Show simple item record

dc.contributor.advisorRypdal, Martin
dc.contributor.authorYong, Chung Han
dc.date.accessioned2018-11-06T13:04:38Z
dc.date.available2018-11-06T13:04:38Z
dc.date.issued2018-09-20
dc.description.abstractIn this thesis we use mathematical models to study the mechanisms by which diseases spread. Transmission dynamics is modelled by the class of SIR models, where the abbreviation stands for susceptible (S), infected (I) and recovered (R). These models are also called compartmental models, and they serve as the basic mathematical framework for understanding the complex dynamics of infectious diseases. Theory developed for the SIR framework can be applied the real-world dynamics, for instance to the spread of the dengue virus. We look at how parameters such as the as basic reproduction number, R0, drive epidemics by allowing transitions from a disease-free equilibrium (DFE) when R0 < 1 to an endemic equilibrium (EE) when R0 > 1. A case study was carried out to investigate dengue transmission dynamics in a single serotype model by using a vector-to-human compartmental model. Here the approach is to explore the underlying dynamical structures, as well as looking at the projected impact of possible interventions such as vaccines and vector-control measures.en_US
dc.identifier.urihttps://hdl.handle.net/10037/14104
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2018 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDMAT-3900
dc.subjectMathematicsen_US
dc.subjectStatisticsen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Anvendt matematikk: 413en_US
dc.titleMathematics of Viral Infections: A Review of Modeling Approaches and A Case-Study for Dengue Dynamicsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)