Show simple item record

dc.contributor.authorKruglikov, Boris
dc.contributor.authorLychagin, Valentin V.
dc.date.accessioned2009-08-27T11:31:34Z
dc.date.available2009-08-27T11:31:34Z
dc.date.issued2005-12-07
dc.description.abstractWe study the equivalence problem of submanifolds with respect to a transitive pseudogroup action. The corresponding differential invariants are determined via formal theory and lead to the notions of l-variants and l-covariants, even in the case of non-integrable pseudogroup. Their calculation is based on the cohomological machinery: We introduce a complex for covariants, define their cohomology and prove the finiteness theorem. This implies the well-known Lie-Tresse theorem about differential invariants. We also generalize this theorem to the case of pseudogroup action on differential equations.en
dc.format.extent420971 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10037/2053
dc.identifier.urnURN:NBN:no-uit_munin_1805
dc.language.isoengen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectpseudogroupen
dc.subjectdifferential invariantsen
dc.subjectTresse derivativeen
dc.subjectequivalenceen
dc.subjectLie equationen
dc.subjectSpencer cohomologyen
dc.titleInvariants of pseudogroup actions: Homological methods and Finiteness theoremen
dc.typeWorking paperen
dc.typeArbeidsnotaten


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record