dc.contributor.author | Kampffmeyer, Michael C. | |
dc.contributor.author | Løkse, Sigurd | |
dc.contributor.author | Bianchi, Filippo Maria | |
dc.contributor.author | Jenssen, Robert | |
dc.contributor.author | Livi, Lorenzo | |
dc.date.accessioned | 2018-09-18T12:39:18Z | |
dc.date.available | 2018-09-18T12:39:18Z | |
dc.date.issued | 2017-05-19 | |
dc.description.abstract | In this paper we introduce the deep kernelized autoencoder,
a neural network model that allows an explicit approximation of (i) the
mapping from an input space to an arbitrary, user-specified kernel space
and (ii) the back-projection from such a kernel space to input space. The
proposed method is based on traditional autoencoders and is trained
through a new unsupervised loss function. During training, we optimize
both the reconstruction accuracy of input samples and the alignment
between a kernel matrix given as prior and the inner products of the
hidden representations computed by the autoencoder. Kernel alignment
provides control over the hidden representation learned by the autoen-
coder. Experiments have been performed to evaluate both reconstruction
and kernel alignment performance. Additionally, we applied our method
to emulate kPCA on a denoising task obtaining promising results | en_US |
dc.description.sponsorship | We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPU used for this research. | en_US |
dc.description | Accepted manuscript version allowed (see <a href=https://www.springer.com/gp/open-access>policy</a>). <br>Published version available in:<a href=https://link.springer.com/chapter/10.1007/978-3-319-59126-1_35>https://link.springer.com/chapter/10.1007/978-3-319-59126-1_35</a> | en_US |
dc.identifier.citation | Kampffmeyer MC, Løkse S, Bianchi FM, Jenssen R, Livi L. Deep kernelized autoencoders. Lecture Notes in Computer Science. 2017;10269 LNCS:419-430 DOI:10.1007/978-3-319-59126-1_35 | en_US |
dc.identifier.cristinID | FRIDAID 1493964 | |
dc.identifier.doi | 10.1007/978-3-319-59126-1_35 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | https://hdl.handle.net/10037/13824 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.journal | Lecture Notes in Computer Science | |
dc.relation.projectID | Norges forskningsråd: 239844 | en_US |
dc.relation.projectID | Norges forskningsråd: 270738 | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Technology: 500::Information and communication technology: 550 | en_US |
dc.subject | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550 | en_US |
dc.title | Deep kernelized autoencoders | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Book | en_US |
dc.type | Bok | no |
dc.type | Bokkapittel | no |
dc.type | Chapter | en_US |