Show simple item record

dc.contributor.authorAkishev, Gabdolla
dc.contributor.authorLukkassen, Dag
dc.contributor.authorPersson, Lars Erik
dc.date.accessioned2020-04-28T11:27:28Z
dc.date.available2020-04-28T11:27:28Z
dc.date.issued2020-03-20
dc.description.abstractIn this paper we prove some essential complements of the paper (J. Inequal. Appl. 2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the case of the Lorentz–Zygmund function spaces L q,r (logL ) α Lq,r(log⁡L)α involved and in the case with an unbounded orthonormal system. More exactly, in this paper we prove and discuss some new Fourier inequalities of this type for the limit case L 2,r (logL ) α L2,r(log⁡L)α , which could not be proved with the techniques used in the paperen_US
dc.identifier.citationAkishev, G; Lukkassen, D.; Persson, L.E.(2020) Some new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund Spaces. <i>Journal of Inequalities and Applications, 2020</i>, 77en_US
dc.identifier.cristinIDFRIDAID 1808104
dc.identifier.doi10.1186/s13660-020-02344-6
dc.identifier.issn1025-5834
dc.identifier.issn1029-242X
dc.identifier.urihttps://hdl.handle.net/10037/18146
dc.language.isoengen_US
dc.relation.journalJournal of Inequalities and Applications
dc.relation.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-020-02344-6
dc.rights.accessRightsopenAccessen_US
dc.rights.holder© 2020 BioMed Central Ltden_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleSome new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund spacesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record