Show simple item record

dc.contributor.advisorSoleng, Ragnar
dc.contributor.authorBoyne, Marcus L.
dc.date.accessioned2020-06-16T08:20:14Z
dc.date.available2020-06-16T08:20:14Z
dc.date.issued2020-05-13
dc.description.abstractIn this thesis we will look at elliptic and hyperelliptic curves. There are three abelian groups that are isomorphic to hyperelliptic curves. The Jacobian of hyperelliptic curves, the ideal class group and the form class group, will all be defined and given abelian group structure. We will give an algorithm for point addition and point doubling done exclusively in the jacobian of the curve. We will end the thesis with proving that there exists an isomorphism between the form class group and the ideal class group.en_US
dc.identifier.urihttps://hdl.handle.net/10037/18552
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDMAT-3900
dc.subjectAlgebraic Number Theoryen_US
dc.subjectHyperelliptic curvesen_US
dc.subjectCryptographyen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleThe Four Faces of Hyperelliptic curvesen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)