Show simple item record

dc.contributor.advisorPoste, Amanda
dc.contributor.advisorEvenset, Anita
dc.contributor.advisorSøreide, Janne
dc.contributor.advisorMcGovern, Maeve
dc.contributor.authorCarrasco, Nathalie
dc.date.accessioned2019-08-19T13:24:37Z
dc.date.available2019-08-19T13:24:37Z
dc.date.issued2019-05-15
dc.description.abstractMethylmercury (MeHg) is of concern because it has the capacity to readily bioaccumulate and biomagnify along trophic levels until humans, exhibiting toxic effects such as neurotoxicity. Increased permafrost melt (that stores large amounts of carbon and mercury (Hg)) and river inputs, are expected to increase the exposure to Hg through uptake and transfer of contaminants through the food web. The main aim of this study was to determine the impacts of seasonal river inputs on the Hg accumulation in Arctic coastal Paticulate Organic Matter (POM) and zooplankton. The study area was Adventfjord located at 78° North. Analysis were carried out for water and zooplankton samples monthly collected in Adventfjord and its main rivers ; Longyearelva, Adventelva and tributaries from April to August 2018. Physicochemical parameters and Hg were paired with the analysis of zooplankton diet and trophic interactions, based on stable isotope and fatty acid analysis in order to describe Hg trophodynamics. Seasonal river discharge mainly occured in June and July and rivers contained 2 fold-higher SPM, 10 fold-higher Hg, and had a 4 fold-higher C :N ratio than Adventjord waters. However, strong tidal currents and a lack of sill in Adventfjord allowed for a rapid mixing of river inputs throughout the fjord. Although phytoplankton was the most important food source for zooplankton for nearly all sites and study dates, there was some evidence of dietary reliance on allochtonous energy sources during the main river discharge period. Hg- and MeHg-concentrations in zooplankton increased over summer and could be influenced by river inputs, although other processes could also be involved. This study highlights that Adventfjord is a very dynamic system with complex water chemistry and trophic interactions affecting Hg trophodynamics.en_US
dc.identifier.urihttps://hdl.handle.net/10037/15949
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2019 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDBIO-3950
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497en_US
dc.subjectZooplankton dieten_US
dc.subjectRiver inputsen_US
dc.subjectArctic coastal environmenten_US
dc.subjectMercuryen_US
dc.subjectTerrestrial energy sourceen_US
dc.titleSeasonality in mercury bioaccumulation in particulate organic matter and zooplankton in a river-influenced Arctic fjord (Adventfjord, Svalbard).en_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)