Vis enkel innførsel

dc.contributor.authorGarcía-López, Diego
dc.contributor.authorPavlovic, Ljiljana
dc.contributor.authorHopmann, Kathrin Helen
dc.date.accessioned2020-04-27T08:05:43Z
dc.date.available2020-04-27T08:05:43Z
dc.date.issued2020-04-03
dc.description.abstractIn transition metal-mediated carboxylation reactions, CO<sub>2</sub> inserts into a metal–nucleophile bond. At the carboxylation transition state (TS), CO<sub>2</sub> may interact with the metal (<i>inner</i>-sphere path) or may insert without being activated by the metal (<i>outer</i>-sphere path). Currently, there is no consensus as to which path prevails. In order to establish general predictions for the insertion of CO<sub>2</sub> into metal–carbon bonds, we computationally analyze a series of experimentally reported Cu, Rh, and Pd complexes. Our focus is on carboxylation of aromatic substrates, including C<sub>sp3</sub><i>benzyl</i> and C<sub>sp2</sub><i>aryl</i> and <i>alkeny</i>l nucleophiles. We observe clear trends, where the nature of the nucleophile determines the preferred path: benzylic C<sub>sp3</sub> nucleophiles favor <i>outer</i>-sphere and C<sub>sp2</sub> systems favor <i>inner</i>-sphere CO<sub>2</sub> insertion into the metal–carbon bond. An exception are Cu–benzyl bonds, where <i>inner</i>- and <i>outer</i>-sphere CO<sub>2</sub> insertions are found to be competitive, highlighting the need to include both paths in mechanistic studies and in the rationalization of experimental results. For insertion into Pd–C<sub>sp2</sub> bonds, we find that the metal–CO<sub>2</sub> interactions at the TS are weak and may be beyond 3 Å for sterically congested ligands. Nonetheless, on the basis of a comparison to other TSs, we argue that the CO<sub>2</sub> insertion into Pd–C<sub>sp2</sub> bonds should be classified as <i>inner</i>-sphere.en_US
dc.identifier.citationGarcía López DG, Pavlovic Lj, Hopmann KH. To Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metals. Organometallics. 2020en_US
dc.identifier.cristinIDFRIDAID 1805577
dc.identifier.doihttps://doi.org/10.1021/acs.organomet.0c00090
dc.identifier.issn0276-7333
dc.identifier.issn1520-6041
dc.identifier.urihttps://hdl.handle.net/10037/18129
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofPavlovic, L. (2020). Towards Enantioselective Carboxylation and Hydrogenation Reactions (Quantum Chemical Modelling of Homogeneous Reactions). (Doctoral thesis). <a href=https://hdl.handle.net/10037/18943>https://hdl.handle.net/10037/18943</a>.
dc.relation.journalOrganometallics
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.relation.projectIDNotur/NorStore: nn4654ken_US
dc.relation.projectIDNotur/NorStore: nn9330ken_US
dc.relation.projectIDTromsø forskningsstiftelse: TFS2016KHHen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/262695/Norway/Hylleraas Centre for Quantum Molecular Sciences//en_US
dc.relation.urihttps://pubs.acs.org/doi/abs/10.1021/acs.organomet.0c00090
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Chemistry: 440en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.titleTo Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metalsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel