absolute deviation. Normalized mean absolute error (NMAE), normalized root mean square error (NRMSE), <i>r</i>-squared (<i>r</i><sup>2</sup>) and concordance correlation coefficient (CCC) were used as model performance criteria. Cross-validation was conducted by randomly splitting internal dataset into two equally sized groups to test the generalizability of each model.</p> <p><i>Results</i>: In predicting EQ-5D-5L utilities, the BB regression performed best. It gave better predictive accuracy in terms of all criteria in the full sample, as well as in the validation sample. In predicting SF-6D, the EEE performed best. It outperformed in all criteria: NRMSE = 0.1004, NMAE = 0.0798, CCC = 0.842 and <i>r</i><sup>2</sup> = 72.7% in the full sample, and NRMSE = 0.1037, NMAE = 0.0821, CCC = 0.8345 and <i>r</i><sup>2</sup> = 71.4% in cross-validation.</p> <p><i>Conclusions</i>: When only QLQ-C30 data are available, mapping provides an alternative approach to obtain health state utility data for use in cost-effectiveness analyses. Among seven alternative regression models, the BB and the EEE gave the most accurate predictions for EQ-5D-5L and SF-6D, respectively.en_US
dc.description.sponsorshipThe Australian National Health and Medical Research Councilen_US
dc.descriptionThis is a pre-print of an article published in <i>Quality of Life Research</i>. The final authenticated version is available online at: <a href=https://doi.org/10.1007/s11136-018-1981-6> https://doi.org/10.1007/s11136-018-1981-6</a>.en_US
dc.identifier.citationLamu, A.N. & Olsen, J.A. (2018). Testing alternative regression models to predict utilities: mapping the QLQ-C30 onto the EQ-5D-5L and the SF-6D. Quality of Life Research. https://doi.org/10.1007/s11136-018-1981-6en_US
dc.identifier.cristinIDFRIDAID 1607059
dc.identifier.doihttps://doi.org/10.1007/s11136-018-1981-6
dc.identifier.issn0962-9343
dc.identifier.issn1573-2649
dc.identifier.urihttps://hdl.handle.net/10037/13687
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.journalQuality of Life Research
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/HELSEVEL/221452/Norway/5 by 5: Comparing 5 Quality of Life instruments in 5 countries//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medisinske Fag: 700en_US
dc.subjectVDP::Medical disciplines: 700en_US
dc.subjectMappingen_US
dc.subjectRegression modelsen_US
dc.subjectQLQ-C30en_US
dc.subjectEQ-5D-5Len_US
dc.subjectSF-6Den_US
dc.subjectQALYsen_US
dc.titleTesting alternative regression models to predict utilities: mapping the QLQ-C30 onto the EQ-5D-5L and the SF-6Den_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typeManuskriptno
dc.typePeer revieweden_US
dc.typePreprinten_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel