Show simple item record

dc.contributor.authorSolheim, Jan Erik
dc.contributor.authorKleinman, S. J.
dc.contributor.authorBruvold, A.
dc.contributor.authorNather, R. E.
dc.contributor.authorWinget, D. E.
dc.contributor.authorClemens, J. C.
dc.contributor.authorBradley, A.
dc.contributor.authorKanaan, A.
dc.contributor.authorClaver, C. F.
dc.contributor.authorWatson, T. K.
dc.contributor.authorYanagida, K.
dc.contributor.authorNitta, A.
dc.contributor.authorDixson, J. S.
dc.contributor.authorGrauer, A. D.
dc.contributor.authorHine, B. P.
dc.contributor.authorFontaine, G.
dc.contributor.authorLiebert, James
dc.contributor.authorSullivan, D. J.
dc.contributor.authorWickramasinghe, D. T.
dc.contributor.authorAchilleos, N.
dc.contributor.authorMara, T. M. K.
dc.contributor.authorSeetha, S.
dc.contributor.authorAshoka, B. N.
dc.contributor.authorLeibowitz, E. M.
dc.contributor.authorMoskalik, P.
dc.contributor.authorKrzesi´nski, J.
dc.contributor.authorO’Donoghue, D.
dc.contributor.authorKurtz, D. W.
dc.contributor.authorWarner, B.
dc.contributor.authorMartinez, Peter
dc.contributor.authorDolez, N.
dc.contributor.authorChevreton, M.
dc.contributor.authorBarstow, M. A.
dc.contributor.authorKepler, S. O.
dc.contributor.authorGiovannini, O.
dc.contributor.authorHansen, C. J.
dc.contributor.authorAugusteijn, T.
dc.date.accessioned2009-08-14T09:10:47Z
dc.date.available2009-08-14T09:10:47Z
dc.date.issued1997-10-10
dc.description.abstractThe white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post main sequence evolution, along with their cooling rates, allowing us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DAVs, which have not previously been explored through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning ten years, we explore the pulsation spectrum of the cool DAV, G29–38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably ℓ = 1 pulsations amidst an abundance of time variability and linear combination modes. Modelling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modelling, thereby joining the rest of the known white dwarf pulsators.en
dc.descriptionThis is the authors' accepted version of the article.en
dc.format.extent212645 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationThe Astrophysical Journal, 495:424-434, 1998 March 1en
dc.identifier.urihttps://hdl.handle.net/10037/2038
dc.identifier.urnURN:NBN:no-uit_munin_1790
dc.language.isoengen
dc.publisherThe American Astronomical Societyen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Astrophysics, astronomy: 438en
dc.subjectstars:individual(G29–38)en
dc.subjectstars: pulsationsen
dc.subjectstars: white dwarfsen
dc.titleUnderstanding the Cool DA White Dwarf Pulsator, G29–38en
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record