dc.contributor.author | Agarwal, Krishna | |
dc.contributor.author | Macháň, Radek | |
dc.contributor.author | Prasad, Dilip Kumar | |
dc.date.accessioned | 2019-02-20T14:50:35Z | |
dc.date.available | 2019-02-20T14:50:35Z | |
dc.date.issued | 2018-03-21 | |
dc.description.abstract | Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples. | en_US |
dc.description.sponsorship | The publication fund, UiT The Arctic University of Norway
Ministry of Education, Singapore
European Regional Development Fund
the state budget of the Czech Republic
EU H2020-MSCA-IF-2016 (SEP-210382872) | en_US |
dc.description | Source at <a href=https://doi.org/10.1038/s41598-018-23374-7>https://doi.org/10.1038/s41598-018-23374-7. </a> | en_US |
dc.identifier.citation | Agarwal, K., Macháň, R. & Prasad, D.K. (2018). Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm. <i>Scientific Reports, 8</i>(1), 4988. https://doi.org/10.1038/s41598-018-23374-7 | en_US |
dc.identifier.cristinID | FRIDAID 1627882 | |
dc.identifier.doi | 10.1038/s41598-018-23374-7 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | https://hdl.handle.net/10037/14734 | |
dc.language.iso | eng | en_US |
dc.publisher | Nature Research | en_US |
dc.relation.journal | Scientific Reports | |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Physics: 430 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430 | en_US |
dc.subject | Super-resolution microscopy | en_US |
dc.subject | Wide-field fluorescence microscopy | en_US |
dc.title | Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |