Show simple item record

dc.contributor.authorUteng, Stig
dc.contributor.authorJohansen, Thomas Haugland
dc.contributor.authorZaballos, Jose Ignacio
dc.contributor.authorOrtega, Samuel
dc.contributor.authorHolmström, Lasse
dc.contributor.authorCallico, Gustavo M.
dc.contributor.authorFabelo, Himar
dc.contributor.authorGodtliebsen, Fred
dc.date.accessioned2020-06-22T07:22:37Z
dc.date.available2020-06-22T07:22:37Z
dc.date.issued2020-03-27
dc.description.abstractGiven an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis.en_US
dc.identifier.citationUteng, S., Johansen, T.H., Zaballos, J.I., Ortega, S., Holmström, L., Callico, G.M., Fabelo, H. & Godtliebsen, F. (2020). Early Detection of Change by Applying Scale-Space Methodology to Hyperspectral Images. <i>Applied Sciences, 10</i>(7), 2298en_US
dc.identifier.cristinIDFRIDAID 1804089
dc.identifier.doihttps://doi.org/10.3390/app10072298
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/10037/18612
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofJohansen, T.H. (2021). Leveraging Computer Vision for Applications in Biomedicine and Geoscience. (Doctoral thesis). <a href=https://hdl.handle.net/10037/21377>https://hdl.handle.net/10037/21377</a>.
dc.relation.ispartofUteng, S. (2022). Statistical Curve Analysis: Developing Methods and Expanding Knowledge in Health. (Doctoral thesis). <a href=https://hdl.handle.net/10037/25969>https://hdl.handle.net/10037/25969</a>.
dc.relation.journalApplied Sciences
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.titleEarly Detection of Change by Applying Scale-Space Methodology to Hyperspectral Imagesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record