Show simple item record

dc.contributor.authorVerdure, Hugues
dc.date.accessioned2008-04-23T08:15:44Z
dc.date.available2008-04-23T08:15:44Z
dc.date.issued2004-05
dc.description.abstractThe choice of an elliptic curve for the implementa- tion of an elliptic curve cryptosystem requires count- ing the number of points on such a curve over a fi- nite field. An improvement of Schoof’s algorithm for counting the number of rational points on an ellip- tic curve defined over a finite field takes advantage of some factor of the division polynomials. In this paper, we study the possible factorisations of such division polynomials.en
dc.format.extent65678 bytes
dc.format.extent170170 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.issn0386-2194
dc.identifier.urihttps://hdl.handle.net/10037/1405
dc.identifier.urnURN:NBN:no-uit_munin_1183
dc.language.isoengen
dc.publisherJapan Academyen
dc.relation.ispartofseriesProceedings of the Japan Academy / Series A Mathematical sciences 80(2004) nr. 5, s. 79-82en
dc.rights.accessRightsopenAccess
dc.subjectVDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en
dc.subjectMathematics subject classification : 14H52, 11T71en
dc.subjectElliptic curveen
dc.subjectdivision polynomialen
dc.subjectfactorisationen
dc.titleFactorisation patterns of division polynomialsen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record