dc.contributor.author | Hindberg, Kristian | |
dc.contributor.author | Hannig, Jan | |
dc.contributor.author | Godtliebsen, Fred | |
dc.date.accessioned | 2019-10-14T11:24:12Z | |
dc.date.available | 2019-10-14T11:24:12Z | |
dc.date.issued | 2019-01-22 | |
dc.description.abstract | Two classical multivariate statistical problems, testing of multivariate normality and the <i>k</i>-sample problem, are explored by a novel analysis on several resolutions simultaneously. The presented methods do not invert any estimated covariance matrix. Thereby, the methods work in the High Dimension Low Sample Size situation, i.e. when <i>n</i> ≤ <i>p</i>. The output, a significance map, is produced by doing a one-dimensional test for all possible resolution/position pairs. The significance map shows for which resolution/position pairs the null hypothesis is rejected. For the testing of multinormality, the Anderson-Darling test is utilized to detect potential departures from multinormality at different combinations of resolutions and positions. In the <i>k</i>-sample case, it is tested whether <i>k</i> data sets can be said to originate from the same unspecified discrete or continuous multivariate distribution. This is done by testing the <i>k</i> vectors corresponding to the same resolution/position pair of the k different data sets through the <i>k</i>-sample Anderson-Darling test. Successful demonstrations of the new methodology on artificial and real data sets are presented, and a feature selection scheme is demonstrated. | en_US |
dc.description.sponsorship | National Science Foundation of the United States | en_US |
dc.description | Source at <a href=https://doi.org/10.1371/journal.pone.0211044>https://doi.org/10.1371/journal.pone.0211044</a>. | en_US |
dc.identifier.citation | Hindberg, K., Hannig, J. & Godtliebsen, F. (2019). A novel scale-space approach for multinormality testing and the k-sample problem in the high dimension low sample size scenario. <i>PLoS ONE, 14</i>(1), e0211044. https://doi.org/10.1371/journal.pone.0211044 | en_US |
dc.identifier.cristinID | FRIDAID 1694524 | |
dc.identifier.doi | 10.1371/journal.pone.0211044 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | https://hdl.handle.net/10037/16390 | |
dc.language.iso | eng | en_US |
dc.publisher | PLOS | en_US |
dc.relation.journal | PLoS ONE | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/EVITA/176872/Norway/The Power of Scale-Space Methods and Gaussian Markov Random Fields Applied in Climatology and Medicine// | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en_US |
dc.title | A novel scale-space approach for multinormality testing and the k-sample problem in the high dimension low sample size scenario | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |